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Neutral stochastic functional differential equations (NSFDEs) have recently been studied
intensively. The well-known conditions imposed for the existence and uniqueness and exponential
stability of the global solution are the local Lipschitz condition and the linear growth condition.
Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main
aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test
for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but
they can also be verified much more easily than the classical criteria. Finally, several examples are
given to illustrate main results.

1. Introduction

Stochastic modelling has played an important role in many areas of science and engineering
for a long time. Some of the most frequent and most important stochastic models used when
dynamical systems not only depend on present and past states but also involve derivatives
with functionals are described by the following neutral stochastic functional differential
equation:

d[x(t) − u(xt)] = f(xt, t)dt + g(xt, t)dw(t). (1.1)

The conditions imposed on their studies are the standard uniform Lipschitz condition and
the linear growth condition. The classical result is described by the following well-known
Mao’s test see [1, page 202, Theorem 2.2].
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Theorem 1.1. Assume that there exist positive constants K, L, and κ ∈ (0, 1) such that
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(1.2)

for all ϕ, ψ ∈ C([−τ, 0];Rn). Then there exists a unique solution x(t) to (1.1) with initial data ξ ∈
Cb

F0
([−τ, 0];Rn) (i.e., ξ is an F0-measurable C([−τ, 0];Rn)-valued random variable such that E‖ξ‖ <

∞).

Theorem 1.1 requires that the coefficients f and g satisfy the Lipschitz condition and
the linear growth condition. However, there are many NSFDEs that do not satisfy the linear
growth condition. For example, the following nonlinear NSFDE:

d[x(t) − u(xt)] = x(t)
[

a + bσ1(xt) − x(t)2
]

dt + cx(t)σ2(xt)dw(t),
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∣
∣ϕ(θ)

∣
∣dμ(θ),

(1.3)

where coefficients f(x, xt, t) = x(t)[a + bσ1(xt) − x(t)2] and g = cx(t)σ2(xt) do not obey
the linear growth condition although they are Lipschitz continuous. To the authors’ best
knowledge, there is so far no result that shows that (1.3) has a unique global solution for
any initial data.

On the other hand, we still encounter a new problem when we attempt to deduce
the exponential decay of the solution even if there is no problem with the existence of the
solution. For example, Mao [2] initiated the following study of exponential stability for
NSFDEs employing the Razumikhin technique.

Theorem 1.2. Let c1, c2, λ, p be all positive numbers and q > (c2/c1)(1 − κ)−p, κ ∈ (0, 1), for any
ϕ ∈ LpFt0 ([−τ, 0];R

n),

E
∣
∣u
(

ϕ
)∣
∣
p ≤ κp∥∥ϕ∥∥p0 , (1.4)

and assume that there exists a function V (x, t) ∈ C2,1(Rn × [−τ,∞);R+) such that

c1|x|p ≤ V (x, t) ≤ c2|x|p (1.5)
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for all (x, t) ∈ Rn × [−τ,∞) and also for all t ≥ 0

ELV
(

ϕ, t
) ≤ −λEV (

ϕ̃(0), t
)

(1.6)

provided ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} ∈ LpFt([−τ, 0];Rn) satisfying

EV
(

ϕ(θ), t + θ
) ≤ qEV (

ϕ̃(0), t
)

(1.7)

for all −τ ≤ θ ≤ 0. Then for all ξ ∈ Cb
F0
([−τ, 0];Rn), t ≥ 0

E|x(t; ξ)|p ≤ c2
c1

(
1 + κ
1 − κ1

)p

e−γtE‖ξ‖p0 , κ1 = κeγτ/p, (1.8)

where γ = μ ∧ τ−1 ln[q1(1 + κq1/p1 )
−p
], q1 = c1q/c2.

It is very difficult to verify the conditions of Theorem 1.2, and it is clear that
ELV (ϕ, t) ≤ −λEV (ϕ̃(0), t) does not hold for many NSFDEs. In fact, for (1.3), if one chooses
V (x, t) = x2, then

LV = 2x(x − u(xt))
(

a + bσ1(xt) − x2
)

+ c2x2σ2
2(xt). (1.9)

Here, the polynomial x4 appears on the right-hand side, and it has an order of 4 which is
higher than the order of V (x) = x2.More recently, Mao [3–5], Zhou et al. [6, 7], Yue et al. [8]
and Shen et al. [9] provided with some useful criteria on the exponential stability employing
the Lyapunov function, but their tests encounters the same problem.

Therefore, we see that there is a necessity to develop new criteria for NSFDEs where
the linear growth condition may not hold while the bound on the operator LV may take a
much more general form. In the paper, we will establish a Khasminskii-type test for NSFDEs
that cover a wide class of highly nonlinear NSFDEs referring to Khasminskii-type theorems
[10] and Mao and Rassias [11] results of stochastic delay differential equations. To our best
knowledge, there is no such result for NSFDEs and stochastic functional differential equations
(SFDEs).

In the next section, we will establish a general existence and uniqueness theorem
of the global solution to (1.1) after giving some necessary notations. Boundedness and
Moment stability are given under the Khasminskii-type condition in Section 3. Section 4
establishes asymptotic stability theorem by using semimartingale convergence theory.
Section 5 gives corresponding criteria for stochastic functional differential equations. Finally,
several examples are given to illustrate our results.

2. Global Solution of NSFDEs

Throughout this paper, unless otherwise specified, we let (Ω,F, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0, satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P-null sets). Let w(t) = (w1(t), . . . , wm(t))

T be an m-
dimensional continuous local martingale with w(0) = 0 defined on the probability space.
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If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is
denoted by |A| =

√

trace(ATA), while its operator norm is denoted by ‖A‖ = sup{|Ax| :
|x| = 1} (without any confusion with ‖ϕ‖). C([−τ, 0];Rn) denote the family of all continuous
functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0|ϕ(θ)|, where | · | is the
Euclidean norm in Rn.Denoted by Cb

F0
([−τ, 0];Rn) the family of all bounded, F0-measurable,

C([−τ, 0];Rn)-valued random variables.
Consider an n-dimensional neutral stochastic functional differential equation

d[x(t) − u(xt, t)] = f(xt, t)dt + g(xt, t)dw(t) (2.1)

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0
([−τ, 0];Rn), u : C([−τ, 0];Rn) → Rn, and

f : C([−τ, 0];Rn) × R+ −→ Rn, g : C([−τ, 0];Rn) × R+ −→ Rn×m (2.2)

are Borel measurable. Let x(t; ξ) denote the solution of (2.1)while xt = {x(t + θ) : −τ ≤ θ ≤ 0}
which is regarded as aC([−τ, 0];Rn)-valued stochastic process, denoted by x̃(t) = x(t)−u(xt).

Let C2,1(Rn × R+;R) denote the family of all nonnegative functions V (x, t) on Rn ×
R+ which are continuously twice differentiable in x and once differentiable in t. If V (x, t) ∈
C2,1(Rn × R+;R), define an operator LV : C([−τ, 0];Rn) × R+ to R by

LV
(

ϕ, t
)

= Vt
(

ϕ̃(0), t
)

+ Vx
(

ϕ̃(0), t
)

f
(

ϕ, t
)

+
1
2
trace

(

gT
(

ϕ, t
)

Vxx
(

ϕ̃(0), t
)

g
(

ϕ, t
))

, (2.3)

where Vt(x, t) = ∂V (x, t)/∂t, Vx(x, t) = (∂V (x, t)/∂x1,∂V (x, t)/∂x2, . . . , ∂V (x, t)/∂xn),
Vxx(x, t)=(∂2V (x, t)/∂xixj)n×n.

