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We study some aspects of the fixed point theory for a class of generalized nonexpansive mappings,
which among others contain the class of generalized nonexpansive mappings recently defined by
Suzuki in 2008.

1. Introduction

Nonexpansive mappings are those which have Lipschitz’s constant equal to 1. A Banach
space X is said to have the fixed point property for nonexpansive mappings (FPP in short)
provided that every nonexpansive self-mapping of every nonempty, closed, convex, bounded
subset C of X has a fixed point.

Since 1965 considerable effort has been aimed to study the fixed point theory for
nonexpansive mappings in the setting of both reflexive and nonreflexive Banach spaces.
It turns out that property (FPP) closely depends upon geometric characteristics of the
Banach space under consideration. Even when C is a weakly compact convex subset of X,
a nonexpansive self-mapping of C needs not have fixed points. Nevertheless, if the norm of
X has suitable geometric properties (as e.g., uniform convexity, among many others), every
nonexpansive self-mapping of every weakly compact convex subset of X has a fixed point.
In this case, X is said to have the weak fixed point property, WFPP in short.

Although nonexpansive mappings are perhaps one of the most important topic in
the so-called metric fixed point theory, one can find in the literature considerable amount of
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research about more general classes of mappings than the nonexpansive ones. Among many
others, mappings T : C → X such that for every x, y ∈ C,

∥
∥Tx − Ty

∥
∥ ≤ a1

∥
∥x − y

∥
∥ + a2‖x − Tx‖ + a3

∥
∥y − Ty

∥
∥ + a4

∥
∥x − Ty

∥
∥ + a5

∥
∥y − Tx

∥
∥, (1.1)

where a1, . . . , a5 are nonnegative constants with
∑5

i=1 ai = 1 were studied since the late sixties
of the last century. In many instances (see [1, 2]), this class of mappings are called generalized
nonexpansive mappings. Despite its perhaps questionable usefulness, this type of condition
appears to be quite natural from a geometric point of view. Of course, one easily verifies that
the above condition (1.1) is, equivalent to the existence of nonnegative constants a, b, c with
a + 2b + 2c ≤ 1 such that for all x, y ∈ C

∥
∥Tx − Ty

∥
∥ ≤ a

∥
∥x − y

∥
∥ + b

(‖x − Tx‖ + ∥∥y − Ty
∥
∥
)

+ c
(∥
∥x − Ty

∥
∥ +
∥
∥y − Tx

∥
∥
)

. (1.2)

Particular cases of mappings satisfying condition (1.1) have been studied by various authors
independently [2–5].

On the other hand, in a recent paper, Suzuki [6] defined a class of generalized
nonexpansive mappings as follows.

Let C be a nonempty subset of a Banach space X. We say that a mapping T : C → X
satisfies condition (C) on C if for all x, y ∈ C,

1
2
‖x − Tx‖ ≤ ∥∥x − y

∥
∥ implies

∥
∥Tx − Ty

∥
∥ ≤ ∥∥x − y

∥
∥. (1.3)

Of course, every nonexpansive mapping T : C → X satisfies condition (C) on C, but
in [6] some examples are given of noncontinuous mappings satisfying condition (C).

The aim of this paper is to study a class of mappings which properly contains those
satisfying either condition (1.3) or (1.2) in many cases. We will show that one of the most
important geometric conditions which implies the (WFPP) for nonexpansive mappings,
namely the so-called normal structure, also allows us to derive fixed point results for our
class of mappings. In particular, for mappings satisfying Suzuki’s condition (C), this result is
more general than the ones included in [6, 7].

2. Preliminaries

We will assume throughout this paper that (X, ‖ · ‖) is a Banach space and C is a nonempty,
closed, convex, bounded subset of X. For a given mapping T : C → X, the (possibly empty)
set of all fixed points of T will be denoted by Fix(T). In the same way, a sequence (xn) in C is
called an almost fixed point sequence for T (a.f.p.s. in short) provided that xn − T(xn) → 0X . It
is well known that every nonexpansive mapping T : C → C has a.f.p. sequences. The same
holds if T : C → C satisfies Suzuki’s condition (C) on C, (see [6, Lemma 6]).

