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We provide a maximum norm analysis of a finite element Schwarz alternating method for a
nonlinear elliptic PDE on two overlapping subdomains with nonmatching grids. We consider a
domain which is the union of two overlapping subdomains where each subdomain has its own
independently generated grid. The two meshes being mutually independent on the overlap region,
a triangle belonging to one triangulation does not necessarily belong to the other one. Under a
Lipschitz asssumption on the nonlinearity, we establish, on each subdomain, an optimal L* error
estimate between the discrete Schwarz sequence and the exact solution of the PDE.

1. Introduction

The Schwarz alternating method can be used to solve elliptic boundary value problems
on domains which consist of two or more overlapping subdomains. The solution is
approximated by an infinite sequence of functions which results from solving a sequence
of elliptic boundary value problems in each of the subdomains.

Extensive analysis of Schwarz alternating method for nonlinear elliptic boundary
value problems can be found in ([1-4] and the references therein). Also the effectiveness
of Schwarz methods for these problems, especially those in fluid mechanics, has been
demonstrated in many papers. See proceedings of the annual domain decomposition
conference beginning with [5].

In this paper, we are interested in the error analysis in the maximum norm for a class
of nonlinear elliptic problems in the context of overlapping nonmatching grids: we consider
a domain which is the union of two overlapping subdomains where each subdomain has its
own triangulation. This kind of discretizations are very interesting as they can be applied
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to solve many practical problems which cannot be handled by global discretizations. They
are earning particular attention of computational experts and engineers as they allow the
choice of different mesh sizes and different orders of approximate polynomials in different
subdomains according to the different properties of the solution and different requirements
of the practical problems.

Quite a few works on maximum norm error analysis of overlapping nonmatching
grids methods for elliptic problems are known in the literature (cf., e.g., [6-9]).

To prove the main result of this paper, we proceed as in [7]. More precisely, we develop
an approach which combines a geometrical convergence result due to Lions [2] and a lemma
which consists of estimating the error in the maximum norm between the continuous and
discrete Schwarz iterates. The optimal convergence order is then derived making use of
standard finite element L*-error estimate for linear elliptic equations.

In the present paper, the proof of this lemma stands on a Lipschitz continuous
dependency with respect to both the boundary condition and the source term for linear
elliptic equations (see Proposition 2.7) while in [7] the proof stands on a Lipschitz continuous
dependency only with respect to the boundary condition for the elliptic obstacle problem.

To the best of our knowledge, this paper provides the first L®-error analysis for
overlapping nonmatching grids for nonlinear elliptic PDEs. We also believe that our
convergence result will have important implications in the computation of the solution of
this type of problems on composite grids.

Now, we give an outline of the paper. In Section 2 we state a continuous alternating
Schwarz sequences and define their respective finite element counterparts in the context of
nonmatching overlapping grids. Section 3 is devoted to the L*-error analysis of the method.

2. Preliminaries

We begin by laying down some definitions and classical results related to linear elliptic
equations.

2.1. Linear Elliptic Equations

Let Q be a bounded polyhedral domain of R? or R® with sufficiently smooth boundary 9Q.
We consider the bilinear form

a(u,v) = J (Vu - Vo)dx, (2.1)
Q
the linear form
(F0) = | re0-ves, 22)

the right hand side

f, aregular function, (2.3)
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the space

Ve = {v € H'(Q) such that v = g on 69}, (2.4)

where g is a regular function defined on 0€.
We consider the linear elliptic equation: find ¢ € V(¢ such that

a(g,v)+cv) = (f,v), YoeV¥, (2.5)

where c is a positive constant such that
c>p>0. (2.6)

Let V), be the space of finite elements consisting of continuous piecewise linear
functions v vanishing on 0Q and ¢, s =1,2,...,m(h) be the basis functions of V},.

The discrete counterpart of (2.5) consists of finding ¢, € V;fg) such that

a(n, ) + (o) = (fv), YoeV,®, (2.7)
where
V;Eg)= {veV,:v=mg on 0Q} (2.8)

and i, is an interpolation operator on 0Q.

