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The author discusses the multiple positive solutions for an infinite boundary value problem of
first-order impulsive superlinear integrodifferential equations on the half line in a Banach space
by means of the fixed point theorem of cone expansion and compression with norm type.

1. Introduction

Let E be a real Banach space and P a cone in E which defines a partial ordering in E by x ≤ y
if and only if y − x ∈ P . P is said to be normal if there exists a positive constant N such that
θ ≤ x ≤ y implies ||x|| ≤ N||y||, where θ denotes the zero element of E and the smallest N is
called the normal constant of P . If x ≤ y and x /=y, we write x < y. For details on cone theory,
see [1].

In paper [2], we considered the infinite boundary value problem (IBVP) for first-order
impulsive nonlinear integrodifferential equation of mixed type on the half line in E:

u′(t) = f(t, u(t), (Tu)(t), (Su)(t)), ∀t ∈ J ′,

Δu|t=tk = Ik(u(tk)) (k = 1, 2, 3, . . .),

u(∞) = βu(0),

(1.1)

where J = [0,∞), 0 < t1 < · · · < tk < . . .,tk → ∞, J ′ = J \ {t1, . . . , tk, . . .}, f ∈ C[J ×P ×P ×P, P],
Ik ∈ C[P, P] (k = 1, 2, 3, . . .), β > 1, u(∞) = limt→∞u(t), and

(Tu)(t) =
∫ t
0
K(t, s)u(s)ds, (Su)(t) =

∫∞
0
H(t, s)u(s)ds, (1.2)
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K ∈ C[D,R+], D = {(t, s) ∈ J × J : t ≥ s}, H ∈ C[J × J, R+], R+ denotes the set of all
nonnegative numbers. Δu|t=tk denotes the jump of u(t) at t = tk, that is,

Δu|t=tk = u
(
t+k
) − u

(
t−k
)
, (1.3)

where u(t+k) and u(t−k) represent the right and left limits of u(t) at t = tk, respectively. By
using the fixed point index theory, we discussed the multiple positive solutions of IBVP(1.1).
But the discussion dealt with sublinear equations, that is, we assume that there exists c ∈
C[J, R+] ∩ L[J, R+] such that

∥∥f(t, u, v,w)
∥∥

c(t)(‖u‖ + ‖v‖ + ‖w‖) −→ 0 as u, v,w ∈ P, ‖u‖ + ‖v‖ + ‖w‖ −→ ∞ (1.4)

uniformly for t ∈ J (see condition (H5) in [2]).
Now, in this paper, we discuss the multiple positive solutions of an infinite three-point

boundary value problem (which includes IBVP(1.1) as a special case) for superlinear case by
means of different method, that is, by using the fixed point theorem of cone expansion and
compression with norm type, which was established by the author in [3] (see also [1]), and
the key point is to introduce a new cone Q.

Consider the infinite three-point boundary value problem for first-order impulsive
nonlinear integrodifferential equation of mixed type on the half line in E:

u′(t) = f(t, u(t), (Tu)(t), (Su)(t)), ∀t ∈ J ′,

Δu|t=tk = Ik(u(tk)) (k = 1, 2, 3, . . .),

u(∞) = γu
(
η
)
+ βu(0),

(1.5)

where 0 ≤ γ < 1, β + γ > 1, and tm−1 < η ≤ tm (for some m). It is clear that IBVP(1.5) includes
IBVP(1.1) as a special case when γ = 0.

Let PC[J, E] = {u : u is a map from J into E such that u(t) is continuous at t /= tk,
left continuous at t = tk, and u(t+

k
) exists, k = 1, 2, 3, . . .} and BPC[J, E] = {u ∈ PC[J, E] :

supt∈J ||u(t)|| < ∞}. It is clear that BPC[J, E] is a Banach space with norm

‖u‖B = sup
t∈J

‖u(t)‖. (1.6)

Let BPC[J, P] = {u ∈ BPC[J, E] : u(t) ≥ θ, ∀t ∈ J} and Q = {u ∈ BPC[J, P] : u(t) ≥
β−1(1 − γ)u(s), ∀t, s ∈ J}. Obviously, BPC[J, P] and Q are two cones in space BPC[J, E] and
Q ⊂ BPC[J, P]. u ∈ BPC[J, P] ∩ C1[J ′, E] is called a positive solution of IBVP(1.5) if u(t) > θ
for t ∈ J and u(t) satisfies (1.5).

2. Several Lemmas

Let us list some conditions.

(H1) supt∈J
∫ t
0 K(t, s)ds < ∞, supt∈J

∫∞
0 H(t, s)ds < ∞, and

lim
t′ → t

∫∞
0

∣∣H(t′, s) −H(t, s)
∣∣ds = 0, ∀t ∈ J. (2.1)
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In this case, let

k∗ = sup
t∈J

∫ t
0
K(t, s)ds, h∗ = sup

t∈J

∫∞
0
H(t, s)ds. (2.2)

(H2) There exist a ∈ C[J, R+] and g ∈ C[R+ × R+ × R+, R+] such that

∥∥f(t, u, v,w)
∥∥ ≤ a(t)g(‖u‖, ‖v‖, ‖w‖), ∀t ∈ J, u, v,w ∈ P,

a∗ =
∫∞
0
a(t)dt < ∞.

(2.3)

(H3) There exist γk ≥ 0 (k = 1, 2, 3, . . .) and F ∈ C[R+, R+] such that

‖Ik(u)‖ ≤ γkF(‖u‖), ∀u ∈ P (k = 1, 2, 3, . . .),

γ∗ =
∞∑
k=1

γk < ∞.
(2.4)

(H4) For any t ∈ J and r > 0, f(t, Pr , Pr , Pr) = {f(t, u, v,w) : u, v,w ∈ Pr} and Ik(Pr) =
{Ik(u) : u ∈ Pr} (k = 1, 2, 3, . . .) are relatively compact in E, where Pr = {u ∈ P :
||u|| ≤ r}.