We now recall further concepts which will be useful in the forthcoming sections.
We begin with some classes of mappings. Definitions (1) and (2) are given in [8], and

the first one is a generalization of condition (C) given by Suzuki in [6].
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(1) For λ ∈ (0, 1), we say that a mapping T : C → X satisfies condition (Cλ) on C if for
all x, y ∈ C with λ‖x − Tx‖ ≤ ‖x − y‖ one has that ‖Tx − Ty‖ ≤ ‖x − y‖. Of course,
the original Suzuki condition (C) is just (C1/2).

(2) For μ ≥ 1, a mapping T : C → X is said to satisfy condition (Eμ) on C if, for all
x, y ∈ C,

∥
∥x − Ty

∥
∥ ≤ μ‖x − Tx‖ + ∥∥x − y

∥
∥. (2.1)

We say that T satisfies condition (E) on C if T satisfies (Eμ) on C for some μ ≥ 1.
In [6] is shown that if a mapping satisfies Suzuki’s condition (C1/2), then it satisfies
condition (E3).

(3) A mapping T : C → X is said to be quasi-nonexpansive on C provided that it has at
least one fixed point p ∈ C and for every p0 ∈ Fix(T), and for all x ∈ C,

∥
∥T(x) − p0

∥
∥ ≤ ∥∥x − p0

∥
∥. (2.2)

This concept is essentially due to Dı́az and Metcalf [9] and Dotson [10]. The
mapping T : [−1, 1] → [−1, 1] defined by

T(x) =

⎧

⎨

⎩

x

2
sin

1
x

x /= 0,

0 x = 0
(2.3)

is quasi-nonexpansive on [−1, 1] but not nonexpansive.

(4) Finally, a mapping T : C → C is said to be asymptotically regular on C if, for each
x ∈ C, it is the case that limn‖Tn(x) − Tn+1(x)‖ = 0.

Let (xn) be a bounded sequence onX. One defines the asymptotic radius of (xn) at x ∈ X
as the number

r(x, (xn)) = lim sup
n

‖x − xn‖. (2.4)

In the same way, the asymptotic radius of (xn) in C is the number

r(C, (xn)) = inf
{

lim sup
n

‖xn − x‖ : x ∈ C

}

= inf {r(x, (xn)) : x ∈ C}, (2.5)

and the asymptotic center of (xn) in C as the (possibly empty) set

A(C, (xn)) =
{

x ∈ C : lim sup
n

‖xn − x‖ = r(C, (xn))
}

. (2.6)
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It is well known, (e.g., see [11]), thatA(C, (xn))/= ∅wheneverC is weakly compact and
that if C is convex, then A(C, (xn)) is convex.

Finally, we recall also some geometric properties of normed spaces that will appear in
the remainder of this paper.

(1) A normed space (X, ‖·‖) is said to satisfy theOpial condition if for any sequence (xn)
in X such that xn ⇀ x0 it happens that for all y ∈ X, y /=x0,

lim inf
n→∞

‖xn − x0‖ < lim inf
n→∞

∥
∥xn − y

∥
∥. (2.7)

It can be readily established, on the extraction of appropriate subsequences, that the
lower limits can be replaced with upper limits in the above definition.

(2) A Banach space (X, ‖·‖) is said to have normal structure if for each bounded, convex,
subset C of X with diam(C) > 0 there exists a nondiametral point p ∈ C, that is a
point p ∈ C such that

sup
{∥
∥p − x

∥
∥ : x ∈ C

}

< diam(C). (2.8)

This property was introduced in 1948 by Brodskii and Milman. Since 1965, it has
been widely studied due to its relevance in fixed point theory for nonexpansive
mappings. For more information see, for instance [11].

3. Condition (L)

Next we introduce a class of nonlinear mappings.

Definition 3.1. A mapping T : C → C satisfies condition (L), (or it is an (L)-type mapping),
on C provided that it fulfills the following two conditions.

(1) If a set D ⊂ C is nonempty, closed, convex and T -invariant, (i.e., T(D) ⊂ D), then
there exists an a.f.p.s. for T in D.

