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Our goal in this paper is to investigate the long-term behavior of solutions of the following
difference equation: xn+1 = xnxn−1 − 1, n = 0, 1, 2, . . . , where the initial conditions x−1 and x0 are
real numbers. We examine the boundedness of solutions, periodicity of solutions, and existence of
unbounded solutions and how these behaviors depend on initial conditions.

1. Introduction and Preliminaries

We investigate the long-term behavior of solutions of the second-order difference equation

xn+1 = xnxn−1 − 1, n = 0, 1, 2, . . . , (1.1)

where the initial conditions x−1 and x0 are real numbers. In particular, we examine the
boundedness and periodic behaviors of solutions and the dependence of such behaviors on
initial conditions.

Over the last decade, a number of rational second-order difference equations have
been extensively studied due to their unique and diversified behavior of solutions. See,
for example, [1–10] and the related references therein. Several of the rational difference
equations have been used inmathematical biology by Beverton andHolt [11] and Pielou [12].
In addition, some rational difference equations exhibit a trichotomy behavior of solutions
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relative to the relationships between the parameters: convergence of solutions, periodicity
of solutions, and existence of unbounded solutions. See [13] for one such example. The
difference equation (1.1) belongs to the class of equations of the form

xn+1 = xn−kxn−k−1 − 1, for n = 0, 1, . . . , (1.2)

and a particular choice of k, where k = 0, 1, . . . .

2. The Equilibria and Periodic Solutions of (1.1)

In this section, we show that (1.1) possesses exactly two equilibria and three periodic
solutions with minimal period three.

After solving the equation x2 − x − 1 = 0, we find that (1.1) has exactly two equilibria,
one positive and one negative, which we denote by x1 and x2, respectively:

x1 =:
1 +

√
5

2
, x2 =:

1 − √
5

2
. (2.1)

Note that there are no solutions which are eventually constant. Indeed, if xN = xN+1 =
x for some N ≥ 0, then from xN+1 = xNxN−1 − 1, it follows that

xN−1 =
xN+1 + 1

xN
=

x + 1
x

= x. (2.2)

Repeating this procedure, we obtain xn = x, for −1 ≤ n ≤ N + 1, as claimed.
Also note that there are no solutions that are eventually periodic with minimal period

two. Indeed, if xN = xN+2k and xN+1 = xN+2k+1, k ≥ 0, then we have

xN+3 = xN+2xN+1 − 1 = xNxN+1 − 1 = xN+2 = xN, (2.3)

so that xn = xN , n ≥ N,which is a contradiction.
The following result shows that there exist exactly three periodic solutions of (1.1)

with minimal period three and gives a description of each.

Theorem 2.1. There exist exactly three periodic solutions of (1.1) with minimal period three. They
are given by the three pairs of initial conditions x−1 = −1, x0 = −1; x−1 = −1, x0 = 0; and x−1 = 0,
x0 = −1.
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Proof. We can write terms of a period-three solution of (1.1) as

x−1 = a, x0 = b, x1 = ab − 1,

x2 = b(ab − 1) − 1 = a ⇐⇒ ab2 − b − 1 = a ⇐⇒ ab2 = a + b + 1,

x3 = a(ab − 1) − 1 = b ⇐⇒ a2b − a − 1 = b ⇐⇒ a2b = a + b + 1.

(2.4)

Therefore, this is indeed a solution of period three if the system below is satisfied.

ab2 = a + b + 1,

a2b = a + b + 1.
(2.5)

Hence we see that ab2 = a2b. Thus, this is true if a = 0, or if b = 0, or if a = b when a/= 0 and
b /= 0. Now it suffices to consider the following three cases.

Case 1. Suppose that a = 0. Then a2b = a + b + 1 implies that 0 = b + 1 and hence gives us
b = −1. Therefore, a period-three solution exists if a = 0 and b = −1.

Case 2. Suppose that b = 0. Then a2b = a + b + 1 implies that 0 = a + 1 and hence gives us
a = −1. Therefore, a period-three solution exists if a = −1 and b = 0.

Case 3. Suppose that a = b such that a/= 0 and b /= 0. Then a2b = a+b+1 implies that a3 = 2a+1,
which gives us a = −1. Therefore, a period-three solution exists if a = −1 and b = −1. (Note
that a = (1 ± √

5)/2 are also solutions of a3 = 2a + 1, which are the two equilibria of (1.1).)

