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This paper investigates the following p(x)-Laplacian equations with exponential nonlinearities:
−Δp(x)u + ρ(x)ef(x,u) = 0 in Ω, u(x) → +∞ as d(x, ∂Ω) → 0, where −Δp(x)u = −div(|∇u|p(x)−2∇u)
is called p(x)-Laplacian, ρ(x) ∈ C(Ω). The asymptotic behavior of boundary blow-up solutions is
discussed, and the existence of boundary blow-up solutions is given.

1. Introduction

The study of differential equations and variational problems with nonstandard p(x)-growth
conditions is a new and interesting topic. On the background of this class of problems, we
refer to [1–3]. Many results have been obtained on this kind of problems, for example, [4–18].
On the regularity of weak solutions for differential equations with nonstandard p(x)-growth
conditions, we refer to [4, 5, 8]. On the existence of solutions for p(x)-Laplacian equation
Dirichlet problems in bounded domain, we refer to [7, 9, 15, 18]. In this paper, we consider
the following p(x)-Laplacian equations with exponential nonlinearities

−Δp(x)u + ρ(x)ef(x,u) = 0, in Ω,

u(x) −→ +∞, as d(x, ∂Ω) −→ 0,
(P)
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where −Δp(x)u = −div(|∇u|p(x)−2∇u) and Ω = B(0, R) ⊂ R
N is a bounded radial domain

(B(0, R) = {x ∈ R
N | |x| < R}). Our aim is to give the asymptotic behavior and the existence

of boundary blow-up solutions for problem (P).
Throughout the paper, we assume that p(x), ρ(x), and f(x, u) satisfy the following.
(H1) p(x) ∈ C1(Ω) is radial and satisfies

1 < p− ≤ p+ < +∞, where p− = inf
Ω
p(x), p+ = sup

Ω
p(x). (1.1)

(H2) f(x, u) is radial with respect to x, f(x, ·) is increasing, and f(x, 0) = 0 for any
x ∈ Ω.

(H3) f : Ω × R → R is continuous and satisfies

∣
∣f(x, t)

∣
∣ ≤ C1 + C2|t|γ(x), ∀(x, t) ∈ Ω × R, (1.2)

where C1, C2 are positive constants and 0 ≤ γ ∈ C(Ω).
(H4) ρ(x) ∈ C(Ω) is a radial nonnegative function, and there exists a constant σ ∈

[R/2, R) such that

ρ0(R − r)−β(r) ≤ ρ(r) ≤ ρ1(R − r)−β1(r) for r ∈ [σ,R) uniformly, (1.3)

where ρ0 and ρ1 are positive constants and β(r) and β1(r) are Lipschitz continuous on [σ,R],
which satisfy β(r) ≤ β1(r) < p(r) for any r ∈ [σ,R].

The operator −Δp(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian. Specifically,
if p(x) ≡ p (a constant), (P) is the well-known p-Laplacian problem. If f(x, u) can be
represented as h(x)f(u), on the boundary blow-up solutions for the following p-Laplacian
equations (p is a constant):

−Δpu + h(x)f(u) = 0, in Ω, (1.4)

we refer to [19–26], and the following generalized Keller-Osserman condition is crucial

∫∞

1

1

(F(t))1/p
dt < +∞, where F(t) =

∫ t

0
f(s)ds, (1.5)

but the typical form of p(x)-Laplacian equation is

−Δp(x)u + |u|q(x)−2u = 0, in Ω, (1.6)

and there are some differences between the results of (1.4) and (1.6) (see [16]).
On the boundary blow-up solutions for the following p-Laplacian equations with

exponential nonlinearities (p is a constant):

−Δpu + eh(x)f(u) = 0, in Ω, (1.7)
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we refer to [20–22], but the results on the boundary blow-up solutions for p(x)-Laplacian
equations are rare (see [16]).

In [16], the present author discussed the existence and asymptotic behavior of
boundary blow-up solutions for the following p(x)-Laplacian equations:

−Δp(x)u + f(x, u) = 0, in Ω,

u(x) −→ +∞, as d(x, ∂Ω) −→ 0,
(1.8)

on the condition that f(x, ·) satisfies polynomial growth condition.
If p(x) is a function, the typical form of (P) is the following:

−Δp(x)u + ρ(x)e|u|
q(x)−2u = 0, (1.9)

and the method to construct subsolution and supersolution in [16] cannot give the exact
asymptotic behavior of solutions for (P). Our results partially generalized the results of [20–
22].

Because of the nonhomogeneity of p(x)-Laplacian, p(x)-Laplacian problems are more
complicated than those of p-Laplacian ones (see [10]); another difficulty of this paper is that
f(x, u) cannot be represented as h(x)f(u).

2. Preliminary

In order to deal with p(x)-Laplacian problems, we need some theories on the spaces Lp(x)(Ω),
W1,p(x)(Ω) and properties of p(x)-Laplacian, which we will use later (see [6, 11]). Let

Lp(x)(Ω) =
{

u | u is a measurable real-valued function,
∫

Ω |u(x)|p(x)dx < ∞
}

. (2.1)

We can introduce the norm on Lp(x)(Ω) by

|u|p(x) = inf

{

λ > 0 |
∫

Ω

∣
∣
∣
∣

u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 1

}

. (2.2)

The space (Lp(x)(Ω), | · |p(x)) becomes a Banach space. We call it generalized Lebesgue
space. The space (Lp(x)(Ω), | · |p(x)) is a separable, reflexive, and uniform convex Banach space
(see [6, Theorems 1.10, 1.14] ).

