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Neutral stochastic functional differential equations (NSFDEs) have recently been studied
intensively. The well-known conditions imposed for the existence and uniqueness and exponential
stability of the global solution are the local Lipschitz condition and the linear growth condition.
Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main
aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test
for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but
they can also be verified much more easily than the classical criteria. Finally, several examples are
given to illustrate main results.

1. Introduction

Stochastic modelling has played an important role in many areas of science and engineering
for a long time. Some of the most frequent and most important stochastic models used when
dynamical systems not only depend on present and past states but also involve derivatives
with functionals are described by the following neutral stochastic functional differential
equation:

dx(t) —u(x)] = f(xe, t)dt + g(xy, t)dw(t). (1.1)

The conditions imposed on their studies are the standard uniform Lipschitz condition and
the linear growth condition. The classical result is described by the following well-known
Mao’s test see [1, page 202, Theorem 2.2].
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Theorem 1.1. Assume that there exist positive constants K, L, and x € (0,1) such that

If (. t) = etV |8 (0 t) - g (g, )|* < Kl - 5]°,
@) Vgt <L(1+[lol*), (1.2)

lu(p) —u(y)| <xllo- ¢l

forall p,¢ € C([-T,0]; R"). Then there exists a unique solution x(t) to (1.1) with initial data & €
Cgo ([-7,0]; R") (i.e., ¢ is an Fo-measurable C([-7,0]; R")-valued random variable such that E||¢|| <

©0).

Theorem 1.1 requires that the coefficients f and g satisfy the Lipschitz condition and
the linear growth condition. However, there are many NSFDEs that do not satisfy the linear
growth condition. For example, the following nonlinear NSFDE:

d[x(t) - u(x)] = x(t) [a +bo (x;) — x(t)z]dt + cx(t)oa (x)dw(t),

0 (1.3)
@] vIox@)] < [ lp@lduce)

where coefficients f(x,x;,t) = x(t)[a + boi(x;) — x(£)*] and g = cx(t)oz(x;) do not obey
the linear growth condition although they are Lipschitz continuous. To the authors’ best
knowledge, there is so far no result that shows that (1.3) has a unique global solution for
any initial data.

On the other hand, we still encounter a new problem when we attempt to deduce
the exponential decay of the solution even if there is no problem with the existence of the
solution. For example, Mao [2] initiated the following study of exponential stability for
NSFDEs employing the Razumikhin technique.

Theorem 1.2. Let ¢y, ¢, A, p e all positive numbers and q > (c2/c1)(1 -«)?,x € (0,1), for any
p €Ly, ([-7,0;R"),

Elu(p)|" < [loll5, (14)
and assume that there exists a function V(x,t) € C*'(R" x [~T, o0); R,) such that

alxlP <V(x,t) < colx|? (1.5)
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forall (x,t) € R" x [-T,00) and also for all t > 0

ELV (p,t) < -AEV({(0),t) (1.6)
provided ¢ = {p(0) : -1 <0 <0} € L?([—T, 0]; R") satisfying
EV(¢(0),t+0) < qEV(§(0),t) (1.7)

forall =t <0 <0. Then forall ¢ € Cgo([—r, 0;R"), t>0

1 14
Elx(t8) < z—2<—1 +1f > e MEEI, w1 = xe'P, (1.8)
1 - K1

where y = u AT n[qq (1 + 1<q1/”)_p],q1 =c1q9/ca.

It is very difficult to verify the conditions of Theorem 1.2, and it is clear that
ELV(p,t) < -AEV({p(0),t) does not hold for many NSFDEs. In fact, for (1.3), if one chooses
V(x,t) = x?, then

LV =2x(x —u(xy)) (a +boy(x;) — x2> + czxzag (). (1.9)

Here, the polynomial x* appears on the right-hand side, and it has an order of 4 which is
higher than the order of V(x) = x%. More recently, Mao [3-5], Zhou et al. [6, 7], Yue et al. [8]
and Shen et al. [9] provided with some useful criteria on the exponential stability employing
the Lyapunov function, but their tests encounters the same problem.

Therefore, we see that there is a necessity to develop new criteria for NSFDEs where
the linear growth condition may not hold while the bound on the operator LV may take a
much more general form. In the paper, we will establish a Khasminskii-type test for NSFDEs
that cover a wide class of highly nonlinear NSFDEs referring to Khasminskii-type theorems
[10] and Mao and Rassias [11] results of stochastic delay differential equations. To our best
knowledge, there is no such result for NSFDEs and stochastic functional differential equations
(SFDEs).

In the next section, we will establish a general existence and uniqueness theorem
of the global solution to (1.1) after giving some necessary notations. Boundedness and
Moment stability are given under the Khasminskii-type condition in Section 3. Section 4
establishes asymptotic stability theorem by using semimartingale convergence theory.
Section 5 gives corresponding criteria for stochastic functional differential equations. Finally,
several examples are given to illustrate our results.

2. Global Solution of NSFDEs

Throughout this paper, unless otherwise specified, we let (Q,F, {¥:};50, P) be a complete
probability space with a filtration {¥:}.,, satisfying the usual conditions (i.e., it is right
continuous and ¥y contains all P-null sets). Let w(t) = (wi(h),..., wm(t))" be an m-
dimensional continuous local martingale with w(0) = 0 defined on the probability space.
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If A is a vector or matrix, its transpose is denoted by AT, If A is a matrix, its trace norm is
denoted by |A| = \/trace(AT A), while its operator norm is denoted by ||A| = sup{|Ax]| :
|x| = 1} (without any confusion with [|¢||). C([-7,0]; R") denote the family of all continuous
functions ¢ from [-7,0] to R" with the norm |l¢|| = sup_,_,l¢(0)|, where | - | is the
Euclidean norm in R". Denoted by Cé’ro ([-7,0]; R") the family of all bounded, ¥o-measurable,
C([-7,0]; R")-valued random variables.

