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A two-strain tuberculosis model with general contact rate which allows tuberculosis patients with
the drug-sensitive Mycobacterium tuberculosis strain to be treated is presented. The model includes
both drug-sensitive and drug-resistant strains. A detailed qualitative analysis about positivity,
boundedness, existence, uniqueness and global stability of the equilibria of this model is carried
out. Analytical results of the model show that the quantities R1 and R2, which represent the basic
reproduction numbers of the sensitive and resistant strains, respectively, provide the threshold
conditions which determine the competitive outcomes of the two strains. Numerical simulations
are also conducted to confirm and extend the analytic results.

1. Introduction

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis),
is one of the world’s leading causes of infectious mortality. According to the World Health
Organization(WHO), one third of the world’s population is infected with M. tuberculosis,
leading to between two and three millions death each year. At present, about 95% of the
estimated 8 million new cases of TB occurring each year are in developing countries, where
80% occur among people between the ages of 15 and 59 years [1]. For the time being, TB
is becoming a world-wide problem. War, famine, homelessness, and a lack of medical care
all contribute to the increasing incidence of tuberculosis among disadvantaged persons.
Since TB is easily transmissible between persons, the increase in TB in any segment of
the population represents a threat to all segments of the population. Sub-Saharan Africa
remains the epicenter of the epidemic, but India, China, Indonesia, Bangladesh and Pakistan
together account for more than half of the cases in the world [2]. TB was assumed to be on
its way out in developed countries until the number of TB cases began to increase in the
1980s. With this return, we face the paradox of a well-known bacteria, fully treatable with



2 Abstract and Applied Analysis

efficient and affordable drugs according to internationally recommended guidelines, which
yet causes increasing human suffering and death. Active TB cases may be pulmonary or
extrapulmonary, but pulmonary cases are more infectious and form the bulk of most cases
of active TB. The usual symptoms of active TB include fatigue, high fever, night sweats, loss
of appetite, and a cough, but confirmation of active TB requires a positive sputum culture.
Extrapulmonary accounts for between 5% and 30% of the total cases and may affect any
part of the body. M. tuberculosis droplets are released into the air by sneezing and coughing
of infectious individuals. Tubercle bacillus carried by such droplets live in the air for a short
period of time [3]; it is believed that occasional contacts with an infectious individual rarely
lead to transmission. TB is described as a slow disease because of its long and variable
latency period distribution and its short and relatively narrow infectious period distribution.
Individuals who are latently infected are neither clinically ill nor capable of transmitting TB
[4]. Most latently infected individuals do not become infectious (active TB). About 5%–10%
of the latently infected individuals develop active TB, that is, about 90%–95% remain latently
infected.

Antituberculosis drugs are a two-edged sword. While they destroy pathogenic M.
tuberculosis, they also select for drug-resistant bacteria against with those drugs which
are then ineffective. Global surveillance has shown that drug-resistant TB is widespread
and is now a threat to TB control programs in many countries. The WHO distinguishes
between two types of resistance: acquired resistance—resistance among previously treated
patients; and primary resistance—resistance among new cases. In all regions studied,
prevalence of acquired resistance is higher than prevalence of primary resistance, but
the size of this difference varies between regions [5]. Treatment of TB consists of a
combination of different drugs to avoid acquisition of resistance. Despite these precautions,
drug resistance continues to emerge being favoured by the long duration of treatment and
improper use of the antibiotics. Drug resistant TB has higher rates of treatment failure
and longer periods of infectiousness in part due to the time lapse between TB diagnosis
and obtaining drug-sensitivity test results [6]. In general, tuberculosis can be treated with
antibiotics. However, most worrisome is resistance to the two first-line drugs, isoniazid
and rifampicin, defined as multidrug resistance(MDR)-TB, which is an emerging problem
of great importance to public health, with higher mortality rates than drug-sensitive TB,
particularly in immunocompromised patients. MDR-TB patients require treatment with more
toxic second line drugs and remain infectious for longer than patients infected with drug-
sensitive strains, incurring higher costs due to prolonged hospitalization.

Mathematical models can provide useful tools to analyze the spread and control of
infectious diseases [7]. Different mathematical models for TB have been formulated and
studied [3, 5, 8–16]. In most of the epidemics models for TB discussed in the literature, the
question of contact rate has not been a central one. Nevertheless, the mode of transmission is
crucially important for two reasons. First, it determines the probable response of the disease
to control, second, the objective in many models of disease in animals is to predict what
will happen when a pathogen is introduced into a system in which it does not currently
exist [17]. Even more important, several laboratory studies have found that the mass action
incidence rate is inadequate for describing pathogen transmission and standard incidence
rate is considered, for human disease, more accurate than mass action incidence rate [17].
Moreover, epidemic models with nonlinear incidence rate have recently attracted a great
deal of attention from mathematical models [18–22]. In fact, the incidence of a disease
which is the number of new cases per unit time plays an important role in the study of
mathematical epidemiology. Thieme and Castillo-Chavez [23] argued that the general form
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of a population-size-dependent incidence should be written as βC(N)SI/N, where S and
I are the numbers of susceptible and infective at time t, respectively, β is the probability of
transmitting the infection between two individuals taking part in a contact per unit time,
C(N) is the probability for an individual to take part in a contact and N is the size of the total
population. In [24], Zhang and Ma think the above incidence frequently takes two forms in
most of the literature. When C(N) = N, the corresponding incidence is the bilinear form
βNSI/N = βSI. When C(N) = λ, the corresponding incidence λSI/N is called standard
form. When the total population size N is not quite large, since the number of contacts made
by an individual per unit time should increase as the total population size N increases, the
bilinear form would be suitable, but when the total population size is too large, since the
number of contacts made by an infective per unit time should be limited, or should grow
less rapidly as the total population size N increases, the bilinear form is not suitable and the
standard form may be more realistic [24]. Therefore, the two forms of incidence mentioned
above are actually two extreme cases for the total population size N being very small and
very large, respectively. Moreover, Heesterbeek and Metz [25] derived the expression for
the saturating contact rate of individuals contacts in a population that mixes randomly,
that is,

C(N) =
bN

1 + bN +
√

1 + 2bN
, (1.1)

where C(N) is nondecreasing and C(N)/N is nonincreasing.
In Bowong and Tewa [26], a SEI type of tuberculosis model with a general contact

rate is proposed to study the global asymptotically stability of disease-free equilibrium and
endemic equilibrium. The stability of equilibria is derived through the use of Lyapunov
stability theory and LaSalle’s invariant set theorem. Nevertheless, the effect of drug-
resistant strain of tuberculosis is not taken into account in their article. In this paper, we
study a tuberculosis model with general contact rate that includes explicitly both drug-
sensitive strain and drug-resistant strain. We adapt the approach of Bowong and Tewa [26]
for modeling the effective chemoprophylaxis (given to latently infected individuals) and
therapeutic treatments (given to infectious). We extend their model by including the latently
infected with resistant strain class and infectious with resistant strain class. The new model
allows us to examine the effects of drug treatment on the prevalence of both drug-sensitive
and drug-resistant strains. Mathematical properties of the model system are studied both
analytically and numerically. It is shown that the system has three possible equilibrium points
including an endemic equilibrium at which both strains are present. A detailed analysis of
global asymptotically stability is conducted, which shows that the dynamic behaviors of the
system are determined by two quantities, R1 and R2, which represent the basic reproduction
numbers of the sensitive and resistant strains. Without regard to disease-induced death rate,
we prove that the disease-free equilibrium is globally asymptotically stable whenR1 < 1,R2 <
1, the unique drug-resistant-TB-strain-only equilibrium exists and is globally asymptotically
stable when R1 < 1 < R2. As for the unique interior equilibrium, existence, uniqueness and
global stability can be proved under certain conditions.

