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This paper is concerned with linear thermoelastic systems defined in domains with moving
boundary. The uniform rate of decay of the energy associated is proved.

1. Introduction

In the study of asymptotic behavior for thermoelastic systems, a pioneering work is the
one by Dafermos [1] concerned with the classical linear thermoelasticity for inhomogeneous
and anisotropic materials, where the existence of a unique global solution and asymptotic
stability of the system were proved. The existence of solution and asymptotic behavior
to thermoelastic systems has been investigated extensively in the literature. For example,
Muñoz Rivera [2] showed that the energy of the linear thermoelastic system (on cylindrical
domain) decays to zero exponentially as t → ∞. In [3], Burns et al. proved the energy
decay for a linear thermoelastic bar. The asymptotic behaviour of a semigroup of the
thermoelasticity was established in [4]. Concerning nonlinear thermoelasticity we can cite
[5–7].

In the last two decades, several well-known evolution partial differential equations
were extended to domains with moving boundary, which is also called noncylindrical
problems. See, for instance, [8–10] and the references therein. In this work we studied the
linear thermoelastic system in a noncylindrical domain with Dirichlet boundary conditions.
This problem was early considered by Caldas et al. [11], which concluded that the energy
associated to the system decreases inversely proportional to the growth of the functions that
describes the noncylindrical domain. However they did not establish a rate of decay. The goal
in the present work is to provide a uniform rate of decay for this noncylindrical problem.
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Let us consider noncylindrical domains ̂Q ⊂ R
2 of the form

̂Q =
{

(x, t) ∈ R
2; x = K(t)y, y ∈ (−1, 1), t ∈ (0, T)

}

, (1.1)

with lateral boundary

̂Σ =
⋃

0<t<T

{{−K(t) × {t}} ∪ {K(t) × {t}}}, (1.2)

where K : [0, T] → R
+ is a given C2 function. Then our problem is

utt − uxx + αθx = 0 in ̂Q, (1.3)

θt − kθxx + βuxt = 0 in ̂Q, (1.4)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), −K(0) < x < K(0), (1.5)

and boundary conditions

u(−K(t), t) = u(K(t), t) = 0, θx(−K(t), t) = θ(K(t), t) = 0, 0 < t < T, (1.6)

where α, β, and k are positive real constants.
The function K(t) and the constants α, β, and k satisfy the following conditions.
(H1) K ∈ C 2([0, T],R+) and

K0 = min
0≤t≤T

K(t) > 0. (1.7)

(H2) There exists a positive constant K1 such that

1 − (

K′(t)y
)2

> K1. (1.8)

Problem (1.3)–(1.6) is slightly different from the one of [11] with respect to condition
(1.6). Indeed, they assumed that θ(−K(t), t) = θ(K(t), t) = 0, for all t ∈ [0, T]. Because of this
mixed boundary condition in (1.6), we are able to construct a suitable Liapunov functional to
derive decay rates of the energy. This is sufficient to provide a uniform rate of decay for this
noncylindrical problem.

The existence and uniqueness of global solutions are derived by the arguments of
[11] step by step, that is, to prove that the result of existence and uniqueness is based on
transforming the system (1.3)–(1.6) into another initial boundary-value problem defined over
a cylindrical domain whose sections are not time-dependent. This is done using a suitable
change of variable. Then to show the existence and uniqueness for this equivalent system
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using Galerkin Methods and the existence result on noncylindrical domains will follows
using the inverse of the transformation.

Therefore, we have the following result.

Theorem 1.1. Let Ωt and Ω0 be the intervals (−K(t), K(t)), 0 < t < T , and (−K(0), K(0)),
respectively. Then, given u0, θ0 ∈ H1

0(Ω0) ∩H2(Ω0) and u1 ∈ H1
0(Ω0), there exist unique functions

u : ̂Q −→ R, θ : ̂Q −→ R (1.9)

satisfying the following conditions:

u ∈ L∞
(

0, T ;H1
0(Ωt) ∩H2(Ωt)

)

, ut ∈ L∞
(

0, T ;H1
0(Ωt)

)

,

utt ∈ L∞
(

0, T ;L2(Ωt)
)

, θ ∈ L2
(

0, T,H2(Ωt)
)

, θt ∈ L2
(

0, T ;H1
0(Ωt)

)

,

(1.10)

which are solutions of (1.3)–(1.6) in ̂Q.