Consider an n-dimensional neutral stochastic functional differential equation

dlx(t) —u(xi, t)] = f (o, t)dt + g(xy, t)dw(t) (2.1)
on t > 0 with initial data xy = ¢ € Cé’co([—’r, 0; R"),u: C([-7,0]; R") — R",and
f:C([-7,0];R") x Ry — R", g:C([-7,0]; R") x Ry — R™™ (2.2)

are Borel measurable. Let x(t; ¢) denote the solution of (2.1) while x; = {x(t+0) : -7 < 6 <0}
which is regarded as a C([-7, 0]; R")-valued stochastic process, denoted by X(t) = x(t) —u(x;).

Let szl(R” x R4; R) denote the family of all nonnegative functions V(x,t) on R" x
R, which are continuously twice differentiable in x and once differentiable in t. If V(x,t) €
C*}(R™ x R4; R), define an operator LV : C([-7,0]; R") x R, to Rby

LV (¢,t) = Vi(§(0),t) + Va(§(0),£) f (¢, 1) + %frace(gT(W)Vxx(@(O),t)g(% H), (23

where Vi(x,t) = 0V(x,t)/ot, Vi(x,t) = (0V(x,t)/0x1,0V(x,t)/0x3,...,0V(x,t)/0x,),
Vix (x, ) = (aZV(x, t)/axixj)nxn'

For the purpose of stability, assume that f(0,t) = g(0,t) = u(0,t) = 0. This implies
that (2.1) admits a trivial solution, x(0,t) = 0. Furthermore, we impose the following
assumptions.

(H1) (The local Lipschitz condition). For each integer R > 1, there is a positive
constant K such that

If (. t) = F(w ) |* v |8 (0, t) — g (4. 1)] < Krlo - o) (2.4)

for those ¢, ¢ € C([-7,0]; R") with |l¢|| V |l¢|| < Rand t € R,.

(H2) There exists a positive constant « € (0,1) and a probability measure v such
that

0
[up ) -l <x [ lp-ylavee) @9

for any ¢, ¢ € C([-1,0]; R").
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(H3) There are two functions V. € C>'(R" x [-T,+);R,) and U € C(R" x
[-7,+o0)]; R,) as well as positive constants Ay, Ay, ¢1, ¢, and a probability measure p
on [—,0] such that

alx < V(x,t) < ealxf, (2.6)

0
LV(p,t) <M [1 +V(p(0),1) + f (V(p(0),t+0) +U(p(0),t+ 6))d‘u(6):| - LU (p(0),1)
2.7)
forall -1 <0 <0, (¢,t) € C([-71,0]; R") x R,.

Remark 2.1. In condition (2.7), we see that the function U (x,t) plays a key role in allowing
coefficients f and g to be nonlinear functions.

Theorem 2.2. Assume that (H1), (H2), and (H3) hold. Then for any initial condition ¢ €
Cgo([—T,O],‘R"), there exists a unique global solution x(t) to (2.1) on t € [-T, 00). Moreover, the
solution has the properties that

EV(x(t),t) < oo, E f U(x(s),s)ds < oo (2.8)
0

forany t > 0.
Proof. It is clear that for any initial data ¢ € C;U([—T,O]; R™), there exists a unique maximal

local solution x(t) on t € [-T, T.), where T, is the explosion time [1], by applying the standing
truncation technique (see Mao [12, 13]) to (2.1). According to (H2), we have

0
1X(0)] < |x(0)] + [u(x0,0)| < [x(0)] + % f_ [x(8)1dv(0) < (1 +x)[1g]l. (2.9)

O

Let ko > (1 + «)||¢|| be sufficiently large such that

1 D~ ~
% < _rTrEtrSlO|x(t)| < $§%§)|x(t)| < ko. (2.10)
Define the stopping time
= 1
T =inf{t € [0, 7] : [X(t)| € Ik}, Ir= (E'k>' k > ko, (2.11)

where throughout this paper, we set inf) = oo (# denotes the empty sets). Clearly, 7y is
increasing as k — oo. Denote 7o, = limg_, Tk, Too < T, a.s. We will show that 7, = o as.,,
which implies that x(t) is global.
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It6 formula and condition (2.7) yield

dV(X(t),t) = LV (x, H)dt + V (X, ) g(xt, £)dw(t)
0 0
<\ [1 + V(x(t),t) + f V(x, t+0)du(0) + f U (x, £+ G)d‘u(G)] dt  (2.12)
= LU (x(t), t)dt + Vi (X, 1) g (x, t)deo(t)
for t > 0. For any k > kg and t € [0, 7], we integrate both sides of (2.12) from 0 to 7x At and
then take the expectations to get
EV(X(ti At), T AN E) = V(X(0),0)

<E J'TW 4 [1 + jo (V(xs,5+0) +U(xs,5+ 9))d#(9):| ds (2.13)

0

+E qum [MVi(x(s),s) — AU (x(s),s)]ds.
0

According to the integral substitution technique, we estimate

TNt 0
f f V(xs, 5+ 0)du(0)ds
0 -T

Tk At 0
=f t’[ V(x(s+6),s +0)du(6)ds
o I (2.14)

0 T AE+0 T At
< IT du(0) L V(x(s),s)ds < IT V(x(s),s)ds

< J‘ V(x(s),s)ds < +oo,
Similiarly,

qu IO U(xs, s+ 0)du(0)ds < J‘T U (x(s),s)ds < +oo. (2.15)

0
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Substituting for (2.14) and (2.15) into (2.13), and by using the Fubini theorem, the result is