Remark 2.1. Obviously, condition (H4) is satisfied automatically when E is finite dimensional.

Remark 2.2. It is clear that if condition (H1) is satisfied, then the operators T and S defined
by (1.2) are bounded linear operators from BPC[J, E] into BPC[J, E] and ||T || ≤ k∗, ||S|| ≤ h∗;
moreover, we have T(BPC[J, P]) ⊂ BPC[J, P] and S(BPC[J, P]) ⊂ BPC[J, P].

We shall reduce IBVP(1.5) to an impulsive integral equation. To this end, we consider
the operator A defined by

(Au)(t) =
1

β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

)

×
∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds+

∞∑
k=m

Ik(u(tk))+
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}

+
∫ t
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∑
0<tk<t

Ik(u(tk)), ∀t ∈ J.

(2.5)

In what follows, we write J1 = [0, t1], Jk = (tk−1, tk] (k = 2, 3, 4, . . .).

Lemma 2.3. If conditions (H1)–(H4) are satisfied, then operator A defined by (2.5) is a completely
continuous (i.e., continuous and compact) operator from BPC[J, P] into Q.
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Proof. Let r > 0 be given. Let

Mr = max
{
g
(
x, y, z

)
: 0 ≤ x ≤ r, 0 ≤ y ≤ k∗r, 0 ≤ z ≤ h∗r

}
, (2.6)

Nr = max{F(x) : 0 ≤ x ≤ r}. (2.7)

For u ∈ BPC[J, P], ||u||B ≤ r, we see that by virtue of condition (H2) and (2.6),

∥∥f(t, u(t), (Tu)(t), (Su)(t))∥∥ ≤ Mra(t), ∀t ∈ J, (2.8)

which implies the convergence of the infinite integral

∫∞
0
f(t, u(t), (Tu)(t), (Su)(t))dt, (2.9)

∥∥∥∥
∫∞
0
f(t, u(t), (Tu)(t), (Su)(t))dt

∥∥∥∥ ≤
∫∞
0

∥∥f(t, u(t), (Tu)(t), (Su)(t))∥∥dt ≤ Mra
∗. (2.10)

On the other hand, condition (H3) and (2.7) imply the convergence of the infinite series

∞∑
k=1

Ik(u(tk)), (2.11)

∥∥∥∥∥
∞∑
k=1

Ik(u(tk))

∥∥∥∥∥ ≤
∞∑
k=1

‖Ik(u(tk))‖ ≤ Nrγ
∗. (2.12)

It follows from (2.5), (2.10), and (2.12) that

||(Au)(t)|| ≤ 1
β + γ − 1

{∫∞
η

∥∥f(s, u(s), (Tu)(s), (Su)(s))∥∥ds + (1 − γ
)

×
∫η
0

∥∥f(s, u(s), (Tu)(s), (Su)(s))∥∥ds

+
∞∑

k=m

‖Ik(u(tk))‖ +
(
1 − γ

)m−1∑
k=1

‖Ik(u(tk))‖
}
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+
∫ t
0

∥∥f(s, u(s), (Tu)(s), (Su)(s))∥∥ds + ∑
0<tk<t

‖Ik(u(tk))‖

≤ 1
β + γ − 1

{∫∞
0

∥∥f(s, u(s), (Tu)(s), (Su)(s))∥∥ds + ∞∑
k=1

||Ik(u(tk))||
}

+
∫∞
0

∥∥f(s, u(s), (Tu)(s), (Su)(s))∥∥ds + ∞∑
k=1

||Ik(u(tk))||

=
β + γ

β + γ − 1

{∫∞
0

∥∥f(s, u(s), (Tu)(s), (Su)(s))∥∥ds + ∞∑
k=1

||Ik(u(tk))||
}

≤ β + γ

β + γ − 1
(
Mra

∗ +Nrγ
∗), ∀t ∈ J,

(2.13)

which implies that Au ∈ BPC[J, P] and

‖Au‖B ≤ β + γ

β + γ − 1
(
Mra

∗ +Nrγ
∗). (2.14)

Moreover, by (2.5), we have

(Au)(t) ≥ 1
β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

)

×
∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds+

∞∑
k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}
,

∀t ∈ J,

(2.15)

(Au)(t) ≤ 1
β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

)

×
∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds

+
∞∑

k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}

+
∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=1

Ik(u(tk)), ∀t ∈ J.

(2.16)
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It is clear that

∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=1

Ik(u(tk))

≤ 1
1 − γ

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

) ∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds

+
∞∑

k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}
,

(2.17)

so, (2.16) and (2.17) imply

(Au)(t) ≤
{

1
β + γ − 1

+
1

1 − γ

}

×
{∫∞

η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

) ∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds

+
∞∑

k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}
, ∀t ∈ J.

(2.18)

It follows from (2.15) and (2.18) that

(Au)(t) ≥ 1
β + γ − 1

(
1

β + γ − 1
+

1
1 − γ

)−1
(Au)(s) = β−1

(
1 − γ

)
(Au)(s), ∀t, s ∈ J. (2.19)

Hence, Au ∈ Q. That is, A maps BPC[J, P] into Q.
Now, we are going to show that A is continuous. Let un, u ∈ BPC[J, P], ||un − u||B →

0 (n → ∞). Then r = supn||un||B < ∞ and ||u||B ≤ r. Similar to (2.14), it is easy to get

‖Aun −Au‖B

≤ β + γ

β + γ − 1

{∫∞
0

∥∥f(s, un(s), (Tun)(s), (Sun)(s)) − f(s, u(s), (Tu)(s), (Su)(s))ds
∥∥

+
∞∑
k=1

‖Ik(un(tk)) − Ik(u(tk))‖
}

(n = 1, 2, 3, . . .).

