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We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations.
We are interested in the coexistence of the species in a bounded domain. We establish the existence
of global generalized solutions of the initial boundary value problem by means of parabolic
regularization and also consider the existence of the nontrivial time-periodic solution for this
system.

1. Introduction

In this paper, we consider the following two-species cooperative system:

ut = Δum1 + uα(a − bu + cv), (x, t) ∈ Ω × �+ , (1.1)

vt = Δvm2 + vβ(d + eu − fv
)
, (x, t) ∈ Ω × �+ , (1.2)

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω × �+ , (1.3)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.4)

where m1, m2 > 1, 0 < α < m1, 0 < β < m2, 1 ≤ (m1 − α)(m2 − β), a = a(x, t), b = b(x, t),
c = c(x, t), d = d(x, t), e = e(x, t), f = f(x, t) are strictly positive smooth functions and
periodic in time with period T > 0 and u0(x) and v0(x) are nonnegative functions and satisfy
um1
0 , vm2

0 ∈ W1,2
0 (Ω).

In dynamics of biological groups, the system (1.1)-(1.2) can be used to describe the
interaction of two biological groups. The diffusion terms Δum1 and Δvm2 represent the effect



2 Abstract and Applied Analysis

of dispersion in the habitat, which models a tendency to avoid crowding and the speed of the
diffusion is rather slow. The boundary conditions (1.3) indicate that the habitat is surrounded
by a totally hostile environment. The functions u and v represent the spatial densities of the
species at time t and a, d are their respective net birth rate. The functions b and f are intra-
specific competitions, whereas c and e are those of interspecific competitions.

As famous models for dynamics of population, two-species cooperative systems like
(1.1)-(1.2) have been studied extensively, and there have been many excellent results, for
detail one can see [1–6] and references therein. As a special case, men studied the following
two-species Lotka-Volterra cooperative system of ODEs:

u′(t) = u(t)(a(t) − b(t)u(t) + c(t)v(t)),

v′(t) = v(t)
(
d(t) + e(t)u(t) − f(t)v(t)

)
.

(1.5)

For this system, Lu and Takeuchi [7] studied the stability of positive periodic solution and
Cui [1] discussed the persistence and global stability of it.

Whenm1 = m2 = α = β = 1, from (1.1)-(1.2) we get the following classical cooperative
system:

ut = Δu + u(a − bu + cv),

vt = Δv + v
(
d + eu − fv

)
.

(1.6)

For this system, Lin et al. [5] showed the existence and asymptotic behavior of T-
periodic solutions when a, b, c, e, d, f are all smooth positive and periodic in time with
period T > 0. When a, b, c, e, d, f are all positive constants, Pao [6] proved that the Dirichlet
boundary value problem of this system admits a unique solution which is uniformly bounded
when ce < bf , while the blowup solutions are possible when the two species are strongly
mutualistic (ce > bf). For the homogeneous Neumann boundary value problem of this
system, Lou et al. [4] proved that the solution will blow up in finite time under a sufficient
condition on the initial data. When c = e = 0 and α = β = 1, from (1.1) we get the single
degenerate equation

ut = Δum + u(a − bu). (1.7)

For this equation, Sun et al. [8] established the existence of nontrivial nonnegative periodic
solutions by monotonicity method and showed the attraction of nontrivial nonnegative
periodic solutions.

In the recent years, much attention has been paid to the study of periodic boundary
value problems for parabolic systems; for detail one can see [9–15] and the references therein.
Furthermore, many researchers studied the periodic boundary value problem for degenerate
parabolic systems, such as [16–19]. Taking into account the impact of periodic factors on
the species dynamics, we are also interested in the existence of the nontrivial periodic
solutions of the cooperative system (1.1)-(1.2). In this paper, we first show the existence of
the global generalized solution of the initial boundary value problem (1.1)–(1.4). Then under
the condition that

blfl > cMeM, (1.8)
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where fM = sup{f(x, t) | (x, t) ∈ Ω × �}, fl = inf{f(x, t) | (x, t) ∈ Ω × �}, we show
that the generalized solution is uniformly bounded. At last, by the method of monotone
iteration, we establish the existence of the nontrivial periodic solutions of the system (1.1)-
(1.2), which follows from the existence of a pair of large periodic supersolution and small
periodic subsolution. At last, we show the existence and the attractivity of the maximal
periodic solution.

Our main efforts center on the discussion of generalized solutions, since the regularity
follows from a quite standard approach. Hence we give the following definition of
generalized solutions of the problem (1.1)–(1.4).