The paper is organized as follows. In Section 2, we formulate a two-strain tuberculosis
model with general contact rate. The threshold conditions for the existence and uniqueness
equilibria are derived and the global asymptotically stability of equilibria are proved in
Sections 3 and 4 is devoted to numerical simulations. In Section 5, we summarize the findings
and conclusions.



4 Abstract and Applied Analysis

2. Model Description

According to the transmitted features of TB, we subdivide the population into susceptible
individuals (S), those exposed to drug-sensitive TB (E1), individuals with symptoms of
TB and drug-sensitive (I1), those exposed to drug-resistant TB (E2) and those displaying
symptoms of TB and drug-resistant (I2), the total number of population at time t is given by

N(t) = S(t) + E1(t) + I1(t) + E2(t) + I2(t). (2.1)

The model is represented by the transfer diagram in Figure 1. Here, Λ is the recruitment rate,
μ is nondisease related death rate. Since exposed individuals are not capable of transmitting
the disease, we assume that susceptible may become infected only through contacts with
active infectious individual at a rate βi(N)Ii, i = 1, 2, where i = 1 and i = 2 represent
rates of infection by drug-sensitive strain and drug-resistant strain, and the transmission
coefficient βi(N) is a nonnegative C2 function of the total population N. Susceptible are
infected with drug-sensitive strain and drug-resistant strain entering classes E1 and E2,
respectively. For simplicity, we only account for treatment of sensitive strain, we assume that
chemoprophylaxis of individuals in E1 reduces their reactivation at a constant rate r1 and
that the initiation of therapeutics immediately removes individuals in I1 from active status
and places them into exposed class at a constant rate r2. The time before individuals in E1

who does not received effective chemoprophylaxis become infectious is assumed to satisfy an
exponential distribution, with mean waiting time 1/k1. Thus, individuals leave the class E1

to the class I1 at a constant rate k1(1− r1). The time before individuals in E2 become infectious
is also assumed to satisfy an exponential distribution, with mean waiting time 1/k2. Thus,
individuals leave the class E2 to the class I2 at a constant rate k2. Individuals sick with drug-
sensitive strain receive treatment at rate r2 and a proportion pr2 respond to treatment and
move into exposed class E1, in the remaining proportion (1 − p)r2, inappropriate treatment
results in the development of drug-resistant strain and the individuals move into class E2.
Individuals in the infectious class I1 and I2 suffer additional disease-induced death at rate d1

and d2, where d2 > d1. Then the following two strains tuberculosis model is formulated

S′ = Λ − β1(N)SI1 − β2(N)SI2 − μS,

E′1 = β1(N)SI1 + pr2I1 − k1(1 − r1)E1 − μE1,

I ′1 = k1(1 − r1)E1 −
(
r2 + μ + d1

)
I1,

E′2 = β2(N)SI2 +
(
1 − p

)
r2I1 −

(
μ + k2

)
E2,

I ′2 = k2E2 −
(
μ + d2

)
I2,

(2.2)

where Λ, k1, k2, r1, and r2 are assumed to be positive and p ∈ [0, 1]. It is natural to assume
that the transmission coefficient β1(N), β2(N) satisfies the following conditions:

β1(N) > 0, β′1(N) ≤ 0,
(
Nβ1(N)

)′ ≥ 0,

β2(N) > 0, β′2(N) ≤ 0,
(
Nβ2(N)

)′ ≥ 0.
(2.3)
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Figure 1: Transfer diagram for the dynamics of tuberculosis with general contact rate.

Obviously, we can see that β1(N) = β1/N, β2(N) = β2/N corresponds to the standard
incidence rate, that β1(N) = β1, β2(N) = β2 corresponds to the mass action incidence rate,
and that β1(N) = β1C(N), β2(N) = β2C(N) corresponds to the saturating contact rate, where

C(N) =
bN

1 + bN +
√

1 + 2bN
. (2.4)

2.1. Positivity and Boundedness

System (2.2) describes human population and therefore it is necessary to prove that all the
variables S, E1, I1, E2, I2 are nonnegative for all time. Solutions of system (2.2) with positive
initial data remains positive for all time t ≥ 0 and are bounded.

Theorem 2.1. If S(0) ≥ 0, E1(0) ≥ 0, I1(0) ≥ 0, E2(0) ≥ 0, I2(0) ≥ 0, the solutions S(t), E1(t),
I1(t), E2(t), I2(t) of system (2.2) are positive for t ≥ 0. For system (2.2), the region Γ is positively
invariant and all solutions starting in Γ approach, enter, or stay in Γ, where

Γ =
{
(S(t), E1(t), I1(t), E2(t), I2(t)) ∈ R

5
+ : N(t) ≤ Λ

μ

}
. (2.5)

Proof. Under the given initial conditions, it is easy to prove that the solutions of the system
(2.2) are positive; if not, we assume a contradiction: that there exists a first time t1 such that

S(t1) = 0, S′(t1) < 0, E1(t) ≥ 0, I1(t) ≥ 0, E2(t) ≥ 0, I2(t) ≥ 0, for 0 < t < t1, (2.6)

there exists a t2

E1(t2) = 0, E′1(t2) < 0, S(t) ≥ 0, I1(t) ≥ 0, E2(t) ≥ 0, I2(t) ≥ 0, for 0 < t < t2, (2.7)

there exists a t3

I1(t3) = 0, I ′1(t3) < 0, S(t) ≥ 0, E1(t) ≥ 0, E2(t) ≥ 0, I2(t) ≥ 0, for 0 < t < t3, (2.8)
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there exists a t4

E2(t4) = 0, E′2(t4) < 0, S(t) ≥ 0, E1(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, for 0 < t < t4, (2.9)

or there exists a t5

I2(t5) = 0, I ′2(t5) < 0, S(t) ≥ 0, E1(t) ≥ 0, I1(t) ≥ 0, E2(t) ≥ 0, for 0 < t < t5. (2.10)

In the first case, we have

S′(t1) = Λ > 0, (2.11)

which is a contradiction meaning that S(t) ≥ 0, t ≥ 0. In the second case, we have

E′1(t2) = I1(t2)
[
β1(N)S(t2) + pr2

]
≥ 0, (2.12)

which is a contradiction meaning that E1(t) ≥ 0, t ≥ 0. In the third case, we have

I ′1(t3) = k1(1 − r1)E1(t3) ≥ 0, (2.13)

which is a contradiction meaning that I1(t) ≥ 0, t ≥ 0. In the fourth case, we have

E′2(t4) = β2(N)S(t4)I2(t4) +
(
1 − p

)
r2I1(t4) ≥ 0, (2.14)

which is a contradiction meaning that E2(t) ≥ 0, t ≥ 0. In the fifth case, we have

I ′2(t5) = k2E2(t5) ≥ 0, (2.15)

which is a contradiction meaning that I2(t) ≥ 0, t ≥ 0.
Thus, in all cases, S(t), E1(t), I1(t), E2(t), I2(t) remain positive for t ≥ 0.
Let (S(t), E1(t), I1(t), E2(t), I2(t)) ∈ R

5
+ be any solution with nonnegative initial

condition, adding all equations in system (2.2) gives

N ′(t) = Λ − μN − d1I1 − d2I2,

≤ Λ − μN.
(2.16)

It follows that

0 ≤N(t) ≤ Λ
μ

+N(0)e−μt, (2.17)
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where N(0) represents initial values of the total population. Thus 0 ≤N(t) ≤ Λ/μ, as t → ∞.
Therefore all feasible solutions of system (2.2) enter the region

Γ =
{
(S(t), E1(t), I1(t), E2(t), I2(t)) ∈ R

5
+ : N(t) ≤ Λ

μ

}
. (2.18)

Hence, Γ is positively invariant and it is sufficient to consider solutions of system (2.2) in
Γ. Existence, uniqueness and continuation results for system (2.2) hold in this region. It can
be shown that N(t) is bounded and all the solutions starting in Γ approach, enter or stay in
Γ.