(2.20)

It is clear that

f(t, un(t), (Tun)(t), (Sun)(t)) −→ f(t, u(t), (Tu)(t), (Su)(t)) as n −→ ∞, ∀t ∈ J. (2.21)
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Moreover, we see from (2.8) that

∥∥f(t, un(t), (Tun)(t), (Sun)(t)) − f(t, u(t), (Tu)(t), (Su)(t))
∥∥

≤ 2Mra(t) = σ(t), ∀t ∈ J (n = 1, 2, 3, . . .); σ ∈ L[J, R+].
(2.22)

It follows from (2.21), (2.22) and the dominated convergence theorem that

lim
n→∞

∫∞
0

∥∥f(t, un(t), (Tun)(t), (Sun)(t)) − f(t, u(t), (Tu)(t), (Su)(t))
∥∥dt = 0. (2.23)

On the other hand, for any ε > 0, we can choose a positive integer j such that

Nr

∞∑
k=j+1

γk < ε. (2.24)

And then, choose a positive integer n0 such that

j∑
k=1

‖Ik(un(tk)) − Ik(u(tk))‖ < ε, ∀n > n0. (2.25)

From (2.24) and (2.25), we get

∞∑
k=1

‖Ik(un(tk)) − Ik(u(tk))‖ < ε + 2Nr

∞∑
k=j+1

γk < 3ε, ∀n > n0, (2.26)

hence

lim
n→∞

∞∑
k=1

‖Ik(un(tk)) − Ik(u(tk))‖ = 0. (2.27)

It follows from (2.20), (2.23), and (2.51) that ||Aun−Au||B → 0 as n → ∞, and the continuity
of A is proved.

Finally, we prove thatA is compact. Let V = {un} ⊂ BPC[J, P] be bounded and ||un||B ≤
r (n = 1, 2, 3, . . .). Consider Ji = (ti−1, ti] for any fixed i. By (2.5) and (2.8), we have

∥∥(Aun)
(
t′
) − (Aun)(t)

∥∥ ≤
∫ t′
t

∥∥f(s, un(s), (Tun)(s), (Sun)(s))
∥∥ds

≤ Mr

∫ t′
t

a(s)ds, ∀t, t′ ∈ Ji, t
′ > t (n = 1, 2, 3, . . .),

(2.28)
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which implies that the functions {wn(t)} (n = 1, 2, 3, . . .) defined by

wn(t) =

⎧⎨
⎩
(Aun)(t), ∀t ∈ Ji = (ti−1, ti],

(Aun)
(
t+i−1
)
, ∀t = ti−1

(n = 1, 2, 3, . . .) (2.29)

((Aun)(t+i−1) denotes the right limit of (Aun)(t) at t = ti−1) are equicontinuous on Ji = [ti−1, ti].
On the other hand, for any ε > 0, choose a sufficiently large τ > η and a sufficiently large
positive integer j > m such that

Mr

∫∞
τ

a(s)ds < ε, Nr

∞∑
k=j+1

γk < ε. (2.30)

We have, by (2.29), (2.5), (2.8), (2.30), and condition (H3),

wn(t)

=
1

β + γ − 1

⎧⎨
⎩
∫ τ
η

f(s, un(s), (Tun)(s), (Sun)(s))ds

+
∫∞
τ

f(s, un(s), (Tun)(s), (Sun)(s)ds) +
(
1 − γ

)

×
∫η
0
f(s, un(s), (Tun)(s), (Sun)(s))ds +

j∑
k=m

Ik(un(tk)) +
∞∑

k=j+1

Ik(un(tk))

+
(
1 − γ

)m−1∑
k=1

Ik(un(tk))

}

+
∫ t
0
f(s, un(s), (Tun)(s), (Sun)(s))ds

+
i−1∑
k=1

Ik(un(tk)), ∀t ∈ Ji (n = 1, 2, 3, . . .),

(2.31)

∥∥∥∥
∫∞
τ

f(s, un(s), (Tun)(s), (Sun)(s))ds
∥∥∥∥ < ε (n = 1, 2, 3, . . .), (2.32)

∥∥∥∥∥∥
∞∑

k=j+1

Ik(un(tk))

∥∥∥∥∥∥ < ε (n = 1, 2, 3, . . .). (2.33)
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It follows from (2.31), (2.32), (2.33), (2.8), and [4, Theorem 1.2.3] that

α(W(t)) ≤ 1
β + γ − 1

{
2
∫ τ
η

α
(
f(s, V (s), (TV )(s), (SV )(s))

)
ds + 2ε

+ 2
(
1 − γ

) ∫η
0
α
(
f(s, V (s), (TV )(s), (SV )(s))

)
ds

+
j∑

k=m

α(Ik(V (tk))) + 2ε +
(
1 − γ

)m−1∑
k=1

α(Ik(V (tk)))

}

+ 2
∫ t
0
α
(
f(s, V (s), (TV )(s), (SV )(s))

)
ds +

i−1∑
k=1

α(Ik(V (tk))), ∀t ∈ Ji,

(2.34)

where W(t) = {wn(t) : n = 1, 2, 3, . . .}, V (s) = {un(s) : n = 1, 2, 3, . . .}, (TV )(s) = {(Tun)(s) :
n=1, 2, 3, . . .}, (SV )(s) = {(Sun)(s) : n = 1, 2, 3, . . .} and α(U) denotes the Kuratowskimeasure
of noncompactness of bounded setU ⊂ E (see [4, Section 1.2]). Since V (s), (TV )(s), (SV )(s) ⊂
Pr∗ for s ∈ J , where r∗ = max{r, k∗r, h∗r}, we see that, by condition (H4),

α
(
f(s, V (s), (TV )(s), (SV )(s))

)
= 0, ∀t ∈ J, (2.35)

α(Ik(V (tk))) = 0 (k = 1, 2, 3, . . .). (2.36)

