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We construct a new Halpern type iterative scheme by hybrid methods and prove strong
convergence theorem for approximation of a common fixed point of two countable families of
weak relatively nonexpansive mappings in a uniformly convex and uniformly smooth real Banach
space using the properties of generalized f-projection operator. Using this result, we discuss strong
convergence theorem concerning generalH-monotonemappings. Our results extendmany known
recent results in the literature.

1. Introduction

Let E be a real Banach space with dual E∗ and let C be nonempty, closed and convex subset
of E. A mapping T : C → C is called nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥∥x − y

∥
∥, ∀x, y ∈ C. (1.1)

A point x ∈ C is called a fixed point of T if Tx = x. The set of fixed points of T is denoted by
F(T) := {x ∈ C : Tx = x}.

We denote by J the normalized duality mapping from E to 2E
∗
defined by

J(x) =
{

f ∈ E∗ :
〈

x, f
〉

= ‖x‖2 = ∥∥f∥∥2
}

. (1.2)

The following properties of J are well known. (The reader can consult [1–3] for more details).

(1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset of E.
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(2) J(x)/= ∅, x ∈ E.

(3) If E is reflexive, then J is a mapping from E onto E∗.

(4) If E is smooth, then J is single valued.

Throughout this paper, we denote by φ, the functional on E × E defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, J
(

y
)〉

+
∥
∥y
∥
∥
2
, ∀x, y ∈ E. (1.3)

From [4], in uniformly convex and uniformly smooth Banach spaces, we have

(

‖x‖ − ∥∥y∥∥2
)2 ≤ φ

(

x, y
) ≤ (‖x‖ + ∥∥y∥∥)2, ∀x, y ∈ E. (1.4)

Definition 1.1. Let C be a nonempty subset of E and let {Tn}∞n=0 be a countable family of
mappings from C into E. A point p ∈ C is said to be a asymptotic fixed point of {Tn}∞n=0 if
C contains a sequence {xn}∞n=0 which converges weakly to p and limn→∞‖xn − Tnxn‖ = 0.
The set of asymptotic fixed points of T is denoted by F̂({Tn}∞n=0). We say that {Tn}∞n=0 is
countable family of relatively nonexpansive mappings (see, e.g., [5]) if the following conditions
are satisfied:

(R1) F({Tn}∞n=0)/= ∅;
(R2) φ(p, Tnx) ≤ φ(p, x), for all x ∈ C, p ∈ F(Tn), n ≥ 0;

(R3)
⋂∞

n=0 F(Tn) = F̂({Tn}∞n=0).

Definition 1.2. A point p ∈ C is said to be a strong asymptotic fixed point of {Tn}∞n=0 if C contains
a sequence {xn}∞n=0 which converges strongly to p and limn→∞‖xn − Tnxn‖ = 0. The set of
strong asymptotic fixed points of T is denoted by F̃({Tn}∞n=0). We say that a mapping {Tn}∞n=0
is countable family of weak relatively nonexpansive mappings (see, e.g., [5]) if the following
conditions are satisfied:

(R1) F({Tn}∞n=0)/= ∅;
(R2) φ(p, Tnx) ≤ φ(p, x), for all x ∈ C, p ∈ F(Tn), n ≥ 0;

(R3)
⋂∞

n=0 F(Tn) = F̃({Tn}∞n=0).

Definition 1.3. Let C be a nonempty subset of E and let T be a mapping from C into E. A
point p ∈ C is said to be an asymptotic fixed point of T if C contains a sequence {xn}∞n=0 which
converges weakly to p and limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T is
denoted by F̂(T). We say that a mapping T is relatively nonexpansive (see, e.g., [6–11]) if the
following conditions are satisfied:

(R1) F(T)/= ∅;
(R2) φ(p, Tx) ≤ φ(p, x), for all x ∈ C, p ∈ F(T);

(R3) F(T) = F̂(T).

Definition 1.4. A point p ∈ C is said to be an strong asymptotic fixed point of T if C contains a
sequence {xn}∞n=0 which converges strongly to p and limn→∞‖xn − Txn‖ = 0. The set of strong
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asymptotic fixed points of T is denoted by F̃(T). We say that a mapping T is weak relatively
nonexpansive (see, e.g., [12, 13]) if the following conditions are satisfied:

(R1) F(T)/= ∅;
(R2) φ(p, Tx) ≤ φ(p, x), for all x ∈ C, p ∈ F(T);

(R3) F(T) = F̃(T).

Definition 1.3 (Definition 1.4, resp.) is a special form of Definition 1.1 (Definition 1.2,
resp.) as Tn ≡ T , for all n ≥ 0. Furthermore, Su et al. [5] gave an example which is a
countable family of weak relatively nonexpansive mappings but not a countable family of
relatively nonexpansive mappings. It is obvious that relatively nonexpansive mapping is
weak relatively nonexpansive mapping. In fact, for any mapping T : C → C, we have F(T) ⊂
F̃(T) ⊂ F̂(T). Therefore, if T is relatively nonexpansive mapping, then F(T) = F̃(T) = F̂(T).
Kang et al. [12] gave an example of a weak relatively nonexpansive mapping which is not
relatively nonexpansive.

In [9], Matsushita and Takahashi introduced a hybrid iterative scheme for approxima-
tion of fixed points of relatively nonexpansive mapping in a uniformly convex real Banach
space which is also uniformly smooth: x0 ∈ C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Hn =
{

w ∈ C : φ
(

w,yn

) ≤ φ(w,xn)
}

,

Wn = {w ∈ C : 〈xn −w, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx0, n ≥ 0.