2. Energy Decay

In [11] the authors proved that the energy associated with (1.3)–(1.6) decays at the rate
1/[K(t)]γ1 with γ1 > 0; that is, the energy is decreasing inverserly proportional to the increase
of sections of ̂Q. We make a slightly difference from the one of [11] with respect to the
hypotheses about K; we are able to construct a suitable Liapunov functional to derive decay
rates of the energy. This is done with the thermal dissipation only. More specifically, in this
section we prove that the energy associated with (1.3)–(1.6) decays exponentially. Instead
considering an auxiliary problem, we work directly on the original problem (1.3)-(1.4) in its
noncylindrical domain.

In order to decay rates of the energy let us suppose the following hypotheses.
(H3) There exist positive constants δ0 and δ1 such that

0 < δ0 ≤ K′(t) ≤ δ1 < 1, t ≥ 0. (2.1)

(H4) There exists a positive constant δ2 such that

0 < K(t)K′(t) ≤ δ2, t ≥ 0. (2.2)

Let us introduce the energy functional

E(t) = E(t;u, θ) =
1
2

∫K(t)

−K(t)

(

|ut|2 + |ux|2 + α

β
|θ|2

)

dx. (2.3)

Our main result is the following.
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Theorem 2.1. Under the hypotheses (H1)–(H4), there exist positive constants ˜C and γ such that

E(t;u, θ) ≤ ˜CE(0;u, θ)e−γt. (2.4)

The proof of Theorem 2.1 is given by using multipliers techniques. The notations and
function spaces used here are standard and can be found, for instance, in the book by Lions
[8].

Lemma 2.2. Let (u, θ) be solution of (1.3)–(1.5) given by Theorem 1.1; then one obtains

d

dt
E(t;u, θ) ≤ −kα

β

∫K(t)

−K(t)
|θx|2dx − C0

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

, (2.5)

where C0 = (δ0/2)(1 − δ2
1) > 0.

Proof. From hypothesis u(K(t), t) = 0 = u(−K(t), t) it follows that

ut(K(t), t) = −K′(t)ux(K(t), t)eut(−K(t), t) = K′(t)ux(−K(t), t). (2.6)

Multiplying (1.3) by ut, integrating in the variable x, and from (2.6) we obtain

∫K(t)

−K(t)
uttut dx =

1
2

[

d

dt

∫K(t)

−K(t)
|ut|2dx −K′(t)|ut(K(t), t)|2 −K′(t)|ut(−K(t), t)|2

]

=
1
2

[

d

dt

∫K(t)

−K(t)
|ut|2dx −K′(t)3|ux(K(t), t)|2 −K′(t)3|ux(−K(t), t)|2

]

.

(2.7)

Now, applying integration by parts and using (2.6) it follows that

∫K(t)

−K(t)
uxxut dx = −ux(K(t), t)ut(K(t), t) + ux(−K(t), t)ut(−K(t), t) +

∫K(t)

−K(t)
uxutx dx

=
K′(t)
2

|ux(K(t), t)|2 + K′(t)
2

|ux(−K(t), t)|2 + 1
2
d

dt

∫K(t)

−K(t)
|ux|2dx.

(2.8)

Thus, from inequalities (2.7) and (2.8)we have

1
2
d

dt

∫K(t)

−K(t)

(

|ut|2 + |ux|2
)

dx =
1
2
K′(t)3

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

− K′(t)
2

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

− α

∫K(t)

−K(t)
θxut dx.

(2.9)
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Multiplying (1.4) by θ and integrating in the variable x and using (2.6)we obtain

1
2
d

dt

∫K(t)

−K(t)
|θ|2dx = −k

∫K(t)

−K(t)
|θx|2dx + β

∫K(t)

−K(t)
utθx dx. (2.10)

Multiplying (2.10) by α/β and summing with (2.9) it follows that

1
2
d

dt

∫K(t)

−K(t)

[

|ut|2 + |ux|2 + α

β
|θ|2

]

dx = −kα
β

∫K(t)

−K(t)
|θx|2dx

+
K′(t)3

2

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

− K′(t)
2

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

.