The space W1,p(x)(Ω) is defined by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)
}

, (2.3)
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and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈ W1,p(x)(Ω). (2.4)

W
1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in W1,p(x)(Ω). W1,p(x)(Ω) and W
1,p(x)
0 (Ω) are

separable, reflexive, and uniform convex Banach spaces (see [6, Theorem 2.1]).
If u ∈ W

1,p(x)
loc (Ω) ∩ C(Ω), u is called a blow-up solution of (P)when it satisfies

∫

Q

|∇u|p(x)−2∇u∇q dx +
∫

Q

ρ(x)f(x, u)q dx = 0, ∀q ∈ W
1,p(x)
0 (Q), (2.5)

for any domain Q � Ω, and max(k − u, 0) ∈ W
1,p(x)
0 (Ω) for every positive integer k.

Let W1,p(x)
0,loc (Ω) = {u | there is an open domain Q � Ω such that u ∈ W

1,p(x)
0 (Q)}, and

define A : W1,p(x)
loc (Ω) ∩ C(Ω) → (W1,p(x)

0,loc (Ω))∗ as

〈

Au, ϕ
〉

=
∫

Ω

(

|∇u|p(x)−2∇u∇ϕ + ρ(x)ef(x,u)ϕ
)

dx, ∀u ∈ W
1,p(x)
loc (Ω) ∩ C(Ω), ∀ϕ ∈ W

1,p(x)
0,loc (Ω).

(2.6)

Lemma 2.1 (see [9, Theorem 3.1]). Let h ∈ W1,p(x)(Ω) ∩C(Ω), and X = h +W
1,p(x)
0 (Ω) ∩C(Ω).

Then, A : X → (W1,p(x)
0,loc (Ω))∗ is strictly monotone.

Letting g ∈ (W1,p(x)
0,loc (Ω))∗, if 〈g, ϕ〉 ≥ 0,for all ϕ ∈ W

1,p(x)
0,loc (Ω) with ϕ ≥ 0 a.e. in Ω, then

denote g ≥ 0 in (W1,p(x)
0,loc (Ω))∗; correspondingly, if −g ≥ 0 in (W1,p(x)

0,loc (Ω))∗, then denote g ≤ 0

in (W1,p(x)
0,loc (Ω))∗.

Definition 2.2. Let u ∈ W
1,p(x)
loc (Ω) ∩ C(Ω). If Au ≥ 0 (Au ≤ 0) in (W1,p(x)

0,loc (Ω))∗, then u is called
a weak supersolution (weak subsolution) of (P).

Copying the proof of [14], we have the following.

Lemma 2.3 (comparison principle). Let u, v ∈ W
1,p(x)
loc (Ω) ∩ C(Ω) satisfy

Au −Av ≥ 0, in
(

W
1,p(x)
0 (Ω)

)∗
. (2.7)

Let ϕ(x) = min{u(x) − v(x), 0}. If ϕ(x) ∈ W
1,p(x)
0 (Ω) (i.e., u ≥ v on ∂Ω), then u ≥ v a.e. in Ω.

Lemma 2.4 (see [8, Theorem 1.1]). Under the conditions (H1) and (H3), if u ∈ W1,p(x)(Ω) is a
bounded weak solution of −Δp(x)u + ρ(x)ef(x,u) = 0 in Ω, then u ∈ C1,ϑ

loc (Ω), where ϑ ∈ (0, 1) is a
constant.
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3. Asymptotic Behavior of Boundary Blow-Up Solutions

If u is a radial solution for (P), then (P) can be transformed into

(

rN−1∣∣u′∣∣p(r)−2u′
)′

= rN−1ρ(r)ef(r,u), r ∈ (0, R),

u(0) = u0, u′(0) = 0, u′(r) ≥ 0, for 0 < r < R.

(3.1)

It means that u(r) is increasing.

Theorem 3.1. If f(r, u) satisfies

f(r, u) ≥ αus (as u −→ +∞) for r ∈ [σ,R) uniformly, (3.2)

where σ is defined in (H4) and α and s are positive constants, then there exists a supersolution Φ1(x)
which satisfies Φ1(x) → +∞ (as d(x, ∂Ω) → 0), such that for every solution u of problem (P), one
has u(x) ≤ Φ1(x).

Proof. Define the function g(r, a, λ) on [0, Rλ) as

g(r, a, λ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

a ln
1

(R − r)1−θ − λ

)1/s

+ k, R0 ≤ r < Rλ,

k −
∫R0

r

⎡

⎢
⎣

a1/s(1 − θ)(R − R0)−θ

s
(

(R − R0)1−θ − λ
)

(

ln
1

(R − R0)1−θ − λ

)(1/s)−1
⎤

⎥
⎦

(p(R0)−1)/(p(t)−1)

×
[

(R0)N−1

tN−1 sin ε(t − σ)

]1/(p(t)−1)
dt

+

(

a ln
1

(R − R0)1−θ − λ

)1/s

, σ < r < R0,

k −
∫R0

σ

⎡

⎢
⎣

a1/s(1 − θ)(R − R0)−θ

s
(

(R − R0)1−θ − λ
)

(

ln
1

(R − R0)1−θ − λ

)(1/s)−1
⎤

⎥
⎦

(p(R0)−1)/(p(t)−1)

×
[

(R0)N−1

tN−1 sin ε(t − σ)

]1/(p(t)−1)
dt

+

(

a ln
1

(R − R0)1−θ − λ

)1/s

, r ≤ σ,

(3.3)
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where θ < β(R)/p(R), a > (1/α)sup|x|≥R0
p(x) are constants, R0 ∈ (σ,R), R − R0 is small

enough, parameter λ ∈ [0, (R − R0)
1−θ/2], Rλ satisfies (R − Rλ)

1−θ − λ = 0, ε = π/2(R0 − σ)

k =

[

2p+((1 + s)/s + 1/(1 − θ)) +
∣
∣β

∣
∣
+
/(1 − θ)

α
ln

2

(R − R0)(1−θ)

]1/s

+
∫R0

σ

⎡

⎣
2a1/s(1 − θ)
s(R − R0)

(

ln
2

(R − R0)1−θ

)(1/s)−1⎤

⎦

(p(R0)−1)/(p(t)−1)

×
[

(R0)N−1

tN−1 sin ε(t − σ)

]1/(p(t)−1)
dt.