3. Model Analysis

There are one disease-free equilibrium P0 and two possible endemic equilibria for system
(2.2), the endemic equilibria include boundary equilibrium P1 (when only the drug-resistant
TB-strain is present) and the interior equilibrium P2 (when both strains exist).

3.1. Global Stability of the Disease-Free Equilibrium

The disease-free-equilibrium is given as

P0 = (S0, 0, 0, 0, 0), S0 =
Λ
μ
. (3.1)

The basic reproduction number is defined as the number of secondary infections produced by
a single infectious individual during the entire infectious period. In our case the reproduction
number defines the number of secondary TB infections produced by a single active TB
individual during the entire infectious period. Mathematically it is defined as the spectral
radius of the next generation matrix [27]. To determine the stability of the disease-free steady
state P0, we use the results in van den Driessche and Watmough [27]. Reorder the components
of P0 as E1 = 0, I1 = 0, E2 = 0, I2 = 0, S = Λ/μ. Set

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

F1

F2

F3

F4

F5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

β1(N)SI1

0

β2(N)SI2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

k1(1 − r1)E1 + μE1 − pr2I1

r2I1 +
(
μ + d1

)
I1 − k1(1 − r1)E1

(
μ + k2

)
E2 −

(
1 − p

)
r2I1

(
μ + d2

)
I2 − k2E2

μS + β1(N)SI1 + β2(N)SI2 −Λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(3.2)
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The infected compartments are E1, I1, E2, and I2. Thus

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 β1(S0)S0 0 0

0 0 0 0

0 0 0 β1(S0)S0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

μ + k1(1 − r1) −pr2 0 0

−k1(1 − r1) μ + d1 + r2 0 0

0 −
(
1 − p

)
r2 μ + k2 0

0 0 −k2 μ + d2

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(3.3)

The dominant eigenvalues of FV −1 are given by

R1 =
k1(1 − r1)β1(S0)S0

(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

,

R2 =
k2β2(S0)S0

(
μ + k2

)(
μ + d2

) ,

(3.4)

where R1 and R2 are reproduction numbers for drug-sensitive TB strain only and drug-
resistant TB strain only, respectively. It implies that the spectral radius of the matrix FV −1

is

ρ
(
FV −1

)
= max{R1, R2}. (3.5)

If R1 < 1, and R2 < 1, then ρ(FV −1) < 1. By Theorem 3.2 in van den Driessche and Watmough
[27], we know that the disease-free steady state P0 is locally asymptotically stable, P0 is
unstable if R1 > 1 or R2 > 1. The following theorems provide the global stability of the
disease-free equilibrium.

To conduct an analytical analysis of global asymptotical behaviors of the disease-free
equilibrium point, first of all, we assume that there is no disease-induced death rate, that is,
d1 = 0, d2 = 0. Consequently, the total population size N(t) satisfies the equation dN/dt =
Λ−μN andN(t) → Λ/μ as t → ∞. Using results from Castillo-Chavez and Thieme [28] and
Mischaikow et al. [29], we can obtain analytical results by considering the following limiting
system of (2.2) in which the total population is assumed to be constant N = S0 = Λ/μ:

E′1 = β1(S0)I1(S0 − E1 − I1 − E2 − I2) + pr2I1 −
(
μ + k1(1 − r1)

)
E1,

I ′1 = k1(1 − r1)E1 −
(
r2 + μ

)
I1,

E′2 = β2(S0)I2(S0 − E1 − I1 − E2 − I2) +
(
1 − p

)
r2I1 −

(
μ + k2

)
E2,

I ′2 = k2E2 − μI2.

(3.6)
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Notice that the S equation is eliminated from (3.6) and the variable S is replaced by S0 −E1 −
I1 − E2 − I2. By introducing the fractions

x1 =
E1

N
, x2 =

I1

N
, y1 =

E2

N
, y2 =

I2

N
, (3.7)

we obtain the equivalent limiting system from (3.6)

x′1 = S0β1(S0)
(
1 − x1 − x2 − y1 − y2

)
x2 + pr2x2 −

(
μ + k1(1 − r1)

)
x1,

x′2 = k1(1 − r1)x1 −
(
μ + r2

)
x2,

y′1 = S0β2(S0)
(
1 − x1 − x2 − y1 − y2

)
y2 +

(
1 − p

)
r2x2 −

(
μ + k2

)
y1,

y′2 = k2y1 − μy2.

(3.8)

Obviously

0 ≤ x1 + x2 + y1 + y2 ≤ 1, (3.9)

for all time t ≥ 0.
For a bounded real-valued function f on [0,∞), we define

f∞ = lim inf
t→∞

f(t), f∞ = lim sup
t→∞

f(t). (3.10)

Lemma 3.1 (see [30]). Let f : [0,∞) → ∞ be bounded and continuously differentiable. Then there
are sequences tn, sn → ∞ with the following properties:

f(tn) −→ f∞, f ′(tn) −→ 0,

f(sn) −→ f∞, f ′(sn) −→ 0,
(3.11)

for n → ∞.

Theorem 3.2. In the absence of disease-induced death rate, the disease-free equilibrium P0 of system
(2.2) is globally asymptotically stable if R1 < 1, R2 < 1.

Proof. By Lemma 3.1 and the x′2, y′2 equations in (3.8) we have

x∞2 ≤
k1(1 − r1)
μ + r2

x∞1 , y∞2 ≤
k2

μ
y∞1 . (3.12)

Using the x′1 equation in (3.8) and choosing tn → ∞ such that

x1(tn) −→ x∞1 , x′1(tn) −→ 0, t −→ ∞, (3.13)
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we get

0 ≤ S0β1(S0)
(
1 − x1 − x2 − y1 − y2

)∞
x∞2 −

(
μ + k1(1 − r1)

)
x∞1

≤ S0β1(S0)x∞2 −
(
μ + k1(1 − r1)

)
x∞1

≤ S0β1(S0)
k1(1 − r1)
μ + r2

x∞1 −
(
μ + k1(1 − r1)

)
x∞1

≤
(
μ + k1(1 − r1)

)
x∞1

[
k1(1 − r1)S0β1(S0)

(
μ + r2

)(
μ + k1(1 − r1)

) − 1

]

≤
(
μ + k1(1 − r1)

)
x∞1

[
k1(1 − r1)S0β1(S0)

(
μ + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

− 1

]

=
(
μ + k1(1 − r1)

)
x∞1 (R1 − 1).

(3.14)

It is shown that x∞1 ≤ 0 since R1 < 1, as x∞1 ≥ 0, we have that x∞1 = 0. The inequalities in (3.12)
also imply that x∞2 = 0.

Using the y′1 equation in (3.8) and choosing sn → ∞ such that

y1(sn) −→ y∞1 , y′1(sn) −→ 0, t → ∞, (3.15)

we get

0 ≤ S0β2(S0)
(
1 − x1 − x2 − y1 − y2

)∞
y∞2 −

(
μ + k2

)
y∞1

≤ S0β2(S0)y∞2 −
(
μ + k2

)
y∞1

≤ S0β2(S0)
k2

μ
y∞1 −

(
μ + k2

)
y∞1

≤
(
μ + k2

)
y∞1

[
k2S0β2(S0)
μ
(
μ + k2

) − 1

]

=
(
μ + k2

)
y∞1 (R2 − 1).