For the purpose of stability, assume that f(0, t) = g(0, t) = u(0, t) = 0. This implies
that (2.1) admits a trivial solution, x(0, t) = 0. Furthermore, we impose the following
assumptions.

(H1) (The local Lipschitz condition). For each integer R ≥ 1, there is a positive
constant KR such that

∣
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∥
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for those ϕ, ψ ∈ C([−τ, 0];Rn) with ‖ϕ‖ ∨ ‖ψ‖ ≤ R and t ∈ R+.

(H2) There exists a positive constant κ ∈ (0, 1) and a probability measure ν such
that

∣
∣u
(

ϕ, t
) − u(ψ, t)∣∣ ≤ κ

∫0

−τ

∣
∣ϕ − ψ∣∣dν(θ) (2.5)

for any ϕ, ψ ∈ C([−τ, 0];Rn).
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(H3) There are two functions V ∈ C2,1(Rn × [−τ,+∞);R+) and U ∈ C(Rn ×
[−τ,+∞)];R+) as well as positive constants λ1, λ2, c1, c2 and a probability measure μ
on [−τ, 0] such that

c1|x|2 ≤ V (x, t) ≤ c2|x|2, (2.6)

LV
(

ϕ, t
) ≤ λ1

[

1 + V
(

ϕ(0), t
)

+
∫0

−τ

(

V
(

ϕ(θ), t + θ
)

+U
(

ϕ(θ), t + θ
))

dμ(θ)

]

− λ2U
(

ϕ(0), t
)

(2.7)

for all −τ ≤ θ ≤ 0, (ϕ, t) ∈ C([−τ, 0];Rn) × R+.

Remark 2.1. In condition (2.7), we see that the function U(x, t) plays a key role in allowing
coefficients f and g to be nonlinear functions.

Theorem 2.2. Assume that (H1), (H2), and (H3) hold. Then for any initial condition ξ ∈
Cb

F0
([−τ, 0];Rn), there exists a unique global solution x(t) to (2.1) on t ∈ [−τ,∞). Moreover, the

solution has the properties that

EV (x(t), t) <∞, E

∫ t

0
U(x(s), s)ds <∞ (2.8)

for any t ≥ 0.

Proof. It is clear that for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn), there exists a unique maximal

local solution x(t) on t ∈ [−τ, τe),where τe is the explosion time [1], by applying the standing
truncation technique (see Mao [12, 13]) to (2.1). According to (H2), we have

|x̃(0)| ≤ |x(0)| + |u(x0, 0)| ≤ |x(0)| + κ
∫0

−τ
|x(θ)|dν(θ) ≤ (1 + κ)‖ξ‖. (2.9)

Let k0 > (1 + κ)‖ξ‖ be sufficiently large such that

1
k0

< min
−τ≤t≤0

|x̃(t)| < max
−τ≤t≤0

|x̃(t)| < k0. (2.10)

Define the stopping time

τk = inf
{

t ∈ [0, τe] : |x̃(t)| ∈ Ik
}

, Ik ≡
(
1
k
, k

)

, k ≥ k0, (2.11)

where throughout this paper, we set inf ∅ = ∞ (∅ denotes the empty sets). Clearly, τk is
increasing as k → ∞. Denote τ∞ = limk→∞τk, τ∞ ≤ τe a.s. We will show that τe = ∞ a.s.,
which implies that x(t) is global.



6 Journal of Applied Mathematics

Itô formula and condition (2.7) yield

dV (x̃(t), t) = LV (x, t)dt + Vx(x̃, t)g(xt, t)dw(t)

≤ λ1
[

1 + V (x(t), t) +
∫0

−τ
V (xt, t + θ)dμ(θ) +

∫0

−τ
U(xt, t + θ)dμ(θ)

]

dt

− λ2U(x(t), t)dt + Vx(x̃, t)g(xt, t)dw(t)

(2.12)

for t ≥ 0. For any k ≥ k0 and t ∈ [0, τ], we integrate both sides of (2.12) from 0 to τk ∧ t and
then take the expectations to get

EV (x̃(τk ∧ t), τk ∧ t) − V (x̃(0), 0)

≤ E
∫ τk∧t

0
λ1

[

1 +
∫0

−τ
(V (xs, s + θ) +U(xs, s + θ))dμ(θ)

]

ds

+ E
∫ τk∧t

0
[λ1V (x(s), s) − λ2U(x(s), s)]ds.

(2.13)

According to the integral substitution technique, we estimate

∫ τk∧t

0

∫0

−τ
V (xs, s + θ)dμ(θ)ds

=
∫ τk∧t

0

∫0

−τ
V (x(s + θ), s + θ)dμ(θ)ds

≤
∫0

−τ
dμ(θ)

∫ τk∧t+θ

θ

V (x(s), s)ds ≤
∫ τk∧t

−τ
V (x(s), s)ds

≤
∫ τ

−τ
V (x(s), s)ds < +∞,

(2.14)

Similiarly,

∫ τk∧t

0

∫0

−τ
U(xs, s + θ)dμ(θ)ds ≤

∫ τ

−τ
U(x(s), s)ds < +∞. (2.15)
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Substituting for (2.14) and (2.15) into (2.13), and by using the Fubini theorem, the result is

EV (x̃(τk ∧ t), τk ∧ t) ≤ V (x̃(0), 0) + λ1τ + λ1E
∫ τk∧t

0
V (x(s), s)ds

− λ2E
∫ τk∧t

0
U(x(s), s)ds + λ1E

∫ τ

−τ
[V (x(s), s) +U(x(s), s)]ds

≤ C1 + λ1E
∫ τk∧t

0
V (x(s), s)ds

≤ C1 + λ1

∫ t

0
EV (x(τk ∧ s), τk ∧ s)ds,

(2.16)

where C1 = V (x̃(0), 0) + λ1τ + λ1E
∫τ

−τ[V (x(s), s) + U(x(s), s)]ds. Equations (2.6) and (2.9)
imply V (x̃(0), 0) ≤ c2(1 + κ)

2‖ξ‖2; thus, C1 is a finite constant. By using inequality (a + b)2 ≤
(1/(1 − κ0))a2 + (1/κ0)b2, a, b > 0, κ0 ∈ (0, 1); thus,

E|x(τk ∧ t)|2 ≤ (1 − κ0)−1E|x̃(τk ∧ t)|2 + κ−10 E|u(xτk∧t, τk ∧ t)|2, (2.17)

condition (2.6) yields

c−12 V (x̃(τk ∧ t), τk ∧ t) ≤ |x̃(τk ∧ t)|2 ≤ c−11 V (x̃(τk ∧ t), τk ∧ t). (2.18)

(H2) and the Hölder inequality yield

E|u(xτk∧t, τk ∧ t)|2 ≤ κ2E
(∫0

−τ

∣
∣ϕ(θ)

∣
∣dν(θ)

)2

≤ κ2
∫0

−τ
E|x(τk ∧ t + θ)|2dν(θ). (2.19)

Substituting for (2.16), (2.18), and (2.19) into (2.17), the result is

E|x(τk ∧ t)|2≤(1 − κ0)−1c−11
(

C1+λ1

∫ t

0
EV (x(τk∧s), τk∧s)ds

)

+κ−10 κ
2
∫0

−τ
E|x(τk ∧ t + θ)|2dν(θ).