(2) For any a.f.p.s. (xn) of T in C and each x ∈ C

lim sup
n→∞

‖xn − T(x)‖ ≤ lim sup
n→∞

‖xn − x‖. (3.1)

From now on, if not specified, a mapping is said to satisfy condition (L), whenever it
satisfies it on its domain.

Assumption (1) of this definition is automatically satisfied by several classes of
nonlinear mappings. For instance, it is a well-known property of nonexpansive mappings.
Thus, if a mapping T : C → C is nonexpansive with respect to any equivalent renorming of
X, then T satisfies (1). Asymptotically regular mappings automatically satisfy (1) too.
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We point out that if T : C → C satisfies condition (L) and the set Fix(T) is nonempty,
then T is quasi-nonexpansive. Indeed, if p ∈ Fix(T) ⊂ C, then the sequence (xn) with xn ≡ p
is, of course, an a.f.p.s. for T , and from assumption (2),

∥
∥p − T(x)

∥
∥ = lim sup

n→∞
‖xn − T(x)‖ ≤ lim sup

n→∞
‖xn − x‖ =

∥
∥p − x

∥
∥. (3.2)

This means, among other things, that we have some information about the set Fix(T) when
this set is nonempty and T satisfies condition (L). Indeed, according to Theorem 1 of Dotson’s
paper [10], if (X, ‖ · ‖) is strictly convex, then Fix(T) is closed and convex, and T is continuous
on Fix(T).

However, quasi-nonexpansive mappings are not relevant concerning the existence of
fixed points (because this existence of fixed points is assumed by definition). Nevertheless, as
we will see below, there are fixed point free mappings satisfying condition (L) and, moreover
it is possible to give some fixed point results for such (L)-type mappings.

Next, wewill see that there are quasi-nonexpansivemappings which fail to be (L)-type
mappings.

Example 3.2. Let X = (R2, ‖ · ‖∞), and consider the compact convex set C = [−1, 1] × [0, 1]. Let
T : C → C be the mapping given by

T
(

x, y
)

=
(

xy, y
)

. (3.3)

It is straightforward to check that

Fix(T) =
{(

0, y
)

: y ∈ [0, 1]
} ∪ {(x, 1) : x ∈ [−1, 1]}. (3.4)

This set is nonconvex, but this does not contradict the above-mentioned Dotson result,
because (R2, ‖ · ‖∞) is not strictly convex.

First, we will see that T is quasi-nonexpansive. For (0, y) ∈ Fix(T) and (x, y) ∈ C,

∥
∥
(

0, y
) − T

(

x, y
)∥
∥
∞ =

∣
∣xy
∣
∣ ≤ |x| = ∥∥(0, y) − (x, y)∥∥∞. (3.5)

On the other hand, if (x, 1) ∈ Fix(T) and (x, y) ∈ C,

∥
∥(x, 1) − T

(

x, y
)∥
∥
∞ = max

{∣
∣x − xy

∣
∣,
∣
∣1 − y

∣
∣
}

=
∣
∣1 − y

∣
∣ =
∥
∥(x, 1) − (x, y)∥∥∞. (3.6)

Thus, for every p ∈ Fix(T), and (x, y) ∈ C, ‖p − T(x, y)‖∞ ≤ ‖p − (x, y)‖∞, that is, T is quasi-
nonexpansive.

Moreover, taking p = (1, 3/4) and q = (3/4, 1/2), it is easy to check that T is not
nonexpansive on C.

Finally, let us see that T fails to satisfy condition (L) on C. Define the sequence

pn =

⎧

⎨

⎩

(1, 1) n = 1, 3, 5, . . . ,

(0, 0) n = 2, 4, 6, . . . .
(3.7)
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Of course pn − T(pn) = 0X , and then (pn) is an a.f.p.s. for T on C. But, for x = (1/2, 1/2), one
has

lim sup
n

∥
∥T(x) − pn

∥
∥
∞ = max

{∥
∥
∥
∥

(
1
4
,
1
2

)∥
∥
∥
∥
∞
,

∥
∥
∥
∥

(
1
4
,
1
2

)

− (1, 1)
∥
∥
∥
∥
∞

}

=
3
4
, (3.8)

while

lim sup
n

∥
∥x − pn

∥
∥
∞ = max

{∥
∥
∥
∥

(
1
2
,
1
2

)∥
∥
∥
∥
∞
,

∥
∥
∥
∥

(
1
2
,
1
2

)

− (1, 1)
∥
∥
∥
∥
∞

}

=
1
2
. (3.9)

Next, wewill give some examples ofmappings satisfying condition (L). Let T : C → C
be a mapping.