(1.5)

They proved that {xn}∞n=0 converges strongly to ΠF(T)x0, where F(T)/= ∅.
In [14], Plubtieng and Ungchittrakool introduced the following hybrid projection

algorithm for a pair of relatively nonexpansive mappings: x0 ∈ C,

zn = J−1
(

β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)

,

yn = J−1(αnJx0 + (1 − αn)Jzn),

Cn =
{

z ∈ C : φ
(

z, yn

) ≤ φ(z, xn) + αn

(

‖x0‖2 + 2〈w, Jxn − Jx0〉
)}

,

Qn = {z ∈ C : 〈xn − z, Jxn − Jx0〉 ≤ 0},
xn+1 = PCn∩Qnx0,

(1.6)

where {αn}, {β(1)n }, {β(2)n } and {β(3)n } are sequences in (0, 1) satisfying β
(1)
n +β

(2)
n +β

(3)
n = 1 and T

and S are relatively nonexpansive mappings and J is the single-valued duality mapping on
E. They proved under the appropriate conditions on the parameters that the sequence {xn}
generated by (1.6) converges strongly to a common fixed point of T and S.

Recently, Li et al. [15] introduced the following hybrid iterative scheme for
approximation of fixed points of a relatively nonexpansive mapping using the properties
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of generalized f-projection operator in a uniformly smooth real Banach space which is also
uniformly convex: x0 ∈ C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 =
{

w ∈ Cn : G
(

w, Jyn

) ≤ G(w, Jxn)
}

,

xn+1 = Πf

Cn+1
x0, n ≥ 1.

(1.7)

They proved a strong convergence theorem for finding an element in the fixed points set of
T . We remark here that the results of Li et al. [15] extended and improved on the results of
Matsushita and Takahashi, [9].

Quite recently, motivated by the results of Matsushita and Takahashi [9] and Plubtieng
and Ungchittrakool [14], Su et al. [5] proved the following strong convergence theorem
by Halpern type hybrid iterative scheme for approximation of common fixed point of two
countable families of weak relatively nonexpansive mappings in uniformly convex and
uniformly smooth Banach space.

Theorem 1.5. Let E be a uniformly convex real Banach space which is also uniformly smooth. Let C
be a nonempty, closed and convex subset of E. Suppose {Tn}∞n=1 and {Sn}∞n=1 are two countable families
of weak relatively nonexpansive mappings of C into itself such that F := ((

⋂∞
n=1 F(Sn))

∞
n=1F(Tn)) ∩

(
⋂∞

n=1 F(Sn))/= ∅. Suppose {xn}∞n=0 is iteratively generated by x0 ∈ C,

zn = J−1
(

β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)

,

yn = J−1(αnJzn + (1 − αn)Jxn),

Cn =
{

w ∈ Cn−1 ∩Qn−1 : φ
(

w,yn

) ≤
(

1 − αnβ
(1)
n

)

φ(w,xn) + αnβ
(1)
n φ(w,x0)

}

,

C0 =
{

w ∈ C : φ
(

w,y0
) ≤ φ(w,x0)

}

,

Qn = {w ∈ Cn−1 ∩Qn−1 : 〈xn −w, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qnx0, n ≥ 1,

(1.8)

with the conditions

(i) limn→∞β
(1)
n = 0;

(ii) lim supn→∞β
(2)
n β

(3)
n > 0.

Then, {xn}∞n=0 converges strongly toΠFx0.

Motivated by the above mentioned results and the ongoing research, it is our purpose
in this paper to prove a strong convergence theorem by Halpern type iterative scheme for
two countable families of weak relatively nonexpansive mappings in a uniformly convex
and uniformly smooth real Banach space using the properties of generalized f-projection
operator. Our results extend the results of Su et al. [5] and many other recent known results
in the literature.
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2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is the function ρE : [0,∞) →
[0,∞) defined by

ρE(t) := sup
{
1
2
(∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥
) − 1 : ‖x‖ ≤ 1,

∥
∥y
∥
∥ ≤ t

}

. (2.1)

E is uniformly smooth if and only if

lim
t→ 0

ρE(t)
t

= 0. (2.2)

Let dimE ≥ 2. The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{

1 −
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
: ‖x‖ =

∥
∥y
∥
∥ = 1; ε =

∥
∥x − y

∥
∥

}

. (2.3)

E is uniformly convex if for any ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that if x, y ∈ E with
‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε, then ‖(1/2)(x + y)‖ ≤ 1 − δ. Equivalently, E is uniformly
convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. A normed space E is called strictly convex if
for all x, y ∈ E, x /=y, ‖x‖ = ‖y‖ = 1, we have ‖λx + (1 − λ)y‖ < 1, for all λ ∈ (0, 1).

Let E be a smooth, strictly convex, and reflexive real Banach space and let C be a
nonempty, closed, and convex subset of E. Following Alber [16], the generalized projection
ΠC from E onto C is defined by

ΠC(x) := argmin
y∈C

φ
(

y, x
)

, ∀x ∈ E. (2.4)

The existence and uniqueness of ΠC follows from the property of the functional φ(x, y) and
strict monotonicity of the mapping J (see, e.g., [3, 4, 16–18]). If E is a Hilbert space, then ΠC

is the metric projection of H onto C.
Next, we recall the concept of generalized f-projector operator, together with its

properties. Let G : C × E∗ → R ∪ {+∞} be a functional defined as follows:

G
(

ξ, ϕ
)

= ‖ξ‖2 − 2
〈

ξ, ϕ
〉

+
∥
∥ϕ
∥
∥
2 + 2ρf(ξ), (2.5)

where ξ ∈ C, ϕ ∈ E∗, ρ is a positive number and f : C → R ∪ {+∞} is proper, convex,
and lower semicontinuous. From the definitions of G and f , it is easy to see the following
properties:

(i) G(ξ, ϕ) is convex and continuous with respect to ϕwhen ξ is fixed;

(ii) G(ξ, ϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.
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Definition 2.1 (Wu and Huang [19]). Let E be a real Banach space with its dual E∗. Let C be
a nonempty, closed, and convex subset of E. We say that Πf

C : E∗ → 2C is a generalized
f-projection operator if

Πf

Cϕ =
{

u ∈ C : G
(

u, ϕ
)

= inf
ξ∈C

G
(

ξ, ϕ
)
}

, ∀ϕ ∈ E∗. (2.6)

For the generalized f-projection operator, Wu and Huang [19] proved the following theorem
basic properties.