T AE
EV(X(tx At), Tk At) <V (X(0),0) + M7 + MEJ‘ V(x(s),s)ds
0

- LE i U(x(s),s)ds + LME Jq [V(x(s),s) + U(x(s),s)]ds
0

-T

Ty At
<Ci+ )qEJ V(x(s),s)ds
0

t
<Ci+ M4 f EV(x(tx Ns), Tk A s)ds,
0
(2.16)

where C; = V(x(0),0) + M7 + )qu_TT[V(x(s),s) + U(x(s),s)]ds. Equations (2.6) and (2.9)
imply V(x(0),0) < co(1 + K)2||§||2; thus, C; is a finite constant. By using inequality (a + b)* <
(1/(1 =xp))a* + (1/x0)b? a,b > 0,x € (0,1); thus,

E|x(ti A))* < (1 - x0) E|¥ (ke A1) + 55 Eluu(xcmnt, Tk A D), (2.17)

condition (2.6) yields

GV E(m A, T A t) < |X(Ti AP < IV (R(Tk A L), T AL). (2.18)

(H2) and the Holder inequality yield
0 2 0
Elu(xznt, T A < K2E (J |(p(9)|dv(9)> <2 f Elx(t At +0)*dv(6). (2.19)
Substituting for (2.16), (2.18), and (2.19) into (2.17), the result is

t 0
Elx(mi A)P<(1 - x0) et <c1+)L1 f EV (x(TkAS), Tk /\s)ds> +1, 7 j Elx(ti At +6)2dv(6).
0 -T

(2.20)

For any t € [-7, 7], (2.20) implies

t
sup E|x(tx As)P<(1 - KQ)_1CI1 <C1 +01 j EV (x(tk NS), Tk A s)ds> +1c511c2 sup E|x(x A s)|.
0

—1<s<t —1<s<t

(2.21)
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Let kg = k, then

t
sup Elx(x As)* < (1-x) ¢! <c1 + A1 f EV(x(tx AS), Tk A s)ds>. (2.22)
—1<s<t 0
Therefore, for any t € [-7, 7],
t
Elx(mi A)? < (1-x) %! <c1 + ) f EV(x(Tc AS), Tk A s)ds>. (2.23)
0

By (2.6), we may obtain

t
EV(x(tk At), T N E) < E|x(Tk A 1f)|2 <(1- K)_zcilcz <C1 + A0 f EV (x(tx A S), Tk A s)ds>.
0

(2.24)
For any k > ko, t € [0, 7], the Gronwall inequality implies
EV(x(ti AT), Tk AT) < ] caCi(1 - x) 2ecr 211t (2.25)
Thus, for all k > ky,
EV(x(tk AT), Tk AT) < ¢ caCi(1 - K)*Zecflczkl(l‘")_%, (2.26)
which implies
EV(x(t),t) < ¢;'cCi (1 —x) 2et @M%  g<p<r, (2.27)

Since E[I{7<r}V (x(Tk AT), T AT)] < EV (x(T AT), Tk AT), and defining pi = infixjsk 0<t<co V (X, 1)
for k > ko, according to (2.26), then

P (T < 7) < €71 e2Cr (1 - ) Zelt 07T, (2.28)

Clearly, condition (2.6) implies limy _, ik = oo. Letting k — oo in (2.28), then P(7, < 7) =0,
namely,

P(t,>71)=1. (2.29)

Moreover, setting t = 7 in (2.16), we may obtain that

Tk AT TAT

LE U(x(s),s)ds < C; + )qu V(x(s),s)ds < C + lie;'e2Cr (1 - x)2eci b (1971
0 0
(2.30)
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that is,

EI U(x(s),s)ds < % (1 + )chflczCl(l - K)_2ecflcz)‘1(1"c)727> < 0. (2.31)
0 2

Let us now proceed to prove 7, > 27 a.s. given that we have shown (2.27)—(2.31). For any
k > ko and t € [0,27], we can integrate both sides of (2.12) from 0 to 7 A t and then take
expectations to get

T At Ti At
EV(X(te At), Tk ANt) < Co + )LlEf V(x(s),s)ds — ,LE U(x(s),s)ds, (2.32)
0 0
where
2T
C, =V (x(0)) + 20T + )qu [V(x(s),s) + U(x(s),s)]ds < co. (2.33)

By the Gronwall inequality and (2.32), we have
EV(X(te M), Te At) < 67l caCa(1 — ) 2 M0 0 <t <27, k > k. (2.34)
In particular,
EV(X(7x A 27), 7% A 27) < ;' caCa(1 — k) 2 @M (1-0720 -y > o, (2.35)
This implies
WP (1 < 27) < ¢ 2 Co(1 - K)_zeCIICZ)‘l(l_K)&ZT. (2.36)
Letting k — oo, by (2.6), then P(7,, < 27) =0, that is,
P(Ty > 27) = 1, EV(x(£), 1) < ¢;'0,Co(1 — 5) 25’0072 g < <07, (2.37)

By (2.32), we may obtain that

T A\2T T A\2T
LE f U(x,t)dt < C + LE f V(x(t),t)dt, (2.38)
0 0

that is,

2T
C ) )
Ef U (x, t)dt < )T2 (1 + 204 7¢ ey (1 - 1) 2T 2l (1R) 22T> < 0. (2.39)
0 2
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Repeating this procedure, we can show that, for any integeri > 1, 7, > iT a.s.and EV (x(t) t) <
cilerCi(l - x)2eci' (-0 hit 0 < ¢ < 7 and
iT . - o
EJ‘ U (x,t)dt < % <1 + i)ch{lcz(l - K)_Zecllq(l*") ZA”T>, (2.40)
0 2

where

C; = V(%(0),0) + ,E f [1+V(x,t) +U(x, t)]dt < co. (2.41)

We must therefore have 7., = oo a.s. as well as the required assertion.
Note that condition (2.6) may be replaced by more general condition ¢;|x|P < V(x,t) <
c|xfP, p >2, which is suitable to the corresponding results below.

3. Boundedness and Moment Stability

In the previous section, we have shown that the solution of (2.1) has the properties that
t
EV (x(t),t) < oo, EI U(x(s),s)ds < oo (3.1)
0

for any t > 0. In the following, we will give more precise estimations under specified
conditions; that is, we will establish the criteria of moment stability and asymptotic stability
of the solution to (2.1) under specified conditions.