Proposition 3.3. If T is nonexpansive, then it satisfies condition (L).

Proof. Let T : C → C be a nonexpansive mapping. It is well-known that if D is a closed
convex T -invariant subset of C, then T has a.f.p. sequences in D. Moreover, since T is
nonexpansive, for every a.f.p.s. (xn) for T and every x ∈ C,

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

(‖xn − Txn‖ + ‖Txn − Tx‖) ≤ lim sup
n→∞

‖xn − x‖. (3.10)

Then, T satisfies condition (L).

As a direct consequence, the well known examples of fixed point free nonexpansive
self-mappings of weakly compact convex subsets, are instances of (L)-type fixed point free
self-mappings of such class of sets.

Proposition 3.4. If T : C → C satisfies Suzuki’s condition (C), then it satisfies condition (L).

Proof. Recall that if T : C → C is a type (C) mapping, and D is a closed, convex, T -invariant
subset of C, then there exist a.f.p. sequences for T in D (see [6, Lemma 6]). Moreover, in [6,
Lemma 7], it was shown that, for every x, y ∈ C,

∥
∥x − Ty

∥
∥ ≤ 3‖Tx − x‖ + ∥∥x − y

∥
∥. (3.11)

Hence, if (xn) is an a.f.p.s. for T and x ∈ C,

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

(3‖Txn − xn‖ + ‖xn − x‖)

≤ 3 lim sup
n→∞

‖Txn − xn‖ + lim sup
n→∞

‖xn − x‖

= lim sup
n→∞

‖xn − x‖.

(3.12)

Hence, such mappings satisfy condition (L).



Abstract and Applied Analysis 7

The above proof can be easily adapted for mappings which satisfy condition (E).

Proposition 3.5. If T : C → C satisfies condition (Eμ) for some μ ≥ 0. Then, T satisfies condition
(L) provided that it satisfies assumption (1) of Definition 3.1.

Proof. Replace 3 with μ in the above proof.

We will study further relationships between the class of mappings (Cλ) and those
which satisfy condition (L) in Theorem 4.7 in the next section.

In [6, 8] are given some examples of noncontinuous mappings satisfying conditions
(Cλ) and (Eμ).

Proposition 3.6. Let T be a generalized nonexpansive selfmap of C. If any of the following conditions
holds, then T satisfies condition (L):

(1) a + 2b + 2c < 1,

(2) a + 2b + 2c = 1 and b > 0, c > 0, a ≥ 0,

(3) a + 2b + 2c = 1 and b > 0, c = 0, a > 0,

(4) a + 2b + 2c = 1 and b = 0, c > 0, a ≥ 0,

(5) a + 2b + 2c = 1 and b = 0, c = 0, a > 0, which implies that a = 1.

Proof. We first need to verify that there exist almost fixed point sequences for T in any
nonempty, closed, convex, and T -invariant subset D of C. We need to split the proof in cases
according to the above list.

(1) If a + 2b + 2c < 1, it is proved in [12, Theorem 4], that a generalized nonexpansive
mapping with coefficients a, b, c satisfying a+ 2b+ 2c < 1 from a nonempty, closed, bounded,
convex set K into itself has a fixed point x∗ ∈ C. Then, if such K ⊂ C is T -invariant, then the
sequence (xn) given by xn ≡ x∗, is obviously an a.f.p.s. for T in K.

(2) If a + 2b + 2c = 1 and b > 0, c > 0, a ≥ 0, in the proof of Theorem 1 of [5], it is
seen that for each x0 ∈ C, the orbit (Tn(x0)) is an a.f.p.s. Thus, T has a.f.p. sequences on each
T invariant closed convex subset K of C.

(3) If a + 2b + 2c = 1 and b > 0, c = 0, a > 0, in the proof of Theorem 1.1 in [13], it is
shown that inf{‖T(x)−x‖ : x ∈ C} = 0. Thus, T has again a.f.p. sequences on each T -invariant
closed convex subset of C.