Lemma 2.2 (Wu and Huang [19]). Let E be a real reflexive Banach space with its dual E∗. Let C be
a nonempty, closed, and convex subset of E. Then the following statements hold:

(i) Πf

C is a nonempty closed convex subset of C for all ϕ ∈ E∗;

(ii) if E is smooth, then for all ϕ ∈ E∗, x ∈ Πf

C if and only if

〈

x − y, ϕ − Jx
〉

+ ρf
(

y
) − ρf(x) ≥ 0, ∀y ∈ C; (2.7)

(iii) if E is strictly convex and f : C → R ∪ {+∞} is positive homogeneous (i.e., f(tx) = tf(x)
for all t > 0 such that tx ∈ C where x ∈ C), thenΠf

C is a single valued mapping.

Fan et al. [20] showed that the condition f is positive homogeneous which appeared
in Lemma 2.2 can be removed.

Lemma 2.3 (Fan et al. [20]). Let E be a real reflexive Banach space with its dual E∗ and C a
nonempty, closed and convex subset of E. Then if E is strictly convex, then Πf

C is a single valued
mapping.

Recall that J is a single valuedmapping when E is a smooth Banach space. There exists
a unique element ϕ ∈ E∗ such that ϕ = Jx for each x ∈ E. This substitution in (4.3) gives

G(ξ, Jx) = ‖ξ‖2 − 2〈ξ, Jx〉 + ‖x‖2 + 2ρf(ξ). (2.8)

Now, we consider the second generalized f-projection operator in a Banach space.

Definition 2.4. Let E be a real Banach space and C a nonempty, closed and convex subset of E.
We say that Πf

C : E → 2C is a generalized f-projection operator if

Πf

Cx =
{

u ∈ C : G(u, Jx) = inf
ξ∈C

G(ξ, Jx)
}

, ∀x ∈ E. (2.9)
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Obviously, the definition of {Tn}∞n=0 is a countably family of weak relatively nonexpansive
mappings is equivalent to

(R′1) F({Tn}∞n=0)/= ∅;
(R′2) G(p, JTnx) ≤ G(p, Jx), for all x ∈ C, p ∈ F(Tn), n ≥ 0.

(R′3)
⋂∞

n=0 F(Tn) = F̃({Tn}∞n=0).

Lemma 2.5 (Li et al. [15]). Let E be a Banach space and f : E → R ∪ {+∞} be a lower
semicontinuous convex functional. Then there exists x∗ ∈ E∗ and α ∈ R such that

f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ E. (2.10)

We know that the following lemmas hold for operator Πf

C.

Lemma 2.6 (Li et al. [15]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(i) ΠCx
f is a nonempty closed, and convex subset of C for all x ∈ E;

(ii) for all x ∈ E, x̂ ∈ ΠCx
f if and only if

〈

x̂ − y, Jx − Jx̂
〉

+ ρf
(

y
) − ρf(x) ≥ 0, ∀y ∈ C; (2.11)

(iii) if E is strictly convex, then ΠCx
f is a single valued mapping.

Lemma 2.7 (Li et al. [15]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Let x ∈ E and x̂ ∈ Πf

Cx. Then

φ
(

y, x̂
)

+G(x̂, Jx) ≤ G
(

y, Jx
)

, ∀y ∈ C. (2.12)

Lemma 2.8 (Su et al. [5]). Let C be a nonempty, closed, and convex subset of a smooth, strictly
convex Banach space E. Let T be a weak relatively nonexpansive mapping of C into itself. Then F(T)
is closed and convex.

Also, this following lemma will be used in the sequel.

Lemma 2.9 (Kamimura and Takahashi [4]). Let C be a nonempty, closed and convex subset of a
smooth, uniformly convex Banach space E. Let {xn}∞n=1 and {yn}∞n=1 be sequences in E such that either
{xn}∞n=1 or {yn}∞n=1 is bounded. If limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.10 (Cho et al. [21]). Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let Br(0) := {x ∈ E : ‖x‖ ≤ r} and λ, μ, γ ∈ [0, 1] such that λ + μ + γ = 1. Then, there exists a
continuous strictly increasing convex function

g : [0, 2r] −→ R, g(0) = 0 (2.13)

such that for every x, y, z ∈ Br(0), the following inequality holds:

∥
∥λx + μy + γz

∥
∥
2 ≤ λ‖x‖2 + μ

∥
∥y
∥
∥
2 − λμg

(∥
∥x − y

∥
∥
)

. (2.14)
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For the rest of this paper, the sequence {xn}∞n=0 converges strongly to p will be denoted by
xn → p as n → ∞ and we will assume that β(1)n , β

(2)
n , β

(3)
n ∈ [0, 1] such that β(1)n + β

(2)
n + β

(3)
n =

1, for all n ≥ 0.

