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We consider the Bresse system with frictional dissipative terms acting in all the equations. We
show the exponential decay of the solution by using a method developed by Z. Liu and S. Zheng
and their collaborators in past years. The numerical computations were made by using the finite
difference method to prove the theoretical results. In particular, the finite difference method in our
case is locking free.

1. Introduction and Main Results

The circular arch problem is also known as the Bresse system (see [1] for details).
Elastic structures of the arches type are objects of study widely explored in engineering,
architecture, marine engineering, aeronautics and others. In particular, the free vibrations
about elastic structures is a function of their natural properties and are an important subject
of investigation in engineering and also in mathematics. In the field of mathematical analysis
is interesting to know properties which relate the behavior of the energy associated with
the respective dynamic model. For feedback laws, for example, we can ask what conditions
about dynamic model must be ensured to obtain the decay of the energy of solutions in the
time t. In this sense, the property of stabilization has been studied for dynamic problems in
elastic structures translated in terms of partial differential equations. A interesting property
determines that the exponential decay with few feedback laws occurs only in an particular
situation (see [2, 3]).

Regarding the numerical aspects related to elastic structures, special attention was
dedicated for a numerical pathology know as locking phenomenon about transverse shear
force or simply shear locking (see [4–7]). The locking phenomenon is a numerical anomaly
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that affect some numerical methods when applied in elastic structures, such as finite element
methods for linear shape functions. Basically, this obstacle numerical consists in an over-
estimation about of the coefficient of rigidity and that obviously does not correspond to the
real case. Therefore, the locking phenomenon is a numerical inconsistent. In this sense, any
numerical method applied to elastic structures must be to avoid this numerical anomaly.

Following the aim idea about deformation in elastic structures, we consider the Bresse
system given by equations of motion

ρ1ϕtt = Qx + lN,

ρ2ψtt =Mx −Q,
ρ1wtt =Nx − lQ,

(1.1)

where we useN,Q andM to denote the axial force, the shear force and the bending moment,
respectively. These forces are stress-strain relations for elastic behavior and given by

N = κ0
(
wx − lϕ

)
,

Q = κ
(
ϕx + lw + ψ

)
,

M = bψx.

(1.2)

Here ρ1 = ρA, ρ2 = ρI, κ = k′GA, κ0 = EA, b = EI, l = R−1 where ρ is the density of
material, E is the modulus of elasticity, G is the shear modulus, k′ is the shear factor, A is
the cross-sectional area, I is the second moment of area of the cross-section and R is the
radius of curvature. The functions w, ϕ, and ψ are the longitudinal, vertical and shear angle
displacements, respectively (see Figure 1).

From coupled equations (1.1) and (1.2) we obtain

ρ1ϕtt − κ
(
ϕx + ψ + lw

)
x − κ0l

(
wx − lϕ

)
= 0, in (0, L) × (0, T)

ρ2ψtt − bψxx + κ
(
ϕx + ψ + lw

)
= 0, in (0, L) × (0, T)

ρ1wtt − κ0
(
wx − lϕ

)
x + κl

(
ϕx + ψ + lw

)
= 0, in (0, L) × (0, T).

(1.3)

In the literature (1.3) are the equations for the theory of circular arch. For more details
see [1].

In this paper we will examine the issues concerning the asymptotic stabilization of
Bresse system with frictional dissipative terms given by

ρ1ϕtt − κ
(
ϕx + ψ + lw

)
x − κ0l

(
wx − lϕ

)
+ γ1ϕt = 0, in (0, L) × (0, T), (1.4)

ρ2ψtt − bψxx + κ
(
ϕx + ψ + lw

)
+ γ2ψt = 0, in (0, L) × (0, T), (1.5)

ρ1wtt − κ0
(
wx − lϕ

)
x + κl

(
ϕx + ψ + lw

)
+ γ3wt = 0, in (0, L) × (0, T), (1.6)
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Figure 1: The circular arch.

where γ1, γ2 and γ3 are positive constants. The initial conditions are

ϕ(·, 0)= ϕ0, ϕt(·, 0)= ϕ1, ψ(·, 0)= ψ0, ψt(·, 0)= ψ1, w(·, 0) = w0, wt(·, 0)= w1 in ]0, L[,
(1.7)

and we assume the Dirichlet boundary conditions

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = w(0, t) = w(L, t) = 0 in ]0, T[. (1.8)

Remark 1.1. If R → ∞, then l → 0, and this model reduces to the well-known Timoshenko
beam equations (see [1] for details).