Definition 1.1. A nonnegative and continuous vector-valued function (u, v) is said to be
a generalized solution of the problem (1.1)–(1.4) if, for any 0 ≤ τ < T and any functions
ϕi ∈ C1(Qτ) with ϕi|∂Ω×[0,τ) = 0 (i = 1, 2), ∇um1 ,∇vm2 ∈ L2(Qτ), ∂um1/∂t, ∂vm2/∂t ∈ L2(Qτ)
and
∫∫

Qτ

u
∂ϕ1

∂t
− ∇um1∇ϕ1 + uα(a − bu + cv)ϕ1dx dt =

∫

Ω
u(x, τ)ϕ1(x, τ)dx −

∫

Ω
u0(x)ϕ1(x, 0)dx,

∫∫

Qτ

v
∂ϕ2

∂t
− ∇vm2∇ϕ2 + vβ(d + eu − fv

)
ϕ2dxdt =

∫

Ω
v(x, τ)ϕ2(x, τ)dx −

∫

Ω
v0(x)ϕ2(x, 0)dx,

(1.9)

where Qτ = Ω × (0, τ).
Similarly, we can define a weak supersolution (u, v) (subsolution (u, v)) if they satisfy

the inequalities obtained by replacing “=” with “≤” (“≥”) in (1.3), (1.4), and (1.9) and with
an additional assumption ϕi ≥ 0 (i = 1, 2).

Definition 1.2. A vector-valued function (u, v) is said to be a T-periodic solution of the
problem (1.1)–(1.3) if it is a solution in [0, T] such that u(·, 0) = u(·, T), v(·, 0) = v(·, T) in
Ω. A vector-valued function (u, v) is said to be a T-periodic supersolution of the problem
(1.1)–(1.3) if it is a supersolution in [0, T] such that u(·, 0) ≥ u(·, T), v(·, 0) ≥ v(·, T) in Ω. A
vector-valued function (u, v) is said to be a T-periodic subsolution of the problem (1.1)–(1.3),
if it is a subsolution in [0, T] such that u(·, 0) ≤ u(·, T), v(·, 0) ≤ v(·, T) in Ω.

This paper is organized as follows. In Section 2, we show the existence of generalized
solutions to the initial boundary value problem and also establish the comparison principle.
Section 3 is devoted to the proof of the existence of the nonnegative nontrivial periodic
solutions by using the monotone iteration technique.

2. The Initial Boundary Value Problem

To solve the problem (1.1)–(1.4), we consider the following regularized problem:

∂uε

∂t
= div

((
mum1−1

ε + ε
)
∇uε

)
+ uα

ε (a − buε + cvε), (x, t) ∈ QT, (2.1)

∂vε

∂t
= div

((
mvm2−1

ε + ε
)
∇vε

)
+ v

β
ε

(
d + euε − fvε

)
, (x, t) ∈ QT, (2.2)

uε(x, t) = 0, vε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.3)

uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x), x ∈ Ω, (2.4)



4 Abstract and Applied Analysis

whereQT = Ω×(0, T), 0 < ε < 1, u0ε, v0ε ∈ C∞
0 (Ω) are nonnegative bounded smooth functions

and satisfy

0 ≤ u0ε ≤ ‖u0‖L∞(Ω), 0 ≤ v0ε ≤ ‖v0‖L∞(Ω),

um1
0ε −→ um1

0 , vm2
0ε −→ vm2

0 , in W1,2
0 (Ω) as ε −→ 0.

(2.5)

The standard parabolic theory (cf. [20, 21]) shows that (2.1)–(2.4) admits a nonnegative
classical solution (uε, vε). So, the desired solution of the problem (1.1)–(1.4) will be obtained
as a limit point of the solutions (uε, vε) of the problem (2.1)–(2.4). In the following, we show
some important uniform estimates for (uε, vε).

Lemma 2.1. Let (uε, vε) be a solution of the problem (2.1)–(2.4).

(1) If 1 < (m1 − α)(m2 − β), then there exist positive constants r and s large enough such that

1
m2 − β

<
m1 + r − 1
m2 + s − 1

< m1 − α, (2.6)

‖uε‖Lr (QT ) ≤ C, ‖vε‖Ls(QT ) ≤ C, (2.7)

where C is a positive constant only depending onm1, m2, α, β, r, s, |Ω|, and T .

(2) If 1 = (m1 − α)(m2 − β), then (2.7) also holds when |Ω| is small enough.

Proof. Multiplying (2.1) by ur−1
ε (r > 1) and integrating over Ω, we have that

∫

Ω

∂ur
ε

∂t
dx = − 4r(r − 1)m1

(m1 + r − 1)2

∫

Ω

∣∣∣∇u
(m1+r−1)/2
ε

∣∣∣
2
dx + r

∫

Ω
uα+r−1
ε (a − buε + cvε)dx. (2.8)

By Poincaré’s inequality, we have that

K

∫

Ω
um1+r−1
ε dx ≤

∫

Ω

∣
∣∣∇u

(m1+r−1)/2
ε

∣
∣∣
2
dx, (2.9)

where K is a constant depending only on |Ω| and N and becomes very large when the
measure of the domain Ω becomes small. Since α < m1, Young’s inequality shows that

auα+r−1
ε ≤ Kr(r − 1)m1

(m1 + r − 1)2
um1+r−1
ε + CK−(α+r−1)/(m1−α),

cuα+r−1
ε vε ≤ Kr(r − 1)m1

(m1 + r − 1)2
um1+r−1
ε +CK−(α+r−1)/(m1−α)v(m1+r−1)/(m1−α)

ε .