(3.16)

It is shown that y∞1 ≤ 0 since R2 < 1, as y∞1 ≥ 0, we have that y∞1 = 0. The inequalities in (3.12)
also imply that y∞2 = 0.

Hence

lim
t→∞

x1(t) = lim
t→∞

x2(t) = lim
t→∞

y1(t) = lim
t→∞

y2(t) = 0. (3.17)

Therefore, the disease-free equilibrium P0 is globally asymptotically stable.

Next, we consider that there is disease-induced death rate, which means that d1 > 0,
d2 > 0. Then, we can get the following theorem.
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Theorem 3.3. For d1 > 0, d2 > 0, the disease-free equilibrium P0 of system (2.2) is globally
asymptotically stable if R1 < 1 − k2r2(1 − p)/((μ + d1 + r2)(μ + k1(1 − r1)) − k1pr2(1 − r1)), R2 < 1.

Proof. Let us consider the following Lyapunov function:

V (E1, I1, E2, I2) = k1(1 − r1)E1 +
(
μ + k1(1 − r1)

)
I1 + k2E2 +

(
μ + k2

)
I2. (3.18)

Its time derivative along the solutions of system (2.2) satisfies

V̇ = k1(1 − r1)Ė1 +
(
μ + k1(1 − r1)

)
İ1 + k2Ė2 +

(
μ + k2

)
İ2

= k1(1 − r1)
[
β1(N)SI1 + pr2I1 −

(
μ + k1(1 − r1)

)
E1
]

+
(
μ + k1(1 − r1)

)[
k1(1 − r1)E1 −

(
μ + d1 + r2

)
I1
]

+ k2
[
β2(N)SI2 +

(
1 − p

)
r2I1 −

(
μ + k2

)
E2
]

+
(
μ + k2

)[
k2E2 −

(
μ + d2

)
I2
]
,

=
[
k1(1 − r1)β1(N)S + k1(1 − r1)pr2 −

(
μ + d1 + r2

)(
μ + k1(1 − r1)

)]
I1

+
[
k2β2(N)S −

(
μ + d2

)(
μ + k2

)]
I2

+ k2r2
(
1 − p

)
I1.

(3.19)

Now, using (2.3), one has β1(N)S ≤ β1(S0)S0, β2(N)S ≤ β2(S0)S0, then

V̇ ≤
[(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1(1 − r1)pr2

]
(R1 − 1)I1 + k2r2

(
1 − p

)
I1

+
(
μ + d2

)(
μ + k2

)
(R2 − 1)I2,

=
[[(

μ + d1 + r2
)(
μ + k1(1 − r1)

)
− k1(1 − r1)pr2

]
(R1 − 1) + k2r2

(
1 − p

)]
I1

+
(
μ + d2

)(
μ + k2

)
(R2 − 1)I2.

(3.20)

Since

(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

= μ
(
μ + d1 + r2

)
+ k1(1 − r1)

(
μ + d1

)
+ k1r2(1 − r1) − k1pr2(1 − r1)

= μ
(
μ + d1 + r2

)
+ k1(1 − r1)

(
μ + d1

)
+ k1r2(1 − r1)

(
1 − p

)

≥ 0,

(3.21)

and R1 < 1 − k2r2(1 − p)/((μ + d1 + r2)(μ + k1(1 − r1)) − k1pr2(1 − r1)) ≤ 1, we have

[(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1(1 − r1)pr2

]
(R1 − 1) + k2r2

(
1 − p

)
≤ 0. (3.22)

Thus, V̇ ≤ 0 if R1 < 1 − k2r2(1 − p)/((μ + d1 + r2)(μ + k1(1 − r1)) − k1pr2(1 − r1)), R2 < 1. It
is obvious that V̇ = 0 if and only if I1 = 0, I2 = 0. Then, the largest invariant set of system
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(2.2) on the set {(S, E1, I1, E2, I2) ∈ R
5
+, V̇ (E1, I1, E2, I2) = 0} is the disease-free equilibrium P0.

Therefore, it follows from LaSalle’s invariance principle [31, 32] that P0 is globally stable if
R1 < 1 − k2r2(1 − p)/((μ + d1 + r2)(μ + k1(1 − r1)) − k1pr2(1 − r1)), R2 < 1.

3.2. Existence and Uniqueness of the Drug-Resistant-TB-Strain-Only
Equilibrium

Here, we present a result concerning the existence and uniqueness of the drug-resistant-
TB-strain-only equilibrium for the system (2.2). To do this, we shall make use of the basic
reproduction ratio R1 and R2.

Let P1 = (Ŝ, 0, 0, Ê2, Î2) be boundary equilibrium of system (2.2). Then, the boundary
equilibrium can be obtained by setting the right-hand side of each differential equations in
system (2.2) equal to zero with the exception of second and third equation, giving

Λ − β2

(
N̂
)
ŜÎ2 − μŜ = 0,

β2

(
N̂
)
ŜÎ2 −

(
μ + k2

)
Ê2 = 0,

k2Ê2 −
(
μ + d2

)
Î2 = 0,

(3.23)

adding the above three equations, we have

Λ − μN̂ − d2Î2 = 0. (3.24)

Using (3.24), the first and second equation of (3.23), we can easily express Ŝ, Ê2 and Î2

in terms of N̂ in the form:

Ŝ =
Λd2

μd2 + β2

(
N̂
)(

Λ − μN̂
) ,

Ê2 =
Λβ2

(
N̂
)(

Λ − μN̂
)

(
μ + k2

)[
μd2 + β2

(
N̂
)(

Λ − μN̂
)] ,

Î2 =
Λ − μN̂
d2

.

(3.25)

Substituting Ŝ, Ê2, Î2 in the third equations of (3.23) yields

(
Λ − μN̂

)
F
(
N̂
)
= 0, (3.26)

where

F
(
N̂
)
= Λk2d2β2

(
N̂
)
−
(
μ + k2

)(
μ + d2

)[
μd2 + β2

(
N̂
)(

Λ − μN̂
)]
. (3.27)
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Clearly, Λ − μN̂ = 0 is a fixed point of (3.23), which corresponds to the disease-free
equilibrium P0. Since N̂ ∈ [0, S0], we get

F(0) = Λk2d2β2(0) −
(
μ + k2

)(
μ + d2

)[
μd2 + Λβ2(0)

]

= Λk2d2β2(0) −
[
μ2 + μ(d2+k2) + d2k2

][
μd2 + Λβ2(0)

]

= Λk2d2β2(0) −
[
μ2 + μ(d2+k2)

][
μd2 + Λβ2(0)

]
−Λd2k2β2(0) − μk2d

2
2

= −
[
μ2 + μ(k2 + d2)

][
μd2 + Λβ2(0)

]
− μk2d

2
2,

F(S0) = Λk2d2β2(S0) − μd2
(
μ + k2

)(
μ + d2

)

= μ
[
k2d2β2(S0)S0 − d2

(
μ + k2

)(
μ + d2

)]

= μd2
(
μ + k2

)(
μ + d2

)
[

k2β2(S0)S0
(
μ + k2

)(
μ + d2

) − 1

]

= μd2
(
μ + k2

)(
μ + d2

)
(R2 − 1).

(3.28)

It appears that F(0) < 0 and F(S0) > 0 whenR2 > 1. The existence of fixed point follows
from the intermediate value-theorem. Now, F(N̂) is monotone increasing, so that F(N̂) = 0
has only one positive root in the interval [0, S0].

