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This paper is concerned with the existence and uniqueness of a mild solution of a semilinear
fractional-order functional evolution differential equation with the infinite delay and impulsive
effects. The existence and uniqueness of a mild solution is established using a solution operator
and the classical fixed-point theorems.

1. Introduction

This paper is concerned with the existence and uniqueness of a mild solution of an impulsive
fractional-order functional differential equation with the infinite delay of the form

Dα
t x(t) = Ax(t) + f(t, xt, Bx(t)), t ∈ J = [0, T], t /= tk,

Δx(tk) = Ik
(
x
(
t−k
))
, k = 1, 2, . . . , m,

x(t) = φ(t), φ(t) ∈ Bh,

(1.1)

where T > 0, 0 < α < 1, A : D(A) ⊂ X → X is the infinitesimal generator of an α-resolvent
family Sα(t)t≥0, the solution operator Tα(t)t≥0 is defined on a complex Banach space X, Dα

is the Caputo fractional derivative, f : J × Bh × X → X is a given function, and Bh is a
phase space defined in Section 2. Here, 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik ∈ C(X,X),
(k = 1, 2, . . . , m), are bounded functions, Δx(tk) = x(t+k) − x(t−k), x(t+k) = limh→ 0x(tk + h) and
x(t−

k
) = limh→ 0x(tk − h) represent the right and left limits of x(t) at t = tk, respectively.
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We assume that xt : (−∞, 0] → X, xt(s) = x(t + s), s ≤ 0, belongs to an abstract phase
space Bh. The term Bx(t) is given by Bx(t) =

∫ t
0K(t, s)x(s)ds, where K ∈ C(D,R+) is the set

of all positive continuous functions on D = {(t, s) ∈ R
2 : 0 ≤ s ≤ t ≤ T}.

Differential equations with impulsive conditions constitute an important field of
research due to their numerous applications in ecology, medicine biology, electrical
engineering, and other areas of science. Many physical phenomena in evolution processes are
modelled as impulsive differential equations and have been studied extensively by several
authors, for instance, see [1–3], for more information on these topics. Impulsive integro-
differential equations with delays represent mathematical models for problems in the areas
such as population dynamics, biology, ecology, and epidemic and have been studied bymany
authors [2–7]. The study of fractional differential equations has emerged as a new branch
of applied mathematics, which has been used for construction and analysis of mathematical
models in science and engineering. In fact, the fractional differential equations are considered
as models alternative to nonlinear differential equations. Many physical systems can be
represented more accurately through fractional derivative formulation. For more detail, see,
for instance, the papers [1, 3–5, 7–12] and references therein.

Recently, in [4], the author has established sufficient conditions for the existence of
a mild solution for a fractional integro-differential equation with a state-dependent delay.
Mophou and N’Guérékata [7] have investigated the existence and uniqueness of a mild
solution for the fractional differential equation (1.1) without impulsive conditions. Authors
of [7] have established the results assuming that A generates an α-resolvent family (Sα(t))t≥0
on a complex Banach space X by means of classical fixed-point methods.

In [5], Benchohra et al. have considered the following nonlinear functional differential
equation with infinite delay

Dqx(t) = f(t, xt), t ∈ [0, T], 0 < q < 1, x(t) = φ(t), t ∈ ]−∞, 0], (1.2)

where Dq is Riemann-Liouville fractional derivative, φ ∈ Bh, with φ(0) = 0, and established
the existence of a mild solution for the considered problem using the Banach fixed-point and
the nonlinear alternative of Leray-Schauder theorems.

Motivated by the above-mentioned works, we consider the problem (1.1) to study
the existence and uniqueness of a mild solution using the solution operator and fixed-point
theorems. The paper is organized as follows: in Section 2, we introduce some function spaces
and notations and present some necessary definitions and preliminary results that will be
used to prove our main results. The proof of our main results is given in Section 3. In the last
section one example is presented.

2. Preliminaries

In this section, we mention some definitions and properties required for establishing our
results. LetX be a complex Banach space with its norm denoted as ‖ · ‖X , and L(X) represents
the Banach space of all bounded linear operators fromX intoX, and the corresponding norm
is denoted by ‖ · ‖L(X). Let C(J,X) denote the space of all continuous functions from J into X
with supremum norm denoted by ‖ · ‖C(J,X). In addition, Br(x,X) represents the closed ball
in X with the center at x and the radius r.

To describe a fractional-order functional differential equation with the infinite delay,
we need to discuss the abstract phase space Bh in a convenient way (for details see [3]). Let
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h : (−∞, 0] → (0,∞) be a continuous function with l =
∫0
−∞ h(t)dt < ∞. For any a > 0, we

define
B = {ψ : [−a, 0] → X such that ψ(t) is bounded and measurable} and equip the space

B with the norm

∥
∥ψ
∥
∥
[−a,0] = sup

s∈[−a,0]

∣
∣ψ(s)

∣
∣, ∀ψ ∈ B. (2.1)

Let us define by

Bh =

{

ψ : (−∞, 0] −→ X, such that for any c > 0, ψ|[−c,0] ∈ B with

ψ(0) = 0 and
∫0

−∞
h(s)

∥
∥ψ
∥
∥
[s,0]ds <∞

}

.