(2.11)

Thus, following the hypothesis (H3),

1
2
d

dt

∫K(t)

−K(t)

[

|ut|2 + |ux|2 + α

β
|θ|2

]

dx ≤ −kα
β

∫K(t)

−K(t)
|θx|2dx

− K′(t)
2

(

1 − δ2
1

)[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

≤ −kα
β

∫K(t)

−K(t)
|θx|2dx

− δ0
2

(

1 − δ2
1

)[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

,

(2.12)

which concludes the demonstration.

To estimate the term
∫K(t)
−K(t) |ux|2dx of the energy we use the following lemma.

Lemma 2.3. With the same hypothesis of Lemma 2.2, one gets

d

dt

∫K(t)

−K(t)
utu dx ≤

∫K(t)

−K(t)
|ut|2dx − 1

2

∫K(t)

−K(t)
|ux|2dx +

Cpα
2

2

∫K(t)

−K(t)
|θx|2dx, (2.13)

where Cp is Poincare’s constant.

Proof. From the outline condition u(−K(t), t) = u(K(t), t) = 0 follows that

d

dt

∫K(t)

−K(t)
utu dx =

∫K(t)

−K(t)
|ut|2dx +

∫K(t)

−K(t)
uutt dx. (2.14)
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Replacing utt = uxx − αθx in the derivative above we get

d

dt

∫K(t)

−K(t)
utu dx =

∫K(t)

−K(t)
|ut|2dx −

∫K(t)

−K(t)
|ux|2dx + α

∫K(t)

−K(t)
uxθ dx. (2.15)

Applying Cauchy-Schwartz’s inequality, Young’s inequality, and Poincare’s inequality
in (2.15)we have

d

dt

∫K(t)

−K(t)
utu dx ≤

∫K(t)

−K(t)
|ut|2dx − 1

2

∫K(t)

−K(t)
|ux|2dx +

Cpα
2

2

∫K(t)

−K(t)
|θx|2dx. (2.16)

Therefore our conclusion follows.

To estimate the term
∫K(t)
−K(t) |ut|2dx of the energy we introduce the function q =

∫x

−K(t) θ ds. By these conditions we have the following lemma.

Lemma 2.4. With the same hypothesis of Lemma 2.2, there are positive constants C1 and C2 such that

d

dt

∫K(t)

−K(t)
utq dx ≤ C1

∫K(t)

−K(t)
|θx|2dx +

β

32

∫K(t)

−K(t)
|ux|2dx − β

4

∫K(t)

−K(t)
|ut|2dx

+ εK(t)|ux(K(t), t)|2 + C2

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

,

(2.17)

where C1 = ((Cp/2δ0) + αCp + (k2/2β) + (Cp/2) + (8/β)) and C2 = δ2(1 + 2βδ1 + δ3
1).

Proof. Calculate the derivative

d

dt

∫K(t)

−K(t)
utq dx =

∫K(t)

−K(t)

∂

∂t

(

utq
)

dx +K′(t)ut(K(t), t)q(K(t), t)

+K′(t)ut(−K(t), t)q(−K(t), t)

=
∫K(t)

−K(t)
uttq dx +

∫K(t)

−K(t)
utqt dx +K′(t)ut(K(t), t)q(K(t), t).

(2.18)

From (1.3) and recording that q =
∫x

−K(t) θ ds, we get

I1 =: ux(K(t), t)q(K(t), t) −
∫K(t)

−K(t)
uxqx dx +

∫K(t)

−K(t)
αθ

[

d

dx

∫x

−K(t)
θ ds

]

dx

+
∫K(t)

−K(t)
ut dx

[

∫x

−K(t)
θt ds

]

+K′(t)ut(K(t), t)q(K(t), t).

(2.19)
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As qx = θ and qt =
∫x

−K(t) θt dswe obtain

I1 = ux(K(t), t)
∫K(t)

−K(t)
θ dx −

∫K(t)

−K(t)
uxθ dx + α

∫K(t)

−K(t)
|θ|2dx

+
∫K(t)

−K(t)
utqt dx +K′(t)ut(K(t), t)

∫K(t)

−K(t)
θ dx.

(2.20)

Now, integrating (1.4) from −K(t) to x, multiplying by ut, and after integrating from
−K(t) to K(t), it follows that

I2 =:
∫K(t)

−K(t)
utqt dx

= k

∫K(t)

−K(t)
θxut dx − β

∫K(t)

−K(t)
|ut|2dx + βut(−K(t), t)

∫K(t)

−K(t)
ut dx.