(4) If a+ 2b+ 2c = 1 and b = 0, c > 0, a ≥ 0, then T is asymptotically regular on C, that
is, any orbit of T is an a.f.p.s. (see [1, pages 83–85]).

(5) If a+2b+2c = 1 and b = 0, c = 0, a > 0, then a = 1 and therefore, T is nonexpansive.
Thus, T has a.f.p. sequences on each T -invariant, closed, convex subset of C.

Next, we will prove the second condition, that is, given an a.f.p.s. (xn) for T on C, for
each x ∈ C the following inequality holds:

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖xn − x‖. (3.13)

It is well known that (see the proof of Lemma 3.1 of [2]) if T : C → C is a generalized
nonexpansive mapping and x, y ∈ C, then

‖x − Tx‖ ≤ 1 + a

1 − b − c

∥
∥y − x

∥
∥ +

1 + b + c

1 − b − c

∥
∥Ty − y

∥
∥. (3.14)
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Let (xn) be an a.f.p.s. on C and x ∈ C. Then,

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖xn − Txn‖ + lim sup
n→∞

‖Txn − Tx‖

≤ alim sup
n→∞

‖xn − x‖ + b

(

lim sup
n→∞

‖xn − Txn‖ + ‖x − Tx‖
)

+ c

(

lim sup
n→∞

‖xn − Tx‖ + lim sup
n→∞

‖x − Txn‖
)

≤ a lim sup
n→∞

‖xn − x‖

+ b

(
1 + a

1 − b − c
lim sup
n→∞

‖xn − x‖ + 1 + b + c

1 − b − c
lim sup
n→∞

‖xn − Txn‖
)

+ c lim sup
n→∞

‖xn − Tx‖ + c

(

lim sup
n→∞

‖x − xn‖ + lim sup
n→∞

‖xn − Txn‖
)

=
(

a + b
1 + a

1 − b − c
+ c

)

lim sup
n→∞

‖xn − x‖ + c lim sup
n→∞

‖xn − Tx‖.

(3.15)

Thus,

(1 − c)lim sup
n→∞

‖xn − Tx‖ ≤
(

a + b
1 + a

1 − b − c
+ c

)

lim sup
n→∞

‖xn − x‖, (3.16)

and this leads to

lim sup
n→∞

‖xn − Tx‖ ≤ a + b((1 + a)/(1 − b − c)) + c

1 − c
lim sup
n→∞

‖xn − x‖. (3.17)

As a + 2b + 2c ≤ 1, then 1 + a ≤ 2 − 2b − 2c and hence (1 + a)/(1 − b − c) ≤ 2.
Thus,

a + b
1 + a

1 − b − c
+ c ≤ a + 2b + c ≤ 1 − c. (3.18)

Consequently,

lim sup
n→∞

‖xn − Tx‖ ≤ a + b((1 + a)/(1 − b − c)) + c

1 − c
lim sup
n→∞

‖xn − x‖ ≤ lim sup
n→∞

‖xn − x‖, (3.19)

as desired.

The inclusions which follow from Propositions 3.3, 3.6, and 3.4 are strict, as the
following easy example shows.
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Example 3.7. Let T : [0, 2/3] → [0, 2/3] given by T(x) = x2. Let us see that T satisfies
condition (L) on [0, 2/3], but it fails to be generalized nonexpansive and to satisfy Suzuki’s
condition (C).

(a) T satisfies condition (L) on [0, 2/3].

Let us observe that if (xn) is an a.f.p.s. for T , then since T is continuous, for any
convergent subsequence (xnk) one has that xnk → 0. Thus, (xn) is convergent to 0.

The only invariant subsets of [0, 2/3] are the intervals [0, a]with 0 ≤ a ≤ 2/3, and it is
clear that in [0, a] T has a.f.p. sequences, namely all those which are convergent to 0.

On the other hand, if (xn) is an a.f.p.s. for T , and x ∈ [0, 2/3], then

lim sup
n

|xn − T(x)| = x2 ≤ x = lim sup
n

|xn − x|. (3.20)

(b) T fails Suzuki’s condition (C) on [0, 2/3].