Hence, there exist exactly three periodic solutions with minimal period three of (1.1)
given by

x−1 = −1, x0 = −1, x1 = 0, . . . ; x−1 = −1, x0 = 0, x1 = −1, . . . ;
x−1 = 0, x0 = −1, x1 = −1, . . . ,

(2.6)

as claimed.

In the sequel, we will refer to any one of these three periodic solutions of (1.1) as

. . . , 0,−1,−1, 0,−1,−1, . . . . (2.7)

The following theorem demonstrates, in a similar way as in [14, 15], that (1.1) has
solutions that are eventually periodic with minimal period three.
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Theorem 2.2. All eventually periodic solutions with minimal period three are of the form

(x−1, x0, . . . , xN, xN+1, 0,−1,−1, 0,−1,−1, 0,−1,−1, . . .), (2.8)

WhereN ≥ −1, xN+1 = a ∈ R\{0}, xN = 1/a, and, ifN/= −1, xn−1 = (xn+1+1)/xn for 0 ≤ n ≤ N.

Proof. If {xn}∞n=−1 is an eventually periodic solution with minimal period three, then by
Theorem 2.1 there is an N ≥ −1 such that xN+2 = 0 and xN+3 = −1. Hence 0 = xN+2 =
xN+1xN − 1 and consequently xN /= 0/=xN+1 and xN+1 = 1/xN . Let xN+1 = a (which implies
that xN = 1/a). From (1.1), if N/= − 1, we get xn−1 = (xn+1 + 1)/xn, for 0 ≤ n ≤ N, as
desired.

Remark 2.3. If, in Theorem 2.2, a = −1, then, among some others, we obtain the solutions in
Theorem 2.1.

The next theorem shows that no periodic or eventually periodic solution of (1.1)
converges to a minimal period-three solution.

Theorem 2.4. Let {xn}∞n=−1 be a solution of (1.1) that is neither periodic nor eventually periodic with
minimal period three. Then {xn}∞n=−1 does not converge to the minimal period-three solution

. . . , 0,−1,−1, 0,−1,−1, . . . . (2.9)

Proof. Let {xn}∞n=−1 be a solution of (1.1) that is neither periodic nor eventually periodic with
minimal period three. For the sake of contradiction, assume that {xn}∞n=−1 converges to the
minimal period-three solution

. . . , 0,−1,−1, 0,−1,−1, . . . . (2.10)

Then we can choose N ≥ 0 such that there exist

−1
2
< δ1, δ2, δ3, . . . <

1
2
, −1 < ε0, ε1, ε2, ε3, . . . < 1, (2.11)

with

xN−2 = −1 + ε0, xN−1 = δ1, xN = −1 + ε1, xN+1 = −1 + ε2, xN+2 = δ2,

xN+3 = −1 + ε3, xN+4 = −1 + ε4, xN+5 = δ3, xN+6 = −1 + ε5, . . . ,
(2.12)

that is, for n = 0, 1, . . .,

xN+(3n−2) = −1 + ε2n, xN+(3n−1) = δn+1, xN+3n = −1 + ε2n+1. (2.13)
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Now, first observe that

xN−2 = −1 + ε0,

xN−1 = δ1,

xN = −1 + ε1 = −1 + δ1(−1 + ε0).

(2.14)

We claim that δ1 /= 0. Otherwise, xN−1 = δ1 = 0. Then, by (1.1), xN = xN+1 = −1, which gives us
a solution that is eventually periodic with minimal period three, a contradiction. This leaves
us with δ1 > 0 or δ1 < 0. If δ1 > 0, then since xN−2 = −1 + ε0 < 0 by (2.11), we have xN < −1
and so ε1 < 0. If δ1 < 0, then since xN−2 = −1 + ε0 < 0 and xN = −1 + ε1 < 0 by (2.11), we have
xN ∈ (−1, 0) and so ε1 > 0. Therefore, we need only consider the following two cases.

Case 1. If δ1 > 0, ε1 < 0, then we obtain the following inequalities from (2.11) and (2.12):

xN−1 = δ1 > 0,

xN = −1 + ε1 < −1,
xN+1 = −1 + ε2 = −1 + δ1(−1 + ε1) < −1,

xN+2 = δ2 = (−1 + ε1)[−1 + δ1(−1 + ε1)] − 1 > 0,

xN+3 = −1 + ε3 = δ2[−1 + δ1(−1 + ε1)] − 1 < −1.