Theorem 2.1 (see (cf. [13])). Under suitable regularity of the solution of problem (2.5), there exists
a constant C independent of h such that

IZ = ¢ull < Ch?|log k. (2.9)
Lemma 2.2 (see (cf. [4])). Letw € H(Q)NC(Q) satisfy a(w, §)+c(w, $) >0 for all nonnegative
¢ € H}(Q), and w > 0 on 9Q. Then w > 0 on Q.

The proposition below establishes a Lipschitz continuous dependency of the solution
with respect to the data.

Notation 2.3. Let (f; g); (f, g) be a pair of data and ¢ = 9(f, g); ¢ = 6(f, g) the corresponding
solutions to (2.5).

Proposition 2.4. Under conditions of the preceding Lemma 2.2, we have

=20,y <mar{ () -7

L=(Q)’ I8 = &ll =0 } (2.10)
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Proof. First, set

om{ (V-

Lw(g)rllg_gllm(agz)}'

Then
Feself =l
sf+<%NV—fLﬂm
< femax{ (5)£ 7l o g~ Ellien
<feco
So

a(5,9) +c(59) <a@ @) +c(s,¢) +c(®,9), Y20, ¢ € HI(Q)
<a(G+®,¢) +c(G+D,p) = (f +cd, ).

On the other hand, we have
§+(I)—ZZO on 0Q.
So

a(g+@-Ep)+c(t+@-Ep) 20

(+®-(>0 on dQ.

Thus, making use of Lemma 2.2, we get
(+®-¢>0 on Q.

Similarly, interchanging the roles of the couples (f, g) and ( f ,§), we obtain
5 +®-(>0 on Q,

which completes the proof.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Remark 2.5. Lemma 2.2 stays true in the discrete case.

Indeed, assume that the discrete maximum principle (d.m.p) holds; that is, the matrix
resulting from the finite element discretization is an M-Matrix (cf. [10, 11]). Then we have the
following

Lemma 2.6. Let w € Vj, satisfy a(w, s) + c(w,s) >0, s =1,2,...,m(h) and w > 0 on 0Q. Then
w >0on Q.

Proof. The proof is a direct consequence of the discrete maximum principle. O

Let (f, 9); (f, Q) be a pair of data and ¢, = On(f, g); Ch = On (f, g) the corresponding
solutions to (2.7).

Proposition 2.7. Let the d.m.p hold. Then, under conditions of Lemma 2.6, we have

L=(Q) s max{ (%) ”f B f

Proof. The proof is similar to that of the continuous case. Indeed, as the basis functions of the
space V}, are positive, it suffices to use the discrete maximum principle. O

||§h &

L=(Q)’ I8 =&l o0 } (2.18)

2.2, Schwarz Alternating Methods for Nonlinear PDEs

Consider the nonlinear PDE

—-Au+cu=f(u) inQ,
(2.19)
u=0 on 0Q,

or in its weak form
a(u,v) +c(u,v) = (f(u),v), Yove H)(Q), (2.20)

where f(-) is a nondecreasing nonlinearity. Thanks to [12], problem (2.19) has a unique
solution.
Let us also assume that f(-) is a Lipschitz continuous on R; that is,

|f) - f(y)| <klx-y|, VYxyeR (2.21)
such that

<1, (2.22)

where f is the constant defined in (2.6).
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We decompose £ into two overlapping smooth subdomains € and €2, such that

Q=0 UQ,. (2.23)

We denote by 0Q; the boundary of Q; and I'; = 0Q; N Q; and assume that the
intersection of T; and fj, i# jis empty. Let

AR {v € H'(Q) such that v = w; on Fi}~ (2.24)

1

We associate with problem (2.20) the following system: find (u,uy) € Vl(”Z) X Vz(ul)
solution to

a1 (u1,v) + c(ur,v) = (f(u1),v), Yo e Hy(Q1), (225)
ar (U2, v) + c(uz,v) = (f(2),v), Yo € Hi(Q), .

where

ai(u,v) = J‘Q.(Vu -Vou)dx, 226

u; = u/Q,', i= 1,2.
2.3. The Continuous Schwarz Sequences
Let 1o be an initialization in Cy(Q) (i.e., continuous functions vanishing on 0Q2) such that
a(uo,v) +c(ug,v) = (f,v), Yove HH Q). (2.27)