(2.20)

For any t ∈ [−τ, τ], (2.20) implies

sup
−τ≤s≤t

E|x(τk ∧ s)|2≤(1 − κ0)−1c−11
(

C1+λ1

∫ t

0
EV (x(τk ∧ s), τk ∧ s)ds

)

+κ−10 κ
2 sup
−τ≤s≤t

E|x(τk ∧ s)|2.

(2.21)
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Let κ0 = κ, then

sup
−τ≤s≤t

E|x(τk ∧ s)|2 ≤ (1 − κ)−2c−11
(

C1 + λ1

∫ t

0
EV (x(τk ∧ s), τk ∧ s)ds

)

. (2.22)

Therefore, for any t ∈ [−τ, τ],

E|x(τk ∧ t)|2 ≤ (1 − κ)−2c−11
(

C1 + λ1

∫ t

0
EV (x(τk ∧ s), τk ∧ s)ds

)

. (2.23)

By (2.6), we may obtain

EV (x(τk ∧ t), τk ∧ t) ≤ c2E|x(τk ∧ t)|2 ≤ (1 − κ)−2c−11 c2
(

C1 + λ1

∫ t

0
EV (x(τk ∧ s), τk ∧ s)ds

)

.

(2.24)

For any k ≥ k0, t ∈ [0, τ], the Gronwall inequality implies

EV (x(τk ∧ τ), τk ∧ τ) ≤ c−11 c2C1(1 − κ)−2ec−11 c2λ1(1−κ)−2t. (2.25)

Thus, for all k ≥ k0,

EV (x(τk ∧ τ), τk ∧ τ) ≤ c−11 c2C1(1 − κ)−2ec−11 c2λ1(1−κ)−2τ , (2.26)

which implies

EV (x(t), t) ≤ c−11 c2C1(1 − κ)−2ec−11 c2λ1(1−κ)−2τ , 0 ≤ t ≤ τ. (2.27)

Since E[I{τk≤τ}V (x(τk∧τ), τk∧τ)] ≤ EV (x(τk∧τ), τk∧τ), and defining μk = inf|x|≥k,0≤t<∞V (x, t)
for k ≥ k0, according to (2.26), then

μkP(τk ≤ τ) ≤ c−11 c2C1(1 − κ)−2ec−11 c2λ1(1−κ)−2τ . (2.28)

Clearly, condition (2.6) implies limk→∞μk = ∞. Letting k → ∞ in (2.28), then P(τ∞ ≤ τ) = 0,
namely,

P(τ∞ > τ) = 1. (2.29)

Moreover, setting t = τ in (2.16), we may obtain that

λ2E

∫ τk∧τ

0
U(x(s), s)ds ≤ C1 + λ1E

∫ τk∧τ

0
V (x(s), s)ds ≤ C1 + λ1τc−11 c2C1(1 − κ)−2ec−11 c2λ1(1−κ)−2τ ,

(2.30)
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that is,

E

∫ τ

0
U(x(s), s)ds ≤ C1

λ2

(

1 + λ1τc−11 c2C1(1 − κ)−2ec−11 c2λ1(1−κ)−2τ
)

<∞. (2.31)

Let us now proceed to prove τ∞ > 2τ a.s. given that we have shown (2.27)–(2.31). For any
k ≥ k0 and t ∈ [0, 2τ], we can integrate both sides of (2.12) from 0 to τk ∧ t and then take
expectations to get

EV (x̃(τk ∧ t), τk ∧ t) ≤ C2 + λ1E
∫ τk∧t

0
V (x(s), s)ds − λ2E

∫ τk∧t

0
U(x(s), s)ds, (2.32)

where

C2 = V (x̃(0)) + 2λ1τ + λ1E
∫2τ

−τ
[V (x(s), s) +U(x(s), s)]ds <∞. (2.33)

By the Gronwall inequality and (2.32), we have

EV (x̃(τk ∧ t), τk ∧ t) ≤ c−11 c2C2(1 − κ)−2ec−11 c2λ1(1−κ)−2t, 0 ≤ t ≤ 2τ, k ≥ k0. (2.34)

In particular,

EV (x̃(τk ∧ 2τ), τk ∧ 2τ) ≤ c−11 c2C2(1 − κ)−2ec−11 c2λ1(1−κ)−22τ , ∀k ≥ k0. (2.35)

This implies

μkP(τk ≤ 2τ) ≤ c−11 c2C2(1 − κ)−2ec−11 c2λ1(1−κ)−22τ . (2.36)

Letting k → ∞, by (2.6), then P(τ∞ ≤ 2τ) = 0, that is,

P(τ∞ > 2τ) = 1, EV (x(t), t) ≤ c−11 c2C2(1 − κ)−2ec−11 c2λ1(1−κ)−22τ , 0 ≤ t ≤ 2τ. (2.37)

By (2.32), we may obtain that

λ2E

∫ τk∧2τ

0
U(x, t)dt ≤ C2 + λ1E

∫ τk∧2τ

0
V (x(t), t)dt, (2.38)

that is,

E

∫2τ

0
U(x, t)dt ≤ C2

λ2

(

1 + 2λ1τc−11 c2(1 − κ)−2ec
−1
1 c2λ1(1−κ)−22τ

)

<∞. (2.39)
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Repeating this procedure, we can show that, for any integer i ≥ 1, τ∞ > iτ a.s. andEV (x(t), t) ≤
c−11 c2Ci(1 − κ)−2ec−11 c2(1−κ)−2λ1iτ , 0 ≤ t < iτ, and

E

∫ iτ

0
U(x, t)dt ≤ Ci

λ2

(

1 + iλ1τc−11 c2(1 − κ)−2ec
−1
1 c2(1−κ)−2λ1iτ

)

, (2.40)

where

Ci = V (x̃(0), 0) + λ1E
∫ iτ

−τ
[1 + V (x, t) +U(x, t)]dt <∞. (2.41)

We must therefore have τ∞ = ∞ a.s. as well as the required assertion.
Note that condition (2.6)may be replaced by more general condition c1|x|p ≤ V (x, t) ≤

c2|x|p, p ≥ 2, which is suitable to the corresponding results below.

3. Boundedness and Moment Stability

In the previous section, we have shown that the solution of (2.1) has the properties that

EV (x(t), t) <∞, E

∫ t

0
U(x(s), s)ds <∞ (3.1)

for any t ≥ 0. In the following, we will give more precise estimations under specified
conditions; that is, we will establish the criteria of moment stability and asymptotic stability
of the solution to (2.1) under specified conditions.