(2.10)
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For convenience, here and below, C denotes a positive constant which is independent of ε
and may take different values on different occasions. Complying (2.8) with (2.9) and (2.10),
we obtain

∫

Ω

∂ur
ε

∂t
dx ≤ −2Kr(r − 1)m1

(m1 + r − 1)2

∫

Ω
um1+r−1
ε dx + CK−(α+r−1)/(m1−α)

∫

Ω
v
(m1+r−1)/(m1−α)
ε dx

+ CK−(α+r−1)/(m1−α).

(2.11)

As a similar argument as above, for vε and positive constant s > 1, we have that

∫

Ω

∂vs
ε

∂t
dx ≤ −2Ks(s − 1)m2

(m2 + s − 1)2

∫

Ω
vm2+s−1
ε dx + CK−(β+s−1)/(m2−β)

∫

Ω
u
(m2+s−1)/(m2−β)
ε dx

+ CK−(β+s−1)/(m2−β).

(2.12)

Thus we have that

∫

Ω

(
∂ur

ε

∂t
+
∂vs

ε

∂t

)
dx ≤ −2Kr(r − 1)m1

(m1 + r − 1)2

∫

Ω
um1+r−1
ε dx + CK−(β+s−1)/(m2−β)

∫

Ω
u
(m2+s−1)/(m2−β)
ε dx

− 2Ks(s − 1)m2

(m2 + s − 1)2

∫

Ω
vm2+s−1
ε dx + CK−(α+r−1)/(m1−α)

∫

Ω
v
(m1+r−1)/(m1−α)
ε dx

+ CK−(α+r−1)/(m1−α) +CK−(β+s−1)/(m2−β).
(2.13)

For the case of 1 < (m1 − α)(m2 − β), there exist r, s large enough such that

1
m1 − α

<
m2 + s − 1
m1 + r − 1

< m2 − β. (2.14)

By Young’s inequality, we have that

∫

Ω
u
(m2+s−1)/(m2−β)
ε dx ≤ r(r − 1)m1K(m2+s−1)/(m2−β)

C(m1 + r − 1)2

∫

Ω
um1+r−1
ε dx + CK−γ1 ,

∫

Ω
v
(m1+r−1)/(m1−α)
ε dx ≤ s(s − 1)m2K(m1+r−1)/(m1−α)

C(m2 + s − 1)p2

∫

Ω
vm2+s−1
ε dx +CK−γ2 ,

(2.15)

where

γ1 =
(m2 + s − 1)2

[
m2 − β

][(
m2 − β

)
(m1 + r − 1) − (m2 + s − 1)

] ,

γ2 =
(m1 + r − 1)2

[m1 − α][(m1 − α)(m2 + s − 1) − (m1 + r − 1)]
.

(2.16)
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Together with (2.13), we have that

∫

Ω

(
∂ur

ε

∂t
+
∂vs

ε

∂t

)
dx ≤ −K

∫

Ω

(
um1+r−1
ε + vm2+s−1

ε

)
dx + C

(
K−θ1 +K−θ2

)

+ CK−(α+r−1)/(m1−α) + CK−(β+s−1)/(m2−β),

(2.17)

where

θ1 =
(m2 + s − 1) + (m1 + r − 1)

(
β + s − 1

)

(
m2 − β

)
(m1 + r − 1) − (m2 + s − 1)

, θ2 =
(m1 + r − 1) + (m2 + s − 1)(α + r − 1)
(m1 − α)(m2 + s − 1) − (m1 + r − 1)

.

(2.18)

Furthermore, by Hölder’s and Young’s inequalities, from (2.17) we obtain

∫

Ω

(
∂ur

ε

∂t
+
∂vs

ε

∂t

)
dx ≤ −K

∫

Ω
(ur

ε + vs
ε)dx + C

(
K−θ1 +K−θ2

)
+ 2K|Ω|

+ CK−(α+r−1)/(m1−α) +CK−(β+s−1)/(m2−β).

(2.19)

Then by Gronwall’s inequality, we obtain

∫

Ω
(ur

ε + vs
ε)dx ≤ C. (2.20)

Now we consider the case of 1 = (m1 − α)(m2 − β). It is easy to see that there exist
positive constants r, s large enough such that

1
m1 − α

=
m2 + s − 1
m1 + r − 1

= m2 − β. (2.21)

Due to the continuous dependence ofK upon |Ω| in (2.9), from (2.13) we have that

∫

Ω

(
∂ur

ε

∂t
+
∂vs

ε

∂t

)
dx ≤ −K

∫

Ω

(
um1+r−1
ε + v

m2(p2−1)+s−1
ε

)
dx + C (2.22)

when |Ω| is small enough. Then by Young’s and Gronwall’s inequalities we can also obtain
(2.20), and thus we complete the proof of this lemma.

Taking um1
ε , vm2

ε as the test functions, we can easily obtain the following lemma.