Starting from u) = u’/Q,, we respectively define the alternating Schwarz sequences (.

on Q; such that u{”l € V) solves

+1)

a <u§‘+1,v) + c<u’f+1,v> = <f<u;‘+1>,v>, Yo e Hé (Q1); n>0, (2.28)
and (1) on Q, such that u*! € V4™ solves
a <u£’+1,v> + c<u£‘+1,v> = <f<u£‘+1>,v>, Yov e Hé(Qz); n>0. (2.29)

Theorem 2.8 (see (cf. [2, pages 51-63])). The sequences (ul*'); (us*™); n > 0 produced by the
Schwarz alternating method converge geometrically to the solution (u1, uy) of the system (2.25). More
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precisely, there exist two constants ki, ko € (0; 1) which depend on (€1,173) and (Q,,T'1), respectively,
such that for all n > 0;

n+l nin 0
- < k'k -
“”l U ey = 52 T Ml ey (2.30)
U — un+1 < kn+1kn uO _ u” .
n 2772 ey =1 T2 L=(T3)

2.4. The Discretization

For i = 1,2, let 7" be a standard regular and quasiuniform finite element triangulation in
Q;; hi, being the meshsize. The two meshes being mutually independent £; N €, a triangle
belonging to one triangulation does not necessarily belong to the other. We consider the
following discrete spaces:

Vi = {v € C(Q) N H2 (@) such that v/K € Py, YK € T"i} (2.31)

and for every w € C(L;), we set
Vi ={v e Vy, 10=0 on 3Q:NAQ; v = my,(w) on I3}, (2.32)
where rj,, denote an interpolation operator on I';.

The Discrete Maximum Principle (see [10, 11])

We assume that the respective matrices resulting from the discretizations of problems (2.28)
and (2.29) are M-matrices.

Note that as the two meshes h; and h, are independent over the overlapping
subdomains, it is impossible to formulate a global approximate problem which would be
the direct discrete counterpart of problem (2.20).

2.5. The Discrete Schwarz Sequences

Now, we define the discrete counterparts of the continuous Schwarz sequences defined in
(2.28) and (2.29).
Indeed, let ugy, be the discrete analog of uy, defined in (2.27); we, respectively, define

by ult € V;flug”) such that
a <u1‘;1,v> + c(u{‘;l,v> = (f(u;‘;;l),v) YoeVy; n>0 (2.33)

n+l
and u;‘;f € V;f:”“ ) such that

as <u§’;1,v> + c<u§21,v> = <f<u’21,:1>,v> Yo € Vy,; n>0. (2.34)
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3. L*-Error Analysis

This section is devoted to the proof of the main result of the present paper. To that end we
begin by introducing two discrete auxiliary sequences and prove a fundamental lemma.

3.1. Two Auxiliary Schwarz Sequences

n+1

w1y and (wh!) such that wi;! € V}fluz) solves

0
For w, h

, = uy,, we define the sequences (w

ai (w{‘f;%v) + c(w’f;l,v> = <f<u¥+1>,v>, VoeVy,;, n>0 (3.1)

(un+1)
and w;;lrl € thl solves

a2<w;’;1,v> + c(w’;;l,v> = (f(u§+1>,v>, Yo € Vy,; n>0, (3.2)

respectively.
It is then clear that w;! and w};! are the finite element approximation of u}*! and 13"

defined in (2.28), (2.29), respectively. Then, as f(-) is continuous, || f (u})|| , < C (independent
of n), and, therefore, making use of standard maximum norm estimates for linear elliptic
problems, we have

n

[l - wir;IHLw(Q,-) < Ch*|logh, (3.3)

where C is a constant independent of both h and .

Notation 3.1. From now on, we shall adopt the following notations:

'l = ||'||L°°(r1)} ', = ||'||L°°(F2)/
Il = ey Il = [l ) (3.4)

Jh, = Iy, = Jp.