Theorem 3.1. Assume that (H1), (H2), and (H3) hold except (2.7) which is replaced by

0
LV (¢, t) < p1 = p2V (9(0), 1) + p3 f V(g t+0)dni(0) - pall ((0),1)
’ (3.2)

0
+ ps f U (o, t+0)dn2(0) — sV ($(0), 1)

forall (p,t) € C([-7,0; R") x Ry, -7 <0 <0, where p1 > 0, pp > p3 > 0, pug > pis > 0, pg > 0
are constants and 11 (0) and 1,(0) are probability measures on [—7,0]. Then for any initial data ¢, the
global solution x(t) to (2.1) has the property that

lim supEV (x(t),t) < CZ—‘ulz, (3.3)
f— oo (1 -1xg)°c1£

where € = pg A €1 N ex AT log k™2, K0 = K/e7, while 1 > 0 and e, > 0 are the unique roots to the
following equations:

po = e, pg = pse®’, (3.4)
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respectively. If uy = 0, then

lim sup% InEV (x(t),t) < —¢, Jm EU(x(t),t)dt < 0. (3.5)

t— oo 0

Proof. We first observe that (3.2) implies (2.7) if we set Ay = 1 V p3 V ps and Ay = pg. So, for
any initial data, (2.1) has a unique global solution x(f) on t > —7, which has the properties
(2.8). Based on these properties, we can apply the It6 formula and condition (3.2) to obtain
that for any t > 0,

d[efV(X(t),1)]

=e“[eV(X(t),t) + LV (x(t),t)]dt + "V (X (t), 1) g (x1, t)dw(t)

0 0
< et I:,ul — W V(x,t) + us f Vi(x, t +0)dni(0) — pall (x, t) + ;45f U (x;, t + G)dqz(e)]
+ eV (X(t), 1) g (xt, )dw(t) — e (ug — €) V(X(t), 1),

(3.6)

We integrate both sides of the above inequality from 0 to t and take expectations to get

e'EV(X(t),t)

‘uleet

£

< V(%(0),0) +

t t A0
- E | eV (x(s),s)ds + usE eV (xs,s + 0)dn1(0)ds
0 o) s (3.7)

t t 0
- ‘u4EJ‘ e“U(x(s),s)ds + ‘u5EI f e* U (xs,s + 0)dn,(0)ds,
0 0J-1
by using of € = g A €1 A €2 < ps. Compute

t 0 t 0
EI J‘ eV (x5, 5+ 0)dn1(0)ds = EI f eV (x(s+0),s+0)dn (0)ds
0/-7 0J-1
t 0
<e’E f f eIV (x(s +0),5 +0)dr (s + 0)ds
0/ -7
0 t+6
< e”EI dm1(6) f eV (x(s),s)dds (3.8)
-T 0
t
< e”EI eV (x(s),s)ds

0 t
< e”EI eV (x(s),s)ds + e”EJ‘ eV (x(s),s)ds,
-T 0
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Similiarly,

t

t 0 0
Ef f e U(xs,5 + 0)dn2(0)ds < e”EI
0J-1 -

T

Substituting for (3.8) and (3.9) into (3.7), the result is

e EV(X(t),t)

et t

<V(&(0),0)+ 1S _ MEJ eV (x(s), s)ds
€ 0

0 t
+ me”EI eV (x(s),s)ds + yge”EI eV (x(s),s)ds
- 0

t 0
- mEf e U (x,s)ds + yseETEJ e®U(x(s),s)ds + ;15e”Ef e“OU (x(s), s)ds

t
0 0

£l 0
=V (X(0),0) + #176“ +e“"E ,[, e (usV(x(s), s) + usU(x(s), s))ds

¢ ¢
— (2 - /43e”)Ef eV (x(s),s)ds — (us — me”)EJ e“*U(x,s)ds
0 0

/«l1€€t t t
€ 0 0

=C+

(u2 - me”)EI eV (x(s),s)ds — (us — ‘u5e”)EJ‘ e**U(x,s)ds,

e®U(x(s),s)ds + e”Ef e®U(x(s),s)ds. (3.9)
0

(3.10)

where C = V(x(0),0)+e"E I?T e (usV(x(s),s)+usU(x(s),s))ds. Itis clear that, for e < e1A¢y,

we have p — puze®™ >0, py — pse™ > 0, hence,

et
TEV(E(H), 1) < C + %

(3.11)

By (H2) and (H3) and inequality (a + b)* < (1/(1 - x))a® + (1/x0)b%, a,b > 0,%, € (0,1), we

compute

Ee|x(t)* < (1 - xo) ' Ee[%(t)[* + 15 Eeu(xt, 1)

0
< (1-xo) ' e E|V (X (1), )| + 1y & J e E|x(t + 0)[*dv(6)

<(1- Ko)_lq1 <C + =

0
at e6t> + KalKZI e PEe D |x(t + 0)Pdv(6).

(3.12)
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Forany t >0,

sup Eetlx(®))? <(1- K0)71C11 <C +

—T<s<t

0
# e5t> + Ky k> sup Eegtlx(t)|ZI e dv(0)

£ —T<s<t

(3.13)
<(1- K0)71C11 <C + %egt> + 1, k%e sup Ee®|x (1)
—T<s<t
Leting xo = k+/e” < 1, since e < 71 logx~2, then xp < 1,
sup Ee|x(H* < (1 - 1c0)_2c{1 (C + lﬂe“), (3.14)
—1<s<t 2
and by (H3), EV (x,t) < ¢;E|x(t)|?, then
sup eEV(x,t) < ¢; sup eE|x(t)* < (1 - ) *¢; (C + &e“). (3.15)
—T<s<t —1<s<t 3
Therefore,
lim sup EV (x(£), £) € — 1. (3.16)
f—oo (1 -1xg)°c1£
When p; =0, then EV (x(),t) < c;lczC(l - Ko)_ze’gt,for all t >0, that is,
. 1
lim sup n log EV (x(t),t) < —¢. (3.17)

t— o0

On the other hand, when y; = 0, by (3.7) and the It6 formula, we may show easily that

0
EV(X(t),t) = V(X(0),0) + Ef (usV(x(s),s) + pusU(x(s),s))d(s)
o (3.18)

t t
— (M2 —p3)E J;) V(x(s),s)ds — (ps — ps)E jo U(x(s),s)ds.

