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We identify the blow-up set of solutions to the problem ut = (|ux|p−2ux)x, x > 0, t ∈ (0, T),
−|ux|p−2ux(0, t) = up−1(0, t), t ∈ (0, T), and u(x, 0) = u0(x) ≥ 0, x > 0, where p > 2. We obtain that
the blow up set B(u) satisfies [0, p(p − 1)/(p − 2)) ⊂ B(u) ⊂ [0, p(p − 1)/(p − 2)]. The proof is based
on the analysis of the asymptotic behavior of self-similar representation and on the comparison
methods.

1. Introduction

Consider a one-dimensional process of diffusion in a medium that occupies the half space
{x : x ≥ 0}; that is,

ut =
(
|ux|p−2ux

)
x
, x > 0, t ∈ (0, T),

−|ux|p−2ux(0, t) = uq(0, t), t ∈ (0, T),

u(x, 0) = u0(x) ≥ 0, x > 0,

(1.1)

where p > 2, q > 0 and u0(x) is an appropriately smooth function with some compatibility
conditions. Problem (1.1) describes the non-Newtonian fluid with a power dependence of the
tangential stress on the velocity of the displacement under nonlinear condition. It has many
applications and has been intensively studied; see [1–3] and the references cited therein. For
the local in time existence, we refer to [4]. Also it is known that (1.1) has no classical solution
in general due to the possible degeneration at ux = 0. So we usually understand the weak
solution defined in the following sense.
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Definition 1.1. A nonnegative function u ∈ C([0,+∞) × [0, t))with ux ∈ L∞([0,+∞) × [0, t)) is
said to be a weak solution of (1.1), if the integral identity

∫ t

0

∫+∞

0

(
uφt − |ux|p−2uxφx

)
dx ds +

∫+∞

0
u0(x)φ(x, 0)dx +

∫ t

0
uq(0, s)φ(0, s)ds = 0 (1.2)

is fulfilled for all φ ∈ C∞
0 ([0,+∞) × [0, t)).

An interesting phenomenon is that, due to the boundary effect, the solution of (1.1)
may exist for t ∈ [0, T) and becomes unbounded as t → T for some T < ∞. Namely, the
solutionoccurs blow-up phenomenon. In this connection, Galaktionov and Levine proved in
[5] that the solutions are global in time when 0 < q ≤ 2(p − 1)/p but occur blow-up for the
range 2(p − 1)/p < q ≤ 2(p − 1), while for q > 2(p − 1) blow-up happens or not depending
on the size of the initial data. The main concern in this work is on the set of points at which
solutions becomes unbounded, that is, the blow-up set, which is defined as

B(u) = {x : ∃ xn −→ x, tn → T−, such that u(xn, tn) −→ ∞ as n −→ ∞}. (1.3)

A problem which has attracted a lot of attention in the literature is the identification of
possible blow-up sets. Numerical analysis hints that the blow-up set should be a single point
(single point blow-up) when q > p − 1, a proper subset of the spatial domain (regional blow-
up)when q = p−1, and the whole half line (global blow-up)when 0 < q < p−1. In fact, based
on the Gilding and Herrero’s work in [6], Quirós and Rossi considered the porous medium
type equation

ut = (um)xx, x > 0, t ∈ (0, T),

−(um)x(0, t) = uq(0, t), t ∈ (0, T),

u(x, 0) = u0(x) ≥ 0, x > 0.

(1.4)

They proved in [1]: the blow-up set B(u) = {0} if q > m but B(u) = [0,+∞) if q < m, however,
the blow-up set is regional in case of q = m, namely, 0 < B(u) < +∞. Afterwards, Cortázar et
al. given a detailed description on the regional blow-up set. They proved in [7] that if q = m,
then the blow-up set satisfies [0, 2m/m − 1) ⊂ B(u) ⊂ [0, 2m/m − 1].