(2.21)

Replacing (I2) in (I1) and from (2.6)we get

I1 =
d

dt

∫K(t)

−K(t)
utq dx

= ux(K(t), t)
∫K(t)

−K(t)
θ dx −

∫K(t)

−K(t)
uxθ dx

+ α

∫K(t)

−K(t)
|θ|2dx + k

∫K(t)

−K(t)
θxut dx − β

∫K(t)

−K(t)
|ut|2dx

+ βK′(t)ux(−K(t), t)
∫K(t)

−K(t)
ut dx − [

K′(t)
]2
ux(K(t), t)

∫K(t)

−K(t)
θ dx.

(2.22)

Estimating some terms of (2.22) we obtain

d

dt

∫K(t)

−K(t)
utq dx ≤ α

∫K(t)

−K(t)
|θ|2dx +K′(t)K(t)|ux(K(t), t)|2 + Cp

2K′(t)

∫K(t)

−K(t)
|θx|2dx

−
∫K(t)

−K(t)
uxθ dx − β

4

∫K(t)

−K(t)
|ut|2dx +

(

k2

2β
+
Cp

2

)

∫K(t)

−K(t)
|θx|2dx

+ 2βK(t)K′(t)2|ux(−K(t), t)|2 +K(t)K′(t)4|ux(K(t), t)|2.

(2.23)
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Applying Poincare’s inequality in the first term of the previous inequality, using the
hypothesis (H3), and grouping the common terms, we obtain

d

dt

∫K(t)

−K(t)
utq dx ≤

(

αCp +
Cp

2δ0
+
k2

2β
+
Cp

2

)

∫K(t)

−K(t)
|θx|2dx −

∫K(t)

−K(t)
uxθ dx − β

4

∫K(t)

−K(t)
|ut|2dx

+K(t)K′(t)
(

1 + 2βδ1 + δ3
1

)[

|ux(−K(t), t)|2 + |ux(K(t), t)|2
]

.

(2.24)

From hypothesis (H4) we have

d

dt

∫K(t)

−K(t)
utq dx ≤ C1

∫K(t)

−K(t)
|θx|2dx +

β

32

∫K(t)

−K(t)
|ux|2dx − β

4

∫K(t)

−K(t)
|ut|2dx

+ C2

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

.

(2.25)

where C1 and C2 are positive constants. This concludes the demonstration of the lemma.

Now we use the above auxiliary lemmas to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. Consider the functional

F(t) =
∫K(t)

−K(t)

(

β

8
utu + utq

)

dx. (2.26)

From Lemmas 2.3 and 2.4 we obtain

d

dt
F(t) ≤ − β

32

∫K(t)

−K(t)
|ux|2dx − β

8

∫K(t)

−K(t)
|ut|2dx

+

(

C1 +
α2βCp

16

)

∫K(t)

−K(t)
|θx|2dx + C2

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

.

(2.27)

Finally we introduce the functional

L(t) = F(t) +NE(t), (2.28)

where N ∈ N will be chosen later.
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From Lemma 2.2 and from (2.27) it follows that

d

dt
L(t) ≤ −

(

Nk − αC1

β
− αβ2Cp

16

)

α

β

∫K(t)

−K(t)
|θx|2dx

−
(

Nδ0
2

− C2

)

[

|ux(K(t), t)|2 + |ux(−K(t), t)|2
]

− β

32

∫K(t)

−K(t)
|ux|2dx − β

8

∫K(t)

−K(t)
|ut|2dx.

(2.29)

Taking N sufficiently large we find that there is a positive constant C3 such that

d

dt
L(t) ≤ −C3

[

∫K(t)

−K(t)
|ux|2dx +

∫K(t)

−K(t)
|ut|2dx +

α

β

∫K(t)

−K(t)
|θx|2dx

]

. (2.30)

Observe that L(t) and E(t) are equivalents, that is, there exists positive constant C4

satisfying

N

2
E(t;u, θ) ≤ L(t) ≤ C4E(t;u, θ). (2.31)

Therefore,

d

dt
L(t) ≤ −C3

C4
L(t). (2.32)

Now, from equivalence (2.31) it follows that

E(t) ≤ ˜CE(0)e−γt, (2.33)

where ˜C = 2C4/N and γ = C3/C4. The proof is now complete.
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