Lemma 2.2. Let (uε, vε) be a solution of (2.1)–(2.4); then

∫∫

QT

|∇um1
ε |2dxdt ≤ C,

∫∫

QT

|∇vm2
ε |2dxdt ≤ C, (2.23)

where C is a positive constant independent of ε.
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Lemma 2.3. Let (uε, vε) be a solution of (2.1)–(2.4), then

‖uε‖L∞(QT ) ≤ C, ‖vε‖L∞(QT ) ≤ C, (2.24)

where C is a positive constant independent of ε.

Proof. For a positive constant k > ‖u0ε‖L∞(Ω), multiplying (2.1) by (uε − k)m1
+ χ[t1,t2] and

integrating the results over QT , we have that

1
m1 + 1

∫∫

QT

∂(uε − k)m1+1
+ χ[t1,t2]

∂t
dx dt +

∫∫

QT

∣∣∇(uε − k)m1
+ χ[t1,t2]

∣∣2dx dt

≤
∫∫

QT

auα+m1
ε (a + cvε)dx dt,

(2.25)

where s+ = max{0, s} and χ[t1,t2] is the characteristic function of [t1, t2] (0 ≤ t1 < t2 ≤ T). Let

Ik(t) =
∫

Ω
(uε − k)m1+1

+ dx; (2.26)

then Ik(t) is absolutely continuous on [0, T]. Denote by σ the point where Ik(t) takes its
maximum. Assume that σ > 0, for a sufficient small positive constant ε. Taking t1 = σ − ε,
t2 = σ in (2.25), we obtain

1
(m1 + 1)ε

∫σ

σ−ε

∫

Ω

∂(uε − k)m1+1
+

∂t
dx dt +

1
ε

∫σ

σ−ε

∫

Ω

∣∣∇(uε − k)m1
+

∣∣2dxdt

≤ 1
ε

∫σ

σ−ε

∫

Ω
uα+m1
ε (a + cvε)dxdt.

(2.27)

From

∫σ

σ−ε

∫

Ω

∂(uε − k)m1+1
+

∂t
dx dt = Ik(σ) − Ik(σ − ε) ≥ 0, (2.28)

we have that

1
ε

∫σ

σ−ε

∫

Ω

∣
∣∇(uε − k)m1

+

∣
∣2dx dt ≤ 1

ε

∫σ

σ−ε

∫

Ω
uα+m1
ε (a + cvε)dx dt. (2.29)
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Letting ε → 0+, we have that

∫

Ω

∣∣∇(uε(x, σ) − k)m1
+

∣∣2dx ≤
∫

Ω
uα+m1
ε (x, σ)(a + cvε(x, σ))dx. (2.30)

Denote Ak(t) = {x : uε(x, t) > k} and μk = supt∈(0,T)|Ak(t)|; then

∫

Ak(σ)

∣∣∇(uε − k)m1
+

∣∣2dx ≤
∫

Ak(σ)
uα+m1
ε (a + cvε)dx. (2.31)

By Sobolev’s theorem,

(∫

Ak(σ)

(
(uε − k)m1

+
)p
dx

)1/p

≤ C

(∫

Ak(σ)

∣∣∇(uε − k)m1
+

∣∣2dx

)1/2

, (2.32)

with

2 < p <

⎧
⎪⎪⎨

⎪⎪⎩

+∞, N ≤ 2,

2N
N − 2

, N > 2,
(2.33)

we obtain

(∫

Ak(σ)

(
(uε − k)m1

+
)p
dx

)2/p

≤ C

∫

Ak(σ)

∣
∣∇(uε − k)m1

+

∣
∣2dx

≤ C

∫

Ak(σ)
uα+m1
ε (a + vε)dx

≤ C

(∫

Ak(σ)
ur
εdx

)(m1+α)/r(∫

Ak(σ)
(a + vε)

r/(r−m1−α)dx

)(r−m1−α)/r

≤ C

(∫

Ak(σ)
(a + vε)

r/(r−m1−α)dx

)(r−m1−α)/r

≤ C

(∫

Ak(σ)
(a + vε)sdx

)1/s

|Ak(σ)|(s(r−m1−α)−r)/sr

≤ Cμ
(s(r−m1−α)−r)/sr
k

,

(2.34)
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where r > p(m1 + α)/(p − 2), s > pr/(p(r − m1 − α) − 2r) and C denotes various positive
constants independent of ε. By Hölder’s inequality, it yields

Ik(σ) =
∫

Ω
(uε − k)m1+1

+ dx =
∫

Ak(σ)
(uε − k)m1+1

+ dx

≤
(∫

Ak(σ)
(uε − k)m1p

+ dx

)(m1+1)/m1p

μ
1−(m1+1)/m1p

k

≤ Cμ
1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k .