In the light of previous works, we discuss the blow-up set of solutions for the p-
Laplacian equation (1.1). In the current paper, we identify the set of blow-up points in case
of q = p − 1. So, in the following we consider

ut =
(
|ux|p−2ux

)
x
, x > 0, t ∈ (0, T),

−|ux|p−2ux(0, t) = up−1(0, t), t ∈ (0, T),

u(x, 0) = u0(x) ≥ 0, x > 0,

(1.5)

where p > 2.We take u0(x) to be a C1, nonincreasing and compactly supported function with
some compatibility conditions. The below theorem is our main result.
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Theorem 1.2. Assume that u0(x) ∈ C1([0,+∞)) is a nonnegative, nonincreasing and compactly
supported function, then all the nontrivial solutions u(x, t) of problem (1.5) occur blow-up; moreover,
the blow-up set B(u) satisfies

[
0,

p
(
p − 1

)

p − 2

)
⊂ B(u) ⊂

[
0,

p
(
p − 1

)

p − 2

]
. (1.6)

Remark 1.3. The nonincreasing assumption on u0 makes the proof much simpler (see also
[7]).

Remark 1.4. One could expect that if the solutions of (1.1) occur blow-up, then the blow-up
set B(u) = [0,+∞) if 0 < q < p − 1, but B(u) = {0} if q > p − 1.

2. Proof of Theorem 1.2

In order to study the solution u of (1.5) near the blow-up time T, as in [8] we introduce the
rescaled function

v(x, τ) = (T − t)1/(p−2)u(x, t), (2.1)

where τ = − ln((T − t)/T) ∈ [0,+∞). Hence, we obtain the below equations in terms of v by
substituting (2.1) into (1.5),

∂v

∂τ
=
(
|vx|p−2vx

)
x
− 1
p − 2

v, x > 0, τ > 0,

−|vx|p−2vx(0, τ) = vp−1(0, τ), τ > 0,

v(x, 0) = T1/(p−2)u0(x) ≥ 0, x > 0.

(2.2)

If v is τ independent, then u is called a self-similar solution. Let w(x) = (T −
t)1/(p−2)u(x, t), we have

(
|wx|p−2wx

)
x
− 1
p − 2

w = 0, x > 0,

−|wx|p−2wx(0) = wp−1(0).

(2.3)

A direct integration shows that the non-negative solution of (2.3) is w ≡ 0 or

w(x) =
(
p − 2
p

)(p−1)/(p−2)( 1
2
(
p − 1

)
)1/(p−2)(

p
(
p − 1

)

p − 2
− x

)p/(p−2)

+

, (2.4)

where a+ = max{0, a}.
Theorem 1.2 is a direct consequence of the following two propositions.
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Proposition 2.1. Let v(x, τ) be a solution of (2.2), then there exists a function w(x), such that the
limit holds uniformly on [0,+∞),

v(·, τ) −→ w(·), as τ −→ +∞. (2.5)

Moreover, w(x) has the explicit form (2.4) and solves problem (2.3).

Proposition 2.1 and the formula (2.1) generate

[
0,

p
(
p − 1

)

p − 2

)
⊂ B(u). (2.6)

Proposition 2.2. Suppose that the constants a, b satisfy p(p − 1)/(p − 2) < a < b < +∞, then there
exists a large time point τ0 such that for all τ > τ0

v(x, τ) ≤ Ce−τ/(p−2), x ∈ [a, b], (2.7)

where constant C depends on a, b and u0.

Proposition 2.2, along with (2.1), shows that u(x, t) is uniformly bounded for all t ∈
(0, T) if x > p(p − 1)/p − 2. This claims

B(u) ⊂
[
0,

p
(
p − 1

)

p − 2

]
. (2.8)

Hence, Theorem 1.2 immediately follows from (2.6) and (2.8). So the remaining task
in this paper is to prove the validity of Propositions 2.1 and 2.2. This will be discussed in
Section 3.

3. Proof of Propositions 2.1 and 2.2

In this section we prove Propositions 2.1 and 2.2. The argument contains several lemmas.

Lemma 3.1. All the nontrivial solutions of (1.5) occur blow-up.