Theorem 3.1. Assume that (H1), (H2), and (H3) hold except (2.7) which is replaced by

LV
(

ϕ, t
) ≤ μ1 − μ2V

(

ϕ(0), t
)

+ μ3

∫0

−τ
V
(

ϕ, t + θ
)

dη1(θ) − μ4U
(

ϕ(0), t
)

+ μ5

∫0

−τ
U
(

ϕ, t + θ
)

dη2(θ) − μ6V
(

ϕ̃(0), t
)

(3.2)

for all (ϕ, t) ∈ C([−τ, 0];Rn) × R+, −τ ≤ θ ≤ 0, where μ1 ≥ 0, μ2 > μ3 ≥ 0, μ4 > μ5 > 0, μ6 > 0
are constants and η1(θ) and η2(θ) are probability measures on [−τ, 0]. Then for any initial data ξ, the
global solution x(t) to (2.1) has the property that

lim sup
t→∞

EV (x(t), t) <
c2μ1

(1 − κ0)2c1ε
, (3.3)

where ε = μ6 ∧ ε1 ∧ ε2 ∧ τ−1 logκ−2, κ0 = κ
√
eετ , while ε1 > 0 and ε2 > 0 are the unique roots to the

following equations:

μ2 = μ3eε1τ , μ4 = μ5eε2τ , (3.4)
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respectively. If μ1 = 0, then

lim sup
t→∞

1
t
lnEV (x(t), t) < −ε,

∫∞

0
EU(x(t), t)dt <∞. (3.5)

Proof. We first observe that (3.2) implies (2.7) if we set λ1 = μ1 ∨ μ3 ∨ μ5 and λ2 = μ4. So, for
any initial data, (2.1) has a unique global solution x(t) on t ≥ −τ, which has the properties
(2.8). Based on these properties, we can apply the Itô formula and condition (3.2) to obtain
that for any t ≥ 0,

d
[

eεtV (x̃(t), t)
]

= eεt[εV (x̃(t), t) + LV (x(t), t)]dt + eεtVx(x̃(t), t)g(xt, t)dw(t)

≤ eεt
[

μ1 − μ2V (x, t) + μ3

∫0

−τ
V (xt, t + θ)dη1(θ) − μ4U(x, t) + μ5

∫0

−τ
U(xt, t + θ)dη2(θ)

]

+ eεtVx(x̃(t), t)g(xt, t)dw(t) − eεt
(

μ6 − ε
)

V (x̃(t), t),
(3.6)

We integrate both sides of the above inequality from 0 to t and take expectations to get

eεtEV (x̃(t), t)

≤ V (x̃(0), 0) +
μ1eεt

ε
− μ2E

∫ t

0
eεsV (x(s), s)ds + μ3E

∫ t

0

∫0

−τ
eεsV (xs, s + θ)dη1(θ)ds

− μ4E

∫ t

0
eεsU(x(s), s)ds + μ5E

∫ t

0

∫0

−τ
eεsU(xs, s + θ)dη2(θ)ds,

(3.7)

by using of ε = μ6 ∧ ε1 ∧ ε2 < μ6. Compute

E

∫ t

0

∫0

−τ
eεsV (xs, s + θ)dη1(θ)ds = E

∫ t

0

∫0

−τ
eεsV (x(s + θ), s + θ)dη1(θ)ds

≤ eετE
∫ t

0

∫0

−τ
eε(s+θ)V (x(s + θ), s + θ)dη1(s + θ)ds

≤ eετE
∫0

−τ
dη1(θ)

∫ t+θ

θ

eεsV (x(s), s)dds

≤ eετE
∫ t

−τ
eεsV (x(s), s)ds

≤ eετE
∫0

−τ
eεsV (x(s), s)ds + eετE

∫ t

0
eεsV (x(s), s)ds,

(3.8)
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Similiarly,

E

∫ t

0

∫0

−τ
eεsU(xs, s + θ)dη2(θ)ds ≤ eετE

∫0

−τ
eεsU(x(s), s)ds + eετE

∫ t

0
eεsU(x(s), s)ds. (3.9)

Substituting for (3.8) and (3.9) into (3.7), the result is

eεtEV (x̃(t), t)

≤ V (x̃(0), 0) +
μ1eεt

ε
− μ2E

∫ t

0
eεsV (x(s), s)ds

+ μ3eετE
∫0

−τ
eεsV (x(s), s)ds + μ3eετE

∫ t

0
eεsV (x(s), s)ds

− μ4E

∫ t

0
eεsU(x, s)ds + μ5eετE

∫0

−τ
eεsU(x(s), s)ds + μ5eετE

∫ t

0
eε(s)U(x(s), s)ds

= V (x̃(0), 0) +
μ1eεt

ε
+ eετE

∫0

−τ
eεs

(

μ3V (x(s), s) + μ5U(x(s), s)
)

ds

− (

μ2 − μ3eετ
)

E

∫ t

0
eεsV (x(s), s)ds − (

μ4 − μ5eετ
)

E

∫ t

0
eεsU(x, s)ds

= C +
μ1eεt

ε
− (

μ2 − μ3eετ
)

E

∫ t

0
eεsV (x(s), s)ds − (

μ4 − μ5eετ
)

E

∫ t

0
eεsU(x, s)ds,

(3.10)

whereC = V (x̃(0), 0)+eετE
∫0
−τ e

εs(μ3V (x(s), s)+μ5U(x(s), s))ds. It is clear that, for ε ≤ ε1∧ε2,
we have μ2 − μ3eετ ≥ 0, μ4 − μ5eετ ≥ 0, hence,

eεtEV (x̃(t), t) ≤ C +
μ1eεt

ε
. (3.11)

By (H2) and (H3) and inequality (a + b)2 ≤ (1/(1 − κ0))a2 + (1/κ0)b2, a, b > 0, κ0 ∈ (0, 1), we
compute

Eeεt|x(t)|2 ≤ (1 − κ0)−1Eeεt|x̃(t)|2 + κ−10 Eeεt|u(xt, t)|2

≤ (1 − κ0)−1c−11 eεtE|V (x̃(t), t)|2 + κ−10 κ2
∫0

−τ
eεtE|x(t + θ)|2dν(θ)

≤ (1 − κ0)−1c−11
(

C +
μ1

ε
eεt

)

+ κ−10 κ
2
∫0

−τ
e−εθEeε(t+θ)|x(t + θ)|2dν(θ).

(3.12)
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For any t ≥ 0,

sup
−τ≤s≤t

Eeεt|x(t)|2 ≤ (1 − κ0)−1c−11
(

C +
μ1

ε
eεt

)

+ κ−10 κ
2 sup
−τ≤s≤t

Eeεt|x(t)|2
∫0

−τ
e−εθdν(θ)

≤ (1 − κ0)−1c−11
(

C +
μ1

ε
eεt

)

+ κ−10 κ
2eετ sup

−τ≤s≤t
Eeεt|x(t)|2.

(3.13)

Leting κ0 = κ
√
eετ < 1, since ε < τ−1 logκ−2, then κ0 < 1,

sup
−τ≤s≤t

Eeεt|x(t)|2 ≤ (1 − κ0)−2c−11
(

C +
μ1

ε
eεt

)

, (3.14)

and by (H3), EV (x, t) ≤ c2E|x(t)|2, then

sup
−τ≤s≤t

eεtEV (x, t) ≤ c2 sup
−τ≤s≤t

eεtE|x(t)|2 ≤ (1 − κ0)−2c−11 c2
(

C +
μ1

ε
eεt

)

. (3.15)

Therefore,

lim sup
t→∞

EV (x(t), t) ≤ c2μ1

(1 − κ0)2c1ε
. (3.16)

When μ1 = 0, then EV (x(t), t) ≤ c−11 c2C(1 − κ0)−2e−εt, for all t ≥ 0, that is,

lim sup
t→∞

1
t
logEV (x(t), t) ≤ −ε. (3.17)

On the other hand, when μ1 = 0, by (3.7) and the Itô formula, we may show easily that

EV (x̃(t), t) = V (x̃(0), 0) + E
∫0

−τ

(

μ3V (x(s), s) + μ5U(x(s), s)
)

d(s)

− (

μ2 − μ3
)

E

∫ t

0
V (x(s), s)ds − (

μ4 − μ5
)

E

∫ t

0
U(x(s), s)ds.

(3.18)

By μ2 = μ3eε1τ > μ3, μ4 = μ5eε2τ > μ5, and the Fubini theorem, we obtain

∫ t

0
EU(x, s) ≤ 1

μ4 − μ5

[

V (x̃(0), 0) + E
∫0

−τ

(

μ3V (x(s), s) + μ5U(x(s), s)
)

d(s)

]

<∞. (3.19)

The proof is complete.
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4. Asymptotic Stability

In this section, we will establish asymptotic stability of (2.1) without the linear growth
condition. It is well known that the linear growth condition is one of the most important con-
ditions to guarantee asymptotic stability. Therefore we introduce the following semitingale
convergence thoerem [14, 15], which will play a key role in dealing with nonlinear systems.