By po = pze®”™ > ys, ps = pse®’ > ps, and the Fubini theorem, we obtain

0 4 — M5

It EU(x,s) < P ! P [V(%(O),O) + EIO (usV(x(s),s) + mll(x(s),s))d(s):l <oo. (3.19)

The proof is complete. O
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4. Asymptotic Stability

In this section, we will establish asymptotic stability of (2.1) without the linear growth
condition. It is well known that the linear growth condition is one of the most important con-
ditions to guarantee asymptotic stability. Therefore we introduce the following semitingale
convergence thoerem [14, 15], which will play a key role in dealing with nonlinear systems.

Lemma 4.1. Let M(t) be a real-valued local martingale with M(0) = 0 a.s. Let { be a nonnegative
Fo-measurable random variable. If X (t) is a nonnegative continuous Fy-adapted process and satisfies
X(t) <&+ M(t) for t > 0, then X(t) is almost surely bounded, namely, lim;_, . X (t) < oo, a.s.

Theorem 4.2. Assume that (H1), (H2), and (H3) hold except (2.7) which is replaced by

0
LV (¢,t) <=2V (9(0),1) + i3 f V(¢ t+6)dn:(0) — pall (9(0), ¢)
’ (4.1)

0
s f U (gt +0)dna(0) - eV (F(0), 1)

forall (p,t) € R" x R,, -1 < 0 <0, where pp > pz > 0, s > ps > 0, ug > 0. Then, for any initial
data, the unique global solution x(t) of (2.1) has the property that

lim sup % InV(x(t),t) < —¢, J-oo U (x(t),t)dt < o, (4.2)
0

t— o0

where € = pg N €1 N €2 A ! log K2, while €1 > 0 and &y > 0 are the unique roots to the following
equations:

po = e, pg = pse”’, (4.3)

respectively.

Proof. We first observe that (4.1) implies (2.7) if we set Ay = p1 V 3 V pus and A, = py. So, for
any initial data, (2.1) has a unique global solution x(f) on t > —7, which has the properties
(2.8). Similar to the proof of Theorem 3.1, applying the It6 formula and condition (4.1), for
any t > 0, we may obtain that

d[e"V(x(t),1)]

= e[V ((t), 1) + LV (x(t), )| dt + eV, (£(t), £) g (x1, H)duw (t)
0 0
<ef [—HzV(x(t),t) + 3 f V(xi, t+0)dmni (0) — pal (x, 1) + ps f U (xi, t+ G)dnz(G)]

+eVy(X(t), 1) g(xt, t)dw(t) — (ue — ) V(X(t), ).
(4.4)
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For t > 0, we can integrate both sides of the above inequality from 0 to ¢t and take expectations
to get

t t A0
e'EV (%(t),t) < V(X(0),0) — p2 fo eV (x(s),s)ds + 3 fo j eV (xs, s+ 0)dn;(0)ds
- (4.5)

t t 0
— Ya J e“*U(x,s)ds + ps f I e**U(xs, s+ 0)dmn2(0)ds + M(t),
0 0/ -1

where M(t) = fé e**V,(X(s),s)g(xs,s)dw(s)ds is a real-valued continuous local martingale
with M(0) = 0. Similar to Theorem 3.1, we have

e'V(X(t),t) < V(X(0),0) + " J‘0 (usV (x(s),s) + pusU(x(s), s))ds

! g 4.6
— (p2 — p3e") f eV (x(s),s)ds — (ps — pse") j e**U(x,s)ds + M(t) (46)
0 0
< const + M(t).
Lemma 4.1 implies
lim supe®V (¥(t),t) < oo a.s. (4.7)
t— o0
Since c1|x|* < V(x,t) < cs|x[?, then
lim supe®|¥(H)]* < o0 a.s. (4.8)
t— o0
According to the definition of X(t), we compute
ex () = e (t) + u(x:, )’
_ -1 et~ 2 -1 et 2
< (1= 10) e 7 (1) + e, 1) (19)

0
< (1 -xo) e X (1) + xy K> f e et |x (¢t + 0)2dv ().

-T
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Therefore, we may also compute

2 2 2
sup e“|x(s)[” < [I]I” + supe®|x(s)]|
~T<sst 0<s<t

0
< ||§||2 +(1- KO)_lsup [e*“75|’35(5)|2 + Kalxz f

0<s<t -T

e 06560 | x (s + 6)|2dv(6)]

0
<1817 + (1 - o) "' supe®|%(s)[* + ;' x* sup e55|x(s)|2f e dv(6)
0<s<t —1<s<t -7

< ||§||2 +(1- 1c0)_1supe55|97(s)|2 + Kalkze” sup e“|x(s)|2.

0<s<t -T<s<t
(4.10)
Noting that ¢ < 1 log x2, choose % = k+/€¢7. Then xy < 1, and we obtain
£8 2 -1 2 -2 £S5 2
sup e”|x(s)|” < (1 —xo) " [|¢]|” + (1 — xo) “supe™|x(s)|". (4.11)
—T<s<t 0<s<t
(4.8) and (4.11) yield
sup e|x(s)|* < +o0  a.s. (4.12)

—1<s<t

Recall the condition c1|x|> < V(x,t) < ca|x|?, which implies lim sup,_, eV (x(t),t) < C as.
The required result is obtained. O

Remark 4.3. From the processes of the proof of Theorems 3.1 and 4.2, we see that condition
(2.6) plays an important role in dealing with the neutral term. Moreover, applying condition
(2.6), we can also obtain more precise results

1

lim sup ; log E|x(t)| < —%, lim tsup% log|x(t)| < —g. (4.13)

t— oo

In the next section, condition (2.6) will be replaced by a more general condition for stochastic
functional differential equation.