(3.4)

Obviously, for any positive constant a, we have g(r, a, λ) ∈ C1[0, Rλ).
When R0 < r < Rλ < R, we have

g ′ = g ′(r, a, λ) =
a1/s

s

(

ln
1

(R − r)1−θ − λ

)(1/s)−1
(1 − θ)(R − r)−θ

(R − r)1−θ − λ
,

∣
∣g ′∣∣p(r)−2g ′ =

[

(1 − θ)a1/s

s

]p(r)−1(

ln
1

(R − r)1−θ − λ

)((1/s)−1)(p(r)−1)
(R − r)−θ(p(r)−1)

[

(R − r)1−θ − λ
]p(r)−1 ,

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′

= rN−1
[

(1 − θ)a1/s

s

]p(r)−1(

ln
1

(R − r)1−θ − λ

)((1/s)−1)(p(r)−1)

×
(

p(r) − 1
)

(R − r)−θp(r)
[

(R − r)1−θ − λ
]p(r)

[(1 − θ) + Π(r)],

(3.5)

where

Π(r) =

{

rN−1[(1 − θ)a1/s/s
]p(r)−1}′

(

p(r) − 1
)

rN−1[(1 − θ)a1/s/s
]p(r)−1

(R − r)1−θ − λ

(R − r)1−θ
(R − r) +

((1/s) − 1)(1 − θ)
(

ln
(

1/
(

(R − r)1−θ − λ
)))

+
(R − r)1−θ − λ

(R − r)1−θ
(R − r)

((1/s) − 1)p′(r)
(

p(r) − 1
) ln

[

ln
1

(R − r)1−θ − λ

]

+
θp′(r)

(

p(r) − 1
)
(R − r)1−θ − λ

(R − r)1−θ
(R − r) ln

1
(R − r)

+ θ
(R − r)1−θ − λ

(R − r)1−θ
+

−p′(r)
p(r) − 1

(R − r)
(R − r)1−θ − λ

(R − r)1−θ
ln

[

(R − r)1−θ − λ
]

.

(3.6)
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If (R − R0) is small enough, it is easy to see that

|Π(r)| ≤ ln
1

(R − r)1−θ − λ
, forλ ∈

[

0,
(R − R0)1−θ

2

]

uniformly, (3.7)

and then

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′ ≤ rN−1

[

(1 − θ)a1/s

s

]p(r)−1(

ln
1

(R − r)1−θ − λ

)((1/s)−1)(p(r)−1)+1

×
(

p(r) − 1
)

(R − r)−θp(r)
[

(R − r)1−θ − λ
]p(r)

, ∀r ∈ (R0, Rλ).

(3.8)

Thus, when 0 < R − R0 is small enough, from (3.5) and (3.8), for λ ∈ [0, (R − R0)
1−θ/2]

uniformly, we have

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′

≤ 2rN−1
[

(1 − θ)a1/s

s

]p(r)−1(

ln
1

(R − r)1−θ − λ

)((1/s)−1)(p(r)−1)+1 (
p(r) − 1

)

(R − r)−θp(r)
[

(R − r)1−θ − λ
]p(r)

≤ rN−1ρ(r)

(

1

(R − r)1−θ − λ

)αa

= rN−1ρ(r)eαg
s ≤ rN−1ρ(r)ef(r,g), ∀r ∈ (R0, Rλ).

(3.9)

Thus, when 0 < R − R0 is small enough, the following inequality is valid for λ ∈
[0, (R − R0)

1−θ/2] uniformly:

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′ ≤ rN−1ρ(r)f

(

r, g
)

, ∀r ∈ (R0, Rλ). (3.10)
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Obviously, if R − R0 is small enough, then g ≥ [((2p+((s + 1)/s + 1/(1 − θ)) + |β|+/(1 −
θ))/α) ln(2/(R − R0)

1−θ)]1/s is large enough. Since λ ∈ [0, (R − R0)
1−θ/2],

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′

= ε(R0)N−1

⎡

⎢
⎣

a1/s(1 − θ)(R − R0)−θ

s
(

(R − R0)1−θ − λ
)

(

ln
1

(R − R0)1−θ − λ

)(1/s)−1
⎤

⎥
⎦

(p(R0)−1)

cos(ε(r − σ))

≤ ε(R0)N−1
⎡

⎣
a1/s(1 − θ)(R − R0)−θ

s(1/2)(R − R0)1−θ

(

ln
2

(R − R0)1−θ

)(1/s)+1
⎤

⎦

(p(R0)−1)

≤ ε(R0)N−1
⎡

⎣
2a1/s(1 − θ)
s(R − R0)

(

2

(R − R0)1−θ

)(1/s)+1
⎤

⎦

(p(R0)−1)

≤ ε(R0)N−1
[

2a1/s(1 − θ)
s

(
2

R − R0

)((s+1)/s)(1−θ)+1]p+

≤ rN−1ρ(r)eαg
s ≤ rN−1ρ(r)ef(r,g), σ < r < R0.