(2.35)

Then

Ik(t) ≤ Ik(σ) ≤ Cμ
1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k , t ∈ [0, T]. (2.36)

On the other hand, for any h > k and t ∈ [0, T], we have that

Ik(t) ≥
∫

Ak(t)
(uε − k)m1+1

+ dx ≥ (h − k)m1+1|Ah(t)|. (2.37)

Combined with (2.35), it yields

(h − k)m1+1μh ≤ Cμ
1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k
, (2.38)

that is,

μh ≤ C

(h − k)m1+1
μ
1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k . (2.39)

It is easy to see that

γ = 1 +

[
sp(r −m1 − α) − pr − 2sr

]
(m1 + 1)

2psrm1
> 1. (2.40)

Then by the De Giorgi iteration lemma [22], we have that

μl+d = sup|Al+d(t)| = 0, (2.41)

where d = C1/(m1+1)μ
(γ−1)/(m1+1)
l

2γ/(γ−1). That is,

uε ≤ l + d a.e. in QT. (2.42)

It is the same for the second inequality of (2.24). The proof is completed.
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Lemma 2.4. The solution (uε, vε) of (2.1)–(2.4) satisfies the following:

∫∫

QT

∣
∣∣∣
∂um1

ε

∂t

∣
∣∣∣

2

dxdt ≤ C,

∫∫

QT

∣
∣∣∣
∂vm2

ε

∂t

∣
∣∣∣

2

dx dt ≤ C, (2.43)

where C is a positive constant independent of ε.

Proof. Multiplying (2.1) by (∂/∂t)um1
ε and integrating over Ω, by (2.3), (2.4) and Young’s

inequality we have that

4m1

(m1 + 1)2

∫∫

QT

∣
∣∣∣
∂

∂t
u
(m1+1)/2
ε

∣
∣∣∣

2

dx dt

=
∫∫

QT

∂uε

∂t

∂um1
ε

∂t
dx dt

=
1
2

∫

Ω
|∇um1

ε (x, 0)|2dx − 1
2

∫

Ω
|∇um1

ε (x, T)|2dx

+
∫∫

QT

m1u
α+m1−1
ε (a − buε + cvε)

∂uε

∂t
dx dt

=
1
2

∫

Ω
|∇um1

ε (x, 0)|2dx − 1
2

∫

Ω
|∇um1

ε (x, T)|2dx

+
∫∫

QT

2m1

m1 + 1
u
(2α+m1−1)/2
ε (a − buε + cvε)

∂u
(m1+1)/2
ε

∂t
dx dt

≤ 1
2

∫

Ω
|∇um1

ε (x, 0)|2dx + 2m1

∫∫

QT

u2α+m1−1
ε (a − buε + cvε)2dxdt

+
2m1

(m1 + 1)2

∫∫

QT

∣∣
∣∣
∂

∂t
u
(m1+1)/2
ε

∣∣
∣∣

2

dx dt,

(2.44)

which together with the bound of a, b, c, uε, vε shows that

∫∫

QT

∣
∣∣∣
∣
∂u

(m1+1)/2
ε

∂t

∣
∣∣∣
∣

2

dx dt ≤ C, (2.45)

where C is a positive constant independent of ε. Noticing the bound of uε, we have that

∫∫

QT

∣
∣∣∣
∂um1

ε

∂t

∣
∣∣∣

2

dx dt =
4m2

1

(m1 + 1)2

∫∫

QT

um1−1
ε

∣
∣∣∣
∂

∂t
u
(m1+1)/2
ε

∣
∣∣∣

2

dx dt ≤ C. (2.46)

It is the same for the second inequality. The proof is completed.

From the above estimates of uε, vε, we have the following results.
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Theorem 2.5. The problem (1.1)–(1.4) admits a generalized solution.

Proof. By Lemmas 2.2, 2.3, and 2.4, we can see that there exist subsequences of {uε}, {vε}
(denoted by themselves for simplicity) and functions u, v such that

uε −→ u, vε −→ v, a.e in QT,

∂um1
ε

∂t
−→ ∂um1

∂t
,

∂vm2
ε

∂t
−→ ∂vm2

∂t
, weakly in L2(QT ),

∇um1
ε −→ ∇um1 , ∇vm2

ε −→ ∇vm2 , weakly in L2(QT ),

(2.47)

as ε → 0. Then a rather standard argument as [23] shows that (u, v) is a generalized solution
of (1.1)–(1.4) in the sense of Definition 1.1.

In order to prove that the generalized solution of (1.1)–(1.4) is uniformly bounded, we
need the following comparison principle.

Lemma 2.6. Let (u, v) be a subsolution of the problem (1.1)–(1.4) with the initial value (u0, v0) and
(u, v) a supersolution with a positive lower bound of the problem (1.1)–(1.4) with the initial value
(u0, v0). If u0 ≤ v0, u0 ≤ v0, then u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) onQT .

Proof. Without loss of generality, we might assume that ‖u(x, t)‖L∞(QT ), ‖u(x, t)‖L∞(QT ),
‖v(x, t)‖L∞(QT ), ‖v(x, t)‖L∞(QT ) ≤ M, where M is a positive constant. By the definitions of
subsolution and supersolution, we have that

∫ t

0

∫

Ω
−u∂ϕ

∂t
+∇um1∇ϕdxdτ +

∫

Ω
u(x, t)ϕ(x, t)dx −

∫

Ω
u0(x)ϕ(x, 0)dx

≤
∫ t

0

∫

Ω
uα(a − bu + cv

)
ϕdx dτ,

∫ t

0

∫

Ω
−u∂ϕ

∂t
+∇um1∇ϕdxdτ +

∫

Ω
u(x, t)ϕ(x, t)dx −

∫

Ω
v0(x)ϕ(x, 0)dx

≥
∫ t

0

∫

Ω
uα(a − bu + cv)ϕdxdτ.