It follows from (2.34)–(2.36) that

α(W(t)) ≤ 4ε
β + γ − 1

, ∀t ∈ Ji, (2.37)

which implies by virtue of the arbitrariness of ε that α(W(t)) = 0 for t ∈ Ji.
By Ascoli-Arzela theorem (see [4, Theorem 1.2.5]), we conclude that W = {wn :

n = 1, 2, 3, . . .} is relatively compact in C[Ji, E]; hence, {wn(t)} has a subsequence which is
convergent uniformly on Ji, so, {(Aun(t)} has a subsequence which is convergent uniformly
on Ji. Since i may be any positive integer, so, by diagonal method, we can choose a
subsequence {(Auni)(t)} of {(Aun)(t)} such that {(Auni)(t)} is convergent uniformly on each
Jk (k = 1, 2, 3, . . .). Let

lim
i→∞

(Auni)(t) = v(t), ∀t ∈ J. (2.38)

It is clear that v ∈ PC[J, P]. By (2.14), we have

‖Auni‖B ≤ β + γ

β + γ − 1
(
Mra

∗ +Nrγ
∗), (i = 1, 2, 3, . . .), (2.39)
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which implies that v ∈ BPC[J, P] and

‖v‖B ≤ β + γ

β + γ − 1
(
Mra

∗ +Nrγ
∗). (2.40)

Let ε > 0 be arbitrarily given and choose a sufficiently large positive number τ such that

Mr

∫∞
τ

a(s)ds +Nr

∑
tk≥τ

γk < ε. (2.41)

For any τ < t < ∞, we have, by (2.5),

(Auni)(t) − (Auni)(τ) =
∫ t
τ

f(s, uni(s), (Tuni)(s), (Suni)(s))ds

+
∑

τ≤tk<t
Ik(uni(t)), (i = 1, 2, 3, . . .),

(2.42)

which implies by virtue of (2.8), condition (H3) and (2.41) that

‖(Auni)(t) − (Auni)(τ)‖ ≤ Mr

∫ t
τ

a(s)ds +Nr

∑
τ≤tk<t

γk < ε, (i = 1, 2, 3, . . .). (2.43)

Letting i → ∞ in (2.43), we get

‖v(t) − v(τ)‖ ≤ ε, ∀t > τ. (2.44)

On the other hand, since {(Auni)(t)} converges uniformly to v(t) on [0, τ] as i → ∞, there
exists a positive integer i0 such that

‖(Auni)(t) − v(t)‖ < ε, ∀t ∈ [0, τ], i > i0. (2.45)

It follows from (2.43)–(2.45) that

‖(Auni)(t) − v(t)‖ ≤ ‖(Auni)(t) − (Auni)(τ)‖ + ‖(Auni)(τ) − v(τ)‖ + ‖v(τ) − v(t)‖
< 3ε, ∀t > τ, i > i0.

(2.46)

By (2.45) and (2.46), we have

‖Auni − v‖B ≤ 3ε, ∀i > i0, (2.47)

hence ||Auni − v||B → 0 as i → ∞, and the compactness of A is proved.
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Lemma 2.4. Let conditions (H1)–(H4) be satisfied. Then u ∈ BPC[J, P] ∩ C1[J ′, E] is a solution of
IBVP(1.5) if and only if u ∈ Q is a solution of the following impulsive integral equation:

u(t) =
1

β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

)

×
∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}

+
∫ t
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∑
0<tk<t

Ik(u(tk)), ∀t ∈ J.

(2.48)

that is, u is a fixed point of operator A defined by (2.5) in Q.

Proof. For u ∈ PC[J, E] ∩ C1[J ′, E], it is easy to get the following formula:

u(t) = u(0) +
∫ t
0
u′(s)ds +

∑
0<tk<t

[
u
(
t+k
) − u(tk)

]
, ∀t ∈ J. (2.49)

Let u ∈ BPC[J, P] ∩ C1[J ′, E] be a solution of IBVP(1.5). By (1.5) and (2.49), we have

u(t) = u(0) +
∫ t
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∑
0<tk<t

Ik(u(tk)), ∀t ∈ J. (2.50)

We have shown in the proof of Lemma 2.3 that the infinite integral (2.9) and the infinite series
(2.11) are convergent, so, by taking limits as t → ∞ in both sides of (2.50), we get

u(∞) = u(0) +
∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=1

Ik(u(tk)). (2.51)

On the other hand, by (1.5) and (2.50), we have

u(∞) = γu
(
η
)
+ βu(0), (2.52)

u
(
η
)
= u(0) +

∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

m−1∑
k=1

Ik(u(tk)). (2.53)
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It follows from (2.51)–(2.53) that

u(0) =
1

β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

) ∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds

+
∞∑

k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}
,

(2.54)

and, substituting it into (2.50), we see that u(t) satisfies (2.48), that is, u = Au. Since Au ∈ Q
by virtue of Lemma 2.3, we conclude that u ∈ Q.

Conversely, assume that u ∈ Q is a solution of (2.48). We have, by (2.48),

u(0) =
1

β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

) ∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds

+
∞∑

k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}
,

(2.55)

u
(
η
)
=

1
β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

)

×
∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}

+
∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

m−1∑
k=1

Ik(u(tk)).

(2.56)

Moreover, by taking limits as t → ∞ in (2.33), we see that u(∞) exists and

u(∞) =
1

β + γ − 1

{∫∞
η

f(s, u(s), (Tu)(s), (Su)(s))ds +
(
1 − γ

) ∫η
0
f(s, u(s), (Tu)(s), (Su)(s))ds

+
∞∑

k=m

Ik(u(tk)) +
(
1 − γ

)m−1∑
k=1

Ik(u(tk))

}

+
∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=1

Ik(u(tk)).