(3.11)

Thus,

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′ ≤ rN−1ρ(r)ef(r,g), σ < r < R0. (3.12)

Obviously,

(

rN−1∣∣g ′∣∣p(r)−2g ′
)′

= 0 ≤ rN−1ρ(r)ef(r,g), 0 ≤ r < σ. (3.13)

Since g(x, a, λ) = g(|x|, a, λ) is a C1 function on B(0, Rλ), if 0 < R − R0 is small enough
(R0 depends onR, p, s, α), from (3.10), (3.12), and (3.13), for any λ ∈ [0, (R−R0)

1−θ/2], we can
see that g(|x|, a, λ) is a supersolution for (P) onB(0, Rλ), and then g(|x|, a, 0) is a supersolution
for (P).

Defining the function gm(|x|, a − ε) = g(r, a − ε, 1/m) on [0, R1/m), where a − ε >
(1/α)sup|x|≥R0

p(x) , then gm(|x|, a − ε) is a supersolution for (P) on B(0, R − (1/m)). If u is a
solution for (P), according to the comparison principle, we get that gm(|x|, a − ε) ≥ u(x) for
any x ∈ B(0, R1/m). For any x ∈ B(0, R) \ B(0, R0), we have gm(|x|, a − ε) ≥ gm+1(|x|, a − ε),
whenm is large enough. Thus

u(x) ≤ lim
m−→+∞

gm(|x|, a − ε), ∀x ∈ B(0, R) \ B(0, R0). (3.14)
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When d(x, ∂Ω) > 0 is small enough, we have

lim
m−→+∞

gm(|x|, a − ε) <

(

a ln
1

(R − r)1−θ

)1/s

+ k ≤ g(|x|, a, 0). (3.15)

According to the comparison principle, we get that g(|x|, a, 0) ≥ u(x), for allx ∈
B(0, R); then Φ1(x) = Φ1(|x|) = g(|x|, a, 0) is a radial upper control function of all of
the solutions for (P), and Φ1(x) = Φ1(|x|) is a radial supersolution for (P). The proof is
completed.

Theorem 3.2. If f(r, u) satisfies

f(r, u) −→ −∞ (as u −→ −∞) for r ∈ [σ,R) uniformly,

f(r, u) ≤ δus (as u −→ +∞) for r ∈ [σ,R) uniformly,
(3.16)

where σ is defined in (H4) and δ and s are positive constants, then there exists a subsolution Φ2(x)
which satisfies Φ2(x) → +∞ (as d(x, ∂Ω) → 0), such that for every solution u(x) for problem (P),
one has u(x) ≥ Φ2(x).

Proof. We will prove this theorem in the following two cases.

(i) β1(R) > 0.

(ii) β1(R) ≤ 0.

Case 1 (β1(R) > 0). Let z1 be a radial solution of

−Δp(x)z1(x) = −μ, in Ω1 = B(0, σ), z1 = 0, on ∂Ω1, (3.17)

where μ > 2(maxr∈[0,R0]ρ(r) + 1)2(p
+−1)/(p−−1) is a positive constant. We denote z1 = z1(r) =

z1(|x|). Then, z1 satisfies

−
(

rN−1∣∣z′1
∣
∣
p(r)−2

z′1
)′

= −rN−1μ, z1(σ) = 0, z′1(0) = 0,

z′1 =
∣
∣
∣

rμ

N

∣
∣
∣

1/(p(r)−1)
,z1 = −

∫σ

r

∣
∣
∣

rμ

N

∣
∣
∣

1/(p(r)−1)
dr.

(3.18)

Denote hb(r, λ) on [σ,R0] as

hb(r, λ) =
∫R0

r

{

(R0)N−1

tN−1
t − σ

R0 − σ

⎡

⎢
⎣

b(1 − θ)(R − R0)−θ

s
(

(R − R0)1−θ + λ
)

(

b ln
1

(R − R0)1−θ + λ

)(1/s)−1
⎤

⎥
⎦

p(R0)−1

+
(σ)N−1

tN−1
R0 − t

R0 − σ

∣
∣
∣

σμ

N

∣
∣
∣

}1/(p(t)−1)
dt.

(3.19)
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It is easy to see that

−h′
b(σ, λ) = z′1(σ) =

∣
∣
∣

σμ

N

∣
∣
∣

1/(p(σ)−1)
,

−h′
b(R0, λ) =

b(1 − θ)(R − R0)−θ

s
(

(R − R0)1−θ + λ
)

(

b ln
1

(R − R0)1−θ + λ

)(1/s)−1
.

(3.20)

Define the function v(r, b, λ) on [0, R) as

v(r, b, λ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

b ln
1

(R − r)1−θ + λ

)1/s

− k∗, R0 ≤ r < R,

(

b ln
1

(R − R0)1−θ + λ

)1/s

− k∗ − hb(r, λ), σ < r < R0,

−
∫σ

r

∣
∣
∣

rμ

N

∣
∣
∣

1/(p(r)−1)
dr +

(

b ln
1

(R − R0)1−θ + λ

)1/s

− k∗ − hb(σ, λ), r ≤ σ,

(3.21)

where θ ∈ (β1(R)/p(R), 1), b ∈ (0, (1/δ)inf|x|≥R0p(x) ) are constants, R0 ∈ (σ,R),R−R0 is small
enough, parameter λ ∈ [0, (R − R0)

1−θ/2], and

k∗ = M +

(

b ln
1

(R − R0)1−θ

)1/s

, (3.22)

where M satisfies

(σ)N−1 1
R0 − σ

≥ rN−1ρ(r)ef(r,y), ∀y ≤ −M, ∀r ∈ [0, R0]. (3.23)