Lemma 4.1. Let M(t) be a real-valued local martingale with M(0) = 0 a.s. Let ζ be a nonnegative
F0-measurable random variable. If X(t) is a nonnegative continuous Ft-adapted process and satisfies
X(t) ≤ ζ +M(t) for t ≥ 0, then X(t) is almost surely bounded, namely, limt→∞X(t) <∞, a.s.

Theorem 4.2. Assume that (H1), (H2), and (H3) hold except (2.7) which is replaced by

LV
(

ϕ, t
) ≤ −μ2V

(

ϕ(0), t
)

+ μ3

∫0

−τ
V
(

ϕ, t + θ
)

dη1(θ) − μ4U
(

ϕ(0), t
)

+ μ5

∫0

−τ
U
(

ϕ, t + θ
)

dη2(θ) − μ6V
(

ϕ̃(0), t
)

(4.1)

for all (ϕ, t) ∈ Rn × R+,−τ ≤ θ ≤ 0, where μ2 > μ3 ≥ 0, μ4 > μ5 > 0, μ6 > 0. Then, for any initial
data, the unique global solution x(t) of (2.1) has the property that

lim sup
t→∞

1
t
lnV (x(t), t) ≤ −ε,

∫∞

0
U(x(t), t)dt <∞, (4.2)

where ε = μ6 ∧ ε1 ∧ ε2 ∧ τ−1 logκ−2, while ε1 > 0 and ε2 > 0 are the unique roots to the following
equations:

μ2 = μ3eε1τ , μ4 = μ5eε2τ , (4.3)

respectively.

Proof. We first observe that (4.1) implies (2.7) if we set λ1 = μ1 ∨ μ3 ∨ μ5 and λ2 = μ4. So, for
any initial data, (2.1) has a unique global solution x(t) on t ≥ −τ, which has the properties
(2.8). Similar to the proof of Theorem 3.1, applying the Itô formula and condition (4.1), for
any t ≥ 0, we may obtain that

d
[

eεtV (x̃(t), t)
]

= eεt[εV (x̃(t), t) + LV (x(t), t)]dt + eεtVx(x̃(t), t)g(xt, t)dw(t)

≤ eεt
[

−μ2V (x(t), t) + μ3

∫0

−τ
V (xt, t + θ)dη1(θ) − μ4U(x, t) + μ5

∫0

−τ
U(xt, t + θ)dη2(θ)

]

+ eεtVx(x̃(t), t)g(xt, t)dw(t) − (

μ6 − ε
)

V (x̃(t), t).
(4.4)
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For t > 0,we can integrate both sides of the above inequality from 0 to t and take expectations
to get

eεtEV (x̃(t), t) ≤ V (x̃(0), 0) − μ2

∫ t

0
eεsV (x(s), s)ds + μ3

∫ t

0

∫0

−τ
eεsV (xs, s + θ)dη1(θ)ds

− μ4

∫ t

0
eεsU(x, s)ds + μ5

∫ t

0

∫0

−τ
eεsU(xs, s + θ)dη2(θ)ds +M(t),

(4.5)

where M(t) =
∫ t

0 e
εsVx(x̃(s), s)g(xs, s)dw(s)ds is a real-valued continuous local martingale

withM(0) = 0. Similar to Theorem 3.1, we have

eεtV (x̃(t), t) ≤ V (x̃(0), 0) + eετ
∫0

−τ

(

μ3V (x(s), s) + μ5U(x(s), s)
)

ds

− (

μ2 − μ3eετ
)
∫ t

0
eεsV (x(s), s)ds − (

μ4 − μ5eετ
)
∫ t

0
eεsU(x, s)ds +M(t)

≤ const +M(t).

(4.6)

Lemma 4.1 implies

lim sup
t→∞

eεtV (x̃(t), t) <∞ a.s. (4.7)

Since c1|x|2 ≤ V (x, t) ≤ c2|x|2, then

lim sup
t→∞

eεt|x̃(t)|2 <∞ a.s. (4.8)

According to the definition of x̃(t), we compute

eεt|x(t)|2 = eεt|x̃(t) + u(xt, t)|2

≤ (1 − κ0)−1eεt|x̃(t)|2 + κ−10 eεt|u(xt, t)|2

≤ (1 − κ0)−1eεt|x̃(t)|2 + κ−10 κ2
∫0

−τ
e−εθeε(t+θ)|x(t + θ)|2dν(θ).

(4.9)
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Therefore, we may also compute

sup
−τ≤s≤t

eεs|x(s)|2 ≤ ‖ξ‖2 + sup
0≤s≤t

eεs|x(s)|2

≤ ‖ξ‖2 + (1 − κ0)−1 sup
0≤s≤t

[

eεs|x̃(s)|2 + κ−10 κ2
∫0

−τ
e−εθeε(s+θ)|x(s + θ)|2dν(θ)

]

≤ ‖ξ‖2 + (1 − κ0)−1 sup
0≤s≤t

eεs|x̃(s)|2 + κ−10 κ2 sup
−τ≤s≤t

eεs|x(s)|2
∫0

−τ
e−εθdν(θ)

≤ ‖ξ‖2 + (1 − κ0)−1 sup
0≤s≤t

eεs|x̃(s)|2 + κ−10 κ2eετ sup
−τ≤s≤t

eεs|x(s)|2.
(4.10)

Noting that ε < τ−1 logκ−2, choose κ0 = κ
√
eετ . Then κ0 < 1, and we obtain

sup
−τ≤s≤t

eεs|x(s)|2 ≤ (1 − κ0)−1‖ξ‖2 + (1 − κ0)−2 sup
0≤s≤t

eεs|x̃(s)|2. (4.11)

(4.8) and (4.11) yield

sup
−τ≤s≤t

eεs|x(s)|2 < +∞ a.s. (4.12)

Recall the condition c1|x|2 ≤ V (x, t) ≤ c2|x|2, which implies lim supt→∞e
εtV (x(t), t) < C a.s.

The required result is obtained.

Remark 4.3. From the processes of the proof of Theorems 3.1 and 4.2, we see that condition
(2.6) plays an important role in dealing with the neutral term. Moreover, applying condition
(2.6), we can also obtain more precise results

lim sup
t→∞

1
t
logE|x(t)| ≤ −ε

2
, lim sup

t→∞

1
t
log|x(t)| ≤ −ε

2
. (4.13)

In the next section, condition (2.6)will be replaced by a more general condition for stochastic
functional differential equation.