3. Main Results

Theorem 3.1. Let E be a uniformly convex real Banach space which is also uniformly smooth. Let
C be a nonempty, closed, and convex subset of E. Suppose {Tn}∞n=0 and {Sn}∞n=0 are two countable
families of weak relatively nonexpansive mappings of C into itself such that F := (

⋂∞
n=0 F(Tn)) ∩

(
⋂∞

n=0 F(Sn))/= ∅. Let f : E → R be a convex and lower semicontinuous mapping with C ⊂
int(D(f)) and suppose {xn}∞n=0 is iteratively generated by x0 ∈ C, C0 = C,

zn = J−1
(

β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)

,

yn = J−1(αnJzn + (1 − αn)Jxn),

Cn+1 =
{

w ∈ Cn : G
(

w, Jyn

) ≤
(

1 − αnβ
(1)
n

)

G(w, Jxn) + αnβ
(1)
n G(w, Jx0)

}

,

xn+1 = Πf

Cn+1
x0, n ≥ 0,

(3.1)

with the conditions
(i) limn→∞β

(1)
n = 0;

(ii) 0 < b ≤ β
(2)
n ≤ 1, 0 < d ≤ β

(3)
n ≤ 1;

(iii) 0 < α ≤ αn ≤ 1 for some α ∈ (0, 1).
Then, {xn}∞n=0 converges strongly toΠf

Fx0.

Proof. We first show that Cn, for all n ≥ 0 is closed and convex. It is obvious that C0 = C is
closed and convex. Thus, we only need to show that Cn is closed and convex for each n ≥ 1.
Since G(w, Jyn) ≤ (1 − αnβ

(1)
n )G(w, Jxn) + αnβ

(1)
n G(w, Jx0) is equivalent to

2
(〈

w,
(

1 − αnβ
(1)
n

)

Jxn + αnβ
(1)
n Jx0 − Jyn

〉)

≤
(

1 − αnβ
(1)
n

)

‖xn‖2 + αnβ
(1)
n ‖x0‖2 −

∥
∥yn

∥
∥
2
. (3.2)

This implies that Cn+1 is closed and convex for all n ≥ 0.
We next show that F ⊂ Cn, for all n ≥ 0. For n = 0, we have F ⊂ C = C0. Then for each

x∗ ∈ F, we obtain

G
(

x∗, Jyn

)

= G(x∗, (αnJzn + (1 − αn)Jxn))

= ‖x∗‖2 − 2αn〈x∗, Jzn〉 − 2(1 − αn)〈x∗, Jxn〉 + ‖αnJzn + (1 − αn)Jxn‖2 + 2ρf(x∗)

≤ ‖x∗‖2 − 2αn〈x∗, Jzn〉 − 2(1 − αn)〈x∗, Jxn〉 + αn‖Jzn‖2 + (1 − αn)‖Jxn‖2 + 2ρf(x∗)

= αnG(x∗, Jzn) + (1 − αn)G(x∗, Jxn)

= (1 − αn)G(x∗, Jxn) + αnG
(

x∗, β(1)n Jx0 + β
(2)
n JTnxn + β

(3)
n JSnxn

)

≤ (1 − αn)G(x∗, Jxn)
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+ αn

(

‖x∗‖2 − 2β(1)n 〈x∗, Jx0〉 − 2β(2)n 〈x∗, JTnxn〉 − 2β(3)n 〈x∗, JSnxn〉

+ β
(1)
n ‖x0‖2 + β

(2)
n ‖Tnxn‖2 + β

(3)
n ‖Snxn‖2 + 2ρf(x∗)

)

= (1 − αn)G(x∗, Jxn) + αn

(

β
(1)
n G(x∗, Jx0) + β

(2)
n G(x∗, JTnxn) + β

(3)
n G(x∗, JSnxn)

)

≤ (1 − αn)G(x∗, Jxn) + αn

(

β
(1)
n G(x∗, Jx0) + β

(2)
n G(x∗, Jxn) + β

(3)
n G(x∗, Jxn)

)

≤
(

1 − αnβ
(1)
n

)

G(x∗, Jxn) + αnβ
(1)
n G(x∗, Jx0).

(3.3)

So, x∗ ∈ Cn. This implies that F ⊂ Cn, for all n ≥ 0. Since Cn+1 is closed and convex for all n ≥
0 and ∅/=F ⊂ Cn, for all n ≥ 0, it follows that Πf

Cn+1
x0 is well defined for all n ≥ 0.

We now show that limn→∞G(xn, Jx0) exists. Since f : E → R is a convex and lower
semicontinuous, applying Lemma 2.5, we see that there exists u∗ ∈ E∗ and α ∈ R such that

f
(

y
) ≥ 〈y, u∗〉 + α, ∀y ∈ E. (3.4)

It follows that

G(xn, Jx0) = ‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρf(xn)

≥ ‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρ〈xn, u
∗〉 + 2ρα

= ‖xn‖2 − 2
〈

xn, Jx0 − ρu∗〉 + ‖x0‖2 + 2ρα

≥ ‖xn‖2 − 2‖xn‖
∥
∥Jx0 − ρu∗∥∥ + ‖x0‖2 + 2ρα

=
(‖xn‖ −

∥
∥Jx0 − ρu∗∥∥)2 + ‖x0‖2 −

∥
∥Jx0 − ρu∗∥∥2 + 2ρα.