Obviously, for any positive constant b, v(r, b, λ) ∈ C1[0, R).
By computation, when r ∈ (R0, R), we have

v′ = v′(r, b, λ) =
b1/s

s

(

ln
1

(R − r)1−θ + λ

)1/s−1
(1 − θ)(R − r)−θ

(R − r)1−θ + λ
,

∣
∣v′∣∣p(r)−2v′ =

[

(1 − θ)b1/s

s

]p(r)−1(

ln
1

(R − r)1−θ + λ

)(1/s−1)(p(r)−1)
(R − r)−θ(p(r)−1)

[

(R − r)1−θ + λ
]p(r)−1 ,
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(

rN−1∣∣v′∣∣p(r)−2v′
)′

= rN−1
[

(1 − θ)b1/s

s

]p(r)−1(

ln
1

(R − r)1−θ + λ

)(1/s−1)(p(r)−1)

×
(

p(r) − 1
)

(R − r)−θ(p(r)−1)−1
[

(R − r)1−θ + λ
]p(r)−1 (θ + Λ(r)),

(3.24)

where

Λ(r) =

{

rN−1[(1 − θ)b1/s/s
]p(r)−1}′

(

p(r) − 1
)

rN−1[(1 − θ)b1/s/s
]p(r)−1 (R − r) +

(1/s − 1)(1 − θ)
(

ln
(

1/
(

(R − r)1−θ + λ
)))[

(R − r)1−θ + λ
]

×(R − r)1−θ +
(1/s − 1)p′(r)
(

p(r) − 1
) (R − r) ln

[

ln
1

(R − r)1−θ + λ

]

+
θp′(r)

(

p(r) − 1
) (R − r) ln

1
(R − r)

+
(1 − θ)

[

(R − r)1−θ + λ
](R − r)1−θ +

−p′(r)
p(r) − 1

(R − r) ln
[

(R − r)1−θ + λ
]

.

(3.25)

By computation, when R−R0 is small enough, for λ ∈ [0, (R−R0)
1−θ/2] uniformly, we

have

(

rN−1∣∣v′∣∣p(r)−2v′
)′

≥ rN−1
[

(1 − θ)b1/s

s

]p(r)−1(

ln
1

(R − r)1−θ + λ

)(1/s−1)(p(r)−1)

×
(

p(r) − 1
)

(R − r)−θ(p(r)−1)−1
[

(R − r)1−θ + λ
]p(r)−1 θ

(

1 − 1
2

)

≥ θ

2
rN−1

[

(1 − θ)b1/s

s

]p(r)−1(

ln
1

(R − r)1−θ + λ

)(1/s−1)(p(r)−1)

×
(

p(r) − 1
)

(R − r)−θ(p(r)−1)−1
[

(R − r)1−θ + λ
]p(r)

(R − r)1−θ

≥ θ

2
rN−1

[

(1 − θ)b1/s

s

]p(r)−1(

ln
1

(R − r)1−θ + λ

)(1/s−1)(p(r)−1) (
p(r) − 1

)

(R − r)−θp(r)
[

(R − r)1−θ + λ
]p(r)

≥ rN−1ρ1(R − r)−β1(r)eδv
s

≥ rN−1ρ(r)ef(r,v), ∀r ∈ (R0, R).
(3.26)
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Then, for λ ∈ [0, (R − R0)
1−θ/2] uniformly, we have

(

rN−1∣∣v′∣∣p(r)−2v′
)′ ≥ rN−1ρ(r)ef(r,v), ∀r ∈ (R0, R). (3.27)

When R − R0 is small enough, for all r ∈ (σ,R0), since v ≤ −M, it is easy to see that

(

rN−1∣∣v′∣∣p(r)−2v′
)′ ≥

(

rN−1∣∣h′∣∣p(r)−2h′
)′

= (R0)N−1 1
R0 − σ

⎡

⎢
⎣

b(1 − θ)(R − R0)−θ

s
(

(R − R0)1−θ + λ
)

(

b ln
1

(R − R0)1−θ + λ

)1/s−1
⎤

⎥
⎦

p(R0)−1

− (σ)N−1 1
R0 − σ

∣
∣
∣

σμ

N

∣
∣
∣

≥ (σ)N−1 1
R0 − σ

≥ rN−1ρ(r)ef(r,v),
(3.28)

Then,

(

rN−1∣∣v′∣∣p(r)−2v′
)′ ≥ rN−1ρ(r)ef(r,v), ∀r ∈ (σ,R0). (3.29)

Obviously,

(

rN−1∣∣v′∣∣p(r)−2v′
)′

= rN−1μ ≥ rN−1ρ(r)ef(r,v), ∀r ∈ (0, σ). (3.30)

Combining (3.27), (3.29), and (3.30), when R − R0 is large enough, for any λ ∈ [0, (R −
R0)

1−θ/2], one can see that v(r, a, λ) is a subsolution for (P).
Define the function vm(r, b + ε) on B(0, R) as

vm(r, b + ε) = vm

(

r, b + ε,
1
m

)

, (3.31)

where ε is a small enough positive constant such that (b + ε) < (1/δ)inf|x|≥R0p(x).
For any m = 1, 2, . . ., we can see that vm(r, b + ε) ∈ C1([0, R)) is a subsolution for (P)

on B(R0, R). According to the comparison principle, we get that vm(r, b + ε) ≤ u(x) for any
x ∈ B(0, R). For any x ∈ B(0, R) \ B(0, R0), we have vm(|x|, b + ε) ≤ vm+1(|x|, b + ε). Thus

u(x) ≥ lim
m−→+∞

vm(|x|, b + ε), ∀x ∈ B(0, R) \ B(0, R0). (3.32)

When d(x, ∂Ω) is small enough, we have lim
m−→+∞

vm(|x|, b + ε) > v(|x|, b, 0).
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According to the comparison principle, we get that v(|x|, b, 0) ≤ u(x), ∀x ∈ B(0, R);
then Φ2(x) = Φ2(|x|) = v(|x|, b, 0) is a radial lower control function of all of the solutions for
(P), and Φ2(x) is a radial subsolution for (P).