(2.2)

If Bh is endowed with the norm

∥∥ψ
∥∥

Bh
=
∫0

−∞
h(s)

∥∥ψ
∥∥
[s,0]ds, ∀ψ ∈ Bh, (2.3)

then it is known that (Bh, ‖ · ‖Bh) is a Banach space.
Now, we consider the space

B′
h =

{
x : (−∞, T] −→ X such that x|Jk ∈ C(Jk, X) and there exist

x
(
t+k
)
and x

(
t−k
)
with x(tk) = x

(
t−k
)
, x0 = φ ∈ Bh, k = 1, . . . , m

}
,

(2.4)

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, . . . , m. The function ‖ · ‖B′
h
to be a

seminorm in B′
h, it is defined by

‖x‖B′
h
= sup{|x(s)| : s ∈ [0, T]} + ∥∥φ∥∥Bh

, x ∈ B′
h. (2.5)

If x :] − ∞, T] → X, T > 0, is such that x0 ∈ Bh, then for all t ∈ J , the following conditions
hold:

(1) xt ∈ Bh,

(2) ‖xt‖Bh ≤ C1(t)sup0<s<t‖x(s)‖ + C2(t)‖x0‖Bh ,

(3) ‖x(t)‖ ≤ H‖xt‖Bh , whereH > 0 is a constant and C1:[0,∞) → [0,∞) is continuous,
C2:[0,∞) → [0,∞) is locally bounded, and C1, C2 are independent of x(·). For
more details, see [6].

A two parameter function of the Mittag-Lefller type is defined by the series expansion

Eα,β(z) =
∞∑

k=0

zk

Γ
(
αk + β

) =
1

2πi

∫

C

μα−βeμ

μα − z dμ, α, β > 0, z ∈ C, (2.6)
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where C is a contour which starts and ends at −∞ and encircles the disc |μ| ≤ |z|1/2
counter clockwise. For short, Eα(z) = Eα,1(z). It is an entire function which provides a
simple generalization of the exponent function: E1(z) = ez and the cosine function: E2(z2) =
cosh(z), E2(−z2) = cos(z), and plays an important role in the theory of fractional differential
equations. The most interesting properties of the Mittag-Lefller functions are associated with
their Laplace integral

∫∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα −ω, Reλ > ω1/α, ω > 0, (2.7)

see [12] for more details.

Definition 2.1. A closed and linear operator A is said to be sectorial if there are constants
ω ∈ R, θ ∈ [π/2, π], M > 0, such that the following two conditions are satisfied:

(1) ρ(A) ⊂
∑

(θ,ω)

=
{
λ ∈ C : λ/=ω,

∣∣arg(λ −ω)∣∣ < θ},

(2) ‖R(λ,A)‖L(X) ≤
M

|λ −ω| , λ ∈
∑

(θ,ω)

.

(2.8)

Sectorial operators are well studied in the literature. For details see [13].

Definition 2.2 (see Definition 2.3 in [10]). Let A be a closed and linear operator with the
domain D(A) defined in a Banach space X. Let ρ(A) be the resolvent set of A. We say that
A is the generator of an α-resolvent family if there exist ω ≥ 0 and a strongly continuous
function Sα : R+ → L(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

(λαI −A)−1x =
∫∞

0
e−λtSα(t)x dt, Reλ > ω, x ∈ X, (2.9)

in this case, Sα(t) is called the α-resolvent family generated by A.

Definition 2.3 (see Definition 2.1 in [4]). Let A be a closed linear operator with the domain
D(A) defined in a Banach space X and α > 0. We say that A is the generator of a solution
operator if there exist ω ≥ 0 and a strongly continuous function Sα : R+ → L(X) such that
{λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =
∫∞

0
e−λtSα(t)x dt, Reλ > ω, x ∈ X, (2.10)

in this case, Sα(t) is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent
family (see [14] Chapter 1). For more details on α-resolvent family and solution operators,
we refer to [14, 15] and the references therein.
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Definition 2.4. The Riemann-Liouville fractional integral operator for order α > 0, of a
function f : R+ → R and f ∈ L1(R+, X), is defined by

I0f(t) = f(t), Iαf(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, α > 0, t > 0, (2.11)

where Γ(·) is the Euler gamma function. The Laplace transform of a function f ∈ L1(R+, X) is
defined by

f̂(λ) =
∫∞

0
e−λtf(t)dt, Re(λ) > ω, (2.12)

provided the integral is absolutely convergent for Re(λ) > ω.

Definition 2.5. Caputo’s derivative of order α for a function f : [0,∞) → R is defined as

Dα
t f(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds = In−αf (n)(t), (2.13)

for n − 1 ≤ α < n, n ∈N. If 0 < α ≤ 1, then

Dα
t f(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αf (1)(s)ds. (2.14)

Obviously, Caputo’s derivative of a constant is equal to zero. The Laplace transform of the
Caputo derivative of order α > 0 is given as

L
{
Dα
t f(t);λ

}
= λαf̂(λ) −

n−1∑

k=0

λα−k−1f (k)(0); n − 1 ≤ α < n. (2.15)

Lemma 2.6. If f satisfies the uniform Holder condition with the exponent β ∈ (0, 1] and A is a
sectorial operator, then the unique solution of the Cauchy problem

Dα
t x(t) = Ax(t) + f(t, xt, Bx(t)), t > t0, t0 ∈ R, 0 < α < 1,

x(t) = φ(t), t ≤ t0,
(2.16)

is given by

x(t) = Tα(t − t0)
(
x
(
t+0
))

+
∫ t

t0

Sα(t − s)f(s, xs, Bx(s))ds, (2.17)
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where

Tα(t) = Eα,1(Atα) =
1

2πi

∫

B̂r

eλt
λα−1

λα −Adλ,

Sα(t) = tα−1Eα,α(Atα) =
1

2πi

∫

B̂r

eλt
1

λα −Adλ,
(2.18)

B̂r denotes the Bromwich path. Sα(t) is called the α-resolvent family, and Tα(t) is the solution operator,
generated by A.