5. Stochastic Functional Differential Equation

Let u(xt) = 0. Then (2.1) reduces to

dx(t) = f(xt, t)dt + g(xt, t)dw(t). (5.1)
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This is a stochastic functional differential equation. In this section, we will give the
corresponding results for stochastic functional differential equation. We will also see that the
conditions are more general.

Define an operator LV from C([−τ, 0];Rn) × R+ to R by

LV
(

ϕ, t
)

= Vt
(

ϕ(0), t
)

+ Vx
(

ϕ(0), t
)

f
(

ϕ, t
)

+
1
2
trace

(

gT
(

ϕ, t
)

Vxx
(

ϕ(0), t
)

g
(

ϕ, t
))

. (5.2)

We impose the following assumption which is more general than (H3).

(H3′) There are two functions V ∈ C2,1(Rn × [−τ,+∞);R+) and U ∈ C(Rn ×
[−τ,+∞);R+) as well as two positive constants λ1, λ2 and a probability measure
μ on [−τ, 0] such that

lim
|x|→∞

inf
0≤t<∞

V (x, t) = ∞, (5.3)

LV
(

ϕ, t
) ≤ λ1

[

1 + V
(

ϕ(0), t
)

+
∫0

−τ

(

V
(

ϕ(θ), t + θ
)

+U
(

ϕ(θ), t + θ
))

dμ(θ)

]

− λ2U
(

ϕ(0), t
)

(5.4)

for all −τ ≤ θ ≤ 0, (ϕ, t) ∈ Rn × R+.

Theorem 5.1. Assume that (H1) and (H3′) hold. Then for any initial condition ξ ∈ Cb
F0
([−τ, 0];Rn),

there exists a unique global solution x(t) of (5.1) on t ∈ [−τ,∞). Moreover, the solution has the
properties that

EV (x(t), t) <∞, E

∫ t

0
U(x(s), s)ds <∞ (5.5)

for any t ≥ 0.

Proof. Since the proof is similar to Theorem 2.2, we will only outline the proof. It is clear
that for any initial data ξ ∈ Cb

F0
([−τ, 0];Rn), there is a unique maximal local solution x(t) on

t ∈ [−τ, τe),where τe is the explosion time [1]. Let k0 > 0 be sufficiently large for

1
k0

< min
−τ≤t≤0

|x(t)| < max
−τ≤t≤0

|x(t)| < k0. (5.6)

Define the stopping time

τk = inf
{

t ∈ [0, τe] : |x(t)| ∈ Ik
}

, Ik ≡
(
1
k
, k

)

, k ≥ k0, (5.7)
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where throughout this paper, we set inf ∅ = ∞ (∅ denotes the empty sets). Clearly, τk is
increasing as k → ∞. Denote τ∞ = limk→∞τk, τ∞ ≤ τe a.s. We will show that τ∞ = ∞ a.s.,
which implies τe = ∞ a.s. By Itô formula and (5.4), for any k ≥ k0 and t ∈ [0, τ], we obtain

EV (x(τk ∧ t), τk ∧ t) ≤ C1 + λ1

∫ t

0
EV (x(τk ∧ s), τk ∧ s)ds − λ2

∫ t

0
EU(x(τk ∧ s), τk ∧ s)ds,

(5.8)

where C1 = V (x(0), 0) +λ1τ +λ1E
∫τ

−τ[V (x(s), s) +U(x(s), s)]ds. For any k ≥ k0, the Gronwall
inequality yields

E
[

I{τk≤τ}V (x(τk ∧ τ), τk ∧ τ)
] ≤ EV (x(τk ∧ τ), τk ∧ τ) ≤ C1eλ1τ , ∀k ≥ k0, (5.9)

which implies

EV (x(t), t) ≤ C1eλ1τ , 0 ≤ t ≤ τ. (5.10)

Defining μk = inf|x|≥k, 0≤t<∞V (x, t) for k ≥ k0, according to (5.3), then

μkP(τk ≤ τ) ≤ C1eλ1τ . (5.11)

Condition (5.3) implies limk→∞μk = ∞. Letting k → ∞ in (5.11), then P(τ∞ ≤ τ) = 0, namely,

P(τ∞ > τ) = 1. (5.12)

Moreover, setting t = τ in (5.8), we may obtain that

λ2E

∫ τk∧τ

0
U(x, s)ds ≤ C1 + λ1E

∫ τk∧τ

0
V (x(s), s)ds ≤ C1 + λ1C1τeλ1τ , (5.13)

that is,

E

∫ τ

0
U(x, s)ds ≤ C1

λ2

(

1 + λ1τeλ1τ
)

<∞. (5.14)

Let us now proceed to prove τ∞ > 2τ a.s. given that we have shown (5.10)–(5.14). For any
k ≥ k0 and t ∈ [0, 2τ], we get

EV (x(τk ∧ t), τk ∧ t) ≤ C2 + λ1E
∫ τk∧t

0
V (x(s), s)ds − λ2E

∫ τk∧t

0
U(x(s), s)ds, (5.15)

where

C2 = V (x(0)) + 2λ1τ + λ1E
∫2τ

−τ
[V (x(s), s) +U(x(s), s)]ds <∞. (5.16)
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By the Gronwall inequality and (5.8), we have

EV (x(τk ∧ t), τk ∧ t) ≤ C2e2λ1τ , 0 ≤ t ≤ 2τ, k ≥ k0. (5.17)

In particular,

EV (x(τk ∧ 2τ), τk ∧ 2τ) ≤ C2e2λ1τ , ∀k ≥ k0. (5.18)

This implies

μkP(τk ≤ 2τ) ≤ C2e2λ1τ . (5.19)

Letting k → ∞, by (5.3), then P(τ∞ ≤ 2τ) = 0, that is,

P(τ∞ > 2τ) = 1.EV (x(t), t) ≤ C2e2λ1τ , 0 ≤ t ≤ 2τ. (5.20)

By (5.8), we may also obtain that

λ2E

∫ τk∧2τ

0
U(x, t)dt ≤ C2 + λ1E

∫ τk∧2τ

0
V (x(t), t)dt, (5.21)

that is,

E

∫2τ

0
U(x, t)dt ≤ C2

λ2

(

1 + 2λ1τe2λ1τ
)

<∞. (5.22)

Repeating this procedure, we can show that, for any integer i ≥ 1, τ∞ > iτ a.s and EV (x) ≤
Cieiλ1τ , 0 ≤ t < iτ, and

E

∫ iτ

0
U(x, t)dt ≤ Ci

λ2

(

1 + iλ1τeiλ1τ
)

, (5.23)

where

Ci = V (x(0), 0) + λ1E
∫ iτ

−τ
[1 + V (x, t) +U(x, t)]dt <∞. (5.24)

We must therefore have τ∞ = ∞ a.s. as well as the required assertion (5.5).