Case 2 (β1(R) ≤ 0). Let μ > 2(maxr∈[0,R0]ρ(r) + 1)2(p
+−1)/(p−−1) be a positive constant. Denote

�b(r, λ) on [σ,R0] as

�b(r, λ) =
∫R0

r

{

(R0)N−1

tN−1
t − σ

R0 − σ

[
b

s(R + λ − R0)

(

b ln (R + λ − R0)
−1
)1/s−1]p(R0)−1

+
(σ)N−1

tN−1
R0 − t

R0 − σ

∣
∣
∣

σμ

N

∣
∣
∣

}1/(p(t)−1)
dt.

(3.33)

It is easy to see that

−� ′
b(σ, λ) = z′1(σ) =

∣
∣
∣

σμ

N

∣
∣
∣

1/(p(σ)−1)
, −� ′

b(R0, λ) =
b

s(R + λ − R0)

(

b ln (R + λ − R0)
−1
)1/s−1

.

(3.34)

Define the function η(r, b, λ) on B(0, R) as

η(r, b, λ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(

b ln (R + λ − r)−1
)1/s − k∗, R0 ≤ r < R,

(

b ln (R + λ − R0)
−1
)1/s − k∗ −�b(r, λ), σ < r < R0,

−
∫σ

r

∣
∣
∣

rμ

N

∣
∣
∣

1/(p(r)−1)
dr +

(

b ln (R + λ − R0)
−1
)1/s − k∗ −�b(σ, λ), r ≤ σ,

(3.35)

where b ∈ (0, (1/δ)inf|x|≥R0[p(x) − β1(x)]) is a constant, R0 ∈ (σ,R),R − R0 is small enough,
parameter λ ∈ [0, (R − R0)/2], and

k∗ = M +
(

b ln
1

R − R0

)1/s

, (3.36)

where M is defined in (3.23).
Obviously, for any positive constant b, η(r, b, λ) ∈ C1[0, R).
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Similar to the proof of Case 1, when R − R0 is small enough, we have

(

rN−1∣∣η′∣∣p(r)−2η′
)′

≥ rN−1
(

b1/s

s

)p(r)−1
(

p(r) − 1
)

(R + λ − r)−p(r)
(

ln (R + λ − r)−1
)(1/s−1)(p(r)−1)(

1 − 1
2

)

≥ rN−1ρ(r)ef(r,η), ∀r ∈ (R0, R).
(3.37)

When R − R0 is small enough, for all r ∈ (σ,R0), from the definition of k∗, it is easy to
see that

(

rN−1∣∣η′∣∣p(r)−2η′
)′ ≥ (σ)N−1 1

R0 − σ
≥ rN−1ρ(r)ef(r,η). (3.38)

Obviously

(

rN−1∣∣η′∣∣p(r)−2η′
)′

= rN−1μ ≥ rN−1ρ(r)ef(r,η), ∀r ∈ (0, σ). (3.39)

Combining (3.37), (3.38), and (3.39), when R − R0 is large enough, for any λ ∈ [0, (R −
R0)/2], one can see that η(r, a, λ) is a subsolution for (P).

Define the function ηm(r, b + ε) on B(0, R) as

ηm(r, b + ε) = η

(

r, b + ε,
1
m

)

, (3.40)

where ε is a small enough positive constant such that (b + ε) < (1/δ)inf|x|≥R0p(x) .
We can see that ηm(r, b + ε) ∈ C1[0, R) is a subsolution for (P) for any m = 1, 2 . . ..

According to the comparison principle, we get that ηm(r, b+ε) ≤ u(x) for any x ∈ B(0, R). For
any x ∈ B(0, R) \ B(0, R0), we have ηm(|x|, b + ε) ≤ ηm+1(|x|, b + ε). Then,

u(x) ≥ lim
m→+∞

ηm(|x|, b + ε), ∀x ∈ B(0, R) \ B(0, R0). (3.41)

When d(x, ∂Ω) is small enough, we have

lim
m−→+∞

ηm(|x|, b + ε) > η(|x|, b, 0). (3.42)

According to the comparison principle, we get that η(|x|, b, 0) ≤ u(x), ∀ x ∈ B(0, R);
then Φ2(x) = Φ2(|x|) = η(|x|, b, 0) is a radial lower control function of all of the solutions for
(P), and Φ2(x) = Φ2(|x|) is a radial subsolution for (P).
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Theorem 3.3. If f(r, u) satisfies

lim
u−→+∞

f(r, u)
us

= δ (as u −→ +∞) for r ∈ [σ,R) uniformly, (3.43)

where σ is defined in (H4), δ and s are positive constants, ρ(r) = ρ0(R − r)−β(r), where β(R) < p(R),
then each solution u(x) for (P) satisfies

lim
|x|−→R

u(x)
((

p(R)/δ
)(

ln 1/(R − |x|)1−θ
))1/s

= 1, where θ =
β(R)
p(R)

. (3.44)

Proof. It is easy to be seen from Theorems 3.1 and 3.2

4. The Existence of Boundary Blow-Up Solutions

Theorem 4.1. If infx∈Ωp(x) > N and f(r, u) satisfies

f(r, u) ≥ aus (as u → +∞) for r ∈ [σ,R) uniformly, (4.1)

where σ is defined in (H4), a and s are positive constants, then (P) possesses a boundary blow-up
solution.