Related to the objectives of this paper there are few results in the literature. Recently,
Liu and Rao [8] studied the asymptotic behavior of the circular arch in the context of linear
thermoelasticity and they proved that the exponential decay occurs if and only if the speed
of wave propagation that occur in the model are equal.

Our main result is to prove that the Bresse system is exponentially stable in the
presence of feedback laws and in the sequence we evidence our result by using the finite
difference method of locking-free nature. This result was not considered for circular arch
problem.

The paper is organized as follows. In Section 2 we establish the existence, regularity,
and uniqueness of global solutions of (1.4)–(1.8). We use the semigroup techniques. In
Section 3 we study the exponential decay of the strong solutions to system (1.4)–(1.8). We
show the exponential decay of the solution by using a method developed by Liu and Zheng
[9] and their collaborators in past years. Finally, in Section 4 some numerical aspects were
considered. We use a particular discretization in finite difference method that is locking free
(see [10, 11]) and our objective in this case is only to verify the numerical exponential decay
for system (1.4)–(1.8). Questions about numerical analysis of numerical exponential decay



4 Journal of Applied Mathematics

as well the criterion stability for explicit time method in finite difference requires a more
elaborate analysis.

2. The Semigroup Setting

In this section we will study the existence and uniqueness of strong and global solutions for
the system (1.4)–(1.8) using the semigroup techniques. To give an accurate formulation of the
evolution problem we are introducing the product Hilbert space

H := H1
0(0, L) × L2(0, L) ×H1

0(0, L) × L2(0, L) ×H1
0(0, L) × L2(0, L) (2.1)

with norm given by

‖U‖2H =
∥∥∥
(
ϕ, ϕ̃, ψ, ψ̃,w, w̃

)T∥∥∥
2

H

≡
∫L

0
ρ1
∣∣ϕ̃
∣∣2 + ρ2

∣∣ψ̃
∣∣2 + ρ1|w̃|2 + b∣∣ψx

∣∣2 + k
∣∣ϕx + ψ + lw

∣∣2 + k0
∣∣wx − lϕ

∣∣2dx.

(2.2)

LetU = (ϕ, ϕt, ψ, ψt,w,wt)
T , and we define the operator A : D(A) ⊂ H → H given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0

k

ρ1∂
2
x

− k0l
2I

ρ1
− γ1
ρ1I

k

ρ1∂x
0

(k + k0)l
ρ1∂x

0

0 0 0 1 0 0

− k

ρ2∂x
0

b

ρ2∂
2
x

− k

ρ2I
− γ2
ρ2I

− kl

ρ2I
0

0 0 0 0 0 1

− (k0 + k)l
ρ1∂x

0
lkI

ρ1
0

k0

ρ1∂
2
x

− l2k

ρ1I
− γ3
ρ1I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

(2.3)

with domain

D(A) :=
(
H1

0(0, L) ∩H2(0, L) ×H1
0(0, L)

)3
. (2.4)

Therefore, system (1.4)–(1.8) is equivalent to

Ut = AU,

U(0) = U0,
(2.5)
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whereU0 := (ϕ0, ϕ1, ψ0, ψ1, w0, w1)
T . It is not difficult to see thatA is a dissipative operator in

the phase space H. More precisely we have

Re(AU,U)H = −
∫L

0

[
γ1
ρ1

∣∣ϕt
∣∣2 +

γ2
ρ2

∣∣ψt
∣∣2 +

γ3
ρ1

|wt|2
]
dx ≤ 0. (2.6)

Under the above notation we can establish the following theorem.

Theorem 2.1. The operator A is the infinitesimal generator of C0-semigroup S(t) of contraction
inH.

Proof. Since D(A) is dense in H and A is a dissipative operator, to prove Theorem 2.1, it is
sufficient to prove that 0 belongs to the resolvent set ofA, that is, 0 ∈ ρ(A) (see [12, Theorem
4.3]). Let us take F = (f1, f2, f3, f4, f5, f6) ∈ H, then there is an onlyU ∈ H such that

AU = F. (2.7)

It easily follows from (2.7) or the standard result on the linear elliptic equations that (2.7) has
a unique solution (ϕ, ψ,w) ∈ (H1

0(Ω)∩H2(Ω))3. Therefore, 0 ∈ ρ(A) and (ϕ, ϕt, ψ, ψt,w,wt) ∈
D(A). The proof is now complete.