(3.5)

Since xn = Πf

Cn
x0, it follows from (3.5) that

G(x∗, Jx0) ≥ G(xn, Jx0) ≥
(‖xn‖ −

∥
∥Jx0 − ρu∗∥∥)2 + ‖x0‖2 −

∥
∥Jx0 − ρu∗∥∥2 + 2ρα (3.6)

for each x∗ ∈ F. This implies that {xn}∞n=0 is bounded and so is {G(xn, Jx0)}∞n=0. By the
construction of Cn, we have that Cm ⊂ Cn and xm = Πf

Cm
x0 ∈ Cn for any positive integer

m ≥ n. It then follows Lemma 2.7 that

φ(xm, xn) +G(xn, Jx0) ≤ G(xm, Jx0). (3.7)

It is obvious that

φ(xm, xn) ≥ (‖xm‖ − ‖xn‖)2 ≥ 0. (3.8)
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In particular,

φ(xn+1, xn) +G(xn, Jx0) ≤ G(xn+1, Jx0),

φ(xn+1, xn) ≥ (‖xn+1‖ − ‖xn‖)2 ≥ 0,
(3.9)

and so {G(xn, Jx0)}∞n=0 is nondecreasing. It follows that the limit of {G(xn, Jx0)}∞n=0 exists.
Now, (3.7) implies that

φ(xm, xn) ≤ G(xm, Jx0) −G(xn, Jx0). (3.10)

Taking the limit asm,n → ∞ in (3.10), we obtain

lim
n→∞

φ(xm, xn) = 0. (3.11)

It then follows from Lemma 2.9 that ‖xm − xn‖ → 0 as m,n → ∞. Hence, {xn}∞n=0 is Cauchy.
Since E is a Banach space and C is closed and convex, then there exists p ∈ C such that
xn → p as n → ∞.

Now since φ(xm, xn) → 0 as m,n → ∞ we have in particular that φ(xn+1, xn) →
0 as n → ∞ and this further implies that limn→∞‖xn+1 −xn‖ = 0. Since xn+1 = Πf

Cn+1
x0 ∈ Cn+1,

we have

φ
(

xn+1, yn

) ≤
(

1 − αnβ
(1)
n

)

φ(xn+1, xn) + αnβ
(1)
n φ(xn+1, x0), ∀n ≥ 0. (3.12)

Then, we obtain

lim
n→∞

φ
(

xn+1, yn

)

= 0. (3.13)

Since E is uniformly convex and smooth, we have from Lemma 2.9 that

lim
n→∞

‖xn+1 − xn‖ = 0 = lim
n→∞

∥
∥xn+1 − yn

∥
∥. (3.14)

So,

∥
∥xn − yn

∥
∥ ≤ ‖xn+1 − xn‖ +

∥
∥xn+1 − yn

∥
∥. (3.15)

Hence,

lim
n→∞

∥
∥xn − yn

∥
∥ = 0. (3.16)

Since J is uniformly norm-to-norm continuous on bounded sets and limn→∞‖xn − yn‖ = 0,
we obtain

lim
n→∞

∥
∥Jxn − Jyn

∥
∥ = 0. (3.17)
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Since 0 < α ≤ αn < 1, then

‖Jzn − Jxn‖ =
1
αn

∥
∥Jxn − Jyn

∥
∥ −→ 0, as n → ∞. (3.18)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖zn − xn‖ = 0, (3.19)

so that zn → p as n → ∞. Since {xn} is bounded, so are {zn}, {JTnxn}, and {JSnxn}.
Let r := supn≥0{‖xn‖, ‖Tnxn‖, ‖Snxn‖}. Then from Lemma 2.10, we have

G
(

x∗, Jyn

)

= G(x∗, (αnJzn + (1 − αn)Jxn))

= ‖x∗‖2 − 2αn〈x∗, Jzn〉 − 2(1 − αn)〈x∗, Jxn〉 + ‖αnJzn + (1 − αn)Jxn‖2 + 2ρf(x∗)

≤ ‖x∗‖2 − 2αn〈x∗, Jzn〉 − 2(1 − αn)〈x∗, Jxn〉 + αn‖Jzn‖2 + (1 − αn)‖Jxn‖2 + 2ρf(x∗)

= αnG(x∗, Jzn) + (1 − αn)G(x∗, Jxn)

= (1 − αn)G(x∗, Jxn) + αnG
(

x∗,
(

β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

))

≤ (1 − αn)G(x∗, Jxn)

+ αn

(

‖x∗‖2 − 2β(1)n 〈x∗, Jx0〉 − 2β(2)n 〈x∗, JTnxn〉 − 2β(3)n 〈x∗, JSnxn〉 + β
(1)
n ‖x0‖2

+ β
(2)
n ‖Tnxn‖2 + β

(3)
n ‖Snxn‖2 − β

(2)
n β

(3)
n g(‖JTnxn − JSnxn‖) + 2ρf(x∗)

)

= (1 − αn)G(x∗, Jxn) + αn

(

β
(1)
n G(x∗, Jx0) + β

(2)
n G(x∗, JTnxn) + β

(3)
n G(x∗, JSnxn)

− β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖)

)

≤ (1 − αn)G(x∗, Jxn) + αn

(

β
(1)
n G(x∗, Jx0) + β

(2)
n G(x∗, Jxn) + β

(3)
n G(x∗, Jxn)

− β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖)

)

≤ (1 − αn)G(x∗, Jxn) + β
(1)
n G(x∗, Jx0) + αnG(x∗, Jxn)

− αnβ
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖)

= β
(1)
n G(x∗, Jx0) +G(x∗, Jxn) − αnβ

(2)
n β

(3)
n g(‖JTnxn − JSnxn‖).