Proof. Let t − t0 = u, then we get

Dα
ux(u + t0) = Ax(u + t0) + f(u + t0, xu+t0 , Bx(u + t0)), u > 0. (2.19)

Taking the Laplace transform of (2.19), we have

λαL{x(u + t0)} − λα−1x
(
t+0
)
= AL{x(u + t0)} + L

{
f(u + t0, xu+t0 , Bx(u + t0))

}
. (2.20)

Since (λαI −A)−1 exists, that is, λα ∈ ρ(A), from (2.20), we obtain

L{x(u + t0)}

= λα−1(λαI −A)−1x
(
t+0
)
+ (λαI −A)−1L

{
f(u + t0, xu+t0 , Bx(u + t0))

}
.

(2.21)

By the inverse Laplace transform of (2.21), we get

x(u + t0) = Eα,1(Auα)x
(
t+0
)
+
∫u

0
(u − s)α−1Eα,α

(
A(u − s)α)f(s + t0, xs+t0 , Bx(s + t0))ds.

(2.22)

Set u + t0 = t, in (2.22), we have

x(t) = Eα,1
(
A(t − t0)α

)
x
(
t+0
)

+
∫ t−t0
0 (t − t0 − s)α−1Eα,α

(
A(t − t0 − s)α

)
f(s + t0, xs+t0 , Bx(s + t0))ds.

(2.23)

On simplification, we obtain

x(t) = Eα,1
(
A(t − t0)α

)
x
(
t+0
)

+
∫ t

t0

(t − θ)α−1Eα,α
(
A(t − θ)α)f(θ, xθ, Bx(θ))dθ.

(2.24)
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Set Tα(t) = Eα,1(Atα) and Sα(t) = tα−1Eα,α(Atα) in (2.24). We have

x(t) = Tα(t − t0)x
(
t+0
)
+
∫ t

t0

Sα(t − θ)f(θ, xθ, Bx(θ))dθ. (2.25)

This completes the proof of the lemma.

Now, we give the definition of a mild solution of the system (1.1) by investigating the
classical solution of the system (1.1).

Definition 2.7. A function x : (−∞, T] → X is called a mild solution of (1.1) if the following
holds: x0 = φ ∈ Bh on (−∞, 0] with φ(0) = 0;Δx|t=tk = Ik(x(t−k)), k = 1, . . . , m, the restriction
of x(·) to the interval [0, T) \ {t1, . . . , tm} is continuous and satisfies the following integral
equation:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0],
∫ t

0
Sα(t − s)f(s, xs, Bx(s))ds, t ∈ [0, t1],

Tα(t − t1)
(
x
(
t−1
)
+ I1

(
x
(
t−1
)))

+
∫ t

t1

Sα(t − s)f(s, xs, Bx(s))ds, t ∈ (t1, t2],

...

Tα(t − tm)(x(t−m) + Im(x(t−m))) +
∫ t

tm

Sα(t − s)f(s, xs, Bx(s))ds, t ∈ (tm, T].

(2.26)

Now, we introduce the following assumptions:

(H1) there exist μ1, μ2 > 0 such that

∥∥f(t, ϕ, x) − f(t, ψ, y)∥∥X ≤ μ1
∥∥ϕ − ψ∥∥

Bh
+ μ2

∥∥x − y∥∥X, t ∈ I, (ϕ, ψ) ∈ B2
h, x, y ∈ X.

(2.27)

(H2) for each k = 1, . . . , m, there exists ρk > 0 such that

∥∥Ik(x) − Ik(y)
∥∥
X ≤ ρk

∥∥x − y∥∥X, ∀x, y ∈ X. (2.28)

(H3)

max
1≤i≤m

{

M̃T

(
1 + ρi

)
+
M̃ST

α

α

(
μ1C

∗
1 + μ2B

∗)
}

< 1, (2.29)
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where C∗
1 = sup0<τ<TC1(τ) and B∗ = supt∈[0,t]

∫ t
0K(t, s)ds <∞ and

M̃T = sup
0≤t≤T

‖Tα(t)‖L(X), M̃S = sup
0≤t≤T

Ceωt
(
1 + t1−α

)
. (2.30)

If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for any x ∈ X and t > 0, we have
‖Tα(t)‖L(X) ≤ Meωt and ‖Sα(t)‖L(X) ≤ Ceωt(1 + tα−1), t > 0, ω > ω0. Hence, we have
‖Tα(t)‖L(X) ≤ M̃T , ‖Sα(t)‖L(X) ≤ tα−1M̃S. See [1] for details.

3. The Main Results

Our first result is based on the Banach contraction principle.

Theorem 3.1. Assume that the assumptions (H1)–(H3) are satisfied. If A ∈ A
α(θ0, ω0), then the

system (1.1) has a unique mild solution.

Proof. Consider the operatorN : B′
h
→ B′

h
defined by

(Nx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0],
∫ t

0
Sα(t − s)f(s, xs, Bx(s))ds, t ∈ [0, t1],

Tα(t − t1)
(
x
(
t−1
)
+ I1

(
x
(
t−1
)))

+
∫ t

t1

Sα(t − s)f(s, xs, Bx(s))ds, t ∈ (t1, t2],

...

Tα(t − tm)(x(t−m) + Im(x(t−m)))

+
∫ t

tm

Sα(t − s)f(s, xs, Bx(s))ds, t ∈ (tm, T].