Thus, we have established the following result

Lemma 3.4. When R2 > 1, the system (2.2) has a unique drug-resistant-TB-strain-only equilibrium
P1 = (Ŝ, 0, 0, Ê2, Î2) with Ŝ, Ê2, and Î2 all nonnegative.

3.3. Global Stability of the Drug-Resistant-TB-Strain-Only Equilibrium

Theorem 3.5. If R1 < 1 < R2, the drug-resistant-TB-strain-only equilibrium P1 exists and is locally
asymptotically stable.

Proof. Reorder the equilibrium P1 as (0, 0, Ê2, Î2, Ŝ). Similarly as in the proof of locally stability
of the disease-free steady state P0, we have

F1 =

⎡

⎣
0 β1

(
N̂
)
Ŝ

0 0

⎤

⎦,

V1 =

[
μ + k1(1 − r1) −pr2

−k1(1 − r1) μ + d1 + r2

]

,

F1V
−1
1 = A

⎡

⎣
k1(1 − r1)β1

(
N̂
)
Ŝ
(
μ + k1(1 − r1)

)
β1

(
N̂
)
Ŝ

0 0

⎤

⎦,

(3.29)
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where

A =
1

(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

. (3.30)

The spectral radius of F1V
−1
1 is given by

ρ
(
F1V

−1
1

)
=

k1(1 − r1)β1

(
N̂
)
Ŝ

(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

,

≤
k1(1 − r1)β1

(
N̂
)
N̂

(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

.

(3.31)

Since (β1(N)N)′ ≥ 0, and N̂ ≤ S0, then

β1

(
N̂
)
N̂ ≤ β1(S0)S0, (3.32)

Thus

ρ
(
F1V

−1
1

)
≤

k1(1 − r1)β1(S0)S0
(
μ + d1 + r2

)(
μ + k1(1 − r1)

)
− k1pr2(1 − r1)

= R1. (3.33)

As R1 < 1, we have ρ(F1V
−1
1 ) < 1, which implies that the drug-resistant-TB-strain-only

equilibrium P1 is locally asymptotically stable by Theorem 3.2 in van den Driessche and
Watmough [27].

The following theorem provides the global stability of drug-resistant-TB-strain-only
equilibrium.

Theorem 3.6. If there is no disease-induced death rate, the drug-resistant-TB-strain-only equilibrium
P1 is global asymptotically stable when R1 < 1 < R2.

Proof. If R1 < 1 < R2, from Theorem 3.5, P1 is locally asymptotically stable. In the following,
we only need to prove that the P1 is a global attractor.

There is no disease-induced death rate, which means d1 = d2 = 0, using a similar
argument as in the proof of Theorem 3.2, we can show that if R1 < 1,

lim
t→∞

x1(t) = lim
t→∞

x2(t) = 0. (3.34)

Then the equivalent limiting system of (3.6) is

E′2 = β2(S0)I2(S0 − E2 − I2) −
(
μ + k2

)
E2,

I ′2 = k2E2 − μI2.
(3.35)
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Let (P,Q) be the vector field defined by system (3.35). Then for the Dulac function
D(E2, I2) = 1/E2I2, there holds

∂

E2
(DP) +

∂

I2
(DQ) = −

β2(S0)(S0 − I2)

E2
2

− k2

I2
2

< 0. (3.36)

From Dulac’s criterion, we can see equivalent limiting system (3.35) does not have
a limit cycle. Therefore, the local stability of P1 implies the global stability in Int Γ. This
completes the proof of Theorem 3.6.

3.4. Existence and Uniqueness of the Interior Equilibrium

First of all, we assume that

(W1) limN→ 0(1/β1(N)) = +∞,

(W2) β1(N)/β2(N) = β1/β2,

then, existence, uniqueness and global stability of interior equilibrium can be obtained. Let
P2 = (S∗, E∗1, I

∗
1 , E

∗
2, I
∗
2) be interior equilibrium of system (2.2). Then, the interior equilibrium

(steady state with I1 > 0, I2 > 0) can be obtained by setting the right-hand side of each of the
five differential equations in system (2.2) equal to zero, giving

Λ − β1(N∗)S∗I∗1 − β2(N∗)S∗I∗2 − μS∗ = 0,

β1(N∗)S∗I∗1 + pr2I
∗
1 − k1(1 − r1)E∗1 − μE

∗
1 = 0,

k1(1 − r1)E∗1 −
(
r2 + μ + d1

)
I∗1 = 0,

β2(N∗)S∗I∗2 +
(
1 − p

)
r2I
∗
1 −
(
μ + k2

)
E∗2 = 0,

k2E
∗
2 −
(
μ + d2

)
I∗2 = 0,

(3.37)

adding the above five equations, we have

Λ − μN∗ − d1I
∗
1 − d2I

∗
2 = 0. (3.38)

Using (3.37) and (3.38), we get the following equivalent equations set

Λ − β1(N∗)S∗I∗1 − β2(N∗)S∗I∗2 − μS∗ = 0,

β1(N∗)S∗I∗1 + pr2I
∗
1 − k1(1 − r1)E∗1 − μE

∗
1 = 0,

k1(1 − r1)E∗1 −
(
r2 + μ + d1

)
I∗1 = 0,

k2E
∗
2 −
(
μ + d2

)
I∗2 = 0,

Λ − μN∗ − d1I
∗
1 − d2I

∗
2 = 0.

(3.39)
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From (3.39), we have

S∗ =
β(S0)S0

R1β1(N∗)
,

I∗1 =
d2
(
Λ − μS∗

)
− S∗β2(N∗)

(
Λ − μN∗)

d2S∗β1(N∗) − d1S∗β2(N∗)
,

E∗1 =
μ + d1 + r2

k1(1 − r1)
I∗1 ,

I∗2 =

(
Λ − μN∗)

d2
− d1

d2
I∗1 ,

E∗2 =

(
μ + d2

)(
Λ − μN∗)

k2d2
−
d1
(
μ + d2

)

k2d2
I∗1 .

(3.40)

Substituting (3.40) into β2(N∗)S∗I∗2 + (1 − p)r2I
∗
1 − (μ + k2)E∗2 = 0, N∗satisfies the

following equation:

G(N∗) = 0, (3.41)

where

G(N∗) =
β1(S0)S0

(
Λ − μN∗)

R1

[
k2d2S0β1(S0)β2(N∗)

R1β1(N∗)
− d2μ1 −

(
1 − p

)
k2d2r2β2(N∗)
β1(N∗)

]

+ d2Λ
(

1 −
β1(S0)

β1(N∗)R1

)[
d1μ1 +

(
1 − p

)
k2d2r2 −

d1k2S0β1(S0)β2(N∗)
R1β1(N∗)

]
,

μ1 =
(
μ + k2

)(
μ + d2

)
.

(3.42)

Since β1(N)/β2(N) = β1/β2, limN→ 0(1/β1(N)) = +∞, if R1 > d1k2β2S0β1(S0)/β1[d1μ1 + (1 −
p)k2d2r2], then

lim
N∗ → 0

G(N∗) = −∞. (3.43)

It means thatG(N∗) = 0 has only one positive root in the interval [0, S0] ifG(N∗) is monotone
increasing and G(S0) ≥ 0, which is equivalent to

R1 >
H1 +H2

H3 +H4
,

R2 <

[

1 +

(
1 − p

)
d2k2r2

d1μ1

]

R1,

(3.44)
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where

H1 = k2d2β2S0β1(S0)β2
1(N

∗),

H2 = d1d2k2β2S0β1(S0)β′1(N
∗),

H3 = β2
1(N

∗)
[
d2β1μ1 + d2k2β2r2

(
1 − p

)]
,

H4 = d2β
′
1(N

∗)
[
d1β1μ1 + d2k2β1r2

(
1 − p

)]
.