(2.57)
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It follows from (2.55)–(2.57) that

γu
(
η
)
+ βu(0) = u(∞). (2.58)

On the other hand, direct differentiation of (2.48) gives

u′(t) = f(t, u(t), (Tu)(t), (Su)(t)), ∀t ∈ J ′, (2.59)

and, it is clear, by (2.48),

Δu|t=tk = Ik(u(tk)) (k = 1, 2, 3, . . .). (2.60)

Hence, u ∈ C1[J ′, E] and u(t) satisfies (1.5).

Corollary 2.5. Let cone P be normal. If u is a fixed point of operator A defined by (1.5) in Q and
||u||B > 0, then u(t) > θ for t ∈ J , so, u is a positive solution of IBVP(1.5).

Proof. For u ∈ Q, we have

u(t) ≥ β−1
(
1 − γ

)
u(s) ≥ θ, ∀t, s ∈ J, (2.61)

so,

‖u(t)‖ ≥ N−1β−1
(
1 − γ

)‖u‖B, ∀t ∈ J, (2.62)

where N denotes the normal constant of P . Since ||u||B > 0, (2.61) and (2.62) imply that
u(t) > θ for t ∈ J .

Lemma 2.6 (Fixed point theorem of cone expansion and compression with norm type, see [3,
Theorem 3] or [1, Theorem 2.3.4]). Let P be a cone in real Banach space E andΩ1,Ω2 two bounded
open sets in E such that θ ∈ Ω1, Ω1 ⊂ Ω2, where θ denotes the zero element of E and Ω2 denotes the
closure ofΩ2. Let operatorA : P ∩ (Ω2 \Ω1) → P be completely continuous. Suppose that one of the
following two conditions is satisfied:

(a)

‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2, (2.63)

where ∂Ωi denotes the boundary of Ωi (i = 1, 2).

(b)

‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1, ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2. (2.64)

Then A has at least one fixed point in P ∩ (Ω2 \Ω1).
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3. Main Theorems

Let us list more conditions.

(H5) There exist u0 ∈ P \ {θ}, b ∈ C[J, R+], and τ ∈ C[P,R+] such that

f(t, u, v,w) ≥ b(t)τ(u)u0, ∀t ∈ J, u, v,w ∈ P,

τ(u)
‖u‖ −→ ∞ as u ∈ P, ‖u‖ −→ ∞,

b∗ =
∫∞
0
b(t)dt < ∞.

(3.1)

Remark 3.1. Condition (H5) means that f(t, u, v,w) is superlinear with respect to u.

(H6) There exist u1 ∈ P \ {θ}, c ∈ C[J, R+], and σ ∈ C[P,R+] such that

f(t, u, v,w) ≥ c(t)σ(u)u1, ∀t ∈ J, u, v,w ∈ P,

σ(u)
‖u‖ −→ ∞ as u ∈ P, ‖u‖ −→ 0,

c∗ =
∫∞
0
c(t)dt < ∞.

(3.2)

Theorem 3.2. Let cone P be normal and conditions (H1)–(H6) satisfied. Assume that there exists a
ξ > 0 such that

N
(
β + γ

)
β + γ − 1

(
Mξa

∗ +Nξγ
∗) < ξ, (3.3)

where

Mξ = max
{
g
(
x, y, z

)
: 0 ≤ x ≤ ξ, 0 ≤ y ≤ k∗ξ, 0 ≤ z ≤ h∗ξ

}
,

Nξ = max{F(x) : 0 ≤ x ≤ ξ}.
(3.4)

(for g(x, y, z), F(x), a∗ and γ∗, see conditions (H2) and (H3)). Then IBVP(1.5) has at least two
positive solutions u∗, u∗∗ ∈ Q ∩ C1[J ′, E] such that 0 < ||u∗||B < ξ < ||u∗∗||B.

Proof. By Lemmas 2.3, 2.4, and Corollary 2.5, operator A defined by (2.5) is completely con-
tinuous fromQ intoQ, and we need to prove thatA has two fixed points u∗ and u∗∗ inQ such
that 0 < ||u∗||B < ξ < ||u∗∗||B.

By condition (H5), there exists an r1 > 0 such that

τ(u) ≥ β
(
β + γ − 1

)
N2

(
1 − γ

)2
b∗‖u0‖

‖u‖, ∀u ∈ P, ‖u‖ ≥ r1, (3.5)
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where N denotes the normal constant of P , so,

f(t, u, v,w) ≥ β
(
β + γ − 1

)
N2‖u‖(

1 − γ
)2
b∗‖u0‖

b(t)u0, ∀t ∈ J, u, v,w ∈ P, ||u|| ≥ r1. (3.6)

Choose

r2 > max
{
Nβ
(
1 − γ

)−1
r1, ξ
}
. (3.7)

For u ∈ Q, ||u||B = r2; we have by (2.62) and (3.7),

‖u(t)‖ ≥ N−1β−1
(
1 − γ

)‖u‖B = N−1β−1
(
1 − γ

)
r2 > r1, ∀t ∈ J, (3.8)

so, (2.5), (3.8), (3.6), and (2.62) imply

(Au)(t) ≥ 1 − γ

β + γ − 1

(∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds

)

≥ βN2(
1 − γ

)
b∗‖u0‖

(∫∞
0
‖u(s)‖b(s)ds

)
u0

≥ N‖u‖B
b∗‖u0‖

(∫∞
0
b(s)ds

)
u0 =

N‖u‖B
‖u0‖ u0, ∀t ∈ J,

(3.9)

and consequently,

||Au||B ≥ ||u||B, ∀u ∈ Q, ||u||B = r2. (3.10)

Similarly, by condition (H6), there exists r3 > 0 such that

σ(u) ≥ β
(
β + γ − 1

)
N2

(
1 − γ

)2
c∗||u1||

||u||, ∀u ∈ P, 0 < ||u|| < r3, (3.11)

so,

f(t, u, v,w) ≥ β
(
β + γ − 1

)
N2||u||(

1 − γ
)2
c∗||u1||

c(t)u1, ∀t ∈ J, u, v,w ∈ P, 0 < ||u|| < r3. (3.12)