Proof. In order to deal with the existence of boundary blow-up solutions, let us consider the
problem

−Δp(x)u + ρ(r)ef(x,u) = 0, in Ω0,

u(x) = c, forx ∈ ∂Ω0,
(4.2)

where c is a positive constant and Ω0 � Ω is a radial subdomain of Ω. Since infx∈Ωp(x) > N,
then W1,p(x)(Ω0) ↪→ Cα(Ω0), where α ∈ (0, 1). The relative functional of (4.2) is

ϕ =
∫

Ω0

1
p(x)

|∇u(x)|p(x)dx +
∫

Ω0

F(x, u)dx, (4.3)

where F(x, u) =
∫u

0 ef(x,t)dt. Since ϕ is coercive in X := c + W
1,p(x)
0 (Ω0), then ϕ possesses a

nontrivial minimum point u. So, problem (4.2) possesses a weak solution u.
Since aus ≤ f(r, u) ≤ C1+C2|u|γ(x), from Theorems 3.1 and 3.2, we get that (P) possesses

a supersolution g∗(x) and a subsolution g∗(x), which satisfy g∗(x) ≥ g∗(x), when d(x, ∂Ω)
(the distance from x to ∂Ω) is small enough. According to the comparison principle, we get
that g∗(x) ≥ g∗(x) for any x ∈ Ω.
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Denote Dj = {x | |x| < 1 − 1/(j + 1)R} (j = 1, 2, . . .). Let us consider the problem

−Δp(x)uj + ρ(x)ef(x,uj ) = 0, in Dj,

uj(x) = g∗(x), forx ∈ ∂Dj,
(4.4)

and the relative functional is

ϕ =
∫

Dj

1
p(x)

∣
∣∇uj(x)

∣
∣
p(x)

dx +
∫

Dj

ρ(x)F
(

x, uj

)

dx. (4.5)

Let g∗j(x) = g∗(x)|Dj
. Since the functional ϕ is coercive in Xj = g∗j(x) + W

1,p(x)
0 (Dj),

then ϕ has a nontrivial minimum point uj . Therefore, problem (4.4) has a weak solution uj .
According to the comparison principle, we get that g∗(x) ≤ uj(x) for any x ∈ Dj

(j = 1, 2, . . . ). Since uj(x) = g∗(x) for any x ∈ ∂Dj , then uj(x) ≤ uj+1(x) for any x ∈ ∂Dj

(j = 1, 2, . . .). According to the comparison principle, we get that uj(x) ≤ uj+1(x) for any
x ∈ Dj (j = 1, 2, . . .).

Since g∗(x) is a supersolution and g∗(x) ≥ g∗(x) for any x ∈ Ω, so we have uj(x) =
g∗(x) ≤ g∗(x) for any x ∈ ∂Dj (j = 1, 2, . . .). According to the comparison principle, we get
that uj(x) ≤ g∗(x) for any x ∈ Dj (j = 1, 2, . . .).

Since g∗(x) and g∗(x) are locally bounded, from Lemma 2.4, each weak solution of
(4.4) is a C1,α

loc function. The C
1,α interior regularity result implies that the sequences {uj} and

{∇uj} are equicontinuous inD2, and hence we can choose a subsequence, which we denoted
by {u1

j }, such that u1
j → w1 and ∇u1

j → �1 uniformly on D1 for some w1 ∈ C(D1) and

�1 ∈ (C(D1))
N . In fact,�1 = ∇w1 onD1, and from the interiorC1,α estimate, we conclude that

∇w1 ∈ (Cα(D1))
N for some 0 < α < 1. Thus,w1 ∈ W1,p(x)(D1)∩C1,α(D1). From theC1,α interior

regularity result, we see that |∇uj |p−1|∇ϕ| ≤ C|∇ϕ| on D1, and since the function ξ → |ξ|p−2ξ
is continuous on R

N , it follows that |∇u1
j (x)|p−2∇u1

j (x) ·∇ϕ(x) → |∇w1(x)|p−2∇w1(x) ·∇ϕ(x)
for x ∈ D1. Thus, by the dominated convergence theorem, we have

∫

D1

∣
∣
∣∇u1

j (x)
∣
∣
∣

p−2∇u1
j (x) · ∇ϕ(x)dx −→

∫

D1

|∇w1(x)|p−2∇w1(x) · ∇ϕ(x)dx, ∀ϕ ∈ W
1,p(x)
0 (D1).

(4.6)

Furthermore, since 0 ≤ f(u1
j ) ≤ f(u1

j+1) and f(u1
j (x)) → f(w1(x)) for each x ∈ D1, by

the monotone convergence theorem, we obtain

∫

D1

ρef(u
1
j )q dx −→

∫

D1

ρef(w1)q dx, ∀q ∈ W
1,p(x)
0 (D1). (4.7)

Therefore, it follows that

∫

D1

|∇w1(x)|p−2∇w1(x) · ∇q(x)dx +
∫

D1

ρef(w1)q dx = 0, ∀q ∈ W
1,p(x)
0 (D1), (4.8)

and hence w1 is a weak solution for −Δp(x)w1 + ρef(w1) = 0 on D1.
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Thus, there exists a subsequence of {uj}which we denote it by{u1
j }, such that u1

j → w1

in D1 (as j → ∞), where w1 ∈ W1,p(x)(D1) ∩ C1,α1(D1) and satisfies

∫

D1

|∇w1|p(x)−2∇w1∇q dx +
∫

D1

ρ(x)ef(x,w1)q dx = 0, ∀q ∈ W
1,p(x)
0 (D1). (4.9)

Similarly, we can prove that there exists a subsequence of {u1
j } which we denote

by{u2
j }, such that u2

j → w2 in D2 (as j → ∞), where w2 ∈ W1,p(x)(D2) ∩ C1,α2(D2) satisfies
w1 = w2|D1

and

∫

D2

|∇w2|p(x)−2∇w2∇q dx +
∫

D2

ρ(x)ef(x,w2)q dx = 0, ∀q ∈ W
1,p(x)
0 (D2). (4.10)

Repeating the above steps, we can get a subsequence of {ui
j | j = 1, 2, . . .} which we

denote by {ui+1
j | j = 1, 2, . . .} (i = 1, 2, . . .) and satisfies the following.