5. Stochastic Functional Differential Equation

Let u(x;) = 0. Then (2.1) reduces to

dx(t) = f(x, t)dt + g(x, t)dw(t). (5.1)
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This is a stochastic functional differential equation. In this section, we will give the
corresponding results for stochastic functional differential equation. We will also see that the

conditions are more general.
Define an operator LV from C([-7,0]; R") x R, to R by

LV (p,t) = Vi(9(0),t) + Ve ((0),£) f (¢, 1) + %trace (8" (9 )V (9(0), )8 (0, 1)).  (52)

We impose the following assumption which is more general than (H3).

(H3') There are two functions V € C?>'(R" x [-1,+o0);R,) and U € C(R" x
[-7,+o0); R;) as well as two positive constants A, A, and a probability measure
pon [-7,0] such that

lim inf V(x,t) = oo, (5.3)

|x| = o0 0<t<oo

0
LV(p,t) <X [1 +V(p(0), 1) + f (V(9(0),t+0) +U(p(6),t+ 9))61#(9)] — LU ((0),1)
=T
(5.4)
forall -7 <0 <0, (p,t) € R" x R..
Theorem 5.1. Assume that (H1) and (H3') hold. Then for any initial condition ¢ € Cgo([—’r, 0];R™),

there exists a unique global solution x(t) of (5.1) on t € [-T, 00). Moreover, the solution has the
properties that

EV(x(t),t) < oo, E f U(x(s),s)ds < oo (5.5)
0

forany t > 0.
Proof. Since the proof is similar to Theorem 2.2, we will only outline the proof. It is clear

that for any initial data ¢ € C(b%([—T, 0]; R™), there is a unique maximal local solution x(t) on
t € [-7,7.), where T, is the explosion time [1]. Let kg > 0 be sufficiently large for

1 .
X < _rTrgtrSlO|x(t)| < _rgg;(o|x(t)| < ko. (5.6)
Define the stopping time

7 = inf{t € [0, 7] : [x(t)| € Ik}, Ik= <%,k>, k > ko, (5.7)



18 Journal of Applied Mathematics
where throughout this paper, we set inf@) = oo (@ denotes the empty sets). Clearly, 7 is

increasing as k — oo. Denote 7, = limg_, v 7, Too < Te a.5. We will show that 7., = o as,,
which implies 7, = oo a.s. By It6 formula and (5.4), for any k > ko and t € [0, 7], we obtain

t t

EV(x(tx Ns), Tk As)ds — Ay f EU (x(Tx A S), Tk A S)ds,

EV(X(Tk A t),Tk N t) <Ci+ M4 f
0
(5.8)

0

where C; = V(x(0),0) + ;7 + M E f_TT [V(x(s),s)+U(x(s),s)]ds. For any k > ko, the Gronwall
inequality yields
E[liner)V(x(tk AT), T AT)] S EV(x(T AT), Tk AT) < C1eM7, Yk > ko, (5.9)
which implies
EV(x(t),t) < CieM7, 0<t<T (5.10)
Defining pr = infixk, 0<t<oo V (X, t) for k > ko, according to (5.3), then
Uk P(t < T) < Creh. (5.11)
Condition (5.3) implies limy _, o ptx = o0. Letting k — oo in (5.11), then P(7,, < 7) = 0, namely,

P(t,>71) =1 (5.12)

Moreover, setting t = 7 in (5.8), we may obtain that

Tk \T Tk AT
LE U(x,s)ds < Cy + )qEJ‘ V(x(s),s)ds < C; + M, C7eh”, (5.13)
0 0
that is,
EJ U(x, s)ds < 9(1 + mem) < 0. (5.14)
0 Az

Let us now proceed to prove 7, > 27 a.s. given that we have shown (5.10)—(5.14). For any
k> koandt € [0,27], we get

Tk AE T At
EV(x(te At), Tk ANt) < Cp + )qEI V(x(s),s)ds — \,E U (x(s),s)ds, (5.15)
0

0

where

Co =V (x(0)) + 207 + )qErT[V(x(s),s) +U(x(s),s)]ds < oo. (5.16)

=T
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By the Gronwall inequality and (5.8), we have

EV(x(mec At), Tk At) < C2e®MT, 0<t<27, k > ko.

In particular,
EV (x(1e A27), T A27) < Coe*M7, Yk > ky.
This implies
Uk P(T <271) < Cre?hT,

Letting k — oo, by (5.3), then P(7,, < 27) =0, that s,

P(Ty > 27) = LEV (x(t),t) < Coe*M7, 0<t<2T.

By (5.8), we may also obtain that

TR A2T Tk A2T
LE f U(x, t)dt < Co + LE f V(x(t),t)dt,
0 0

that is,

2T
E| U(x t)dt< 9(1 + 2)117'62/\17-) < 0.
0 A2

19

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Repeating this procedure, we can show that, for any integer i > 1,7,, > iT a.s and EV(x) <

Cieth™, 0 <t <ir, and
iT
CI . i)q‘['
Efo U(x,t)dt < )L—2<1 + il Te >,

where

Ci =V(x(0),0) + LE IIT [1+V(x,t)+U(x,t)]dt < oo.

We must therefore have 7., = oo a.s. as well as the required assertion (5.5).