(3.20)

It then follows that

αnβ
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖) ≤ β

(1)
n G(x∗, Jx0) +G(x∗, Jxn) −G

(

x∗, Jyn

)

. (3.21)
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But

G(x∗, Jxn) −G
(

x∗, Jyn

)

= ‖xn‖2 −
∥
∥yn

∥
∥
2 − 2

〈

x∗, Jxn − Jyn

〉

≤
∣
∣
∣‖xn‖2 −

∥
∥yn

∥
∥
2
∣
∣
∣ + 2

∣
∣
〈

x∗, Jxn − Jyn

〉∣
∣

≤ ∣∣‖xn‖ −
∥
∥yn

∥
∥
∣
∣
(‖xn‖ +

∥
∥yn

∥
∥
)

+ 2‖x∗‖∥∥Jxn − Jyn

∥
∥

≤ ∥∥xn − yn

∥
∥
(‖xn‖ +

∥
∥yn

∥
∥
)

+ 2‖x∗‖∥∥Jxn − Jyn

∥
∥.

(3.22)

From limn→∞‖xn − yn‖ = 0 and limn→∞‖Jxn − Jyn‖ = 0, we obtain

G(x∗, Jxn) −G
(

x∗, Jyn

) −→ 0, n → ∞. (3.23)

Using the condition lim infn→∞β
(2)
n β

(3)
n > 0 and αn ≥ α > 0, we have

lim
n→∞

g(‖JTnxn − JSnxn‖) = 0. (3.24)

By property of g, we have limn→∞‖JTnxn − JSnxn‖ = 0. Since J−1 is also uniformly norm-to-
norm continuous on bounded sets, we have

lim
n→∞

‖Tnxn − Snxn‖ = 0. (3.25)

Furthermore,

‖Jxn − Jzn‖ =
∥
∥
∥Jxn −

(

β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)∥
∥
∥

=
∥
∥
∥β

(1)
n (Jxn − Jx0) + β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥
∥
∥

≥
∥
∥
∥β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥
∥
∥ −

∥
∥
∥β

(1)
n (Jxn − Jx0)

∥
∥
∥.

(3.26)

This implies that

∥
∥
∥β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥
∥
∥ ≤ ‖Jxn − Jzn‖ + β

(1)
n ‖Jxn − Jx0‖. (3.27)

Since xn → p, zn → p and limn→∞β
(1)
n = 0, it follows from (3.27) that

lim
n→∞

∥
∥
∥β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥
∥
∥ = 0. (3.28)



Abstract and Applied Analysis 13

On the other hand, by using the property of norm, we obtain

∥
∥
∥β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥
∥
∥

=
∥
∥
∥β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

+ β
(3)
n (Jxn − JTnxn) − β

(3)
n (Jxn − JTnxn)

∥
∥
∥

=
∥
∥
∥

(

β
(2)
n + β

(3)
n

)

(Jxn − JTnxn) + β
(3)
n (JTnxn − JSnxn)

∥
∥
∥

≥
(

β
(2)
n + β

(3)
n

)

‖Jxn − JTnxn‖ − β
(3)
n ‖JTnxn − JSnxn‖.

(3.29)

This follows that

(

β
(2)
n + β

(3)
n

)

‖Jxn − JTnxn‖ ≤
∥
∥
∥β

(2)
n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥
∥
∥ + β

(3)
n ‖JTnxn − JSnxn‖.

(3.30)

By (3.27) and limn→∞‖JTnxn − JSnxn‖ = 0, we have

lim
n→∞

(

β
(2)
n + β

(3)
n

)

‖Jxn − JTnxn‖ = 0. (3.31)

Since 0 < b ≤ β
(2)
n ≤ 1 and 0 < d ≤ β

(3)
n ≤ 1, we have

lim
n→∞

‖xn − Tnxn‖ = 0. (3.32)

Similarly, we can show that

lim
n→∞

‖xn − Snxn‖ = 0. (3.33)

Since xn → p and {Tn}, {Sn} are uniformly closed, we have p ∈ (
⋂∞

n=0 F(Tn)) ∩ (
⋂∞

n=0 F(Sn)).
Finally, we show that p = Πf

Fx0. Since F = (
⋂∞

n=0 F(Tn)) ∩ (
⋂∞

n=0 F(Sn)) is a closed and

convex set, from Lemma 2.6, we know thatΠf

Fx0 is single valued and denotew = Πf

Fx0. Since

xn = Πf

Cn
x0 and w ∈ F ⊂ Cn, we have

G(xn, Jx0) ≤ G(w, Jx0), ∀n ≥ 0. (3.34)

We know that G(ξ, Jϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.
This implies that

G
(

p, Jx0
) ≤ lim inf

n→∞
G(xn, Jx0) ≤ lim sup

n→∞
G(xn, Jx0) ≤ G(w, Jx0). (3.35)

From the definition of Πf

Fx0 and p ∈ F, we see that p = w. This completes the proof.
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Corollary 3.2. Let E be a uniformly convex real Banach space which is also uniformly smooth. Let
C be a nonempty, closed, and convex subset of E. Suppose {Tn}∞n=0 and {Sn}∞n=0 are two countable
families of weak relatively nonexpansive mappings of C into itself such that F := (

⋂∞
n=0 F(Tn)) ∩

(
⋂∞

n=0 F(Sn))/= ∅. Suppose {xn}∞n=0 is iteratively generated by x0 ∈ C, C0 = C

zn = J−1
(

β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)

,

yn = J−1(αnJzn + (1 − αn)Jxn),

Cn+1 =
{

w ∈ Cn : φ
(

w,yn

) ≤
(

1 − αnβ
(1)
n

)

φ(w,xn) + αnβ
(1)
n φ(w,x0)

}

,

xn+1 = ΠCn+1x0, n ≥ 0,

(3.36)

with the conditions

(i) limn→∞β
(1)
n = 0;

(ii) 0 < b ≤ β
(2)
n ≤ 1, 0 < d ≤ β

(3)
n ≤ 1;

(iii) 0 < α ≤ αn ≤ 1 for some α ∈ (0, 1).