(3.1)

Let y(·) : (−∞, T] → X be the function defined by

y(t) =

⎧
⎨

⎩

φ(t), t ∈ (−∞, 0]

0, t ∈ J,
(3.2)

then y0 = φ. For each z ∈ C(J,R) with z(0) = 0, we denote by z the function defined by

z(t) =

⎧
⎨

⎩

0, t ∈ (−∞, 0];

z(t), t ∈ J.
(3.3)
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If x(·) satisfies (2.26), then we can decompose x(·) as x(t) = y(t)+z(t) for t ∈ J , which implies
xt = yt + zt for t ∈ J , and the function z(·) satisfies

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
Sα(t − s)f

(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ [0, t1],

Tα(t − t1)
[
y
(
t−1
)
+ z
(
t−1
)
+ I1

((
y
(
t−1
))

+ z
(
t−1
))]

+
∫ t

t1

Sα(t − s)f
(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ (t1, t2],

...

Tα(t − tm)
[
y(t−m) + z(t

−
m) + Im

((
y(t−m)

)
+ z(t−m)

)]

+
∫ t

tm

Sα(t − s)f
(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ (tm, T].

(3.4)

Set B′′
h
= {z ∈ B′

h
such that z0 = 0} and let ‖ · ‖B′′

h
be the seminorm in B′′

h
defined by

‖z‖B′′
h
= sup

t∈J
‖z(t)‖X + ‖z0‖Bh

= sup
t∈J

‖z(t)‖X, z ∈ B′′
h, (3.5)

thus (B′′
h
, ‖ · ‖B′′

h
) is a Banach space. We define the operator P : B′′

h
→ B′′

h
by

(Pz)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
Sα(t − s)f

(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ [0, t1],

Tα(t − t1)
[
z
(
t−1
)
+ I1

(
z
(
t−1
))]

+
∫ t

t1

Sα(t − s)f
(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ (t1, t2],

...

Tα(t − tm)[z(t−m) + Im(z(t−m))]

+
∫ t

tm

Sα(t − s)f
(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ (tm, T].

(3.6)
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It is clear that the operator N has a unique fixed-point if and only if P has a unique fixed-
point. To prove that P has a unique fixed-point, let z, z∗ ∈ B′′

h
, then for all t ∈ [0, t1]. We

have

‖P(z)(t) − P(z∗)(t)‖X

≤
∫ t

0
‖Sα(t − s)‖L(X)

∥
∥f(s, ys + zs, B(y(s) + z(s))) − f(s, ys + z∗s, B(y(s) + z∗(s)))

∥
∥
Xds

≤ M̃S

∫ t

0
(t − s)α−1

[
μ1
∥
∥zs − z∗s

∥
∥

Bh
+ μ2

∥
∥B
(
y(s) + z(s)

) − B(y(s) + z∗)∥∥X
]
ds

≤ M̃S

α

(
μ1C

∗
1 + μ2B

∗)Tα‖z − z∗‖B′′
h
.

(3.7)

For t ∈ (t1, t2], we have

‖P(z)(t) − P(z∗)(t)‖X
≤ ‖Tα(t − t1)‖L(X)

[∥∥z(t−1 ) − z∗(t−1 )
∥∥
X +

∥∥I1(z(t−1 )) − I1(z∗(t−1 ))
∥∥
X

]

+
∫ t

t1

‖Sα(t − s)‖L(X)

∥∥f(s, ys + zs, B(y(s) + z(s))) − f(s, ys + z∗s, B(y(s) + z∗(s)))
∥∥
X

≤ M̃T

[∥∥z(t−1 ) − z∗(t−1 )
∥∥
X + ρ1

∥∥z(t−1 ) − z∗(t−1 )
∥∥
X

]

+ M̃S

∫ t

t1

(t − s)α−1
[
μ1
∥∥zs − z∗s

∥∥
Bh

+ μ2
∥∥B
(
y(s) + z(s)

) − B(y(s) + z∗)∥∥X
]
ds

≤ M̃T

(
1 + ρ1

)‖z − z∗‖B′′
h
+
M̃S

α

(
μ1C

∗
1 + μ2B

∗)Tα‖z − z∗‖B′′
h
.

(3.8)

Similarly, when t ∈ (ti, ti+1], i = 2, . . . , m, we get

‖P(z)(t) − P(z∗)(t)‖X ≤ M̃T

(
1 + ρi

)‖z − z∗‖B′′
h
+
M̃S

α

(
μ1C

∗
1 + μ2B

∗)Tα‖z − z∗‖B′′
h
. (3.9)

Thus, for all t ∈ [0, T], we have

‖P(z) − P(z∗)‖B′′
h
≤ max

1≤i≤m

{

M̃T

(
1 + ρi

)
+
M̃S

α

(
μ1C

∗
1 + μ2B

∗)Tα
}

‖z − z∗‖B′′
h
. (3.10)

Hence, P is a contraction map, and therefore it has an unique fixed-point z ∈ B′′
h, which is a

mild solution of (1.1) on (−∞, T]. This completes the proof of the theorem.

The second result is established using the following Krasnoselkii’s fixed-point theo-
rem.
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Theorem 3.2. Let B be a closed-convex and nonempty subset of a Banach space X. Let P and Q be
two operators such that (i) Px + Qy ∈ B whenever x, y ∈ B, (ii) P is compact and continuous;
(iii) Q is a contraction mapping, then there exists z ∈ B such that z = Pz +Qz.

Now, we make the following assumptions:

(H4) f : J ×Bh ×X → X is continuous, and there exist two continuous functions μ1, μ2 :
J → (0,∞) such that

∥
∥f(t, ψ, x)

∥
∥
X ≤ μ1(t)

∥
∥ψ
∥
∥

Bh
+ μ2(t)‖x‖X,

(
t, ψ, x

) ∈ J × B ×X. (3.11)

(H5) the function Ik : X → X is continuous, and there exists Ω > 0 such that

Ω = max
1≤k≤m,x∈Br

{‖Ik(x)‖X}. (3.12)

Before going further, we need the following lemma.