The proof is available in [5], (see also [3]).

Lemma 3.2. If the initial function u0 is nonincreasing, then so does the solution u(x, t) for all existent
times, that is, ux ≤ 0, a.e. (x, t) ∈ (0,∞) × (0, T).
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Proof. Consider the regularized problem

∂u

∂t
=
((

u2
x + ε

)(p−2)/2
ux

)

x

, x > 0, t ∈ (0, T),

−
(
u2
x + ε

)(p−2)/2
ux(0, t) = up−1(0, t), t ∈ (0, T),

u(x, 0) = u0ε(x) ≥ 0, x > 0,

(3.1)

where ε > 0, u0ε(x) ∈ C∞
0 ([0,+∞)) is nonincreasing and converges to u0(x) uniformly as

ε → 0+. By uniqueness, the solution of (1.5) should be the limit function of that of (3.1).
Setting z(x, t) = (u2

x + ε)(p−2)/2ux and then differentiating the equation in t to obtain

zt =
(
u2
x + ε

)(p−2)/2
uxt +

(
p − 2

)(
u2
x + ε

)(p−2)/2−1
u2
xuxt

=
[(

u2
x + ε

)(p−2)/2
+
(
p − 2

)(
u2
x + ε

)(p−2)/2−1
u2
x

]
zxx.

(3.2)

Clearly, (3.2) is a linear parabolic equation with respect to z. On account of the boundary
conditions z(0, t) = −u(0, t)p−1 ≤ 0 and z(x, 0) = (u2

0εx + ε)(p−2)/2u0εx ≤ 0,we deduce z(x, t) ≤ 0
via comparison theorem. The proof is completed.

Remark 3.3. Using the maximum principle for problem (3.1), we obtain

maxx≥0,0≤t≤T
{
−
(
u2
x + ε

)(p−2)/2
ux

}
= max

{
up−1(0, t), −

(
u2
0εx + ε

)(p−2)/2
u0εx

}
. (3.3)

By sending ε → 0+, it follows that

maxx≥0,0≤t≤T
{
−|ux|p−2ux

}
= max

{
up−1(0, t), −|u0x|p−2u0x

}
. (3.4)

Lemma 3.4. There exists a constant C = C(p, u0) such that

∫ t

0
up−1(0, s)ds ≤ C(T − t)−1/(p−2), ∀t ∈ [0, T). (3.5)

Proof. Integrating (1.5)1, the first equation of (1.5), over [0,+∞) × [0, t) yields

∫∞

0
u(x, t)dx −

∫∞

0
u0dx =

∫ t

0
up−1(0, s)ds. (3.6)
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Now multiplying (1.5)1 by x and integrating the resulting expression once more, we have

∫∞

0
xu(x, t)dx −

∫∞

0
xu0dx =

∫ t

0

∫∞

0
x
(
|ux|p−2ux

)
x
dx ds

=
∫ t

0

∫∞

0

(
x|ux|p−2ux

)
x
dx ds −

∫ t

0

∫∞

0
|ux|p−2uxdx ds

= −
∫ t

0

∫∞

0
|ux|p−2uxdx ds.

(3.7)

Thanks to Remark 3.3, we estimate

−
∫ t

0

∫∞

0
|ux|p−2uxdx ds ≤

∫ t

0
|ux(0, s)|p−2

∫∞

0
(−ux)dx ds +

∫ t

0

∫∞

0
|u0x|p−1

=
∫ t

0
|ux(0, s)|p−2u(0, s)ds + C(T, u0x)

=
∫ t

0
up−1(0, s)ds + C(T, u0x),

(3.8)

the last sign comes from the boundary condition. Thus, (3.7) becomes

∫∞

0
xu(x, t)dx −

∫∞

0
xu0dx ≤

∫ t

0
up−1(0, s)ds + C(T, u0x). (3.9)

Multiplying (3.6) by a constant K > 1 and then subtracting (3.9) produces

∫∞

0
(K − x)u(x, t)dx −

∫∞

0
(K − x)u0dx ≥ (K − 1)