3.2. The Main Results
The following lemma will play a key role in proving the main result of this paper.

Lemma 3.2. Let p = k/p. Then, under assumption (2.22), there exists a constant C independent of
both h and n such that

Ch?|logh
ut -yt < ﬁ; i=1,2. (3.5)

i 1-p
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Proof. We know from standard L*-error estimate for linear problem (see [13]) that there exists
a constant C independent of h such that

o - w3)| . <cCrfloghl. (3.6)

L*(Q)
Now, since 1/2 < p <1,then1 < p/(1 - p), and therefore

pCh?|logh|

||ug—ugh||2§Ch2|logh| < -5

(3.7)
Let us now prove (3.5) by induction. Indeed for n = 1, using the Proposition 2.7, we
have in domain 1

11 1_ .1 11
o =, = [l =i, et =

< Ch?|log h| + “w% - u}h”l
< Ch*|logh| + max{ (%) ”f(u%) —f(u%h> ”1, |ug - ugh|1} (3.8)

<crogil cmas{ (5 |1(68) - ()] |12 - 6.

< Ch*|logh| + max{p”u% - u%hnl, ”ug - ugh”z}.

We then have to distinguish between two cases:

1
max{plld — bl [ =]} = el =], 9

or
2)

1.1 0_.,0 _|},,0_,,0
max{pllu = 2 - |} = [ - o], (3.10)

Case (1) implies

i -], <ol -1
(3.11)

0 0 1 1
[+ =l < Pl =]
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- < S5

e (3.12)
ot <l -], < 2 LB,
Case (2) implies
|t = 1adu |, < CH?tog | + [|ud -3, |, (3.13)
il < -5, o1
So, by multiplying (3.13) by p we get
pllut —uli||, < pCH?[tog k| + p|[us — 13, . (3.15)

So, plluj — u},|l, is bounded by both pCh?|log h| + plluj — u3, ||, and |[u5 — u3, ||, This implies
that

(a)
||ug—ugh||2 < pCh?|log h| +p”ug—ugh“2 (3.16)
or
(b)
pCh?|log h| +p“ug—ugh”2 < ”ug—ughnz. (3.17)
That is,
(a)
||ug - ugh||2 < %k;gﬂ (3.18)
or
(b)
ot = 2B .19)
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It follows that only the case (a) is true, that is,

|18 -3, ), < %lopghl. (3.20)
Thus
-], <o+ -]
< Ch*|logh| + %k;ghl (3.21)
B Ch?|log h|
S P
So, in both cases (1) and (2), we have
ik = |, < Chiliofhl. (3.22)
Similarly, we have in domain 2
”ué - u;h“z < Ch*|logh| + nw; - u;h”2
< Ch*|logh| +max{ <%> “f(u%) —f(u%h> ”2, |u% - u%h|2}
(3.23)
< Ch*|logh| + max{ <%> ”f(u%) —f<u§h> ||2, ”u% - u%hnl}
< Ch*|logh| +max{p||u% - u§h||2, ”u% — u%hnl}.
So
(1)
mon{old -l -l - -, -
or
(2)

1 1 1 1 _ 1 1
max{pllus ~ | o =l } = [ o 625)
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Case (1) implies

”u% - uéh”z < Ch*|logh| + p”u% - uéh”z’ 526)
[ =l <t ]
So
-, < S5
[+ =l <plls
Py pCh?|log h| (3:27)
S
< Ch2|logh|,
<3,
while case (2) implies
”u% - uéh”z < Ch*|logh| + ”u% - u%h”f (3.28)
ot -+l -
So, by multiplying (3.28) by p we get
p”ué - u;h”2 < pCh*|log h| + p“u% - u%hul, (3.30)

and hence plu} — u}, ||, is bounded by both pCh?|log h| + pllu; — uj, ||, and |lu; — uj, ||, Then

(a)
”u% - uh‘”l < pCh*|log h| +p”u% - u%h“1 (3.31)

or

(b)

Ch*|logh| +p||u% —u%hnl < ”u% - u%hnl, (3.32)

which implies
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(a)
L g pCh?|logh| Ch?*|logh|
[t =l ||, < T, <1, (333)
or
(b)
pCh?|log h| - Ch?*|log h|
o, S ot =t < — (3.34)