(2.15)

We next compute the following:

xN+2 = δ2 = (−1 + ε1)[−1 + δ1(−1 + ε1)] − 1 > δ1

⇐⇒ (−1 + ε1)[−1 + δ1(−1 + ε1)] > δ1 + 1

⇐⇒ 1 + δ1 − δ1ε1 − ε1 − δ1ε1 + δ1ε
2
1 > δ1 + 1

⇐⇒ −2δ1ε1 − ε1 + δ1ε
2
1 > 0

⇐⇒ δ1ε
2
1 > ε1(2δ1 + 1)

⇐⇒ δ1ε1 < 2δ1 + 1,

(2.16)

which is true. Hence, δ2 > δ1 > 0 and ε3 < 0. Therefore, this case applies to δ2, ε3, and by
induction and (2.11) and (2.12), we obtain

0 < δ1 < δ2 < · · · < δn < · · · . (2.17)

Hence, δn cannot converge to 0 as n → ∞ in this case.
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Case 2. If δ1 < 0, ε1 > 0, then we obtain the following:

xN−1 = δ1 ∈ (−1, 0),
xN = −1 + ε1 ∈ (−1, 0),

xN+1 = −1 + ε2 = −1 + δ1(−1 + ε1) ∈ (−1, 0),
xN+2 = δ2 = (−1 + ε1)[−1 + δ1(−1 + ε1)] − 1 ∈ (−1, 0),
xN+3 = −1 + ε3 = δ2[−1 + δ1(−1 + ε1)] − 1 ∈ (−1, 0).

(2.18)

We next compute the following:

xN+2 = δ2 = (−1 + ε1)[−1 + δ1(−1 + ε1)] − 1 < δ1

⇐⇒ (−1 + ε1)[−1 + δ1(−1 + ε1)] < δ1 + 1

⇐⇒ 1 + δ1 − δ1ε1 − ε1 − δ1ε1 + δ1ε
2
1 < δ1 + 1

⇐⇒ −2δ1ε1 − ε1 + δ1ε
2
1 < 0

⇐⇒ δ1ε
2
1 < ε1(2δ1 + 1)

⇐⇒ δ1ε1 < 2δ1 + 1,

(2.19)

which is true by (2.11) and (2.12). Hence, δ2 < δ1 < 0 and ε3 > 0. Therefore, this case applies
to ε3, δ2, and by induction and (2.11) and (2.12), we obtain the following inequalities:

0 > δ1 > δ2 > · · · > δn > · · · . (2.20)

Hence, δn cannot converge to 0 as n → ∞ in this case, and we are done with our proof
by contradiction.

Finally we show that the interval (−1, 0) is invariant.

Theorem 2.5. If −1 < x−1, x0 < 0, then −1 < xn < 0 for all n ≥ −1.

Proof. If −1 < x−1, x0 < 0, then −1 < x1 = x0x−1 − 1 < 0. From (1.1) and by induction, we then
have that −1 < xn < 0 for all n ≥ −1.

Remark 2.6. Notice, if the solution is not periodic or eventually periodic with minimal period
three, then as we see from Theorem 2.5 and as we shall see from Theorems 4.1–4.5, either
the solution is bounded, while inside the invariant interval (−1, 0), or the solution becomes
unbounded.
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3. Stability and Convergence of Solutions of (1.1)

In this section, we determine the stability nature of the two equilibria of (1.1) and leave open
for the reader the possibility of convergence of solutions to the negative equilibrium.

Lemma 3.1. The negative equilibrium solution of (1.1), x2, is locally asymptotically stable. The
positive equilibrium solution of (1.1), x1, is unstable.

Proof. The characteristic equation of the equilibria of (1.1) is the following:

λ2 − x1,2λ − x1,2 = 0, (3.1)

with eigenvalues

λ± =
x1,2 ±

√
x2
1,2 + 4x1,2

2
. (3.2)

Therefore, it is easy to show that the eigenvalues for x2 are complex with |λ±| < 1, and for x1,
|λ+| > 1 and |λ−| < 1.

Open Problem. If −1 < x−1, x0 < 0 show whether or not every solution {xn}∞n=−1 of (1.1)
converges to x2 (see Theorem 2.5 as well as Lemma 3.1).

4. Unbounded Solutions of (1.1)

In this section, we find sets of initial conditions of (1.1) for which unbounded solutions exist.
First observe that when the initial conditions x−1, x0 > x1 or x−1, x0 < −1, then existence

of unbounded solutions appears. Specifically, the following two theoremswill show existence
of unbounded solutions relative to the set of these initial conditions. The theorem below is
included tomake this paper self-contained. One can see that the theorem below overlaps with
[1, Theorem 9.1].