(10) For any fixed i, {ui+1
j } is a subsequence of {ui

j}.

(20) For any fixed i, ui+1
j → wi+1 in Di+1 (as j → ∞), where wi+1 ∈ W1,p(x)(Di+1) ∩

C1,αi+1(Di+1) satisfies wi = wi+1|Di
.

(30) For any fixed i, wi satisfies

∫

Di

|∇wi|p(x)−2∇wi∇q dx +
∫

Di

ρ(x)ef(x,wi)q dx = 0, ∀q ∈ W
1,p(x)
0 (Di). (4.11)

Thus, we can conclude that

(i) {uj

j} is a subsequence of {uj},

(ii) there exists a function w ∈ W
1,p(x)
loc (Ω) ∩ C1,α

loc(Ω) such that wi = w|Di
, and for any

x ∈ Ω, there exists a constant jx such that when j ≥ jx, u
j

j(x) is defined at x, and

limj→∞u
j

j(x) = w(x),

(iii)

∫

Ω
|∇w|p(x)−2∇w∇q dx +

∫

Ω
ρ(x)ef(x,w)q dx = 0, ∀q ∈ W

1,p(x)
0,loc (Ω). (4.12)

Obviously, w is a boundary blow-up solution for (P).
This completes the proof.
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In Theorem 4.1, when infx∈Ωp(x) > N, the existence of solutions for (P) is given.
In the following, we will consider the existence of solutions for (P) in the general case
1 < infx∈Ωp(x) ≤ supx∈Ωp(x) < ∞. We need to do some preparation. Let us consider

(

rN−1∣∣u′∣∣p(r)−2u′
)′

= rN−1ρ(r)ef(r,u), r ∈ (0, Rλ),

u′(0) = 0, u(Rλ) = d,

(I)

where Rλ ∈ (0, R) and d is a constant.

Lemma 4.2. IfΦ2(Rλ) ≤ d ≤ Φ1(Rλ), whereΦ1 andΦ2 are defined in Theorems 3.13.2, respectively,
then (4.13) has a solution u satisfying

Φ2(r) ≤ u(r) ≤ Φ1(r), ∀r ∈ [0, Rλ]. (4.13)

Proof. Denote

h(r, u) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

ef(r,Φ1(r)) + arctan(u(r) −Φ1(r)), u(r) > Φ1(r),

ef(r,u), Φ2(r) ≤ u(r) ≤ Φ1(r),

ef(r,Φ2(r)) + arctan(u(r) −Φ2(r)), u(r) < Φ2(r).

(4.14)

Let ρE(t) = ρ(|t|), and hE(t, u) = h(|t|, u), for all t ∈ [−Rλ, Rλ]. Let us consider the
even solutions of the following

(

|t|N−1∣∣u′∣∣p(|t|)−2u′
)′

= |t|N−1ρE(t)hE(t, u), t ∈ (−Rλ, Rλ),

u(−Rλ) = d, u(Rλ) = d.

(II)

It is easy to see that u is an even solution for (4.15) if and only if u is even and

u = d −
∫Rλ

r

[

|t|1−N
∫ t

0
|s|N−1ρ(s)h(s, u(s))ds

]1/(p(t)−1)
dt, ∀r ∈ [0, Rλ]. (4.15)

Denote Ψ(u, μ) = μd − μ
∫Rλ

r [|t|1−N ∫ t

0 |s|N−1ρ(s)h(s, u(s))ds]1/(p(t)−1)dt. Similar to the
proof of Lemma 2.3 of [18], for any μ ∈ [0, 1], it is easy to see that Ψ(u, μ) is compact
continuous and bounded from C1

E[0, Rλ] to C1
E[0, Rλ], where C1

E[0, Rλ] = {u ∈ C1[0, Rλ] |
u is even}. Thus, u = Ψ(u, 1) has a solution u in C1

E[0, Rλ] and satisfies u′(0) = limr→ 0+u
′(r) =

0. Then, u(|t|) is an even solution for (4.15).
Denote Φ1,E(t) = Φ1(|t|),Φ2,E(t) = Φ2(|t|). From the definitions of Φ1 and Φ2, we can

see that Φ′
1(0) = 0 = Φ′

2(0); therefore, Φ1,E(t) and Φ2,E(t) are supersolution and subsolution
for (4.15), respectively.
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Since Φ2(Rλ) ≤ u(Rλ) ≤ Φ1(Rλ) and hE(t, ·) is increasing, from the comparison
principle, we have

Φ2,E(t) ≤ u(t) ≤ Φ1,E(t), ∀t ∈ [−Rλ, Rλ]. (4.16)

It means that u is a solution for (4.13) and u satisfies

Φ2(r) ≤ u(r) ≤ Φ1(r), ∀r ∈ [0, Rλ]. (4.17)

Thus u is a radial solution for (P). This completes the proof.

Theorem 4.3. If f(r, u) satisfies

f(r, u) ≥ aus (as u −→ +∞) for r ∈ [σ,R) uniformly, (4.18)

where σ is defined in (H4) and a and s are positive constants, then (P) possesses a boundary blow-up
solution.

Proof. From Lemma 4.2, we have that (4.4) has a weak solution uj(x) = uj(|x|) = uj(r). Similar
to the proof of Theorem 4.1, we can obtain the existence of solutions for (P).
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