Hence, (a) and (b) are true because they both coincide with (3.22). So, there is either a
contradiction and thus case (2) is impossible or case (2) is possible only if

”u% - u%hnl = pCh?|log h| +p”u% -ul, Y (3.35)
that is,
pCh?*|log h
[t -, - £ . 3 (336)
Thus
T -
pCh?|log h
< Ch*[logh| + % (3.37)
2
B Ch |logh|.
ST,
That is, both cases (1) and (2) imply
Ch?|log h
R 63
Now, let us assume that
Ch?|logh
I g, s 80 39

IT-p
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and prove that

uptt — S ﬁChzﬂoghL
. (3.40)
un+1 n+l < Ch |10gh|
2 2h o = 1- p :
Indeed, we have in domain 1
|, < Crllog ] + [y -
< CI?|log h| m{ (GG = Q) s =l }
(341)
< i foghl + max{ (5 )£ () = £ () st =)
< Ch?|log h| +max{p up ™ - ugy! ””2 ‘”211”2}‘
We have again to distinguish between two cases
M
max{pluet = uit ||l = w1, } = o[t - i (342)
or
2
max{p|uy =yt s =, } = losg = 143, (3.43)
Case (1) implies
uf™ — || < Ch?[loghl +p|luy™ - iy |
(3.44)
oz =, < = ]|
Then
2
uT—l uT;l : < Chlliolfh|’
(3.45)
Ch?|log h|

n_ ,n
””2 ”Zh“z < 1-p
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Case (2) implies

| < Cllog | + [l - |, (346)
ol = ||, < et~ ) (347)

So, by multiplying (3.46) by p, we get

pl[ui™ — ||, < PCH[log b + pllus — u, ||,
(3.48)
pl|oert = ]|, < Mg =,

n+l n+l

Hence, we can see that p|lui™ —u}," ||, is bounded by both pCh?*|log h| + plluy —uy, |,
and [luy — ug, ||, So, we have

|15 — 13, ]|, < pCh*[log k| + pl|uh — 13, ||, (3.49)
or
pCh?|log h| + p|lu — uy ||, < |[uf — b, ||, (3.50)

which implies

(a)
I pCh?|logh| Ch?*|logh|
ez =l < === <— -, (3.51)
or
(b)
pCh?|log h| Y Ch?|log h|
1o, = ll5 =z, I, < e (3.52)

So, (a) and (b) are true because they both coincide with (3.39). This means that there is
either contradiction and then case (2) is impossible, or case (2) is possible and then we must
have

pCIE[log k] + plact ~ [, = 12 = a3, (353)
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that is

Ch?|logh
-y, = 2 L8 659

So

it =i, < Cr2log | + fluz =14,
pCh?|log h|
< Chr|logh| + ——>— (3.55)
p
_ Ch?|log h|
T 1-p
Thus, both cases (1) and (2) imply
Ch?|log h|
n+l _  n+l
| R e (3.56)
Estimate in domain 2 can be proved similarly using estimate (3.56). O

Theorem 3.3. Let h = max(hy, hy). Then, for n large enough, there exists a constant C independent
of both h and n such that

. _ g n+l
-

< Ch*[logh

. Vi=1,2. (3.57)

Proof. Let us give the proof for i = 1. The one for i = 2 is similar and so will be omitted.
Indeed, Let k = ki k. Then making use of Theorem 2.8 and Lemma 3.2, we get

oo =], = fos = o =]
Ch?|log h|
niynf,,0
Sklkz u —u|1+? (358)
21
Skzn uo_u| +M
1 1-p
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So, for n large enough, we have

k> < h? (3.59)
and thus
nul —u! S Ch* + Ch*|log h|
(3.60)
< Ch*|logh|,
which is the desired result. O
Conclusion

We have established an error estimate for the finite element Schwarz alternating method for a
nonlinear elliptic PDE on two subdomains with nonmatching grids combining a geometrical
convergence result due to Lions and a standard finite element L*-error analysis for linear
elliptic equations.The same approach may be extended to other types of problems such as
linear parabolic PDEs (see [2]) and singularly perturbed advection-diffusion equations (see

[14]).
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