3. Exponential Decay

In this section we will prove that the semigroup S(t) on H is exponentially stable. Here we
will use necessary and sufficient conditions for C0-semigroups being exponentially stable in
a Hilbert space. This result was obtained by Gearhart [13] and Huang [14], independently
(see also [15]).

Theorem 3.1. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space H. Then S(t) is
exponentially stable if and only if

ρ(A) ⊇ {iλ : λ ∈ R} ≡ iR, (3.1)

lim
|λ|→∞

∥∥∥(iλI −A)−1
∥∥∥
L(H)

<∞ (3.2)

hold, where ρ(A) is the resolvent set ofA.

Theorem 3.2. TheC0-semigroup of contractions (eAt), t > 0, generated byA, is exponentially stable.

Proof. To prove the exponential stability of (eAt), it remains to verify the properties (3.1) and
(3.2) of Theorem 3.1. First we prove that

ρ(A) ⊇ {iλ : λ ∈ R}. (3.3)
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Suppose that the conclusion of (3.1) is not true. Then there is a β ∈ R such that, β /= 0, iβ ∈
σ(A) (spectrum of A) and since A−1 is compact, iβ must be an eigenvalue of A. Let U =
(ϕ, ϕt, ψ, ψt,w,wt)

T be with ‖U‖H = 1, such that AU = iβU. Using the definition of A it
follows that AU = iβU if and only if

k

ρ1ϕxx
− k0
ρ1l2ϕ

+
k

ρ1ψx
+
(k + k0)
ρ1lwx

+ β2ϕ =
iγ1
ρ1βϕ

, (3.4)

b

ρ1ψxx
− k

ρ2ψ
− k

ρ2ϕx
− k

ρ2lw
+ β2ψ =

iγ2
ρ2βψ

, (3.5)

k0
ρ1wxx

− k

ρ1l2w
− (k + k0)

ρ1lϕx
+

k

ρ1lψ
+ β2w =

iγ3
ρ1w

. (3.6)

Multiplying equations (3.4) (3.5), and (3.6) by ϕ, ψ and w, respectively, and performing
integration by parts on ]0, L[, we arrive at

γ1β

∫L

0
ϕ2dx = 0,

γ2β

∫L

0
ψ2dx = 0,

γ3β

∫L

0
w2dx = 0,

(3.7)

which implies that ϕ = 0, ψ = 0, w = 0 and consequently

∫L

0
b
∣∣ψx

∣∣2 + k
∣∣ϕx + ψ + lw

∣∣2 + k0
∣∣wx − lϕ

∣∣2dx = 0, (3.8)

from where we can conclude that ‖U‖H = 0, which contradicts ‖U‖H = 1. This completes the
proof of (3.1).

We now prove (3.2) by a contradiction argument again. Suppose that (3.2) is not true.
Then there are a sequence Vn ∈ H and a sequence βn ∈ R such that

n‖Vn‖H ≤
∥∥∥
(
IβnI −A)−1Vn

∥∥∥
H
, ∀n > 0. (3.9)

From iβn ∈ ρ(A)we have that there exists a unique sequenceUn ∈ D(A) such that

iβnUn −AUn = Vn, ‖Un‖H = 1. (3.10)

Denoting by Fn = iβnUn −AUn it follows that

‖Fn‖H ≤ 1
n
−→ 0, as n −→ ∞. (3.11)
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Let us denote by

Un =
(
ϕn, ϕ̃n, ψn, ψ̃n,wn, w̃n)T ,

Fn =
(
fn1 , f

n
2 , f

n
3 , f

n
4 , f

n
5 , f

n
6

)T
.