Theorem 5.2. Assume that (H1) and (H3′) hold except (5.4) which is replaced by

LV
(

ϕ, t
) ≤ μ1 − μ2V

(

ϕ(0), t
)

+ μ3

∫0

−τ
V
(

ϕ, t + θ
)

dη1(θ) − μ4U
(

ϕ(0), t
)

+ μ5

∫0

−τ
U
(

ϕ, t + θ
)

dη2(θ)

(5.25)
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for all (ϕ, t) ∈ Rn ×R+,−τ ≤ θ ≤ 0, where μ1 ≥ 0, μ2 > μ3 ≥ 0, μ4 > μ5 > 0. Then for any initial data,
the global solution x(t) to (5.1) has the property that

lim sup
t→∞

EV (x(t), t) ≤ μ1

ε
, (5.26)

where ε = ε1 ∧ ε2, while ε1 > 0 and ε2 > 0 are the unique roots to the following equations:

μ2 = μ3eε1τ , μ4 = μ5eε2τ , (5.27)

respectively. If μ1 = 0, then

lim sup
t→∞

1
t
lnEV (x(t), t) ≤ −ε,

∫∞

0
EU(x(t), t)dt <∞. (5.28)

Proof. Since the proof is similar to Theorem 3.1, we will only outline the proof. We first
observe that (5.25) implies (5.4) if we set λ1 = μ1 ∨ μ3 ∨ μ5 and λ2 = μ4. So for any initial
data, (5.1) has a unique global solution x(t) on t ≥ −τ, which has the properties (5.5). Based
on these properties, we can apply the Itô formula and condition (5.4) to obtain that for any
t ≥ 0,

eεtEV (x(t), t) ≤ V (x(0), 0)+
μ1eεt

ε
− μ2E

∫ t

0
eεsV (x(s), s)ds+μ3E

∫ t

0

∫0

−τ
eεsV (xs, s + θ)dη1(θ)ds

− μ4E

∫ t

0
eεsU(x, s)ds + μ5E

∫ t

0

∫0

−τ
eεsU(xs, s + θ)dη2(θ)ds.

(5.29)

Applying for (3.8) and (3.9), similarly, we have

eεtEV (x(t), t) ≤ V (x(0), 0) +
μ1eεt

ε
− μ2E

∫ t

0
eεsV (x(s), s)ds

+ μ3eετE
∫0

−τ
eεsV (x(s), s)ds + μ3eετE

∫ t

0
eεsV (x(s), s)ds

− μ4E

∫ t

0
eεsU(x, s)ds + μ5eετE

∫0

−τ
eεsU(x(s), s)ds + μ5eετE

∫ t

0
eε(s)U(x(s), s)ds

= C +
μ1eεt

ε
− (

μ2 − μ3eετ
)

E

∫ t

0
eεsV (x(s), s)ds − (

μ4 − μ5eετ
)

E

∫ t

0
eεsU(x, s)ds,

(5.30)
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where C = V (x(0), 0)+eετE
∫0
−τ e

εs(μ3V (x(s), s)+μ5U(x(s), s))ds. It is clear that, for ε ≤ ε1∧ε2,
we have μ2 − μ3eετ ≥ 0, μ4 − μ5eετ ≥ 0; hence,

eεtEV (x(t), t) ≤ C +
μ1eεt

ε
, (5.31)

that is,

EV (x(t), t) ≤ Ce−εt + μ1

ε
, ∀t ≥ 0. (5.32)

Therefore

lim sup
t→∞

EV (x(t), t) ≤ μ1

ε
. (5.33)

When μ1 = 0, then EV (x(t), t) ≤ Ce−εt, for all t ≥ 0, that is,

lim sup
t→∞

1
t
logEV (x(t), t) ≤ −ε. (5.34)

On the other hand, when μ1 = 0, we may show easily that

EV (x(t), t) = V (x(0), 0) + E
∫0

−τ

(

μ3V (x(s), s) + μ5U(x(s), s)
)

ds

− (

μ2 − μ3
)

E

∫ t

0
V (x(s), s)ds − (

μ4 − μ5
)

E

∫ t

0
U(x(s), s)ds.

(5.35)

Recalling that μ2 = μ3eε1τ > μ3, μ4 = μ5eε2τ > μ5, the Fubini theorem yields

∫ t

0
EU(x, s) ≤ 1

μ4 − μ5

[

V (x(0), 0) + E
∫0

−τ

(

μ3V (x(s), s) + μ5U(x(s), s)
)

ds

]

<∞. (5.36)

The proof is complete.

Theorem 5.3. Assume that (H1) and (H3′) hold except (5.3) which is replaced by

LV
(

ϕ, t
) ≤ −μ2V

(

ϕ(0), t
)

+ μ3

∫0

−τ
V
(

ϕ, t + θ
)

dη1(θ) − μ4U
(

ϕ(0), t
)

+ μ5

∫0

−τ
U
(

ϕ, t + θ
)

dη2(θ)

(5.37)
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for all (ϕ, t) ∈ Rn × R+,−τ ≤ θ ≤ 0, where μ2 > μ3 ≥ 0, μ4 > μ5 > 0. Then for any initial data, the
unique global solution x(t) to (5.1) has the property that

lim sup
t→∞

1
t
lnV (x(t), t) ≤ −ε,

∫∞

0
U(x(t), t)dt <∞, (5.38)

where ε = ε1 ∧ ε2, while ε1 > 0 and ε2 > 0 are the unique roots to the following equations

μ2 = μ3eε1τ , μ4 = μ5eε2τ , (5.39)

respectively.

Proof. It is clear that (5.1) has a unique global solution x(t) on t ≥ −τ,which has the properties
(2.8). For any t ≥ 0, we can obtain

eεtEV (x(t), t) ≤ V (x(0), 0) − μ2

∫ t

0
eεsV (x(s), s)ds + μ3

∫ t

0

∫0

−τ
eεsV (xs, s + θ)dη1(θ)ds

− μ4

∫ t

0
eεsU(x, s)ds + μ5

∫ t

0

∫0

−τ
eεsU(xs, s + θ)dη2(θ)ds +M(t),

(5.40)

whereM(t) =
∫ t

0 e
εsVx(x̃(s), s)g(x, xs, s)dw(s)ds is a real-valued continuous local martingale

withM(0) = 0. Similar to Theorem 4.2,

eεtV (x(t), t) ≤ C − (

μ2 − μ3eετ
)
∫ t

0
eεsV (x(s), s)ds − (

μ4 − μ5eετ
)
∫ t

0
eεsU(x, s)ds +M(t)

≤ const +M(t).
(5.41)

By Lemma 4.1, we have

lim sup
t→∞

eεtV (x(t), t) ≤ ∞ a.s. (5.42)

The required result is obtained.

6. Example

In the following, we will consider several examples to illustrates our ideas.

Example 6.1. Consider a one-dimensional SFDE

dx(t) = x(t)
[(

a + bσ1(xt) − x2(t)
)

dt + cσ2(xt)dw(t)
]

, (6.1)
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wherew(t) is a one-dimensional Brownianmotion, a, b, c(b, c > 0) are bounded real numbers,
and the functions σ1, σ2 ∈ C([−τ, 0];R) having the property of

∣
∣σ1

(

ϕ
)∣
∣ ∨ ∣

∣σ2
(

ϕ
)∣
∣ ≤ κ

∫0

−τ

∣
∣ϕ(θ)

∣
∣dμ(θ) κ ∈ (0, 1). (6.2)

Let V (x) = x2. Then the corresponding operator LV : R × R × R+ has the form

LV (xt, t) = 2x2(t)
(

a + bσ1(xt) − x2(t)
)

+ c2x2(t)σ2
2(xt)

= 2ax2(t) + 2bx2(t)σ1(xt) − 2x4(t) + c2x2(t)σ2
2(xt)

≤ 2ax2(t) + bx4(t) + bσ2
1(xt) − 2x4(t) + 0.5c2x4(t) + 0.5c2σ4

2(xt)