Then, {xn}∞n=0 converges strongly toΠFx0.

Proof. Take f(x) = 0 for all x ∈ E in Theorem 3.1, G(ξ, Jx) = φ(ξ, x) and Πf

Cx0 = ΠCx0. Then,
the desired conclusion follows.

Remark 3.3. Our Corollary 3.2 extends and improves on Theorem 1.5. In fact, the iterative
procedure (3.36) is simpler than (1.8) in the following two aspects: (a) the process of
computing Qn = {w ∈ Cn−1 ∩ Qn−1 : 〈xn − w, Jx0 − Jxn〉 ≥ 0} is removed; (b) the process
of computing ΠCn∩Qn is replaced by computing ΠCn .

4. Applications

A mapping H from E to E∗ is said to be

(i) monotone if 〈Hx −Hy, x − y〉 ≥ 0, for all x, y ∈ E;

(ii) strictly monotone ifH is monotone and 〈Hx −Hy, x − y〉 = 0 if and only if x = y;

(iii) β-Lipschitz continuous if there exists a constant β ≥ 0 such that ‖Hx − Hy‖ ≤
β‖x − y‖, for all x, y ∈ E.

Let M be a set valued mapping from E to E∗ with domain D(M) = {z ∈ E : Mz/= ∅}
and range R(M) =

⋃{Mz : z ∈ D(M)}. A set-valued mapping M is said to be

(i) monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ D(M) and yi ∈ Mxi, i = 1, 2,

(ii) r-strongly monotone if 〈x1 − x2, y1 − y2〉 ≥ r‖x1 − x2‖2 for each xi ∈ D(M) and
yi ∈ Mxi, i = 1, 2,

(iii) maximal monotone if M is monotone and its graph G(M) := {(x, y) : y ∈ Mx} is
not properly contained in the graph of any other monotone operator,

(iv) a general H-monotone if M is monotone and (H + λM)E = E∗ holds for every
λ > 0, where H is a mapping from E to E∗.
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We denote the set {x ∈ E : 0 ∈ Mx} by M−10. From Li et al. [15], we know that
if H : E → E∗ is strictly monotone and M : E → 2E

∗
is general H-monotone mapping,

then M−10 is closed and convex. Furthermore, for every λ > 0 and x∗ ∈ E∗, there exists a
unique x ∈ D(M) such that x = (H + λM)−1x∗. Thus, we can define a single-value mapping
Tλ : E → D(M) by Tλx = (H + λM)−1Hx. It is obvious that M−10 = F(Tλ) for all λ > 0.

Lemma 4.1 (Alber, [16]). If E is a uniformly convex and uniformly smooth Banach space, δE(ε) is
the modulus of convexity of E and ρE(t) is the modulus of smoothness of E, then the inequalities

8d2δE

(‖x − ξ‖
4d

)

≤ φ(x, ξ) ≤ 4d2ρE

(
4‖x − ξ‖

d

)

(4.1)

hold for all x and ξ in E, where d =
√

(‖x‖2 + ‖ξ‖2)/2.

Lemma 4.2 (Xia and Huang, [22]). Let E be a Banach space with dual space E∗, H : E → E∗ a
strictly monotone mapping and M : E → 2E

∗
a generalH-monotone mapping. Then

(i) (H + λM)−1 is a single valued mapping;

(ii) if E is reflexive and M : E → 2E
∗
is r-strongly monotone, (H + λM)−1 is Lipschitz

continuous with constant 1/(λr), where r > 0.

Theorem 4.3. Let E be a uniformly convex real Banach space which is also uniformly smooth with
δE(ε) ≥ kε2 and ρE(t) ≤ ct2 for some k, c > 0. Suppose H : E → E∗ is a strictly monotone
and β-Lipschitz continuous mapping and Mi : E → 2E

∗
is a general H-monotone mapping

and ri-strongly monotone mapping with ri > 0, i = 1, 2 such that F := M−1
1 0 ∩ M−1

2 0/= ∅.
Let TMi

λ = (H + λMi)
−1H, i = 1, 2 and f : E → R be a convex and lower semicontinuous

mapping with D(f) = E and suppose for each n ≥ 0, there exists a λn > 0 such that 64cβ2 ≤
min{(1/2)kλ2nr21 , (1/2)kλ2nr21}. Let {xn}∞n=0 be iteratively generated by x0 ∈ E, C0 = E,

zn = J−1
(

β
(1)
n Jx0 + β

(2)
n JTM1

λn
xn + β

(3)
n JTM2

λn
xn

)

,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn+1 =
{

w ∈ Cn : G
(

w, Jyn

) ≤
(

1 − αnβ
(1)
n

)

G(w, Jxn) + αnβ
(1)
n G(w, Jx0)

}

,

xn+1 = Πf

Cn+1
x0, n ≥ 0,

(4.2)

with the conditions

(i) limn→∞β
(1)
n = 0;

(ii) 0 < b ≤ β
(2)
n ≤ 1, 0 < d ≤ β

(3)
n ≤ 1;

(iii) 0 < α ≤ αn ≤ 1 for some α ∈ (0, 1);

(iv) lim infn→∞λn > 0.