Theorem 4.1. If x−1, x0 > x1 = (1+
√
5)/2, then the solution {xn}∞n=0 is eventually strictly increasing

and tends to +∞.

Proof. Since x0 > (1 +
√
5)/2, we have 1/x0 < 2/(1 +

√
5) = (

√
5 − 1)/2. Thus,

1 +
1
x0

< 1 +
√
5 − 1
2

=
1 +

√
5

2
< x−1. (4.1)

Therefore, x−1 > 1 + 1/x0. Thus x−1x0 > x0 + 1. Rewriting, x0x−1 − 1 > x0. Hence, x1 > x0. It
follows by induction that the solution {xn}∞n=0 is eventually strictly increasing.

To prove that the sequence tends to +∞, we assume otherwise. Since the sequence
is increasing, it must be bounded and thus must converge. But, the equation has only two
equilibria, and they are both less than x0. We have a contradiction. The proof is complete.
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Recently there has been considerable interest in showing the existence of monotonic
solutions of nonlinear difference equations. Various methods for this can be found, for
example, in [6, 16–23].

Theorem 4.2. Suppose x−1, x0 < −1. Then

0 < x1 < x4 < x7 < · · · ,
· · · < x8 < x6 < x5 < x3 < x2 < x0 < −1,

(4.2)

and the subsequences {x3n}∞n=0 and {x3n+2}∞n=0 tend to −∞ and {x3n+1}∞n=0 tends to +∞.

Proof. We first have

x1 = x0x−1 − 1 > 0. (4.3)

Then obviously

x2 = x1x0 − 1 < −1. (4.4)

But we will prove that x2 < x0 < −1.
Since (x0+1)

2 > 0, we have that x2
0 +2x0+1 > 0. Thus, −1 < 2/x0+1/x2

0. Since x−1 < −1,
we must have x−1 < 2/x0 +1/x2

0. Thus x−1x0 > 2+1/x0. Therefore, x−1x0−1 > 1+1/x0. Hence
x1 > 1 + 1/x0. From here we have x1x0 − 1 < x0, and the result that x2 < x0 follows.

Next, we show that x3 is not only less than −1, but it is less than x2. To this end, since
x2 < x0, and x1 = x0x−1 −1 > 0, we have x1x2 < x1x0. This gives x2x1 −1 < x1x0 −1, and hence,
x3 < x2.

To show that x4 > x1, we start by observing that x3 < −1, x1 > 0, and so x3 < x1. Thus,
since x3 = x2x1 − 1 < x1, we get, with x2 + 1 < 0,

x1x2 − x1 − 1 < 0

=⇒ x1(x2 − 1) < 1

=⇒ x1(x2 − 1)(x2 + 1) > x2 + 1

=⇒ x1x
2
2 − x1 > x2 + 1

=⇒ x1x
2
2 − x2 − 1 > x1

=⇒ x2(x2x1 − 1) − 1 > x1

=⇒ x3x2 − 1 > x1

=⇒ x4 > x1.

(4.5)

By induction, it can be proved that

0 < x1 < x4 < x7 < · · · ,
· · · < x8 < x6 < x5 < x3 < x2 < x0 < −1,

(4.6)
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that is, {x3n+1}∞n=0 is a positive increasing subsequence and {x3n}∞n=0 and {x3n+2}∞n=0 are
negative decreasing subsequences.

Next we verify that these subsequences are unbounded and thus that our solution is
unbounded. Assume that the two decreasing sequences, {x3n}∞n=0 and {x3n+2}∞n=0, are bounded
from below. Then they each must converge to a finite limit (which is the same finite limit and
less than x2). But by (1.1), the third increasing subsequence, {x3n+1}∞n=0, must also converge
to a finite limit (which is positive), where

x3n+1 = x3nx3n−1 − 1 = |x3n| ·
∣∣x3(n−1)+2

∣∣ − 1. (4.7)

This is impossible because there are no periodic solutions with minimal period two (see
Section 2). So {x3n}∞n=0 and {x3n+2}∞n=0 are unbounded (they tend to −∞) and thus {x3n+1}∞n=0
is also unbounded (it tends to +∞) by (1.1) again.