∫ t

0
up−1(0, s)ds − C(T, u0x). (3.10)

If we choose K > 1 so large such that suppu0 ⊂ [0, K], then

∫∞

0
(K − x)u(x, t)dx −

∫∞

0
(K − x)u0dx ≤

∫K

0
(K − x)u(x, t)dx ≤ K2u(0, t). (3.11)

Inequalities (3.10) and (3.11) lead to

K2u(0, t) ≥ (K − 1)
∫ t

0
up−1(0, s)ds − C(T, u0x). (3.12)

Putting F(t) =
∫ t
0 u

p−1(0, s)ds and integrating above inequality over (t, T) brings

F(t) ≤ C(T − t)−1/(p−2) + C(T, u0x)

≤ C1(T − t)−1/(p−2), (t close to T).
(3.13)
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Because u is bounded when time t is away from the blow-up time T, (3.13) and thus (3.5) is
valid for all t ∈ [0, T).

The next lemma proves that u(x, t) is localized. Namely, the support of u(·, t) is
uniformly bounded for all t ∈ ([0, T).

Lemma 3.5. There exists a constant M depending on p and u0 such that if x > M, then

u(x, t) ≡ 0, ∀t ∈ [0, T). (3.14)

Proof. Let us introduce the function

q(x, t) = D(T − t)−1/(p−2)(L − x)p/(p−2)+ , (3.15)

whereD satisfies whereDp−2 = (1/2(p−1))(p−2/p)p−1 and L is an arbitrary positive constant.
It is easy to check that q(x, t) satisfies (1.5)1. By differentiating (3.5), we have u(0, t) ≤ C(T −
t)−1/p−2. This, together with the monotonicity of u, deduces

u(x, t) ≤ C(T − t)−1/(p−2), ∀x ≥ 0, t ∈ (0, T). (3.16)

Because the initial support is bounded, we choose a suitably large point x0 < +∞ to guarantee
suppu0 ⊂ [0, x0]. Setting ũ(x, t) = u(x + x0, t), it has

ũ(x, 0) = u(x + x0, 0) ≡ 0 ≤ q(x, 0), ∀x > 0. (3.17)

By virtue of (3.16), there exists some large constant L0 such that for all L > L0, it holds

ũ(0, t) = u(x0, t)

≤ C(T − t)−1/(p−2)

≤ DLp/(p−1)(T − t)−1/(p−2) = q(0, t), ∀t ∈ (0, T).

(3.18)

So comparison theorem concludes

ũ(x, t) ≤ q(x, t), ∀x ≥ 0, t ∈ (0, T). (3.19)

Hence, for every constant L satisfying L > L0, (3.19) ensures supp ũ(·, t) ⊂ [0, L]. Thus
suppu(·, t) ⊂ [0, x0 + L]. Denoted by M = x0 + L, it follows that for all x > M,

u(x, t) ≡ 0, ∀t ∈ (0, T). (3.20)

This completes the proof.
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Corollary 3.6. Lemma 3.5 and (2.1) claim that v(x, τ) is localized as well. Moreover, (2.1) and
(3.16) guarantee the boundedness of v(x, τ) for all x ≥ 0 and τ ≥ 0. By a similar argument as that in
Lemma 3.2, one can prove that |vx|p−2vx also is bounded.

In what follows, we analyze the large time behavior of the solution v(x, τ) of problem
(2.2).

Multiplying (2.2) by v and then integrating by parts, we deduce that

∫∞

0

∫ τ2

τ1

v2
τdx ds + J[v](τ2) ≤ J[v](τ1), a.e., 0 ≤ τ1 < τ2 < ∞, (3.21)

where J[v](τ) is the Liapunov functional and

J[v](τ) =
1
p

∫∞

0
|vx|pdx − 1

p

∫∞

0
vp(0, τ) +

1
2
(
p − 2

)
∫∞

0
v2(x, τ)dx. (3.22)