(3.12)

From Fn = iβnUn −AUn we have the following equations in L2(0, L):

iβnϕ
n − ϕ̃n = fn1 , (3.13)

iρ1βnϕ̃
n − kϕnxx + k0l2ϕn + γ1ϕ̃n − kψnx − (k + k0)lwn

x = fn2 , (3.14)

iβnψ
n − ψ̃n = fn3 , (3.15)

iρ2βnψ̃
n − bψnxx + kψn + kϕnx + γ2ψ̃n + klwn = fn4 , (3.16)

iβnw
n − w̃n = fn5 , (3.17)

iρ1βnw̃ − k0wn
xx + kl

2wn + γ3w̃n + (k + k0)lϕnx + lkψ
n = fn6 . (3.18)

Taking the inner product of (iβnI − A)Un with Un in H and then taking the real part, we
obtain

Re
((
iβnI −A)Un,Un)

H = −
∫L

0

[
γ1
ρ1

∣∣ϕ̃n
∣∣2 +

γ2
ρ2

∣∣ψ̃n
∣∣2 +

γ3
ρ1

|w̃n|2
]
dx −→ 0 (3.19)

from where we can conclude that

ϕ̃n −→ 0 in L2(0, L),

ψ̃n −→ 0 in L2(0, L),

w̃n −→ 0 in L2(0, L).

(3.20)

Considering the equation

βn‖Un‖2 − i(AUn,Un)H = i(Fn,Un)H, (3.21)

then from (2.6)

βn‖Un‖2 + i
∫L

0

[
γ1
ρ1

∣∣ϕ̃n
∣∣2 +

γ2
ρ2

∣∣ψ̃n
∣∣2 +

γ3
ρ1

|w̃n|2
]
dx = i(Fn,Un)H, (3.22)

which implies that βn‖Un‖2 → 0, and then

βn
∣∣ϕ̃n

∣∣2 −→ 0, βn
∣∣ψ̃n

∣∣2dx −→ 0, βn|w̃n|2 −→ 0. (3.23)
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From

ϕ̃n −→ 0, ψ̃n −→ 0, w̃n −→ 0 (3.24)

we can conclude that

βnϕ̃
n −→ 0, βnψ̃

n −→ 0, βnw̃
n −→ 0. (3.25)

From equations (3.14), (3.16) and (3.18) we obtain, after some calculations,

∫L

0
b
∣
∣ψnx

∣
∣2 + k

∣
∣ϕnx + ψ

n + lwn
∣
∣2 + k0

∣
∣wn

x − lϕn
∣
∣2dx −→ 0. (3.26)

In summary, we have proved that ‖Un‖H → 0 which contradicts ‖Un‖H = 1. Thus, the proof
is complete.

4. Unlocking for Spatial Finite Difference Scheme

For numerical verification of the exponential decay of system (1.4)–(1.8) we use the total
discretization in finite difference method. With respect to numerical schemes in this case,
some aspects should be taking into account. The first one concerns to numerical phenomenon
known as shear locking, which affects some numerical models applied to vibration problems
in structures as shell, plates and beams. For the locking phenomenon (see [4–7]) for ample
discussion for plane beams. For fast discussion about this numerical problem, we considerer
the case of plane beams described by theory of Timoshenko and given by the following
equations:

ρ1ϕtt − κ
(
ϕx + ψ

)
x = 0, (4.1)

ρ2ψtt − bψxx + κ
(
ϕx + ψ

)
= 0. (4.2)

are resulting of the equations (1.4)–(1.5) for l → 0.
By using the finite element method standard with linear shape functions, the rigidity

coefficient b = EI is modified for

b∗ = b
(
1 +

κ

12b
h2
)
= EI

[

1 +
k′G
E

(
h

ε

)2
]

, (4.3)

where b = EI, κ = kGA, A = aε, I = aε3/12 considering a rectangular geometry with width
a and thickness ε. In particular, for plane beams must be have ε < h where h is the spatial
division (see ([10, 11] for details). Consequently, b∗ > b and clearly this value for rigidity
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Figure 2: Conservative case, μ = 3.
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coefficient does not correspond to the real case for h fixed. In reality, with b∗ the equation for
angle rotation in (4.2) is rewrite as

ρ2ψtt − bψxx − κ

12
h2ψxx + κ

(
ϕx + ψ

)
= 0 (4.4)

and the energy respective is

E(t) =
1
2

∫L

0

[
ρ1
∣∣ϕt
∣∣2 + ρ2

∣∣ψt
∣∣2
]
dx +

1
2

∫L

0

[
κ
∣∣ϕx + ψ

∣∣2 + b∗∣∣ψx
∣∣2
]
dx (4.5)
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and obviously this energy is different of the real case with b∗ = b. In general the numerical
schemes in finite elementmethod or finite differencemethod are locking free/over-estimation
if not exist any additional term about the coefficients of the system, because the shear locking
problem is basically a numerical anomaly characterized by a over-estimation about rigidity
coefficients and dependent of parameter h.