≤ 2ax2(t) + bσ2
1(xt) + 0.5c2σ4

2(xt) −
(

2 − b − 0.5c2
)

x4(t)

≤ 2ax2(t) + bκ2
∫0

−τ
x2
t (θ)dμ(θ) + 0.5c2κ4

∫0

−τ
x4
t (θ)dμ(θ) −

(

2 − b − 0.5c2
)

x4(t),

(6.3)

where λ1 = max{2a, bκ2, 0.5c2κ4}, λ2 = 2 − b − 0.5c2, U(x) = x4. If 2 − b − 0.5c2 > 0, then by
Theorem 5.1, we can conclude that for any initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R),
there is a unique global solution x(t) to (6.1) on t ∈ [−τ,∞). Moreover, the solution has the
properties that

E|x|2 <∞, E

∫ t

0
|x(s)|4ds <∞ (6.4)

for any t ≥ 0. If a < 0, 2 − b − 0.5c2 > 0.5c2κ4 > 0,−2a > bκ2 ≥ 0, U(x) = x4, ε1 > 0 and ε2 > 0
will be the unique roots to the following equations:

−2a = bκ2eε1τ , 2 − b − 0.5c2 = 0.5c2κ4eε2τ , (6.5)

respectively. Set ε = ε1 ∧ ε2, by Theorem 5.2, we can conclude that the unique global solution
of (6.1) has the property that

lim sup
t→∞

1
t
lnE|x(t)|2 ≤ −ε, lim sup

t→∞

1
t
ln |x(t)|2 ≤ −ε,

∫∞

0
Ex4(t)dt < +∞. (6.6)

If we choose a = −2, b = 1, c = 1, κ = 0.5, τ = 8, then ε1 = 0.34657, ε2 = 0.34657, which
implies

lim sup
t→∞

1
t
lnE|x(t)|2 < −0.34657. (6.7)
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Example 6.2. Consider a one-dimensional NSFDE

d(x(t) − σ1(xt)) = x(t)
[(

a − x2(t)
)

dt + cσ2(xt)dw(t)
]

, (6.8)

where w(t) is a one-dimensional Brownian motion and both a, c are bounded positive real
numbers, σ1, σ2 ∈ C([−τ, 0];R) having the property of

∣
∣σ1

(

ϕ
)∣
∣ ∨ ∣

∣σ2
(

ϕ
)∣
∣ ≤ κ

∫0

−τ

∣
∣ϕ(θ)

∣
∣dμ(θ) κ ∈ (0, 1). (6.9)

Let V (x) = x2. Then the corresponding operator LV : R × R × R+ has the form

LV (x, xt, t) = 2(x(t) − σ1(xt))
(

a − x2(t)
)

x(t) + c2x2(t)σ2
2(xt)

= 2ax2(t) − 2ax(t)σ1(xt) − 2x4(t) + 2x3(t)σ1(xt) + c2x2(t)σ2
2(xt)

≤ 2ax2(t)+ax2(t)+aσ2
1(xt)−2x4(t)+2

(

x4(t)
)3/4(

σ4
1(xt)

)1/4
+0.5c2

(

x4(t) + σ4
2(xt)

)

≤ 2ax2(t) + ax2(t) + aσ2
1(xt) − 2x4(t) + 1.5x4(t) + 0.5σ4

1(xt) + 0.5c2
(

x4(t) + σ4
2(xt)

)

= 3ax2(t) + aκ2
∫0

−τ
x2
t (θ)dμ(θ) +

(

0.5 + 0.5c2
)

κ4
∫0

−τ
x4
t (θ)dμ(θ) − 0.5

(

1 − c2
)

x4(t)

= λ1

(

x2(t) +
∫0

−τ
x2
t (θ)dμ(θ) +

∫0

−τ
x4
t (θ)dμ(θ)

)

− λ2x4(t),

(6.10)

where λ1 = max{3a, aκ2, (0.5 + 0.5c2)κ4}, λ2 = 0.5(1 − c2), U(x) = x4. By Theorem 2.2, we can
conclude that for any initial data, there is a unique global solution x(t) to (6.8) on t ∈ [−τ,∞).
Moreover, the solution has the properties that for any t ≥ 0

E|x(t)|2 <∞, E

∫ t

0
|x(s)|4ds <∞. (6.11)

Example 6.3. Consider a one-dimensional NSFDE

d[x(t) − σ1(xt)] =
[

(a − b)x(t) − aσ1(xt) − x(t)3
]

dt + cσ2(xt)dw(t), (6.12)

where w(t) is a one-dimensional Brownian motion, a, b, c(b, c > 0) are real numbers, σ1, σ2 ∈
C([−τ, 0];R) having the property of

∣
∣σ1

(

ϕ
)∣
∣ ∨ ∣

∣σ2
(

ϕ
)∣
∣ ≤ κ

∫0

−τ

∣
∣ϕ(θ)

∣
∣dμ(θ) κ ∈ (0, 1). (6.13)
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Then, the corresponding operator LV has the form

LV (x, xt, t)

= 2(x(t) − σ1(xt))
[

(a − b)x(t) − aσ1(xt) − x(t)3
]

+ c2σ2
2(xt)

= 2a(x(t) − σ1(xt))2 − 2bx2(t) + 2bx(t)σ1(xt) − 2x4(t) + 2x3(t)σ1(xt) + c2σ2
2(xt)

≤ 2a(x(t) − σ1(xt))2 − 2bx2(t) + bx2(t) + bσ2
1(xt) − 2x4(t) + 2

(

x4(t)
)3/4(

σ4
1(xt)

)1/4
+ c2σ2

2(xt)

≤ 2a(x(t) − σ1(xt))2 − bx2(t) + bσ2
1(xt) − 2x4(t) + 1.5x4(t) + 0.5σ4

1(xt) + c
2σ2

2(xt)

≤ −bx2(t) +
(

b + c2
)

κ2
∫0

−τ
x2
t (θ)dμ(θ) − 0.5x4(t) + 0.5κ4

∫0

−τ
x4
t (θ)dμ(θ) + 2a(x(t) − σ1(xt))2,

(6.14)

where the first and second inequalities using the elementary inequality uαv1−α ≤ (αu + (1 −
α)v). If a < 0, b > (b + c2)κ2 ≥ 0, ε1 > 0 and ε2 > 0 be the unique roots to the following
equations,

b =
(

b + c2
)

κ2eε1τ , 0.5 = 0.5κ4eε2τ , (6.15)

respectively. And set ε = −2a ∧ ε1 ∧ ε2 ∧ τ−1 lnκ−2, by Theorem 3.1, we can conclude that the
unique global solution of (6.12) has the property that

lim sup
t→∞

1
t
lnE|x(t)|2 ≤ −ε, lim sup

t→∞

1
t
ln |x(t)|2 ≤ −ε. (6.16)

If we let a = −2, b = 0.5 = c, κ = 0.5, τ = 0.9, then

0.5 = 2.6666e0.9ε1 , 0.5 = 0.55e0.9ε2 , (6.17)

which give their roots ε1 = 1.0898, ε2 = 3.08065, respectively, and τ−1 lnκ−2 = 0.10168,

lim sup
t→∞

1
t
ln
(

E|x(t)|2
)

≤ −0.10168, lim sup
t→∞

1
t
ln |x(t)|2 ≤ −0.10168. (6.18)
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