Choose

0 < r4 < min{r3, ξ}. (3.13)

For u ∈ Q, ||u||B = r4, we have by (3.13) and (2.62),

r3 > ||u(t)|| ≥ N−1β−1
(
1 − γ

)‖u‖B = N−1β−1
(
1 − γ

)
r4 > 0, (3.14)
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so, similar to (3.9), we get by (2.5), (3.12), and (3.14)

(Au)(t) ≥ 1 − γ

β + γ − 1

(∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds

)

≥ βN2(
1 − γ

)
c∗||u1||

(∫∞
0
||u(s)||c(s)ds

)
u1

≥ N‖u‖B
c∗||u1||

(∫∞
0
c(s)ds

)
u1 =

N‖u‖B
||u1|| u1, ∀t ∈ J ;

(3.15)

hence

‖Au‖B ≥ ‖u‖B, ∀u ∈ Q, ||u|| = r4. (3.16)

On the other hand, for u ∈ Q, ||u||B = ξ, by condition (H2), condition (H3), (3.4), we have

∥∥f(t, u(t), (Tu)(t), (Su)(t))∥∥ ≤ Mξa(t), ∀t ∈ J, (3.17)

‖Ik(u(tk))‖ ≤ Nξγk (k = 1, 2, 3, . . .). (3.18)

It is clear that

(Au)(t) ≤ β + γ

β + γ − 1

(∫∞
0
f(s, u(s), (Tu)(s), (Su)(s))ds +

∞∑
k=1

Ik(u(tk))

)
∀t ∈ J. (3.19)

It follows from (3.17)–(3.19) that

‖Au‖B ≤ N
(
β + γ

)
β + γ − 1

(
Mξa

∗ +Nξγ
∗). (3.20)

Thus, (3.20) and (3.3) imply

‖Au‖B < ‖u‖B, ∀u ∈ Q, ‖u‖B = ξ. (3.21)

From (3.7) and (3.13), we know 0 < r4 < ξ < r2; hence, (3.10), (3.16), (3.21), and Lemma 2.6
imply that A has two fixed points u∗, u∗∗ ∈ Q such that r4 < ||u∗||B < ξ < ||u∗∗||B < r2. The
proof is complete.
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Theorem 3.3. Let cone P be normal and conditions (H1)–(H5) satisfied. Assume that

g
(
x, y, z

)
x + y + z

−→ 0 as x + y + z −→ 0+,

F(x)
x

−→ 0 as x −→ 0+.

(3.22)

(for g(x, y, z) and F(x), see conditions (H2) and (H3)). Then IBVP(1.5) has at least one positive
solution u∗ ∈ Q ∩ C1[J ′, E].

Proof. As in the proof of Theorem 3.2, we can choose r2 > 0 such that (3.10) holds (in this case,
we only choose r2 > Nβ(1 − γ)−1r1 instead of (3.7)). On the other hand, by (3.22), there exists
r5 > 0 such that

g
(
x, y, z

) ≤ ε0
(
x + y + z

)
, ∀0 < x + y + z < r5,

F(x) ≤ ε0x, ∀0 < x < r5,
(3.23)

where

ε0 =
β + γ − 1

N
(
β + γ

)[
(1 + k∗ + h∗)a∗ + γ∗

] . (3.24)

Choose

0 < r6 < min
{

r5
1 + k∗ + h∗ , r2

}
. (3.25)

For u ∈ Q, ||u||B = r6, we have by (2.62) and (3.25),

0 < N−1β−1
(
1 − γ

)
r6 ≤ ||u(t)|| ≤ r6 < r5, ∀t ∈ J,

0 < N−1β−1
(
1 − γ

)
r6 ≤ ||u(t)|| + ||(Tu)(t)|| + ||(Su)(t)|| ≤ (1 + k∗ + h∗)r6 < r5, ∀t ∈ J,

(3.26)

so, (3.23) imply

g(||u(t)||, ||(Tu)(t)||, ||(Su)(t)||) ≤ ε0(||u(t)|| + ||(Tu)(t)|| + ||(Su)(t)||)

≤ ε0(1 + k∗ + h∗)r6, ∀t ∈ J,

F(||u(tk)||) ≤ ε0||u(tk)|| ≤ ε0r6, (k = 1, 2, 3, . . .).

(3.27)
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It follows from (3.19), condition (H2), condition (H3), (3.27), and (3.24) that

||(Au)(t)|| ≤ N
(
β + γ

)
β + γ − 1

{
ε0(1 + k∗ + h∗)r6

∫∞
0
a(s)ds + ε0r6

∞∑
k=1

γk

}

=
N
(
β + γ

)
ε0r6

β + γ − 1
{
(1 + k∗ + h∗)a∗ + γ∗

}
= r6, ∀t ∈ J,

(3.28)

and consequently,

‖Au‖B ≤ ‖u‖B, ∀u ∈ Q, ‖u‖B = r6. (3.29)

Since 0 < r6 < r2 by virtue of (3.25), we conclude from (3.10), (3.29), and Lemma 2.6 that A
has a fixed point u∗ ∈ Q such that r6 ≤ ||u∗||B ≤ r2. The theorem is proved.

Example 3.4. Consider the infinite system of scalar first-order impulsive integrodifferential
equations of mixed type on the half line:

u′
n(t) =

1
8n2

e−5t

⎛
⎝
[
un+1(t) +

∞∑
m=1

um(t)

]2
+

√√√√3u2n(t) +
∞∑

m=1

um(t)

⎞
⎠

+
1
9n3

e−6t

⎧⎨
⎩
(∫ t

0
e−(t+1)sun(s)ds

)2

+

(∫∞
0

un+2(s)ds

(1 + t + s)2

)3
⎫⎬
⎭,

∀0 ≤ t < ∞, t /= k (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .),

Δun|t=k =
1
6n2

3−k
(
[un(k)]

2 + [un+2(k)]
2
)
, (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .),

u(∞) =
1
2
un

(
9
2

)
+ 6un(0), (n = 1, 2, 3, . . .).