To avoid this numerical anomaly the finite element method can be used, however,
special care must be taking in to account for choose of basis functions [6, 7]. Naturally, this
shear locking/over-estimation can be to affect equations (1.4)–(1.6). See the studies by Loula
et al. in [16–18] for numerical treatment in finite element for circular arch problem.

In our case, we use the total discretization in finite difference method and to avoid
shear locking/over-estimation we make a particular discretization for the functions of zero
derivative such as κ0l2ϕ, κψ and κlw for a numerical operator of second order in relation
to Δx.
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For our purposes, we use the space-time explicit method applied to equations (1.4)–
(1.6) and we define Δx = L/(J + 1), Δt = T/(N + 1) for J,N ∈ N and nets

x0 = 0 < x1 = Δx < · · · < xJ = JΔx < xJ+1 = L,
t0 = 0 < t1 = Δt < · · · < tN =NΔt < tN+1 = T,

(4.6)

where xj = jΔx and tn = nΔt for j = 0, 1, 2, . . . , J + 1 and n = 0, 1, 2, . . . ,N + 1. The numerical
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scheme consists in to find ϕn+1j , ψn+1j and wn+1
j such that

ρ1∂t∂tϕ
n
j = κ∂x∂xϕnj + κ

∂x + ∂x
2

ψnj + κ
∂x + ∂x

2
wn
j −

κ0l
2

2

(
ϕnj−1/2 + ϕ

n
j+1/2

)
− γ1 ∂t + ∂t2

ϕnj ,

(4.7)

ρ2∂t∂tψ
n
j = b∂x∂xψnj − κ∂x + ∂x

2
ϕnj −

κ

2

(
ψnj−1/2 + ψ

n
j+1/2

)
− κl

2

(
wn
j−1/2 +w

n
j+1/2

)
− γ2 ∂t + ∂t2

ψnj ,

(4.8)

ρ1∂t∂tw
n
j =κ0∂x∂xwn

j −κ
∂x + ∂x

2
ϕnj −

κl

2

(
ψnj−1/2 + ψ

n
j+1/2

)
− κl2

2

(
wn
j−1/2 +w

n
j+1/2

)
− γ3 ∂t + ∂t2

wn
j

(4.9)

for j = 1, 2, . . . , J, n = 1, 2, . . . ,N, with the following numerical operators of second order for
a function u(x, t):

∂x + ∂x
2

unj =
unj+1 − unj−1

2Δx
,

∂t + ∂t
2

unj =
un+1j − un−1j

2Δt
,

∂x∂xu
n
j =

unj+1 − 2unj + u
n
j−1

Δx2
, ∂t∂tu

n
j =

un+1j − 2unj + u
n−1
j

Δt2
.

(4.10)

For unj−1/2 and u
n
j+1/2 we denote the average of u(xj , tn) on the points (xj−1, tn), (xj , tn)

and (xj+1, tn), (xj , tn), respectively. This approximation avoid any over-estimation about the
coefficients of equations (1.4)–(1.6). Then, we have,

unj−1/2 + u
n
j+1/2

2
:=

unj+1 + 2unj + u
n
j−1

4
. (4.11)
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The boundary conditions in the numerical context are given by

ϕn0 = ϕnJ+1 = 0, ψn0 = ψnJ+1 = 0, wn
0 = wn

J+1 = 0, ∀n = 1, 2, . . . ,N, (4.12)

and the discretizations to initial conditions are given by

ϕ0
j = ϕ

(
xj , 0

)
, ϕ1

j = ϕ
−1
j + 2Δtϕt

(
xj , 0

)
, ∀j = 1, 2, . . . , J,

ψ0
j = ψ

(
xj , 0

)
, ψ1

j = ψ−1
j + 2Δtψt

(
xj , 0

)
, ∀j = 1, 2, . . . , J,

w0
j = w

(
xj , 0

)
, w1

j = w
−1
j + 2Δtwt

(
xj , 0

)
, ∀j = 1, 2, . . . , J.

(4.13)
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Figure 11: Total dissipation, μ = 10.