Theorem 5.2. Assume that (H1) and (H3') hold except (5.4) which is replaced by

0
LV (¢, t) < p1 = uaV(9(0), 1) + p3 f V(g t+0)dn(0) - pall ((0),1)

0
+ y5f U (i, t+0)dn(0)

(5.23)

(5.24)

(5.25)
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forall (¢,t) € R*"xR,, -7 <0 <0, where py >0, pp > pz > 0, g > ps > 0. Then for any initial data,
the global solution x(t) to (5.1) has the property that

lim sup EV (x(f), £) < % (5.26)

t— oo

where € = €1 N &5, while €1 > 0 and e, > 0 are the unique roots to the following equations:

Ho = /,138611-, Ha = /158821-, (527)
respectively. If yuy = 0, then
lim sup% InEV (x(t),t) < —¢, j EU(x(t),t)dt < oo. (5.28)
t— oo 0

Proof. Since the proof is similar to Theorem 3.1, we will only outline the proof. We first
observe that (5.25) implies (5.4) if we set A1 = p1 V us V ps and A, = py. So for any initial
data, (5.1) has a unique global solution x(t) on t > —7, which has the properties (5.5). Based
on these properties, we can apply the Itd formula and condition (5.4) to obtain that for any
t>0,

et

pae
£

t 0
e'EV (x(t),t) < V(x(0),0)+ - ,quf eV (x(s),s)ds+usE jt f eV (xs,s+0)dn1(0)ds
0 0J-1

t t A0
- mEI e*U(x,s)ds + ﬂg,EI f e*U(xs,s + 0)dnz(0)ds.
0 0J -1
(5.29)

Applying for (3.8) and (3.9), similarly, we have

t

EV(x(t),1) < V(x(0),0) + £ fd ~ oE f eV (x(s),5)ds
0

0 t
+ ‘u3e€TEI eV (x(s),s)ds + yge”EI eV (x(s),s)ds
-T 0

t 0 t
- ‘u4EJ‘ e“U(x,s)ds + me”EI e“U(x(s),s)ds + ‘u5e”EJ‘ U (x(s),s)ds
0 -T 0

”1e£t
£

=C+

t t
- (42 - y3egT)Ef eV (x(s),s)ds — (ps - y5egT)Ef e*U(x,s)ds,
0 0
(5.30)
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where C = V(x(0),0)+ef’E fi e*(usV(x(s),s)+usU(x(s),s))ds. Itis clear that, for € < g1Ae,

we have p; — puze®™ >0, py — pse™ > 0; hence,

_ et
'EV (x(t),£) < C + ”f ,

that is,

EV(x(t),t) < Ce™® + % Vi > 0.

Therefore

lim supEV (x(t),t) < %

t— oo
When p; = 0, then EV (x(t),t) < Ce™, for all t > 0, that is,

lim sup%log EV(x(t),t) < —¢.

t— oo

On the other hand, when p; = 0, we may show easily that
0
EV(x(t),t) = V(x(0),0) + Ef (usV(x(s),s) + usU(x(s), s))ds
t t
- (p2 - ;@,)EI V(x(s),s)ds — (ps - ‘u5)EJ‘ U(x(s),s)ds.
0 0

Recalling that pp = p3e®™ > p3, py = pse®” > s, the Fubini theorem yields

J‘t EU(x,s) < p ! p [V(x(O),O) + EIO (usV(x(s),s) + mll(x(s),s))ds] < co.

0 4 — M5

The proof is complete.

Theorem 5.3. Assume that (H1) and (H3') hold except (5.3) which is replaced by

0
LV (,t) < =2V (9(0),1) + i3 f V(g t+0)dni(0) - pal (¢(0), t)

0
+/¢5J‘ U (g, t+0)dn(6)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)



22 Journal of Applied Mathematics
forall (¢,t) € R" x Ry, -1 < 0 <0, where pup > pz > 0, g > ps > 0. Then for any initial data, the
unique global solution x(t) to (5.1) has the property that

lim sup%ln V(x(t),t) < —¢, f U (x(t),t)dt < o, (5.38)
0

t— oo
where € = €1 N 5, while €1 > 0 and e, > 0 are the unique roots to the following equations
/,42 = ‘1,136617, ‘[,14 = /156827-, (539)

respectively.

Proof. Itis clear that (5.1) has a unique global solution x(t) ont > -7, which has the properties
(2.8). For any t > 0, we can obtain

t t 0
e EV (x(t),t) < V(x(0),0) - .“ZJ‘ eV (x(s),s)ds + ps3 f I e**V(xs, s+ 0)dn;(0)ds
0 0/ -7
(5.40)

t t 0
— Ua f e“U(x,s)ds + ps I f e U(xs,5 + 0)dn2(0)ds + M(t),
0 0/ -1

where M(t) = jé eV, (X(s),s)g(x, xs, s)dw(s)ds is a real-valued continuous local martingale
with M (0) = 0. Similar to Theorem 4.2,

eV (x(t),t) < C— (p2 — pze") j; eV (x(s),s)ds — (ps — pse") j; e**U(x,s)ds + M(t)

< const + M(t).

(5.41)
By Lemma 4.1, we have
lim supe®V (x(t),t) < oo a.s. (5.42)
t—oo
The required result is obtained. O

6. Example
In the following, we will consider several examples to illustrates our ideas.

Example 6.1. Consider a one-dimensional SFDE

dx(t) = x(t) [(a + boy (x) — xz(t)>dt + coz(xt)dw(t)], (6.1)
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where w(t) is a one-dimensional Brownian motion, a, b, ¢(b, ¢ > 0) are bounded real numbers,
and the functions oy, 0, € C([-7,0]; R) having the property of

0
o)V |o2(p) | < KL |9(©)|dp(©) x € (0,1). (62)

Let V(x) = x?. Then the corresponding operator LV : R x R x R, has the form

LV (x;,t) = 2x2(¢) (a +boy(x1) — xz(t)> + 22102 (xy)
= 2ax?(t) + 2bx?(t) oy (x;) — 2x*(t) + czxz(t)azz(xt)
<2ax?(t) + bat(t) + bolz(xt) —2x* (1) + 0.5 () + 0.5620§(xt)