Take x = 2/3 and y = 1/2. One has

1
2
|x − T(x)| = 1

9
≤ 1

6
=
∣
∣x − y

∣
∣, (3.21)

while

∣
∣T(x) − T

(

y
)∣
∣ =

7
36

>
1
6
=
∣
∣x − y

∣
∣. (3.22)

(c) T fails to be generalized nonexpansive on [0, 2/3].

Suppose for a contradiction that there exist positive constants a, b, cwith a+2b+2c ≤ 1
such that for every x, y ∈ [0, 2/3],

∣
∣T(x) − T

(

y
)∣
∣ ≤ a

∣
∣x − y

∣
∣ + b

(|x − T(x)| + ∣∣y − T
(

y
)∣
∣
)

+ c
(∣
∣x − T

(

y
)∣
∣ +
∣
∣y − T(x)

∣
∣
)

. (3.23)

Then, if we take x = 2/3 and y = 1/3, we obtain

1
3
≤ a

3
+ b

4
9
+ c

4
9
, (3.24)

which implies that

1 ≤ a +
4
3
b +

4
3
c =

3a + 4b + 4c
3

≤ a + 2
3

. (3.25)

Therefore, 1 ≤ a which implies that a = 1 and b = c = 0. But, in this case, T would
be nonexpansive, which is impossible because nonexpansive mappings satisfy Suzuki’s
condition.
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Remark 3.8. If a + 2b + 2c = 1 and b > 0, c = 0, a = 0 (which implies that b = 1/2), then
the above proposition also holds whenever the space (X, ‖ · ‖) satisfies suitable geometrical
conditions.

(1) From [14], the following fact is well known: every weakly compact convex subset
of X has close-to-normal structure if and only if every map of the above type on a
weakly compact convex subset ofX has a unique fixed point, and hence it has a.f.p.
sequences in every T -invariant, closed, convex subset of C.

(2) If X has uniformly normal structure (see [15]), from [4, Theorem 1], we know that
T has a unique fixed point and hence it has a.f.p. sequences. The same conclusion is
true if T is Lipschitzian onC, without the assumption of uniformly normal structure
for X (see [4, Theorem 4]).

Remark 3.9. Condition (1) and (2) in the definition of (L) type mappings are independent as
it is shown in the following two examples.

Example 3.10 (see [16]). Let (ei) be the standard orthonormal basis of �2 and let

K =

{

(ai) ∈ �2 :
+∞∑

i=1

a2
i ≤ 1 and a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0

}

. (3.26)

For each x =
∑+∞

i=1 aiei ∈ K, let

g(x) = max(a1, 1 − ‖x‖2) e1 +
+∞∑

i=2

ai−1ei, (3.27)

where ‖x‖2 = (
∑∞

n=1 |an|2)1/2. Define the mapping f : K → K by

f(x) =
g(x)
∥
∥g(x)

∥
∥
2

. (3.28)

In [16], it is shown that f is fixed point free and asymptotically regular, that is, for
every x ∈ K, fn(x) − fn+1(x) → 0�2 , and hence any orbit of f is an a.f.p.s. for f . Therefore,
if M is a nonempty invariant subset of K, then for every x ∈ M, (fn(x)) is an a.f.p.s. in M.
Thus, f satisfies condition (1) of Definition 3.1.

Consider now the orbit of the mapping f which starts at the point 0�2 . We claim that
fn(0�2) =

∑n
i=1(ei/

√
n)

f(0�2) = e1 =
1∑

i=1

ei√
1
. (3.29)
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Suppose that for a positive integer n our claim holds. Then,

fn+1(0�2) = f

(
n∑

i=1

ei√
n

)

=
max

(

1/
√
n, 1 − 1

)

e1 +
∑n+1

i=2
(

ei/
√
n
)

∥
∥
∥max

(

1/
√
n, 1 − 1

)

e1 +
∑n+1

i=2
(

ei/
√
n
)
∥
∥
∥
2

=
∑n+1

i=1
(

ei/
√
n
)

√

(n + 1)/n

=
n+1∑

i=1

ei√
n + 1

.