The numerical energy associated for (4.7)–(4.13) is given by

En :=
Δx
2

J∑

j=0

⎡

⎢
⎣ρ1

⎛

⎝
ϕn+1j − ϕnj

Δt

⎞

⎠

2

+ ρ2

⎛

⎝
ψn+1j − ψnj

Δt

⎞

⎠

2

+ ρ1

⎛

⎝
wn+1
j −wn

j

Δt

⎞

⎠

2

+ b

⎛

⎝
ψn+1j+1 − ψn+1j

Δx

⎞

⎠
(
ψnj+1 − ψnj

Δx

)

+ κ0

⎛

⎝
wn+1
j+1 −wn+1

j

Δx
− l

ϕn+1j+1 + ϕn+1j

2

⎞

⎠
(
wn
j+1 −wn

j

Δx
− l

ϕnj+1 + ϕ
n
j

2

)

+κ

(
ϕnj+1 − ϕnj

Δx
+
ψnj+1 + ψ

n
j

2
+ l

wn
j+1 +w

n
j

2

)
⎤

⎥
⎦.

(4.14)

Equations (4.7)–(4.9), in fact, are locking free because the numerical energy (4.14)
is compatible with the continuous energy in (2.2), because the coefficients b, κ0 and κ are
exactly those in (2.2), without any dependence with h. To verify this, we have the following
proposition.

Proposition 4.1. For all Δt,Δx ∈ (0, L) the energy (4.14) of solutions of the discrete equations
(4.7)–(4.9), with initial conditions (4.13) and any boundary conditions (4.12) is such that

En ≤ E0, ∀n = 1, 2, . . . ,N. (4.15)

Proof. The proof is more extensive and we have omitted it here. For a idea of the proof, we use
the multiplicative techniques such as performed in [19, 20], that is we multiply the equations
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(4.7)–(4.9) by (1/2)(ϕn+1j −ϕn−1j ), (1/2)(ψn+1j −ψn−1j ) and (1/2)(wn+1
j −wn−1

j ), respectively, and
after we applied the discrete sum for j = 1, . . . , J . Then after some properly simplifications
and taking in to account the boundary conditions given in (4.12)we get (4.14).

It is clear that discrete equations (4.7)–(4.9) are all consistent with O(Δx2,Δt2) for
truncation error. Then, by Lax equivalence theorem the equations (4.7)–(4.9) are convergent
if, and only if, they are stable. But another numerical limitation occurs for explicit time
methods when applied to vibrations problem in elastic structures, with, say, respect to
numerical stability. In particular, for explicit time method in finite difference applied to
vibrations in Timoshenko beams, the prevailing numerical stability is given by Δt ≤ ε/

√
3cs
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where cs =
√
k′G/ρ. The limitation occurs when ε is small. The understanding and

overcoming for this limitation was studied by Joseph P. Wright in [10, 11]. Naturally, the
same numerical problem affect (4.7)–(4.9), in function of the dependence of thickness ε. Then,
this problem should be the objective of study in another opportunity, and for our purpose of
numerical verification to exponential decay, we consider ε fixed.

For numerical example, we consider L = 2πm, thickness ε = 0.025m, width a =
0.0040m, l = 1/20, E = 21 × 104 N/m2, ρ = 7850kg/m3, k′ = 5/6, r = 0.29 (Poisson ratio),
G = E/(2 + 2r) and the following initial conditions:

ϕ
(
xj , 0

)
= ψ

(
xj , 0

)
= w

(
xj , 0

)
= 0,

wt

(
xj , 0

)
= sin

(
μπxj

L

)
, ϕt

(
xj , 0

)
= ψt

(
xj , 0

)
= 0, μ ∈ N.

(4.16)

First we reproduce the conservative case, γi = 0, i = 1, 2, 3 and for dissipative case, we
consider γi = π, i = 1, 2, 3. For the computational domain chosen 32 spatial points and 312
points in the time domain were given by T = 1.5 seconds (see Figures 1, 2, 3, 4, 5, 6, and 7).

With Figures 8, 9, 10, 11, 12, and 13 we illustrate the simulation results for vibration
in angle rotation ψ and the behavior of numerical energy in the cases conservative and
dissipative. Of course the numerical energy (4.14) must be conservative in the absence of
damping.
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