(3.30)

Evidently, un(t) ≡ 0 (n = 1, 2, 3, . . .) is the trivial solution of infinite system (3.30).

Conclusion. Infinite system (3.30) has at least two positive solutions {u∗
n(t)} (n = 1, 2, 3, . . .)

and {u∗∗
n (t)} (n = 1, 2, 3, . . .) such that

0 < inf
0≤t<∞

∞∑
n=1

u∗
n(t) ≤ sup

0≤t<∞

∞∑
n=1

u∗
n(t) < 1 < sup

0≤t<∞

∞∑
n=1

u∗∗
n (t), inf

0≤t<∞

∞∑
n=1

u∗∗
n (t) > 0. (3.31)

Proof. Let E = l1 = {u = (u1, . . . , un, . . .) :
∑

n=1 ∞|un| < ∞} with norm ||u|| =
∑∞

n=1 |un|
and P = (u1, . . . , un, . . .) : un ≥ 0, n = 1, 2, 3, . . .}. Then P is a normal cone in E with normal
constantN = 1, and infinite system (3.30) can be regarded as an infinite three-point boundary
value problem of form (1.5). In this situation, u = (u1, . . . , un, . . .), v = (v1, . . . , vn, . . .),
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w = (w1, . . . , wn, . . .), tk = k (k = 1, 2, 3, . . .), K(t, s) = e−(t+1)s, H(t, s) = (1 + t + s)−2, η = 9/2,
γ = 1/2, β = 6, f = (f1, . . . , fn, . . .), and Ik = (Ik1, . . . , Ikn . . .), in which

fn(t, u, v,w) =
1
8n2

e−5t

⎛
⎝
[
un+1 +

∞∑
m=1

um

]2
+

√√√√3u2n +
∞∑

m=1

um

⎞
⎠ +

1
9n3

e−6t
(
v2
n +w3

n+2

)
,

∀t ∈ J = [0,∞), u, v,w ∈ P (n = 1, 2, 3, . . .),

(3.32)

Ikn(u) =
1
6n2

3−k
(
u2
n + u2

2n+1

)
, ∀u ∈ P (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .). (3.33)

It is easy to see that f ∈ C[J × P × P × P, P], Ik ∈ C[P, P] (k = 1, 2, 3, . . .), and condition (H1)
is satisfied and k∗ ≤ 1, h∗ ≤ 1. We have, by (3.32),

0 ≤ fn(t, u, v,w)

≤ 1
8n2

e−5t
(
[2||u||]2 +

√
4||u||

)
+

1
9n3

e−6t
(
‖v‖2 + ‖w‖3

)

≤ 1
n2

e−5t
(
1
2
‖u‖2 + 1

4

√
||u|| + 1

9
‖v‖2 + 1

9
‖w‖3

)
, ∀t ∈ J, u, v,w ∈ P (n = 1, 2, 3, . . .),

(3.34)

so, observing the inequality
∑∞

n=1(1/n
2) < 2, we get

∥∥f(t, u, v,w)
∥∥ =

∞∑
n=1

fn(t, u, v,w) ≤ e−5t
(
‖u‖2 + 1

2

√
‖u‖ + 2

9
‖v‖2 + 2

9
‖w‖3

)
,

∀t ∈ J, u, v,w ∈ P,

(3.35)

which implies that condition (H2) is satisfied for a(t) = e−5t(∗= 1/5) and

g
(
x, y, z

)
= x2 +

1
2
√
x +

2
9
y2 +

2
9
z3. (3.36)

By (3.33), we have

0 ≤ Ikn(u) ≤ 1
6n2

3−k‖u‖2, ∀u ∈ P (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .), (3.37)

so, condition (H3) is satisfied for γk = 3−k−1(γ∗ = 1/6) and

F(x) = x2. (3.38)
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On the other hand, (3.32) implies

fn(t, u, v,w) ≥ 1
8n2

e−5t‖u‖2, ∀t ∈ J, u, v,w ∈ P (n = 1, 2, 3, . . .),

fn(t, u, v,w) ≥ 1
8n2

e−5t
√
‖u‖, ∀t ∈ J, u, v,w ∈ P (n = 1, 2, 3, . . .),

(3.39)

so, we see that condition (H5) is satisfied for b(t) = (1/8)e−5t(b∗ = 1/40), τ(u) = ||u||2 and u0 =
(1, . . . , 1/n2, . . .), and condition (H6) is satisfied for c(t) = (1/8)e−5t(c∗ = 1/40), σ(u) =

√
||u||,

and let u1 = (1, . . . , 1/n2, . . .). Now, we check that condition (H4) is satisfied. Let t ∈ J and
r > 0 be fixed, and {z(m)} be any sequence in f(t, Pr , Pr , Pr), where z(m) = (z(m)

1 , . . . , z
(m)
n , . . .).