< 2ax’(t) + bo?(x;) + 0.5c20% (x;) — (2 —b- 0.562>x4(t)

< 2ax2(t) + b2 f ’ x2(0)dpu(0) + 0.5c2x* fo x4(0)dpu(0) - <2 —b- 0.502>x4(t),

- 6.3)

where \; = max{2a,bx? 0.5c*k*}, s =2 -b-0.5c2,U(x) = x*. If 2 - b - 0.5¢* > 0, then by
Theorem 5.1, we can conclude that for any initial data {x(t) : -7 < t < 0} € C([-1,0]; R),
there is a unique global solution x(t) to (6.1) on t € [T, o). Moreover, the solution has the
properties that

t
E|x| < oo, Ef |x(s)|*ds < oo (6.4)
0

forany t > 0.1fa <0, 2—b-0.5c2 > 0.5¢*k* > 0,-2a > bx? > 0,U(x) = x*,&; >0and &, > 0
will be the unique roots to the following equations:

—2a =bk*7,  2-b-0.5c* = 052Kk, (6.5)

respectively. Set € = €1 A &5, by Theorem 5.2, we can conclude that the unique global solution
of (6.1) has the property that

1 1 et
lim sup In E|x(i.‘)|2 < —g, lim sup ¢ In |x(t)|2 < -—g, J‘ Ex*(t)dt < +oo. (6.6)
t— oo t— o0 0

If wechoosea =-2,b=1,¢c=1, k =05, T =8, then ¢; = 0.34657,5, = 0.34657, which
implies

1
lim sup - In Elx(t)]* < —0.34657. 6.7)

t— oo
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Example 6.2. Consider a one-dimensional NSFDE
d(x(t) - 01(x1)) = x(t) [(a - x2(t))dt +con () dw(t)], (6.8)

where w(t) is a one-dimensional Brownian motion and both g, ¢ are bounded positive real
numbers, 01,0, € C([-7,0]; R) having the property of

0
@IV lo(@) <x [ lp@)|au® xe©D. ©9)

Let V(x) = x?. Then the corresponding operator LV : R x R x R, has the form
LV (x, %1, 1) = 2(x(t) - 01(x1)) (@ = x2(1) ) x(8) + P (B)0d (x)
= 2ax?(t) - 2ax(t)o1 (x;) — 2x* () + 2x3 (H) o1 (xy) + czxz(t)ag(xt)
/ /
< 2ax2(t)+ax2(t)+a(712(xt)—2x4(t)+2<x4(t)>3 4<of(xt)>l 4+0.5c2 <x4(t) + of(xt)>

< 2ax2(t) + ax®(t) + ac?(x;) — 2x* () + 1.5x* () + 0.50% (x;) + 0.5¢> (x4(t) + o§(xt)>

0 0
= 3ax?(t) + axzf X2(0)du(d) + <0.5 + O.5c2>x4f x4(0)du(d) - 0.5(1 - c2>x4(t)

0

-T

0
=\ <x2(t) + f x2(0)du(6) + f xf(@)dy(6)> — i),

(6.10)

where Ay = max{3a, ax?, (0.5 + 0.5¢%)x*}, > = 0.5(1 - ¢?),U(x) = x*. By Theorem 2.2, we can
conclude that for any initial data, there is a unique global solution x(t) to (6.8) ont € [-T, ).
Moreover, the solution has the properties that for any t > 0

t
Elx(t)]* < oo, Ef |x(s)[*ds < co. (6.11)

0

Example 6.3. Consider a one-dimensional NSFDE
dlx(t) - o1 (x)] = [(a = b)x(t) - aoy () - x(t)°]dt + co(xr)deo(h), (6.12)

where w(t) is a one-dimensional Brownian motion, a, b, c(b, ¢ > 0) are real numbers, 01,0, €
C([-7,0]; R) having the property of

0
o1@) |V I <x [_lp@ldu@) xe ). 613)
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Then, the corresponding operator LV has the form
LV (x, xi,t)
=2(x(t) - o1(xt)) [(a ~b)x(t) - acy (x;) - x(t)3] + 202 (xy)
= 2a(x(t) - 01(x1))? - 2bx(£) + 2bx (£} (x1) — 224 () + 223 ()01 (1) + 202 (i)
< 2a(x(t) - 01 (x1))? = 2bx2(t) + b (t) + bo? (x) — 2x* (t) + 2<x4(t)>3/4 <o;*(xt)>1/4 + 202 (xy)
< 2a(x(t) - 01(x1))? - bx®(t) + bo?(x;) — 2x* (£) + 1.5x4() + 0.50% (x1) + 202 (1)
< —ba2(t) + (b + CZ)KZ IOT x2(0)du(0) — 0.5x*(¢) + 0.5« IOT x4(0)du(0) +2a(x(t) — o1(x1))%,

. (6.14)

where the first and second inequalities using the elementary inequality u*0'™* < (au + (1 —
a)v). If a < 0,b > (b+c*)x?> > 0,61 > 0 and &, > 0 be the unique roots to the following
equations,

b= <b +C)K%eT, 05 = 05K, (6.15)

respectively. And set e = -2a Aej A ey A 7 nk?, by Theorem 3.1, we can conclude that the
unique global solution of (6.12) has the property that

1 1
lim sup n In E|x(t)]* < —¢, lim sup n In|x(t)* < -e. (6.16)

t— o0 t— oo

Ifweleta=-2,b=05=c,x=0.57=0.9, then

0.5 = 2.6666e%%1, 0.5 = 0.5°%922, (6.17)

which give their roots g1 = 1.0898, &, = 3.08065, respectively, and 7! Inx~2 = 0.10168,

1 1
lim sup 7 ln<E|x(t)|2> <-0.10168,  limsup In |x(f)]* < -0.10168. (6.18)
t— oo t— oo
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