(3.45)

Let

H = max

{

1,
H1 +H2

H3 +H4
,

d1k2β2S0β1(S0)
β1
[
d1μ1 + k2d2r2

(
1 − p

)]

}

,

f(R1) =

[

1 +

(
1 − p

)
d2k2r2

d1μ1

]

R1.

(3.46)

When

R1 > H, R2 < f(R1), (3.47)

it shows that G(S0) ≥ 0, and G(N∗) is monotone increasing, by the intermediate value-
theorem, G(N∗) = 0 has only one positive root in the interval [0, S0], which signify that P2

is unique. Obviously, S∗ > 0. In order to make certain that E∗1 > 0, I∗1 > 0, E∗2 > 0, I∗2 > 0, we
obtain that E∗1 > 0, I∗1 > 0, E∗2 > 0, I∗2 > 0 if and only if

0 < I∗1 <
Λ − μN∗

d1
. (3.48)

Due to d2 > d1 > 0, introducing (3.40) into (3.48), we acquire

B1 < R1 < B2, (3.49)

where

B1 =
S0β1(S0)

[
β2(N∗)

(
Λ − μN∗) + μd2

]

Λd2β1(N∗)
,

B2 =
S0β1(S0)

[
β1(N∗)

(
Λ − μN∗) + μd1

]

Λd1β1(N∗)
,

(3.50)

and B1 < B2.
Now, we can get the following conclusion.
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Lemma 3.7. When conditions (W1), (W2), (3.47) and (3.49) are satisfied, the system (2.2) has a
unique interior equilibrium P2 = (S∗, E∗1, I

∗
1 , E

∗
2, I
∗
2) with S

∗, E∗1, I
∗
1 , E

∗
2, and I

∗
2 all nonnegative.

Remark 3.8. For β1(N) = β1 and β1(N) = β1/N, condition (W1) is not satisfied. However, at
least when β1(N) = β1C(N), condition (W1) is satisfied, we also can find our conclusions are
still correct from Figures 7 and 10.

3.5. Global Stability of the Interior Equilibrium

Herein, we study the global stability of the interior equilibrium P2 of system (2.2). For
simplicity, we only consider the special case when the transmission coefficients of drug-
sensitive TB-strain and drug-resistant TB-strain are equal, that is, β1(N) = β2(N) = β(N),
then, we get the following result.

Theorem 3.9. If conditions (W1), (W2), (3.47) and (3.49) are satisfied, interior equilibrium P2 of
system (2.2) is is globally asymptotically stable when

S

S∗
=
E1

E∗1
=
E2

E∗2
≥ 1,

I2

I∗2
≥ I1

I∗1
or

S

S∗
=
E1

E∗1
=
E2

E∗2
≤ 1,

I2

I∗2
≤ I1

I∗1
. (3.51)

Proof. Following [33], we consider the Lyapunov function:

U(S, E1, I1, E2, I2) = (S − S∗ lnS) +
(
E1 − E∗1 lnE∗1

)
+ C
(
I1 − I∗1 ln I∗1

)

+
(
E2 − E∗2 lnE∗2

)
+D
(
I2 − I∗2 ln I∗2

)
,

(3.52)

where C and D are positive constants to be determined later. Differentiating this function
with respect to time along the solutions of system (2.2) yields

U̇ =
(

1 − S
∗

S

)
Ṡ +
(

1 −
E∗1
E1

)
Ė1 + C

(
1 −

I∗1
I1

)
İ1

+
(

1 −
E∗2
E2

)
Ė2 +D

(
1 −

I∗2
I2

)
İ2

=
(

1 − S
∗

S

)
[
Λ − β(N)SI1 − β(N)SI2 − μS

]

+
(

1 −
E∗1
E1

)
[
β(N)SI1 + pr2I1 − k1(1 − r1)E1 − μE1

]

+ C
(

1 −
I∗1
I1

)
[
k1(1 − r1)E1 −

(
r2 + μ + d1

)
I1
]

+
(

1 −
E∗2
E2

)
[
β(N)SI2 +

(
1 − p

)
r2I1 −

(
μ + k2

)
E2
]

+D
(

1 −
I∗2
I2

)
[
k2E2 −

(
μ + d2

)
I2
]
.

(3.53)
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Considering (3.37), we can deduce that

Λ = β(N∗)S∗I∗1 + β(N∗)S∗I∗2 + μS∗,

μ + k1(1 − r1) = β(N∗)S∗
I∗1
E∗1

+ pr2
I∗1
E∗1
,

μ + d1 + r2 = k1(1 − r1)
E∗1
I∗1
,

μ + k2 = β(N∗)S∗
I∗2
E∗2

+
(
1 − p

)
r2
I∗1
E∗2
,

μ + d2 = k2
E∗2
I∗2
.

(3.54)

Then, (3.53) becomes

U̇ =
(

1 − S
∗

S

)
[
β(N∗)S∗I∗1 + β(N∗)S∗I∗2 + μS∗ − β(N)SI1 − β(N)SI2 − μS

]

+
(

1 −
E∗1
E1

)[

β(N)SI1 + pr2I1 − β(N∗)S∗I∗1
E1

E∗1
− pr2I

∗
1
E1

E∗1

]

+ C
(

1 −
I∗1
I1

)[

k1(1 − r1)E1 − k1(1 − r1)E∗1
I1

I∗1

]

+
(

1 −
E∗2
E2

)[
β(N)SI2 +

(
1 − p

)
r2I1 − β(N∗)S∗I∗2

E2

E∗2
−
(
1 − p

)
r2I
∗
1
E2

E∗2

]

+D
(

1 −
I∗2
I2

)[
k2E2 − k2E

∗
2
I2

I∗2

]

= −
μ(S − S∗)2

S
+ β(N∗)S∗I∗1

(

1 −
β(N)SI1

β(N∗)S∗I∗1

)(
1 − S

∗

S

)

+ β(N∗)S∗I∗2

(
1 −

β(N)SI2

β(N∗)S∗I∗2

)(
1 − S

∗

S

)

+
(

1 −
E∗1
E1

)[

β(N∗)S∗I∗1

(
β(N)SI1

β(N∗)S∗I∗1
− E1

E∗1

)

+ pr2I
∗
1

(
I1

I∗1
− E1

E∗1

)]

+ C
(

1 −
I∗1
I1

)[

k1(1 − r1)E∗1

(
E1

E∗1
− I1

I∗1

)]

+
(

1 −
E∗2
E2

)[

β(N∗)S∗I∗2

(
β(N)SI2

β(N∗)S∗I∗2
− E2

E∗2

)
+
(
1 − p

)
r2I
∗
1

(
I1

I∗1
− E2

E∗2

)]

+D
(

1 −
I∗2
I2

)[
k2E

∗
2

(
E2

E∗2
− I2

I∗2

)]
.

(3.55)
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Now, using (3.37), we have

k1(1 − r1)E∗1 =
(
r2 + μ + d1

)
I∗1 ,

k2E
∗
2 =
(
μ + d2

)
I∗2 .