Then, {xn}∞n=0 converges strongly toΠf

Fx0.
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Proof. We only need to prove that {TM1
λn

} and {TM2
λn

} are countable families of weak

relatively nonexpansive mappings with common fixed points sets
⋂∞

n=0 F(T
M1
λn

) = M−1
1 0 and

⋂∞
n=0 F(T

M2
λn

) = M−1
2 0, respectively. Firstly, we have

⋂∞
n=0 F(T

M1
λn

) = M−1
1 0/= ∅. Secondly, we

show that φ(p, TM1
λn

w) ≤ φ(p,w), for all w ∈ E, p ∈ F(TM1
λn

), n ≥ 0. Now, by Lemma 4.2 and
the Lipschitz continuity ofH, we have

∥
∥
∥T

M1
λn

p − TM1
λn

w
∥
∥
∥ =

∥
∥
∥(H + λnM1)

−1Hp − (H + λnM1)
−1Hw

∥
∥
∥

≤ 1
λnr1

∥
∥Hp −Hw

∥
∥

≤ β

λnr1

∥
∥p −w

∥
∥.

(4.3)

By (4.3) and Lemma 4.1,

φ
(

p, TM1
λn

w
)

= φ
(

TM1
λn

p, TM1
λn

w
)

≤ 4d2ρE

⎛

⎝

4
∥
∥
∥T

M1
λn

p − TM1
λn

w
∥
∥
∥

d

⎞

⎠

≤ 64c
∥
∥
∥T

M1
λn

p − TM1
λn

w
∥
∥
∥

2

≤ 64cβ2

λ2nr
2
1

∥
∥p −w

∥
∥
2
,

φ
(

p,w
) ≥ 8d2δE

(∥
∥p −w

∥
∥

4d

)

≥ 1
2
k
∥
∥p −w

∥
∥
2
.

(4.4)

Since 64cβ2 ≤ (1/2)kλ2nr
2
1 , it follows from (4.4) that φ(p, TM1

λn
w) ≤ φ(p,w), for all w ∈ E, p ∈

F(TM1
λn

), n ≥ 0. Thirdly, we show that F̃({TM1
λn

}) =
⋂∞

n=0 F(T
M1
λn

) = M−1
1 0. We first show that

F̃({TM1
λn

}) ⊂ M−1
1 0. Let p ∈ F̃({TM1

λn
}), then there exists {xn} ⊂ E such that xn → p and

limn→∞‖xn − TM1
λn

xn‖ = 0. Since H is β-Lipschitz continuous,

∥
∥
∥Hxn −HTM1

λn
xn

∥
∥
∥ ≤ β

∥
∥
∥xn − TM1

λn
xn

∥
∥
∥. (4.5)

Letting n → ∞, we obtain

1
λn

(

Hxn −HTM1
λn

xn

)

−→ 0. (4.6)
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It follows from (1/λn)(Hxn −HTM1
λn

xn) ∈ M1T
M1
λn

xn and the monotonicity of M1 that

〈

x − TM1
λn

xn, x
∗ − 1

λn

(

Hxn −HTM1
λn

xn

)〉

≥ 0 (4.7)

for all x ∈ D(M1) and x∗ ∈ M1x. Taking the limit as n → ∞, we obtain

〈

x − p, x∗〉 ≥ 0 (4.8)

for all x ∈ D(M1) and x∗ ∈ M1x. By the maximality of M1, we know that p ∈ M−1
1 0. On

the other hand, we know that F(TM1
λn

) = M−1
1 0, F(TM1

λn
) ⊂ F̃(TM1

λn
) for all n ≥ 0, therefore,

M−1
1 0 =

⋂∞
n=0 F(T

M1
λn

) = F̃(
⋂∞

n=0 T
M1
λn

). Thus, we have proved that {TM1
λn

} is a countable family

of weak relatively nonexpansive mappings with common fixed points sets
⋂∞

n=0 F(T
M1
λn

) =

M−1
1 0. By following the same arguments, we can show that {TM2

λn
} is a countable family of

weak relatively nonexpansivemappings with common fixed points sets
⋂∞

n=0 F(T
M2
λn

) = M−1
2 0.

Let E be a uniformly convex and uniformly smooth Banach space, H = J and M
be a maximal monotone mapping. Then, we can define Jλ = (J + λM)−1J for all λ > 0. We
know that Jλ is relatively nonexpansive and therefore weak relatively nonexpansive and
M−10 = F(Jλ) for all λ > 0 (see, e.g., [2]), where F(Jλ) denotes the fixed points set of Jλ.
By Corollary 3.2, we obtain the following theorem.

Theorem 4.4. Let E be a uniformly convex real Banach space which is also uniformly smooth. For
each i = 1, 2, letMi ⊂ E×E∗ be a maximal monotone operator and let JMi

λ
= (J+λMi)

−1J for all λ > 0
and suppose C is a nonempty closed and convex subset of E such thatD(Mi) ⊂ C ⊂ J−1(

⋂

λ>0 R(J +
λMi)) and F := M−1

1 0
⋂
M−1

2 0/= ∅. Let {xn}∞n=0 be iteratively generated by x0 ∈ E, C0 = E,

zn = J−1
(

β
(1)
n Jx0 + β

(2)
n JJTM1

λn
xn + β

(3)
n JJTM2

λn
xn

)

,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn+1 =
{

w ∈ Cn : φ
(

w,yn

) ≤
(

1 − αnβ
(1)
n

)

φ(w,xn) + αnβ
(1)
n φ(w,x0)

}

,

xn+1 = ΠCn+1x0, n ≥ 0,

(4.9)

with the conditions

(i) limn→∞β
(1)
n = 0;

(ii) 0 < b ≤ β
(2)
n ≤ 1, 0 < d ≤ β

(3)
n ≤ 1;

(iii) 0 < α ≤ αn ≤ 1 for some α ∈ (0, 1);

(iv) lim infn→∞λn > 0.

Then, {xn}∞n=0 converges strongly toΠFx0.
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