Theorem 4.3. Suppose that x−1 < 0 and x0 > 0. Then the solution of (1.1) has three subsequences
{x3n}∞n=1, {x3n+1}∞n=1, and {x3n+2}∞n=1, where two of them tend to −∞ and one tends to +∞.

Proof. Note that x1 = x−1x0 − 1 < −1 and x2 = x0x1 − 1 < −1. Then the result follows from
Theorem 4.2.

It might be interesting to note that if the order of the initial conditions in the above
theorem is changed, the behavior of the solution can be drastically different. For example, if
we let x−1 = −0.58 and x0 = 0.618 then the solution does what the above theorem guarantees.
On the other hand, if x−1 = 0.618 and x0 = −0.58, then the solution enters the interval (−1, 0),
remains there, and thus is bounded. Furthermore, it should be pointed out that if the initial
conditions are such that x−1 > 0 and x0 < 0, then the solution in certain cases is bounded and
in other cases is unbounded.

In addition, observe that if 0 < x−1, x0 < x1, then the solutions of (1.1) exhibit
somewhat chaotic behavior relative to the initial conditions. A little change in the initial
conditions can cause a drastic difference in the long-term behavior of the solutions. For
instance, if x−1 = 1.5 and x0 = 1.6, then the solution enters and then remains in the interval
(−1, 0), and hence is bounded. Whereas if x−1 = 1.5 and x0 = 1.61, then the solution has three
unbounded subsequences: one tending to +∞ and the other two tending to −∞.

Theorem 4.4. Let {xn}∞n=−1 be a solution of (1.1). Suppose that

(i) 0 < x−1, x0 < 1;

(ii) x2
0x

2
−1 − 2x0x−1 + 1 − x−1 > 0.

Then {x3n}∞n=2 is a positive increasing subsequence; {x3n+2}∞n=1 is a negative decreasing subsequence;
{x3n+1}∞n=2 is a negative decreasing subsequence. Consequently, there does not exist an N ≥ −1 such
that −1 < xn < 0 for all n ≥ N. Furthermore, all three subsequences are unbounded and so the solution
is unbounded.

Proof. Let {xn}∞n=−1 be a solution of (1.1). Suppose that

(i) 0 < x−1, x0 < 1;

(ii) x2
0x

2
−1 − 2x0x−1 + 1 − x−1 > 0.
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Since x0x−1 < 1 by Hypothesis (i), then we have

x1 = x0x−1 − 1 < 0. (4.8)

Then, since x1x0 < 0, we have

x2 = x1x0 − 1 < −1. (4.9)

We compute the sign of x3 = x2x1 − 1:

x3 > 0

⇐⇒ x2x1 − 1 > 0

⇐⇒ (x1x0 − 1)x1 − 1 > 0

⇐⇒ x2
1x0 − x1 − 1 > 0

⇐⇒ (x0x−1 − 1)2x0 − (x0x−1 − 1) − 1 > 0

⇐⇒ x3
0x

2
−1 − 2x2

0x−1 + x0 − x0x−1 + 1 − 1 > 0

⇐⇒ x2
0x

2
−1 − 2x0x−1 + 1 − x−1 > 0,

(4.10)

which is true by Hypotheses (i) and (ii). We next have

x4 = x3x2 − 1 < −1 (4.11)

since x3 > 0, x2 < 0. Then, also,

x5 = x4x3 − 1 < −1 (4.12)

since x4 < 0, x3 > 0.
With x4, x5 < −1 replacing x−1, x0 < −1 in Theorem 4.2, we have that

0 < x6 < x9 < x12 < · · · ,
· · · < x13 < x11 < x10 < x8 < x7 < x5 < −1.

(4.13)

Hence, {x3n}∞n=2 is a positive increasing subsequence, {x3n+1}∞n=2 is a negative
decreasing subsequence, and {x3n+2}∞n=1 is a negative decreasing subsequence, and so there
does not exist an N ≥ −1 such that −1 < xn < 0 for all n ≥ N. Furthermore, by Theorem 4.2,
{x3n}∞n=2 tends to +∞ and {x3n+1}∞n=2, and {x3n+2}∞n=1 both tend to −∞.

In conclusion, we show that, for a certain range of initial conditions, the solution of
(1.1) is either unbounded or eventually enters the interval (−1, 0) and remains there.
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Theorem 4.5. Let {xn}∞n=−1 be a solution of (1.1). Suppose that 1 < x−1, x0 < x1. Then one of the
following occurs.

(i) The solution is unbounded.