(2.48)

Take the test function as

ϕ(x, t) = Hε

(
um1(x, t) − um1(x, t)

)
, (2.49)

where Hε(s) is a monotone increasing smooth approximation of the function H(s) defined
as follows:

H(s) =

⎧
⎨

⎩

1, s > 0,

0, otherwise.
(2.50)
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It is easy to see that H ′
ε(s) → δ(s) as ε → 0. Since ∂um1/∂t, ∂um1/∂t ∈ L2(QT ), the test

function ϕ(x, t) is suitable. By the positivity of a, b, c we have that

∫

Ω

(
u − u

)
Hε

(
um1 − um1

)
dx −

∫ t

0

∫

Ω

(
u − u

)∂Hε

(
um1 − um1

)

∂t
dx dτ

+
∫ t

0

∫

Ω
H ′

ε

(
um1 − um1

)∣∣∇(um1 − um1
)∣∣2dx dτ

≤
∫ t

0

∫

Ω
a
(
uα − uα)Hε

(
um1 − um1

)
+ c
(
uαv − uαv

)
Hε

(
um1 − um1

)
dx dτ,

(2.51)

where C is a positive constant depending on ‖a(x, t)‖C(Qt), ‖c(x, t)‖C(Qt). Letting ε → 0 and
noticing that

∫ t

0

∫

Ω
H ′

ε

(
um1 − um1

)∣∣∇(um − um)∣∣2dx dτ ≥ 0, (2.52)

we arrive at

∫

Ω

[
u(x, t) − u(x, t)

]
+dx ≤ C

∫ t

0

∫

Ω

(
uα − uα)

+ + v
(
uα − uα)

+ + uα(v − v
)
+dx dτ. (2.53)

Let (u, v) be a supsolution with a positive lower bound σ. Noticing that

(
xα − yα)

+ ≤ C(α)
(
x − y

)
+, for α ≥ 1,

(
xα − yα)

+ ≤ xα−1(x − y
)
+ ≤ yα−1(x − y

)
+, for α < 1,

(2.54)

with x, y > 0, we have that

∫ t

0

∫

Ω

(
uα − uα)

+ + v
(
uα − uα)

+ + uα(v − v
)
+dx dτ ≤ C

∫ t

0

∫

Ω

(
u − u

)
+ +
(
v − v

)
+dxdτ,

(2.55)

where C is a positive constant depending upon α, σ,M.
Similarly, we also have that

∫

Ω

[
v(x, t) − v(x, t)

]
+dx ≤ C

∫ t

0

∫

Ω

(
u − u

)
+ +
(
v − v

)
+dx dτ. (2.56)
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Combining the above two inequalities, we obtain

∫

Ω

[
u(x, t) − u(x, t)

]
+ +
[
v(x, t) − v(x, t)

]
+dx ≤ C

∫ t

0

∫

Ω

(
u − u

)
+ +
(
v − v

)
+dxdτ. (2.57)

By Gronwall’s lemma, we see that u ≤ u, v ≤ v. The proof is completed.

Corollary 2.7. If blfl > cMeM, then the problem (1.1)–(1.4) admits at most one global solution
which is uniformly bounded in Ω × [0,∞).

Proof. The uniqueness comes from the comparison principle immediately. In order to prove
that the solution is global, we just need to construct a bounded positive supersolution of
(1.1)–(1.4).

Let ρ1 = (aMfl + dMcM)/(blfl − cMeM) and ρ2 = (aMeM + dMbl)/(blfl − cMeM), since
blfl > cMeM; then ρ1, ρ2 > 0 and satisfy

aM − blρ1 + cMρ2 = 0, dM + eMρ1 − flρ2 = 0. (2.58)

Let (u, v) = (ηρ1, ηρ2), where η > 1 is a constant such that (u0, v0) ≤ (ηρ1, ηρ2); then we have
that

ut −Δum1 = 0 ≥ uα(a − bu + cv), vt −Δvm2 = 0 ≥ vβ(d + eu − fv
)
. (2.59)

That is, (u, v) = (ηρ1, ηρ2) is a positive supersolution of (1.1)–(1.4). Since u, v are global and
uniformly bounded, so are u and v.

3. Periodic Solutions

In order to establish the existence of the nontrivial nonnegative periodic solutions of the
problem (1.1)–(1.3), we need the following lemmas. Firstly, we construct a pair of T-periodic
supersolution and T-periodic subsolution as follows.

Lemma 3.1. In case of blfl > cMeM, there exists a pair of T-periodic supersolution and T-periodic
subsolution of the problem (1.1)–(1.3).