Lemma 3.3 (see Lemma 3.2 in [7]). Let

C∗
1 = sup

0<τ<T
C1(τ), C∗

2 = sup
0<τ<T

C2(τ), μ∗
1 = sup

0<τ<T
μ1(τ), μ∗

2 = sup
0<τ<T

μ2(τ) (3.13)

then for any s ∈ J ,

μ1(s)
∥∥ys + zs

∥∥
Bh

+ μ2(s)
∥∥B(y(s) + z(s))

∥∥
X ≤ μ∗

1

[

C∗
2

∥∥φ
∥∥

Bh
+ C∗

1 sup
0≤τ≤s

‖z(τ)‖X
]

+ μ∗
2

∫s

0
K(s, τ)‖z(τ)‖Xdτ.

(3.14)

If ‖z‖X < r, r > 0, then

μ1(s)
∥∥ys + zs

∥∥
Bh

+ μ2(s)
∥∥B(y(s) + z(s))

∥∥
X ≤ μ∗

1

[
C∗

2

∥∥φ
∥∥

Bh
+ C∗

1r
]
+ μ∗

2rB
∗ = λ. (3.15)

Theorem 3.4. Suppose that the assumptions (H1), (H4), (H5) are satisfied with

[
M̃S

α

(
μ1C

∗
1 + μ2B

∗)Tα
]

< 1, (3.16)

then the impulsive problem (1.1) has at least one mild solution on (−∞, T].
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Proof. Choose r ≥ [M̃T (r +Ω) + (M̃ST
αλ/α)] and consider Br = {z ∈ B′′

h : ‖z‖B′′
h
≤ r}, then Br

is a bounded, closed-convex subset in B′′
h
.

Let Γ1 : Br → Br and Γ2 : Br → Br be defined as

(Γ1z)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ [0, t1],

Tα(t − t1)
[
z
(
t−1
)
+ I1

(
z
(
t−1
))]

, t ∈ (t1, t2],

...

Tα(t − tm)[z(t−m) + Im(z(t−m))], t ∈ (tm, T],

(3.17)

(Γ2z)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
Sα(t − s)f

(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ [0, t1],

∫ t

t1

Sα(t − s)f
(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ (t1, t2],

...
∫ t

tm

Sα(t − s)f
(
s, ys + zs, B

(
y(s) + z(s)

))
ds, t ∈ (tm, T].

(3.18)

Step 1. Let z, z∗ ∈ Br , then show that Γ1z + Γ2z∗ ∈ Br , for t ∈ [0, t1], we have

‖(Γ1z)(t) + (Γ2z∗)(t)‖X

≤
∫ t

0
‖Sα(t − s)‖L(X)

∥∥f(s, ys + z
∗
s, B(y(s) + z

∗(s)))
∥∥
Xds

≤ M̃S

∫ t

0
(t − s)α−1

[
μ1(s)

∥∥ys + z
∗
s

∥∥
B′′

h
+ μ2(s)

∥∥B(y(s) + z∗(s))
∥∥
X

]
ds,

(3.19)

and by using Lemma 3.3, we conclude that

‖(Γ1z) + (Γ2z∗)‖B′′
h
≤ M̃SλT

α

α
< r. (3.20)

Similarly, when t ∈ (ti, ti+1], i = 1, . . . , m, we have the estimate

‖(Γ1z)(t) + (Γ2z∗)(t)‖X
≤ ∥∥Tα(t − ti)[z(t−i ) + Ii(z(t−i ))]

∥∥
X

+
∫ t

ti

‖Sα(t − s)‖L(X)

∥∥f(s, ys + z
∗
s, B(y(s) + z

∗(s)))
∥∥
Xds
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≤ M̃T

(
‖z‖B′′

h
+
∥
∥Ii(z(t−i ))

∥
∥
X

)

+
∫ t

ti

‖Sα(t − s)‖L(X)

[
μ1(s)

∥
∥ys + z

∗
s

∥
∥

B′′
h
+ μ2(s)

∥
∥B(y(s) + z∗(s))

∥
∥
X

]
ds

≤ M̃T (r + Ω) +
M̃ST

αλ

α
< r,

(3.21)

which implies that ‖Γ1z + Γ2z‖B′′
h
≤ r.

Step 2. We will show that the mapping (Γ1z)(t) is continuous on Br . For this purpose, let
{zn}∞n=1 be a sequence in Br with lim zn → z ∈ Br , then for t ∈ (ti, ti+1], i = 0, 1, . . . , m, we have

‖(Γ1zn)(t) − (Γ1z)(t)‖X
≤ ‖Tα(t − ti)‖L(X)

[∥∥zn(t−i ) − z(t−i )
∥∥
X +

∥∥Ii(zn(t−i )) − Ii(z(t−i ))
∥∥
X

]
.

(3.22)

Since the functions Ii, i = 1, 2, . . . , m are continuous, hence limn→∞Γ1zn = Γ1z in Br which
implies that the mapping Γ1 is continuous on Br .