(3.56)

Then, (3.55) can be rewritten as follows:

U̇ = −
μ(S − S∗)2

S

+ β(N∗)S∗I∗1

[(

1 −
β(N)SI1

β(N∗)S∗I∗1

)(
1 − S

∗

S

)
+
(

1 −
E∗1
E1

)(
β(N)SI1

β(N∗)S∗I∗1
− E1

E∗1

)]

+ pr2I
∗
1

[(
1 −

E∗1
E1

)(
I1

I∗1
− E1

E∗1

)

+
C
(
μ + r2 + d1

)

pr2

(
1 −

I∗1
I1

)(
E1

E∗1
− I1

I∗1

)]

+ β(N∗)S∗I∗2

[(
1 −

β(N)SI2

β(N∗)S∗I∗2

)(
1 − S

∗

S

)
+
(

β(N)SI2

β(N∗)S∗I∗2
− E2

E∗2

)(
1 −

E∗2
E2

)]

+
(
1 − p

)
r2I
∗
1

[(
I1

I∗1
− E2

E∗2

)(
1 −

E∗2
E2

)
+
D
(
μ + d2

)
I∗2(

1 − p
)
r2I
∗
1

(
1 −

I∗2
I2

)(
E2

E∗2
− I2

I∗2

)]

.

(3.57)

Now, let (x,w1, z1, w2, z2) = (S/S∗, E1/E
∗
1, I1/I

∗
1 , E2/E

∗
2, I2/I

∗
2) and g(N) = β(N)/β(N∗), then

we get

U̇ = −
μ(S − S∗)2

S
+ β(N∗)S∗I∗1

[
(
1 − g(N)xz1

)
(

1 − 1
x

)
+
(

1 − 1
w1

)
(
g(N)xz1 −w1

)
]

+ pr2I
∗
1

[(
1 − 1

w1

)
(z1 −w1) +

C
(
μ + r2 + d1

)

pr2

(
1 − 1

z1

)
(w1 − z1)

]

+ β(N∗)S∗I∗2

[
(
1 − g(N)xz2

)
(

1 − 1
x

)
+
(
g(N)xz2 −w2

)
(

1 − 1
w2

)]

+
(
1 − p

)
r2I
∗
1

[

(z1 −w2)
(

1 − 1
w2

)
+
D
(
μ + d2

)
I∗2(

1 − p
)
r2I
∗
1

(
1 − 1

z2

)
(w2 − z2)

]

,

= −
μ(S − S∗)2

S
+ f(x,w1, z1, w2, z2),

(3.58)
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where

f(x,w1, z1, w2, z2) = β(N∗)S∗I∗1f1(x,w1, z1) + pr2I
∗
1f2(w1, z1) + β(N∗)S∗I∗2f3(x,w2, z2)

+
(
1 − p

)
r2I
∗
1f4(z1, w2, z2),

f1(x,w1, z1) =
(
1 − g(N)xz1

)
(

1 − 1
x

)
+
(

1 − 1
w1

)
(
g(N)xz1 −w1

)
,

f2(w1, z1) =
(

1 − 1
w1

)
(z1 −w1) +

C
(
μ + r2 + d1

)

pr2

(
1 − 1

z1

)
(w1 − z1),

f3(x,w2, z2) =
(
1 − g(N)xz2

)
(

1 − 1
x

)
+
(
g(N)xz2 −w2

)
(

1 − 1
w2

)
,

f4(z1, w2, z2) = (z1 −w2)
(

1 − 1
w2

)
+
D
(
μ + d2

)
I∗2(

1 − p
)
r2I
∗
1

(
1 − 1

z2

)
(w2 − z2).

(3.59)

We can choose

C =
pr2

(
μ + r2 + d1

) , D =

(
1 − p

)
r2I
∗
1(

μ + d2
)
I∗2
. (3.60)

For x = w1 = w2, we have

f1(x,w1, z1) =
(
1 − g(N)xz1

)
(

1 − 1
x

)
+
(

1 − 1
w1

)
(
g(N)xz1 −w1

)

= g(N)xz1

(
1
x
− 1 + 1 − 1

w1

)
+ 1 − 1

x
−w1

(
1 − 1

w1

)

= 1 − 1
x
−w1 + 1

= 2 − 1
x
− x,

(3.61)

which is less than or equal to zero by the arithmetic-geometric mean inequality, with the
following equality if and only if x = 1

f2(w1, z1) =
(

1 − 1
w1

)
(z1 −w1) +

(
1 − 1

z1

)
(w1 − z1)

= (z1 −w1)
(

1 − 1
w1
− 1 +

1
z1

)

= (z1 −w1)
(

1
z1
− 1
w1

)

= 2 − w1

z1
− z1

w1
,

(3.62)
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which is less than or equal to zero by the arithmetic-geometric mean inequality, with the
following equality if and only if w1 = z1

f3(x,w2, z2) =
(
1 − g(N)xz2

)
(

1 − 1
x

)
+
(
g(N)xz2 −w2

)
(

1 − 1
w2

)

= g(N)xz2

(
1 − 1

w2
+

1
x
− 1
)
+ 1 − 1

x
−w2 + 1

= 1 − 1
x
−w2 + 1

= 2 − 1
x
− x,

(3.63)

which is less than or equal to zero by the arithmetic-geometric mean inequality, with the
following equality if and only if x = 1.

For w2 ≥ 1, z2 ≥ z1 or w2 ≤ 1, z2 ≤ z1, we have

f4(z1, w2, z2) = (z1 −w2)
(

1 − 1
w2

)
+
(

1 − 1
z2

)
(w2 − z2)

≤ (z2 −w2)
(

1 − 1
w2
− 1 +

1
z2

)

= (z2 −w2)
(

1
z2
− 1
w2

)

= 2 − w2

z2
− z2

w2
,

(3.64)

which is less than or equal to zero by the arithmetic-geometric mean inequality, with equality
if and only if w2 = z2.

Thus, U̇(S, E1, I1, E2, I2) is less or equal to zero with equality only if x = 1, w1 =
z1, w2 = z2. Since x = w1 = w2, the largest invariant set of system (2.2) on the set
{(S, E1, I1, E2, I2) ∈ R

5
+, U̇(S, E1, I1, E2, I2) = 0} is the endemic equilibrium point P2. By

LaSalle’s invariance principle [31, 32], we can conclude that the interior equilibrium P2 is
globally asymptotically stable when condition (3.51) is satisfied.

Remark 3.10. It is possible for condition (3.51) to fail, in which case the global stability
of the interior equilibrium of system (2.2) has not been established. Figures 7, 10 and 13,
however, seem to support the idea that the interior equilibrium of system (2.2) is still global
asymptotically stable even in this case.

4. Numerical Simulations

To illustrate the theoretical results contained in this paper, we give some simulations using
the parameter value in Table 1. Numerical results are displayed in the following figures.

Taking no account of disease-induced death rate, we assume that d1 = d2 = 0, β1 =
0.001, β2 = 0.0001 (so that R1 < 1, R2 < 1). For β1(N) = β1, β2(N) = β2, β1(N) = β1/N,
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Table 1: Description and estimation of parameters.

Parameter Description Estimated value

Λ Recruitment rate of susceptible individuals into the community 2 year−1

β1(N) Transmission coefficient of sensitive strain Variable

β2(N) Transmission coefficient of resistant strain Variable

μ Naturally death rate 0.01 year−1

k1
Rate of progression from infection to infectious for sensitive
strain

0.005 year−1

k2
Rate of progression from infection to infectious for resistant
strain

0.005 year−1

r1 Rate of effective chemoprophylaxis to sensitive strain 0

r2 Rate of effective therapy to sensitive strain 0.4 year−1

d1 Disease-induced mortality rate of sensitive strain Variable

d2 Disease-induced mortality rate of resistant strain Variable

p Proportion of sensitive TB individuals received effective therapy
that have progression to the E1 class

0.9 year−1
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Figure 2: Trajectories of system (2.2) when β1(N) = β1, β2(N) = β2, β1 = 0.001, β2 = 0.0001, d1 = d2 = 0, so
that R1 < 1, R2 < 1. It shows that the disease-free equilibrium P0 is stable.