(ii) There exists n0 ≥ 1 such that xn ∈ (−1, 0) for all n ≥ n0.

Proof. Let {xn}∞n=−1 be a solution of (1.1). Assume that

1 < x−1, x0 < x1 =
1 +

√
5

2
. (4.14)

We will show that the solution is decreasing while the terms are positive. Since 1 < x0 <
(1 +

√
5)/2, we have

1
x0

>
2

1 +
√
5
=

√
5 − 1
2

. (4.15)

Thus

1 +
1
x0

> 1 +
2

1 +
√
5
= 1 +

√
5 − 1
2

> x−1, (4.16)

which, since x0 > 0, implies that

x0 > x0x−1 − 1 = x1. (4.17)

Observe then that we have a decreasing sequence of terms as long as the terms are
positive. Since our decreasing sequence is bounded above by x1 and since x2 is less than zero,
this sequence is not bounded below by zero and thus crosses over to negative values.

Let xN be the last positive term and xN+1 the first negative term of our solution. We
now determine ranges of values of terms of our solution beginning with xN and xN+1, using
“n” in place of “N” for convenience.

(1) xn and xn+1: observe that

xnxn−1 − 1 > −1 ⇐⇒ xnxn−1 > 0, (4.18)

which is true. Hence, −1 < xn+1 < 0. Note that this, in turn, implies that 0 < xnxn−1 <
1. Then at least 0 < xn < 1 since xn < xn−1.

(2) xn+2: by Statement (1), −1 < xn+1xn < 0 and so −2 < xn+2 < −1.
(3) xn+3, xn+4, . . . .

Case 1 (xn+3 > 0). Then from Statement (2), xn+4 = xn+3xn+2−1 < −1 and thus xn+5 = xn+4xn+3−
1 < −1. By Theorem 4.2, the solution is unbounded.
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Case 2 (xn+3 < 0). We wish to show that xn+3 > −1:

xn+3 = xn+2xn+1 − 1 > −1 ⇐⇒ xn+2xn+1 > 0, (4.19)

which is true since, by Statements (1) and (2), xn+1, xn+2 < 0.

We next show that −1 < xn+4 < 0. First we show that xn+4 < 0:

xn+4 = xn+3xn+2 − 1 < 0

⇐⇒ (xn+2xn+1 − 1)xn+2 − 1 < 0

⇐⇒
(
x2
n+1xn − xn+1 − 1

)
(xn+1xn − 1) − 1 < 0

⇐⇒ x3
n+1x

2
n − 2x2

n+1xn + xn+1 − xn+1xn + 1 − 1 < 0

⇐⇒ x3
n+1x

2
n − 2x2

n+1xn + xn+1 − xn+1xn < 0

⇐⇒ x2
n+1x

2
n − 2xn+1xn + 1 − xn > 0

⇐⇒ xn+1xn(xn+1xn − 2) − (xn − 1) > 0

⇐⇒
(
x2
n+2 − 1

)
− (xn − 1) > 0

⇐⇒ x2
n+2 > xn,

(4.20)

which is true since, by Statements (1) and (2), x2
n+2 > 1 and 0 < xn < 1.

Second, we show that xn+4 > −1: notice that

xn+4 = xn+3xn+2 − 1 > −1 ⇐⇒ xn+3xn+2 > 0, (4.21)

which is true since xn+3 < 0 and xn+2 < 0 by Statement (2). Because −1 < xn+3, xn+4 < 0, it
follows from Theorem 2.5 that there exists n0 ≥ 1 such that xn ∈ (−1, 0) for all n ≥ n0.

5. Conclusions and Future Work

It is of interest to continue the investigation of themonotonicity, periodicity, and boundedness
nature of solutions of (1.1). It is of further interest to extend our study of solutions of (1.1)
to an equation with an arbitrary constant parameter or a nonautonomous parameter, or to an
equation with arbitrary delays.

(i) xn+1 = xnxn−1 − c, n = 0, 1, . . . , where c is any real.

(ii) xn+1 = xnxn−1−cn, n = 0, 1, . . . ,where {cn}∞n=0 is a periodic sequence of real numbers.

(iii) xn+1 = xn−�xn−k − 1, n = 0, 1, . . . ,where �, k ∈ {0, 1, . . .}.
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[21] S. Stević, “On positive solutions of a (k + 1)-th order difference equation,” Applied Mathematics Letters,
vol. 19, no. 5, pp. 427–431, 2006.
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