(3.30)

Since f is asymptotically regular in K, (xn) := (fn(0�2)) is an a.f.p.s. for f . Considering this
a.f.p.s. and the point 0�2 , we will see that f fails condition (2). Indeed,

lim sup
n→∞

∥
∥xn − f(0�2)

∥
∥
2 = lim sup

n→∞

∥
∥
∥
∥
∥

n∑

i=1

ei√
n
− e1

∥
∥
∥
∥
∥
2

= lim sup
n→∞

√
(

1√
n
− 1
)2

+ (n − 1)
(

1√
n

)2

=
√
2

> lim sup
n→∞

‖xn − 0�2‖2

= 1.

(3.31)

Example 3.11. Let T : [0, 1] → [0, 1] be the mapping given by T(x) =
√
x. It is easy to see

that the only closed convex, T -invariant subsets of C = [0, 1] are {0} and the intervals [a, 1]
whenever 0 ≤ a ≤ 1. Since 0 is a fixed point for T , then in {0}, we have the (trivial) a.f.p.s.
(xn) given by xn ≡ 0. In the same way, since 1 is a fixed point for T , then in [a, 1], we have the
(trivial) a.f.p.s. (xn) given by xn ≡ 1. Thus, T fulfills condition (1) of Definition 3.1.

On the other hand, for the sequence (xn) given by xn ≡ 0 one has that, if x ∈ (0, 1),

lim sup
n

|xn − T(x)| = √
x > x = lim sup

n
|xn − x|. (3.32)

Thus, T fails to satisfy condition (2) of the definition of (L)-type mappings.
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4. Fixed Point Theorems

Remark 4.1. Let C be a nonempty closed and convex subset of a Banach space X, and T :
C → C a mapping which satisfies condition (L). If (xn) is an a.f.p.s. for T , then, for every
x ∈ A(C, (xn)),

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖xn − x‖ = r(C, (xn)), (4.1)

that is, asymptotic centers of a.f.p. sequences are invariant under mappings satisfying
condition (L).

Theorem 4.2. Let C be a nonempty compact convex subset of a Banach space X and T : C → C a
mapping satisfying condition (L). Then, T has a fixed point.

Proof. Since C is nonempty, closed, bounded and convex, and T -invariant, there exists an
a.f.p.s. for T , say (xn), in C. Since C is compact, there exists a subsequence (xnj ) of (xn) such
that (xnj ) converges to some z ∈ C. By assumption (2) of Definition 3.1,

lim sup
j→∞

∥
∥
∥xnj − Tz

∥
∥
∥ ≤ lim sup

j→∞

∥
∥
∥xnj − z

∥
∥
∥ = 0 (4.2)

and by unicity of the limit, Tz = z.

Corollary 4.3. Suppose that the asymptotic center in C of each sequence in C is nonempty and
compact. Then, T has a fixed point.

Proof. Since T satisfies condition (L), there exists an a.f.p.s. for T in C, say (xn). Let A be the
asymptotic center of (xn) relative to C. By our assumption, A is nonempty and compact and,
by Remark 4.1, A is T -invariant. Then, from Theorem 4.2, T has a fixed point on A.

Notice that whenever the asymptotic center in C of a bounded sequence (xn) consists
of just one point, this point has to be a fixed point for mappings that leave asymptotic centers
invariant, which is the case for the mappings satisfying condition (L) studied here.

Some geometrical regularity conditions of the spaceX or the setC force the asymptotic
centers to be “nice”. For example, it is known that in uniformly convex spaces asymptotic
centers are singletons. Even more, it is also known that the asymptotic centers of bounded
sequences wit respect to weakly compact convex sets are compact on k-uniformly convex
Banach spaces. (see [17, page 77].)

However, Banach spaces which satisfy either Opial condition or uniform convexity
have normal structure and then they fall into the scope of the following theorem.

Let K be weakly compact convex set and T an arbitrary self-map of K. The standard
Zorn’s Lemma argument gives thatK contains a closed, convex, T -invariant, minimal subset
M.