Proof. We first construct a T-periodic subsolution of (1.1)–(1.3). Let λ be the first eigenvalue
and φ be the uniqueness solution of the following elliptic problem:

−Δφ = λφ, x ∈ Ω, φ = 0, x ∈ ∂Ω; (3.1)

then we have that

λ > 0, φ(x) > 0 in Ω,
∣∣∇φ
∣∣ > 0 on ∂Ω, M = max

x∈Ω
φ(x) < ∞. (3.2)
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Let

(
u, v
)
=
(
εφ2/m1(x), εφ2/m2(x)

)
, (3.3)

where ε > 0 is a small constant to be determined. We will show that (u, v) is a (time
independent, hence T-periodic) subsolution of (1.1)–(1.3).

Taking the nonnegative function ϕ1(x, t) ∈ C1(QT ) as the test function, we have that

∫∫

QT

(
u
∂ϕ1

∂t
+ Δum1ϕ1 + uα(a − bu + cv

)
ϕ1

)
dx dt

+
∫

Ω
u(x, 0)ϕ1(x, 0) − u(x, T)ϕ1(x, T)dx

=
∫∫

QT

(
uα(a − bu + cv

)
+ Δum1

)
ϕ1dx dt

=
∫∫

QT

uα(a − bu + cv
)
ϕ1dxdt −

∫∫

QT

∇um1∇ϕ1dxdt

=
∫∫

QT

uα(a − bu + cv
)
ϕ1dxdt − 2εm1

∫∫

QT

φ∇φ · ∇ϕ1dx dt

=
∫∫

QT

uα(a − bu + cv
)
ϕ1dxdt − 2εm1

∫∫

QT

∇φ∇(φϕ1
) − ∣∣∇φ

∣
∣2ϕ1dx dt

=
∫∫

QT

uα(a − bu + cv
)
ϕ1dxdt − 2εm1

∫∫

QT

− div
(∇φ

)
φϕ1 −

∣∣∇φ
∣∣2ϕ1dxdt

=
∫∫

QT

uα(a − bu + cv
)
ϕ1dxdt − 2εm1

∫∫

QT

(
λφ2 − ∣∣∇φ

∣
∣2
)
ϕ1dx dt.

(3.4)

Similarly, for any nonnegative test function ϕ2(x, t) ∈ C1(QT ), we have that

∫∫

QT

(
v
∂ϕ2

∂t
+ Δvm2ϕ2 + vβ(d + eu − fv

)
ϕ2

)
dx dt +

∫

Ω
v(x, 0)ϕ2(x, 0) − v(x, T)ϕ2(x, T)dx

=
∫∫

QT

vβ
(
d + eu − fv

)
ϕ2dxdt − 2εm2

∫∫

QT

(
λφ2 − ∣∣∇φ

∣∣2
)
ϕ2dx dt.

(3.5)

We just need to prove the nonnegativity of the right-hand side of (3.4) and (3.5).
Since φ1 = φ2 = 0, |∇φ1|, |∇φ2| > 0 on ∂Ω, then there exists δ > 0 such that

λφ2 − ∣∣∇φ
∣
∣2 ≤ 0, x ∈ Ωδ, (3.6)
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where Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≤ δ}. Choosing

ε ≤ min

{
al

bMM2/m1
,

dl

fMM2/m2

}

, (3.7)

then we have that

2εm1

∫T

0

∫

Ωδ

(
λφ2 − ∣∣∇φ

∣∣2
)
ϕ1dx dt ≤ 0 ≤

∫T

0

∫

Ωδ

uα(a − bu + cv
)
ϕ1dx dt,

2εm2

∫T

0

∫

Ωδ

(
λφ2 − ∣∣∇φ

∣∣2
)
ϕ2dx dt ≤ 0 ≤

∫T

0

∫

Ωδ

vβ(d + eu − fv
)
ϕ2dx dt,

(3.8)

which shows that (u, v) is a positive (time independent, hence T-periodic) subsolution of
(1.1)–(1.3) on Ωδ × (0, T).

Moreover, we can see that, for some σ > 0,

φ(x) ≥ σ > 0, x ∈ Ω \Ωδ. (3.9)

Choosing

ε ≤ min

{
al

2bMM2/m1
,

(
al

4λM2(m1−α)/m1

)1/(m1−α)
,

dl

2fMM2/m2
,

(
dl

4λM2(m2−β)/m2

)1/(m2−β)
}

,

(3.10)

then

εαφ2α/m1a − bεα+1φ2(α+1)/m1 + cεαφ2α/m1εφ2/m2 − 2εm1λφ2 ≥ 0,

εβφ2β/m2d + eεφ2/m1εβφ2β/m2 − fεβ+1φ2(β+1)/m2 − 2εm2λφ2 ≥ 0
(3.11)

on QT , that is

∫∫

QT

uα(a − bu + cv
)
ϕ1dx dt − 2εm1

∫∫

QT

(
λφ2 − ∣∣∇φ

∣
∣2
)
ϕ1dx dt ≥ 0,

∫∫

QT

vβ(d + eu − fv
)
ϕ2dx dt − 2εm2

∫∫

QT

(
λφ2 − ∣∣∇φ

∣∣2
)
ϕ2dx dt ≥ 0.