Then, we have, by (3.34),

0 ≤ z
(m)
n ≤ 1

n2

(
11
18

r2 +
1
4
√
r +

1
9
r3
)
, (n,m = 1, 2, 3, . . .). (3.40)

So, {z(m)
n } is bounded, and, by diagonal method, we can choose a subsequence {mi} ⊂ {m}

such that

z(mi) −→ zn as i −→ ∞ (n = 1, 2, 3, . . .), (3.41)

which implies by virtue of (3.40) that

0 ≤ zn ≤ 1
n2

(
11
18

r2 +
1
4
√
r +

1
9
r3
)
, (n = 1, 2, 3, . . .). (3.42)

Consequently, z = (z1, . . . , zn, . . .) ∈ l1 = E. Let ε > 0 be given. Choose a positive integer n0

such that

( ∞∑
n=n0+1

1
n2

)(
11
18

r2 +
1
4
√
r +

1
9
r3
)

<
ε

3
. (3.43)

By (3.41), we see that there exists a positive integer i0 such that

∣∣∣z(mi)
n − zn

∣∣∣ < ε

3n0
, ∀i > i0 (n = 1, 2, . . . , n0). (3.44)

It follows from (3.40)–(3.44) that

∥∥∥z(mi) − z
∥∥∥ =

∞∑
n=1

∣∣∣z(mi)
n − zn

∣∣∣ ≤
n0∑
n=1

∣∣∣z(mi)
n − zn

∣∣∣ +
∞∑

n=n0+1

∣∣∣z(mi)
n

∣∣∣

+
∞∑

n=n0+1

|zn| < ε

3
+
ε

3
+
ε

3
= ε, ∀i > i0.

(3.45)
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Thus, we have proved that f(t, Pr , Pr , Pr) is relatively compact in E. Similarly, by using (3.37),
we can prove that Ik(Pr) is relatively compact in E. Hence, condition (H4) is satisfied. Finally,
it is easy to check that inequality (3.3) is satisfied for ξ = 1 (in this case, Mξ ≤ 17/36 and
Nξ = 1). Hence, our conclusion follows from Theorem 3.2.

Example 3.5. Consider the infinite system of scalar first-order impulsive integrodifferential
equations of mixed type on the half line:

u′
n(t) =

1

n3(1 + t)3

(
un(t) + 2un+1(t) +

∞∑
m=1

um(t)

)3

+
1

n4(1 + t)4

(∫ t
0

u2n(s)ds
1 + ts + s2

)4

+
1

n5(1 + t)5

(∫∞
0
e−ssin2(t − s)u3n(s)ds

)5

,

∀0 ≤ t < ∞, t /= 2k (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .),

Δun |t=2k =
1
n2

e−k[un(2k)]
3 +

1
n3

2−k[u2n+1(2k)]
4, (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .),

4un(∞) = 3un(7) + 2un(0), (n = 1, 2, 3, . . .).

(3.46)

Evidently, un(t) ≡ 0 (n = 1, 2, 3, . . .) is the trivial solution of infinite system (3.46).

Conclusion. Infinite system (3.46) has at least one positive solution {u∗
n(t)} (n = 1, 2, 3, . . .)

such that

inf
0≤t<∞

∞∑
n=1

u∗
n(t) > 0. (3.47)

Proof. Let E = l1 = ({u = (u1, . . . , un, . . .) :
∑∞

n=1 |un| < ∞} with norm ||u|| = ∑∞
n=1 |un| and P =

{u = (u1, . . . , un, . . .) ∈ l1 : un ≥ 0, n = 1, 2, 3, . . .}. Then P is a normal cone in E with normal
constantN = 1, and infinite system (3.46) can be regarded as an infinite three-point boundary
value problem of form (1.5) in E. In this situation, u = (u1, . . . , un, . . .), v = (v1, . . . , vn, . . .),
w = (w1, . . . , wn, . . .), tk = 2k (k = 1, 2, 3, . . .), K(t, s) = (1 + ts + s2)−1, H(t, s) = e−ssin2(t − s),
η = 7, γ = 3/4, β = 1/2, f = (f1, . . . , fn, . . .), and Ik = (Ik1, . . . , Ikn, . . .), in which

fn(t, u, v,w) =
1
n3 (1 + t)−3

(
un + 2un+1 +

∞∑
m=1

um

)3

+
1
n4

(1 + t)−4v4
2n +

1
n5 (1 + t)−5w5

3n,

∀t ∈ J = [0,∞), u, v,w ∈ P (n = 1, 2, 3, . . .),

Ikn(u) =
1
n2

e−ku3
n +

1
n3

2−ku4
2n+1, (k = 1, 2, 3, . . . ; n = 1, 2, 3, . . .).

(3.48)
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It is clear that f ∈ C[J × P × P × P, P], Ik ∈ C[P, P] (k = 1, 2, 3, . . .), and condition (H1) is
satisfied and k∗ ≤ π/2, h∗ ≤ 1. We have

0 ≤ fn(t, u, v,w) ≤ 1
n3 (1 + t)−3

(
(3‖u‖)3 + ‖v‖4 + ‖w‖5

)
, ∀t ∈ J, u, v,w ∈ P (n = 1, 2, 3, . . .),

0 ≤ Ikn(u) ≤ 1
n2

2−k
(
‖u‖3 + ‖u‖4

)
, ∀u ∈ P (k = 1, 2, 3, . . . , n = 1, 2, 3, . . .),

(3.49)

so, condition (H2) is satisfied for a(t) = (1 + t)−3(a∗ = (1/2)) and

g
(
x, y, z

)
= 54x3 + 2y4 + 2z5, (3.50)

and (H3) is satisfied for γk = 2−k(γ∗ = 1) and

F(x) = 2x3 + 2x4. (3.51)

From

fn(t, u, v,w) ≥ 1
n3 (1 + t)−3‖u‖3, ∀t ∈ J, u, v,w ∈ P (n = 1, 2, 3, . . .), (3.52)

we see that condition (H5) is satisfied for b(t) = (1 + t)−3 (b∗ = 1/2), τ(u) = ||u||3, and
u0 = (1, . . . , 1/n3, . . .). Moreover, it is clear that (3.22) are satisfied. Similar to the discussion
in Example 3.4, we can prove that f(t, Pr , Pr , Pr) and Ik(Pr) (for fixed t ∈ J and r > 0;
k = 1, 2, 3, . . .) are relatively compact in E = l1; so, condition (H4) is satisfied. Hence, our
conclusion follows from Theorem 3.3.
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