Theorem 4.4. Let X be a Banach space with normal structure. LetK be a nonempty, weakly compact
and convex subset of X. Let T : K → K be a mapping satisfying condition (L). Then, T has a fixed
point.
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Proof. Let C be a minimal subset of K. Since T satisfies condition (L), there exists an a.f.p.s.
(xn) for T in C. This sequence is either constant, and hence it consists of a fixed point of T , or
it is nonconstant. In this case, since X has normal structure, from Corollary 1 of [5], the real
function g : C → [0,∞) given by

g(x) := lim sup
n

‖x − xn‖ (4.3)

is not constant in conv{xn : n = 1, 2, . . .} ⊂ C. Then, g takes at least two values. If r is an
intermediate value, then the set

M :=
{

x ∈ C : g(x) ≤ r
}

(4.4)

is nonempty, convex, and closed andM/=C. From condition (L),M is also T -invariant which
contradicts the minimality of C.

Remark 4.5. In the above proof, we have shown that if C is a minimal subset of K, then the
functions g(xn)(x) := lim supn‖x − xn‖ are constant on C. It is unclear if this constant value
coincides with the diameter of C, as in the nonexpansive case. In the affirmative, we would
obtain a Karlovitz-like result for (L) type mappings.

Theorem 4.6. Let X be a Banach space which satisfies the Opial condition. Let T : C → C be a
mapping satisfying condition (L). Then, if (xn) is an a.f.p.s. for T such that it converges weakly to
z ∈ C, then z is a fixed point of T .

Proof. Since (xn) is an a.f.p.s. for T , z ∈ C and T satisfies condition (L),

lim sup
n→∞

‖xn − Tz‖ ≤ lim sup
n→∞

‖xn − z‖. (4.5)

Given that xn ⇀ z, if z/= Tz, from the Opial condition, we obtain

lim sup
n→∞

‖xn − z‖ < lim sup
n→∞

‖xn − Tz‖, (4.6)

which is a contradiction.

We finish with a result which establishes an alternative for mappings satisfying some
condition (Cλ).

Theorem 4.7. LetC be a closed, convex, bounded subset of a Banach space (X, ‖·‖) and let T : C → C
be a continuous mapping satisfying condition (Cλ) on C for some λ ∈ (0, 1). Then, at least one of the
following statements is true:

(1) T has a fixed point,

(2) T satisfies condition (L).

Proof. It is shown in [8] that mappings satisfying some condition (Cλ) have a.f.p. sequences
on each closed bounded convex T -invariant subset D of C. Let (xn) be an a.f.p.s. for T in C.
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If for some x ∈ C, there is a subsequence (xnj ) of (xn) converging to x ∈ C, since
(xnj ) is an a.f.p.s., then the sequence (Txnj ) has the same limit as (xnj ), and therefore by the
continuity of T , Tx = x, and statement 1 holds.

Suppose now that for every x ∈ C, the sequence (xn) does not have any subsequence
converging to x. We claim that there exists some n0 ∈ N such that, for all n ≥ n0

λ‖xn − Txn‖ ≤ ‖xn − x‖. (4.7)

Otherwise, for every n ∈ N, there would exist jn ≥ n such that

λ
∥
∥xjn − Txjn

∥
∥ >
∥
∥xjn − x

∥
∥. (4.8)

Then, since (xn) does not have any subsequence converging to x,

0 = lim inf
n→∞

λ
∥
∥xjn − Txjn

∥
∥ ≥ lim inf

n→∞
∥
∥xjn − x

∥
∥ > 0, (4.9)

a contradiction which proves our claim.
From (4.7), bearing in mind that T satisfies condition (Cλ), we have

‖Txn − Tx‖ ≤ ‖xn − x‖ (4.10)

and then

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

(‖xn − Txn‖ + ‖Txn − Tx‖) ≤ lim sup
n→∞

‖xn − x‖, (4.11)

that is, T satisfies condition (L).

For continuous mappings, a more general result than Theorem 8 of [8] can be obtained
by combining the above result with Theorem 4.4.

Corollary 4.8. LetX be a Banach space with normal structure andK a convex weakly compact subset
of X. Let T : K → K be a continuous mapping satisfying some condition (Cλ) on K. Then, T has a
fixed point.

Proof. If T does not have a fixed point inK, then from the above theorem, it satisfies condition
(L). Consequently, from Theorem 4.4, we get a contradiction.
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