Step 3. Uniform boundedness of the map (Γ1z)(t) is an implication of the following
inequality: for t ∈ (ti, ti+1], i = 0, 1, . . . , m, we have

‖(Γ1z)(t)‖X ≤ ‖Tα(t − ti)‖L(X)
[∥∥z(t−i )

∥∥
X +

∥∥Ii(z(t−i ))
∥∥
X

]

≤ M̃T (r + Ω).
(3.23)

Step 4. To show that the map (3.17) is equicontinuous, we proceed as follows. Let u, v ∈
(ti, ti+1], ti ≤ u < v ≤ ti+1, i = 0, 1, . . . , m, z ∈ Br , then we obtain

‖(Γ1z)(v) − (Γ1z)(u)‖X ≤ ‖Tα(v − ti) − Tα(u − ti)‖L(X)

∥∥z(t−i ) + Ii(z(t
−
i ))
∥∥
X

≤ (r + Ω)‖Tα(v − ti) − Tα(u − ti)‖L(X).
(3.24)

Since Tα is strongly continuous, the continuity of the function t �→ ‖T(t)‖ allows us
to conclude that limu→v‖Tα(v − ti) − Tα(u − ti)‖L(X) = 0, which implies that Γ1(Br) is
equicontinuous. Finally, combining Step 1 to Step 4 together with Ascoli’s theorem, we
conclude that the operator Γ1 is compact.
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Now, it only remains to show that the map Γ2 is a contraction mapping. Let z, z∗ ∈ Br
and t ∈ (ti, ti+1], i = 0, 1, . . . , m, then we have

‖(Γ2z)(t) − (Γ2z∗)(t)‖X

≤
∫ t

ti

‖Sα(t − s)‖L(X)

∥
∥f
(
s, ys + zs, B

(
y(s) + z(s)

)) − f(s, ys + z∗s, B
(
y(s) + z∗(s)

))∥∥
Xds

≤ M̃S

∫ t

ti

(t − s)α−1
[
μ1
∥
∥zs − z∗s

∥
∥

B′′
h
+ μ2

∥
∥B
(
y(s) + z(s)

) − B(y(s) + z∗(s))∥∥X
]
ds

≤ M̃S

α

(
μ1C

∗
1 + μ2B

∗)Tα‖z − z∗‖B′′
h
,

(3.25)

since (M̃S/α)(μ1C
∗
1 + μ2B

∗)Tα < 1, which implies that Γ2 is a contraction mapping. Hence, by
the Krasnoselkii fixed-point theorem, we can conclude that the problem (1.1) has at least one
solution on (−∞, T]. This completes the proof of the theorem.

Our last result is based on the following Schaefer’s fixed-point theorem.

Theorem 3.5. Let P be a continuous and compact mapping on a Banach space X into itself, such that
the set {x ∈ X : x = νPx for some 0 ≤ ν ≤ 1} is bounded, then P has a fixed-point.

Lemma 3.6 (see [5]). Let v : [0, T] → [0,∞) be a real function, w(·) is nonnegative and locally
integrable function on [0, T], and there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a
∫ t

0

v(s)
(t − s)α ds. (3.26)

Then there exists a constant K(α) such that

v(t) ≤ w(t) + aK(α)
∫ t

0

w(s)
(t − s)α ds, for every t ∈ [0, T]. (3.27)

Theorem 3.7. Assume that the assumptions (H4)-(H5) are satisfied, and if A ∈ Aα(θ0, ω0) and
M̃T < 1, then the impulsive problem (1.1) has at least one mild solution on (−∞, T].

Proof. We define the operator P : B′′
h
→ B′′

h
as in Theorem 3.3. Note that P is well defined in

B′′
h. We complete the proof in the following steps.

Step 1. For the continuity of the map P , let {zn} be a sequence in B′′
h
such that zn → z in B′′

h
.

Since the function f is continuous on J × Bh ×X, This implies that

f
(
s, ys + z

n
s , B

(
y(s) + zn(s)

))

−→ f
(
s, ys + zs, B

(
y(s) + z(s)

))
as n −→ ∞.

(3.28)
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Now, for every t ∈ [0, t1], we get

‖Pzn(t) − Pz(t)‖X

≤
∫ t

0
‖Sα(t − s)‖L(X)

∥
∥f(s, ys + z

n
s , B(y(s) + z

n(s))) − f(s, ys + zs, B(y(s) + z(s)))
∥
∥
Xds

≤ M̃S
Tα

α
ε,

(3.29)

where ε > 0, ε → 0 as n → ∞. Moreover, we have

‖Pzn(t) − Pz(t)‖X
≤ M̃T

[∥∥zn(t−i ) − z(t−i )
∥∥
X +

∥∥Ii(zn(t−i )) − Ii(z(t−i ))
∥∥
X

]

+
∫ t

ti

‖Sα(t − s)‖L(X)

∥∥f(s, ys + z
n
s , B(y(s) + z

n(s))) − f(s, ys + zs, B(y(s) + z(s)))
∥∥
Xds

≤ M̃T

[∥∥zn(t−i ) − z(t−i )
∥∥
X +

∥∥Ii(zn(t−i )) − Ii(z(t−i ))
∥∥
X

]
+ M̃S

Tα

α
ε,

(3.30)

where ε > 0, ε → 0 as n → ∞, for all t ∈ (ti, ti+1], i = 1, . . . , m. The impulsive functions
Ik, k = 1, . . . , m are continuous, then we get

lim
n→∞

‖Pzn − Pz‖B′′
h
= 0. (3.31)

This implies that P is continuous.

Step 2. P maps bounded sets into bounded sets in B′′
h
. To prove that for any r > 0, there exists

a γ > 0 such that for each z ∈ Br = {z ∈ B′′
h
: ‖z‖B′′

h
≤ r}, then we have ‖Pz‖B′′

h
≤ γ , then for

any z ∈ Br, t ∈ [0, t1], we have

‖Pz(t)‖X ≤
∫ t

0
‖Sα(t − s)‖L(X)

∥∥f(s, ys + zs, B(y(s) + z(s)))
∥∥
Xds

≤ M̃S

∫ t

0
(t − s)α−1

[
μ1(s)

∥∥ys + zs
∥∥

Bh
+ μ2(s)

∥∥B(y(s) + z(s))
∥∥
X

]
ds.