Based on the estimates

v, vx ∈ L∞([0,+∞) × [0,+∞)), vτ ∈ L2([0,+∞) × [0,+∞)), (3.23)

the ω-limit set

ω(v0) =
{
w(x) : ∃τn −→ ∞, s.t. v(·, τn) −→ w(x) in L2

}
(3.24)

consists of solutions of the problem (2.3). Indeed, using the estimates (3.23) in passing to the
limit in (2.2), we have that, given amonotone sequence τn → ∞, v(·, τn+s) → w(x; s) in L2,
where w(x; s) depending on s solves (2.3) in a weak sense, and w(x; 0) ∈ ω(v0). It follows
from (3.23) that uniformly in s ∈ [0, 1]

‖v(·, τn + s) − v(·, τn)‖ ≤
∫ τn+s

τn

‖vt‖2L2dτ −→ 0 (τn −→ ∞). (3.25)

This means that the limit function w does not rely on s and is a weak solution for the
(2.3). Finally, the independence of the choice of the sequence τn → ∞ follows from the
nonincreasing of J[v](τ) in time. Furthermore, the convergence is uniform in x due to the
boundness of vx. In conclusion we arrive to the following lemma.

Lemma 3.7. The limit holds as τ → ∞

v(x, τ) −→ w(x), uniformly for x ≥ 0, (3.26)

where w(x) satisfies the problem (2.3).

To finish Proposition 2.1, it remains to confirm that w(x) is not null and thus to
be of the form (2.4). The proof will be given at the end of the paper. Now let us turn to
Proposition 2.2.
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Consider the initial-boundary-value problem

hτ =
(
|hx|p−2hx

)
x
− 1
p − 2

h, x ∈ (a − δ, b + δ), τ > 0,

h(a − δ, τ) = h(b + δ, τ) = ε, τ > 0,

h(x, 0) = ε, x ∈ (a − δ, b + δ),

(3.27)

where a, b, ε, δ are positive constants and ε, δ are suitably small. We have the following.

Lemma 3.8. Let Dδp/(p−2) = ε suitably small with D that satisfies Dp−2 = (1/2(p − 1))((p −
1)/p)p−1. Then there exists a constant C > 0 such that for all τ ≥ 0,

h(x, τ) ≤ Ce−τ/(p−2), ∀x ∈ [a, b]. (3.28)

Proof. It is easy to check that the function of the form

j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(a − x)p/(p−2), x ∈
[
a − δ, a − δ

2

)
,

0, x ∈
[
a − δ

2
, b +

δ

2

]
,

D(x − b)p/(p−2), x ∈
(
b +

δ

2
, b + δ

]
.

(3.29)

solves

0 =
(∣∣jx
∣∣p−2jx

)
x
− 1
p − 2

j, x ∈ (a − δ, b + δ),

j(a − δ) = j(b + δ) = Dδp/(p−2).

(3.30)

Moreover, it has j(x) ≤ Dδp/(p−2) since Dδp/(p−2) is a super solution to problem (3.30).
Choosing Dδp/(p−2) = ε and subtracting (3.30) from (3.27), we obtain

(
h − j

)
τ =
(
|hx|p−2hx −

∣∣jx
∣∣p−2jx

)
x
− 1
p − 2

(
h − j

)
, x ∈ (a − δ, b + δ), τ > 0,

h(a − δ, τ) − j(a − δ) = h(b + δ, τ) − j(b + δ) = 0, τ > 0,

h(x, 0) − j(x) ≥ 0, x ∈ (a − δ, b + δ).

(3.31)
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Integrating (3.31) over (a − δ, b + δ) × (0, τ) gives rise to

∫b+δ

a−δ

(
h − j

)
(x, τ)dx =

∫b+δ

a−δ

(
h − j

)
(x, 0)dx

+
∫ τ

0

(
|hx|p−2hx −

∣∣jx
∣∣p−2jx

)
(b + δ, s)ds

−
∫ τ

0

(
|hx|p−2hx −

∣∣jx
∣∣p−2jx

)
(a − δ, s)ds

− 1
p − 2

∫ τ

0

∫b+δ

a−δ

(
h − j

)
(x, s)dx ds.