(3.12)

These relations show that (u, v) = (εφ2/m1
1 (x), εφ2/m2

2 (x)) is a positive (time independent,
hence T-periodic) subsolution of (1.1)–(1.3).

Letting (u, v) = (ηρ1, ηρ2), where η, ρ1, ρ2 are taken as those in Corollary 2.7, it is easy
to see that (u, v) is a positive (time independent, hence T-periodic) subsolution of (1.1)–(1.3).

Obviously, we may assume that u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) by changing η, ε
appropriately.
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Lemma 3.2 (see [24, 25]). Let u be the solution of the following Dirichlet boundary value problem

∂u

∂t
= Δum + f(x, t), (x, t) ∈ Ω × (0, T),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),
(3.13)

where f ∈ L∞(Ω × (0, T)); then there exist positive constants K and α ∈ (0, 1) depending only upon
τ ∈ (0, T) and ‖f‖L∞(Ω×(0,T)), such that, for any (xi, ti) ∈ Ω × [τ, T] (i = 1, 2),

|u(x1, t1) − u(x2, t2)| ≤ K
(
|x1 − x2|α + |t1 − t2|α/2

)
. (3.14)

Lemma 3.3 (see [26]). Define a Poincaré mapping

Pt : L∞(Ω) × L∞(Ω) −→ L∞(Ω) × L∞(Ω),

Pt(u0(x), v0(x)) := (u(x, t), v(x, t)) (t > 0),
(3.15)

where (u(x, t), v(x, t)) is the solution of (1.1)–(1.4) with initial value (u0(x), v0(x)). According to
Lemmas 2.6 and 3.2 and Theorem 2.5, the map Pt has the following properties:

(i) Pt is defined for any t > 0 and order preserving;

(ii) Pt is order preserving;

(iii) Pt is compact.

Observe that the operator PT is the classical Poincaré map and thus a fixed point of the
Poincaré map gives a T-periodic solution setting. This will be made by the following iteration
procedure.

Theorem 3.4. Assume that blfl > cMeM and there exists a pair of nontrivial nonnegative T-periodic
subsolution (u(x, t), v(x, t)) and T-periodic supersolution (u(x, t), v(x, t)) of the problem (1.1)–(1.3)
with u(x, 0) ≤ u(x, 0); then the problem (1.1)–(1.3) admits a pair of nontrivial nonnegative periodic
solutions (u∗(x, t), v∗(x, t)), (u∗(x, t), v∗(x, t)) such that

u(x, t) ≤ u∗(x, t) ≤ u∗(x, t) ≤ u(x, t), v(x, t) ≤ v∗(x, t) ≤ v∗(x, t) ≤ v(x, t), in QT. (3.16)

Proof. Taking u(x, t), u(x, t) as those in Lemma 3.1 and choosing suitable B(x0, δ), B(x0, δ′),Ω′,
k1, k2, andK, we can obtain u(x, 0) ≤ u(x, 0). By Lemma 2.6, we have that PT (u(·, 0)) ≥ u(·, T).
Hence by Definition 1.2we get PT (u(·, 0)) ≥ u(·, 0), which implies P(k+1)T (u(·, 0)) ≥ PkT(u(·, 0))
for any k ∈ �. Similarly we have that PT (u(·, 0)) ≤ u(·, T) ≤ u(·, 0), and hence P(k+1)T (u(·, 0)) ≤
PkT (u(·, 0)) for any k ∈ �. By Lemma 2.6, we have that PkT(u(·, 0)) ≤ PkT (u(·, 0)) for any k ∈ �.
Then

u∗(x, 0) = lim
k→∞

PkT

(
u(x, 0)

)
, u∗(x, 0) = lim

k→∞
PkT(u(x, 0)) (3.17)

exist for almost every x ∈ Ω. Since the operator PT is compact (see Lemma 3.3), the above
limits exist in L∞(Ω), too. Moreover, both u∗(x, 0) and u∗(x, 0) are fixed points of PT . With
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the similar method as [26], it is easy to show that the even extension of the function u∗(x, t),
which is the solution of the problem (1.1)–(1.4) with the initial value u∗(x, 0), is indeed a
nontrivial nonnegative periodic solution of the problem (1.1)–(1.3). It is the same for the
existence of u∗(x, t). Furthermore, by Lemma 2.6, we obtain (3.16) immediately, and thus we
complete the proof.

Furthermore, by De Giorgi iteration technique, we can also establish a prior upper
bound of all nonnegative periodic solutions of (1.1)–(1.3). Then with a similar method as
[18], we have the following remarkwhich shows the existence and attractivity of the maximal
periodic solution.

Remark 3.5. If blfl > cMeM, the problem (1.1)–(1.3) admits a maximal periodic solution
(U,V ). Moreover, if (u, v) is the solution of the initial boundary value problem (1.1)–(1.4)
with nonnegative initial value (u0, v0), then, for any ε > 0, there exists t depending on u0, v0,
and ε, such that

0 ≤ u ≤ U + ε, 0 ≤ v ≤ V + ε, for x ∈ Ω, t ≥ t. (3.18)
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