(3.32)

Using Lemma 3.3, we obtain ‖Pz(t)‖X ≤ M̃S(Tα/α)λ. Similarly, we have

‖Pz(t)‖X ≤ M̃T (r + Ω) + M̃S
Tα

α
λ, t ∈ (ti, ti+1], i = 1, . . . , m. (3.33)
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This implies that

‖Pz‖B′′
h
≤ M̃T (r + Ω) + M̃S

Tα

α
λ = γ, t ∈ [0, T]. (3.34)

Step 3. We will prove that P(Br) is equicontinuous. Let u, v ∈ [0, t1], with u < v, we have

‖Pz(v) − Pz(u)‖X ≤
∫u

0
‖Sα(v − s) − Sα(u − s)‖L(X)

∥
∥f(s, ys + zs, B(y(s) + z(s)))

∥
∥
Xds

+
∫v

u

‖Sα(v − s)‖L(X)

∥
∥f(s, ys + zs, B(y(s) + z(s)))

∥
∥
Xds ≤ Q1 +Q2,

(3.35)

where

Q1 =
∫u

0
‖Sα(v − s) − Sα(u − s)‖L(X)

∥∥f(s, ys + zs, B(y(s) + z(s)))
∥∥
Xds

≤ λ
∫u

0
‖Sα(v − s) − Sα(u − s)‖L(X)ds.

(3.36)

Since ‖Sα(v − s) − Sα(u − s)‖L(X) ≤ 2M̃S(t1 − s)α−1 ∈ L1(I,R+) for s ∈ [0, t1] and Sα(v − s) −
Sα(u − s) → 0 as u → v, Sα is strongly continuous. This implies that limu→vQ1 = 0,

Q2 =
∫v

u

‖Sα(v − s)‖L(X)

∥∥f(s, ys + zs, B(y(s) + z(s)))
∥∥
Xds ≤ λ

M̃S(v − u)α
α

. (3.37)

Hence, limu→vQ2 = 0. Similarly, for u, v ∈ (ti, ti+1], with u < v, i = 1, . . . , m, we have

‖Pz(v) − Pz(u)‖X ≤ ‖Tα(v − ti) − Tα(u − ti)‖L(X)
[∥∥z

(
t−i
)∥∥

X +
∥∥Ii
(
z
(
t−i
))∥∥

X

]
+Q1 +Q2.

(3.38)

Since Tα is also strongly continuous, so Tα(v − ti) − Tα(u − ti) → 0 as u → v. Thus, from
the above inequalities, we have limu→v‖Pz(v) − Pz(u)‖X = 0. So, P(Br) is equicontinuous.
Finally, combining Step 1 to Step 3 with Ascoli’s theorem, we conclude that the operator P is
compact.

Step 4. We show that the set

E =
{
z ∈ B′′

h such that z = νPz for some 0 < ν < 1
}

(3.39)
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is bounded. Let z ∈ E, then z(t) = νPz(t) for some 0 < ν < 1. Then for each t ∈ [0, t1], we have

‖z(t)‖X ≤ ν
∫ t

0
‖Sα(t − s)‖L(X)

∥
∥f(s, ys + zs, B(y(s) + z(s)))

∥
∥
Xds

≤ νM̃S

∫ t

0
(t − s)α−1∥∥f(s, ys + zs, B(y(s) + z(s)))

∥
∥
Xds,

(3.40)

for t ∈ (ti, ti+1], i = 1, . . . , m, we get

‖z(t)‖X ≤ ν
[

‖Tα(t − ti)‖L(X)
(∥∥z(t−i )

∥
∥
X +

∥
∥Ii(z(t−i ))

∥
∥
X

)
+
∫ t

ti

‖Sα(t − s)‖L(X)

×∥∥f(s, ys + zs, B(y(s) + z(s)))
∥∥
Xds

]

≤
[

M̃T

∥∥z(t−i )
∥∥
X + M̃TΩ + M̃S

∫ t

ti

(t − s)α−1∥∥f(s, ys + zs, B(y(s) + z(s)))
∥∥
Xds

]

.

(3.41)

then for all t ∈ [0, T], we have

‖z(t)‖X ≤ M̃TΩ

1 − M̃T

+
M̃S

1 − M̃T

∫ t

0
(t − s)α−1

[
μ1(s)

∥∥ys + zs
∥∥

Bh
+ μ2(s)

∥∥B(y(s) + z(s))
∥∥
X

]
ds

≤ M̃TΩ

1 − M̃T

+
M̃Sμ

∗
1C

∗
2

∥∥φ
∥∥

Bh
Tα

α
(
1 − M̃T

)

+
M̃S

1 − M̃T

(
μ∗
1C

∗
1 + μ

∗
2B

∗)
∫ t

0
(t − s)α−1 sup

0≤τ≤s
‖z(τ)‖Xds

≤ ω1 +ω2

∫ t

0
(t − s)α−1 sup

0≤τ≤s
‖z(τ)‖Xds,

(3.42)

where ω1 = M̃TΩ/(1 − M̃T ) + M̃Sμ
∗
1C

∗
2‖φ‖BhT

α/α(1 − M̃T ) and ω2 = (M̃S/1 −
M̃T )(μ∗

1C
∗
1 + μ∗

2B
∗). Let τ∗ ∈ [0, s] be such that sup0≤τ≤s‖z(τ)‖X = ‖z(τ∗)‖X, 0 ≤ s ≤ t. If

τ∗ ∈ [0, t], then (3.43) can be written as

‖z(t)‖X ≤ ω1 +ω2

∫ t

0
(t − s)α−1‖z(s)‖Xds. (3.43)
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Using Lemma 3.6, there exists a constant K(α), and (3.43) becomes

‖z(t)‖X ≤ ω1

[

1 +
∫ t

0
K(α)(t − s)α−1ds

]

≤ ω1

[
1 +

K(α)Tα

α

]
. (3.44)

As a consequence of Schaefer’s fixed-point theorem, we deduce that P has a fixed-point on
(−∞, T]. This completes the proof of the theorem.