(3.32)

Noting that (h − j)(x, τ) is symmetric with respect to (a + b)/2 and nonincreasing on [a +
b/2, b + δ], thus we have for all τ > 0,

sign
{(

|hx|p−2hx −
∣∣jx
∣∣p−2jx

)
(b + δ, τ)

}
= sign

{(
hx − jx

)
(b + δ, τ)

} ≤ 0, (3.33)

where sign is the sign function. Then,

∫ τ

0

(
|hx|p−2hx −

∣∣jx
∣∣p−2jx

)
(b + δ, s) ds ≤ 0. (3.34)

Similarly,

∫ τ

0

(
|hx|p−2hx −

∣∣jx
∣∣p−2jx

)
(a − δ, s)ds ≥ 0. (3.35)

Therefore, (3.32) becomes

∫b+δ

a−δ

(
h − j

)
(x, τ)dx ≤

∫b+δ

a−δ

(
h − j

)
(x, 0)dx − 1

p − 2

∫ τ

0

∫b+δ

a−δ

(
h − j

)
(x, s)dx ds. (3.36)

Applying the Gronwall inequality yields

∫b+δ

a−δ

(
h − j

)
(x, τ)dx ≤ Ce−(1/(p−2))τ . (3.37)
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On the other hand, since h is symmetric and nondecreasing on [(a + b)/2, b + δ] with x-
variable, for all x ∈ [a, b] it has

h(x, τ) ≤ 1
δ

∫b+δ/2

a−δ/2
h
(
y, τ
)
dy =

1
δ

∫b+δ/2

a−δ/2

(
h − j

)(
y, τ
)
dy

≤ 1
δ

∫b+δ

a−δ

(
h − j

)
(x, τ)dx ≤ C1e

−(1/(p−2))τ ,

(3.38)

where we have used the fact supp j(·) ⊂ [a − δ, a − δ/2] ∪ [b + δ/2, b + δ]. That is,

h(x, τ) ≤ C1e
−(1/(p−2))τ . (3.39)

This completes Lemma 3.8.

We are now in a position to prove Proposition 2.2. From Lemma 3.7 we observe that
v tends to the limit function w(x) which is none for all points x > p(p − 1)/(p − 2). Taking
a > p(p − 1)/(p − 2) and a small constant δ > 0 to satisfy a − δ > p(p − 1)/(p − 2). Then, for
a given ε > 0, the inequality v(x, τ) ≤ ε for all x ≥ a − δ holds provided τ > τ0, where τ0 is a
large point which depends on ε. Using comparison theorem, one has

v(x, τ + τ0) ≤ h(x, τ), for τ > τ0, x > a − δ. (3.40)

The proof ends up with (3.40) and Lemma 3.8.
Finally, We prove that the function w(x) appeared in Lemma 3.7 takes the form

(2.4). For this purpose, it is enough to illuminate that w(x) ≡ 0 is impossible. We argue
by contradiction. Assuming that w(x) ≡ 0 for a moment. Then u(x, t) blows up only at
the boundary point x = 0. By this we can find a sequence tn → ∞ as n → ∞ such that
u(0, tn) → ∞ as n → ∞.Moreover, By the maximin principle (see Remark 3.3), one has

maxx≥0
{
−|ux|p−2ux(x, tn)

}
= max

{
−|u0x|p−2u0x, u

p−1(0, tn)
}
= up−1(0, tn), (3.41)

as long as n is chosen large enough. Recalling that u is nonincreasing with respect to x-
variable, from (3.41)we conclude

−ux(x, tn) ≤ u(0, tn), ∀x ≥ 0. (3.42)

Integrating (3.42) gives rise to

(1 − x)u(0, tn) ≤ u(x, tn). (3.43)

This shows that u occurs blow-up at least in the interval [0, 1), which contradicts with the
assumption that blow-up happens only at x = 0.

Now the proof of Theorem 1.2 is completed.
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