β2(N) = β2/N and β1(N) = β1C(N), β2(N) = β2C(N), C(N) = bN/(1 + bN +
√

1 + 2bN),
b = 1, Figures 2, 3, and 4 show the trajectories plots and their plane figures, respectively,
which are in agreement with Theorem 3.2.

When there is disease-induced death rate, which means that d1 > 0, d2 > 0, we take
d1 = 0.02, d2 = 0.07. Firstly, we consider system (2.2) with β1(N) = β1, β2(N) = β2 and choose
β1 = β2 = 0.001, so that R1 < 1, R2 < 1, Figure 5 presents the trajectories plot and plane figure.
From this figure, we can see that the trajectories of system (2.2) converge to the disease-free
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Figure 3: Trajectories of system (2.2) when β1(N) = β1/N, β2(N) = β2/N, β1 = 0.001, β2 = 0.0001, d1 =
d2 = 0, so that R1 < 1, R2 < 1. It shows that the disease-free equilibrium P0 is stable.
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Figure 4: Trajectories of system (2.2) when β1(N) = β1C(N), β2(N) = β2C(N), C(N) = N/(1 + N +√
1 + 2N), β1 = 0.001, β2 = 0.0001, d1 = d2 = 0, so that R1 < 1, R2 < 1. It shows that the disease-free

equilibrium P0 is stable.

equilibrium. We also choose β1 = 0.001, β2 = 1, so that R1 < 1, R2 > 1, Figure 6 presents the
trajectories plot and plane figure. It shows that the drug-resistant-TB-strain-only equilibrium
is global asymptotically stable. Then, we choose β1 = 1, β2 = 0.25, so that R1 > H, R2 < f(R1),
the trajectories plot and its plane figure are depicted in Figure 7, we can observe that the
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Figure 5: Trajectories of system (2.2) when β1(N) = β1, β2(N) = β2, β1 = β2 = 0.001, d1 = 0.02, d2 = 0.07, so
that R1 < 1, R2 < 1. It shows that the disease-free equilibrium P0 is stable.
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Figure 6: Trajectories of system (2.2) when β1(N) = β1, β2(N) = β2, β1 = 0.001, β2 = 1, d1 = 0.02, d2 = 0.07,
so that R1 < 1, R2 > 1. It shows that the boundary equilibrium P1 is stable.

trajectories converge to the unique interior equilibrium. This implies that both the sensitive
and resistant strains coexist and prevail in the host population as shown in Theorem 3.9.

Next, we need to think the case when β1(N) = β1/N, β2(N) = β2/N. Figures 8, 9 and
10 show the trajectories plot and its plane figure of system (2.2) when β1 = β2 = 0.001 (so
that R1 < 1, R2 < 1), β1 = 0.001, β2 = 1 (so that R1 < 1, R2 > 1), and β1 = 1, β2 = 0.25 (so



26 Abstract and Applied Analysis

5000450040003500300025002000150010005000

Time

0

20

40

60

80

100

120

Pa
ti

en
ts

E1

I1

E2

I2

Figure 7: Trajectories of system (2.2) when β1(N) = β1, β2(N) = β2, β1 = 1, β2 = 0.25, d1 = 0.02, d2 = 0.07,
so that R1 > H, R2 < f(R1). It shows that the interior equilibrium P2 is stable.
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Figure 8: Trajectories of system (2.2) when β1(N) = β1/N, β2(N) = β2/N, β1 = β2 = 0.001, d1 = 0.02,
d2 = 0.07, so that R1 < 1, R2 < 1. It shows that the disease-free equilibrium P0 is stable.

that R1 > H, R2 < f(R1)), respectively. As the previous cases, we can find that the trajectories
of system (2.2) converge to the disease-free equilibrium when R1 < 1, R2 < 1 (see Figure 8),
the drug-resistant-TB-strain-only equilibrium is global asymptotically stable when R1 < 1,
R2 > 1 (see Figure 9), while the trajectories of system (2.2) converge to the unique interior
equilibrium when R1 > 1, R2 < f(R1) (see Figure 10).
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Figure 9: Trajectories of system (2.2) when β1(N) = β1/N, β2(N) = β2/N, β1 = 0.001, β2 = 1, d1 = 0.02,
d2 = 0.07, so that R1 < 1, R2 > 1. It shows that the boundary equilibrium P1 is stable.
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Figure 10: Trajectories of system (2.2) when β1(N) = β1/N, β2(N) = β2/N, β1 = 1, β2 = 0.25, d1 = 0.02,
d2 = 0.07, so that R1 > H, R2 < f(R1). It shows that the interior equilibrium P2 is stable.

Eventually, we assume that β1(N) = β1C(N), β2(N) = β2C(N), C(N) = bN/(1 + bN +√
1 + 2bN) in system (2.2), of which b = 1. Numerical results are depicted in Figures 11, 12,

and 13. Figure 11 presents the trajectories and its plane figure when β1 = β2 = 0.001 (so that
R1 < 1, R2 < 1). From this figure, it clearly appears that the disease disappears in the host
population. Figure 12 presents the trajectories and its plane figure when β1 = 0.001, β2 = 1 (so



28 Abstract and Applied Analysis

120010008006004002000

Time

0

5

10

15

20

25

30

Pa
ti

en
ts

E1

I1

E2

I2

Figure 11: Trajectories of system (2.2) when β1(N) = β1C(N), β2(N) = β2C(N), C(N) = N/(1 + N +√
1 + 2N), β1 = β2 = 0.001, d1 = 0.02, d2 = 0.07, so that R1 < 1, R2 < 1. It shows that the disease-free

equilibrium P0 is stable.
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Figure 12: Trajectories of system (2.2) when β1(N) = β1C(N), β2(N) = β2C(N), C(N) = N/(1 + N +√
1 + 2N), β1 = 0.001, β2 = 1, d1 = 0.02, d2 = 0.07, so that R1 < 1, R2 > 1. It shows that the boundary

equilibrium P1 is stable.

that R1 < 1, R2 > 1), we can see that the drug-resistant-TB-strain-only equilibrium is global
asymptotically stable. Figure 13 gives a description of the trajectories and its plane figure
when β1 = 1, β2 = 0.25 (so that R1 > H, R2 < f(R1)). By observation, we conclude that both
the sensitive and resistant strains will coexist and prevail in the host population.
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Figure 13: Trajectories of system (2.2) when β1(N) = β1C(N), β2(N) = β2C(N), C(N) = N/(1 + N +√
1 + 2N), β1 = 1, β2 = 0.25, d1 = 0.02, d2 = 0.07, so that R1 > H, R2 < f(R1). It shows that the interior

equilibrium P2 is stable.

5. Discussion

In this paper, we studied a two-strain tuberculosis model that includes both drug-sensitive
and drug-resistant strains. The novelty of our model is that we incorporate general contact
rate βi(N), i = 1, 2 into a two-strain tuberculosis model. By using the Lyapunov stability
theory, LaSalle’s invariant set theorem and Dulac’s criterion, the global stability of equilibria
of the proposed model is proved. The basic reproduction numberR1,R2 provide the threshold
conditions which determine the competitive outcomes of the two strains. When R1 < 1, R2 <
1, the disease-free equilibrium P0 is globally stable and the disease will die out. When R1 < 1,
R2 > 1, a unique boundary equilibrium P1 exists and is globally stable. While when R1 > H,
R2 < f(R1), there exists a unique interior equilibrium P2 which is globally asymptotically
stable under certain conditions. A fairly good agreement is obtained between the analytical
and numerical results.

With the appearance of numerous second-line antituberculous drugs, such as
capreomycin, amikacin, and kanamycin, the treatment of drug-resistant-TB has become
possible. We will leave this for future study.
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