4. Applications

To illustrate the application of the theory, we consider the following partial integro-
differential equation with fractional derivative of the form

D
q
t u(t, x) =

∂2

∂x2
u(t, x) +

∫ t

−∞
H(t, x, s − t)Q(u(s, x))ds

+
∫ t

0
k(s, t)e−u(s,x)ds, x ∈ [0, π], t ∈ [0, b], t /= tk,

u(t, 0) = 0 = u(t, π), t ≥ 0,

u(t, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π],

Δu(ti)(x) =
∫ ti

−∞
qi(ti − s)u(s, x)ds, x ∈ [0, π],

(4.1)

where Dq
t is Caputo’s fractional derivative of order 0 < q < 1, 0 < t1 < t2 < · · · < tn < b are

prefixed numbers, and φ ∈ Bh. Let X = L2[0, π], and define the operator A : D(A) ⊂ X → X
by Aw = w′′ with the domain D(A) := {w ∈ X : w, w′ are absolutely continuous, w′′ ∈
X,w(0) = 0 = w(π)}, then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A), (4.2)

where wn(x) =
√
2/π sin(nx), n ∈ N is the orthogonal set of eigenvectors of A. It is well

known that A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 in X and is
given by

T(t)w =
∞∑

n=1

e−n
2t(w,wn)wn, ∀w ∈ X, and every t > 0. (4.3)
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From these expressions, it follows that (T(t))t≥0 is a uniformly bounded compact semigroup,
so that R(λ,A) = (λ−A)−1 is a compact operator for all λ ∈ ρ(A), that is, A ∈ A

α(θ0, ω0). Let
h(s) = e2s, s < 0, then l =

∫0
−∞ h(s)ds = 1/2, and define

∥
∥φ
∥
∥
h =

∫0

−∞
h(s) sup

θ∈[s,0]

∥
∥φ(θ)

∥
∥
L2ds. (4.4)

Hence, for (t, φ) ∈ [0, b] ×Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π]. Set u(t)(x) =
u(t, x),

f
(
t, φ, Bu(t)

)
(x) =

∫0

−∞
H(t, x, θ)Q

(
φ(θ)(x)

)
dθ + Bu(t)(x), (4.5)

where Bu(t)(x) =
∫ t
0 k(s, t)e

−u(s,x)ds. Then with these settings, the above equation (4.1) can be
written in the abstract form of the equations (1.1). The functions H, k, and Q are satisfying
some conditions, and qi : R → R are continuous and di =

∫0
−∞ h(s)q2i (s)ds < ∞ for i =

1, 2, . . . , n. Suppose further that

(1) the function H(t, x, θ) is continuous in [0, b] × [0, π] × (−∞, 0] and H(t, x, θ) ≥ 0,∫0
−∞H(t, x, θ)dθ = p1(t, x) <∞,

(2) the function Q(·) is continuous and for each (θ, y) ∈ (−∞, 0] × [0, π], 0 ≤
Q(u(θ)(x)) ≤ (

∫0
−∞ e2s‖u(s, ·)‖L2ds).

Now, we can see that

∥∥f(t, φ, Bu(t))
∥∥
L2 =

⎡

⎣
∫π

0

(∫0

−∞
h(t, x, θ)Q

(
φ(θ)(x)

)
dθ + Bu(t)(x)dx

)2
⎤

⎦

1/2

≤
⎡

⎣
∫π

0

(∫0

−∞
h(t, x, θ)

(∫0

−∞
e2s
∥∥φ(s)(·)∥∥L2ds

)

dθ

)2

dx

⎤

⎦

1/2

+

⎡

⎣
∫π

0

(∫ t

0
k(s, t)e−u(s,x)ds

)2

dx

⎤

⎦

1/2

≤
⎡

⎣
∫π

0

(∫0

−∞
h(t, x, θ)

(∫0

−∞
e2s sup

s∈[θ,0]

∥∥φ(s)
∥∥
L2ds

)

dθ

)2

dx

⎤

⎦

1/2

+

⎡

⎣
∫π

0

(∫ t

0
k(s, t)e−u(s,x)ds

)2

dx

⎤

⎦

1/2

≤
⎡

⎣
∫π

0

(∫0

−∞
h(t, x, θ)dθ

)2

dx

⎤

⎦

1/2
∥∥φ
∥∥

Bh
+ ‖Bu(t)‖L2
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≤
[∫π

0

(
p(t, x)

)2
dx

]1/2∥
∥φ
∥
∥

Bh
+ ‖Bu(t)‖L2

≤ p(t)∥∥φ∥∥Bh
+ ‖Bu(t)‖L2 .

(4.6)

If we take μ1(t) = p(t) and μ2(t) = 1, hence f satisfies (H4), and similarly we can show that
Ik satisfy (H5). All conditions of Theorem 3.7 are now fulfilled, so we deduce that the system
(4.1) has a mild solution on (−∞, T].
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