
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2010, Article ID 214213, 9 pages
doi:10.1155/2010/214213

Research Article
Error Estimates from Noise Samples for
Iterative Algorithm in Shift-Invariant Signal Spaces

Jun Xian

Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

Correspondence should be addressed to Jun Xian, xianjun@mail.sysu.edu.cn

Received 1 September 2010; Accepted 4 October 2010

Academic Editor: Douglas Robert Anderson

Copyright q 2010 Jun Xian. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

We consider error estimates of iterative algorithm in shift-invariant signal spaces. For the classical
sampling and reconstruction algorithm, error estimate from its samples corrupted by white noises
are widely studied, but the error analysis of noise with time jitter and iterative noise has not been
given as much attention. In this paper, three types of error estimates are studied. In detail, we
obtain the error estimate for reconstructing a signal from its noise samples, noise samples with
time jitter, and iterative noise.

1. Introduction

The famous Shannon sampling theorem [1] successful resolves the reconstruction of a
function f on R

d from its samples {f(xj) : j ∈ J}, where J is a countable index set.
This is a common task in many applications in signal or image processing. The Shannon
sampling theorem says that if f is the bandlimited signal of finite energy, then it is completely
characterized by its samples. In many engineering applications, such as MRI imaging, signals
and images are not band limited. One such example is the shift-invariant spaces. Nonuniform
sampling and reconstruction problems in shift-invariant spaces are a relatively recent and
active research field [2–12]. The shift-invariant space model developed in the 1990s is
successful for many engineering problems, where the signal f to be reconstructed is assumed
to live in a shift-invariant space. It has been shown to be suitable and realistic, especially for
taking into account of realistic environment, for modeling signals with smooth spectrum, or
for numerical implementation [8, 10, 12].

In this paper, we will assume that the functions or signals all belong to shift-invariant
space of the form [2–12]

V 2 =

{∑
k∈Z

ckϕ(· − k) : {ck} ∈ �2
}
. (1.1)
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Many reconstruction algorithms are studied in shift-invariant spaces. For example,
the iterative algorithm is obtained in shift-invariant spaces [3]. However, the reconstructing a
function from data corrupted by noise has not been given as much attention. Smale and Zhou
reconstruct signals from noisy data in [7] and give error estimates for the reconstructed signal
[8]. Aldroubi et al. discussed error analysis of frame reconstruction from noisy samples in [2].
Chen et al. gave the estimate of aliasing error for reconstruction algorithm in shift-invariant
spaces [4]. We will study error analysis of the iterative reconstruction algorithm from noisy
samples in shift-invariant spaces.

In this paper, the following three types of errors are considered for the iterative
algorithm in shift-invariant spaces.

(1) Signal samples are affected by some additive noise and are therefore given by

f
(
xj
)
+ ε
(
xj
)
, (1.2)

where {xj} is sampling point and ε is a vector of noise samples.

(2) Add time-jitter error in the above error model

f
(
xj + δj

)
+ ε
(
xj
)
, (1.3)

where {δj} are jitter. Due to the sampling time, points are not met correctly but
might differ from the exact ones by not more than a given δ, that is, |δj | ≤ δ.

(3) Numerical error in the nth iterative step in the iterative algorithm as shown in
Theorem 2.1 is εn, that is,

f̃1 = PQXf + ε1,

f̃n+1 = f̃1 + (I − PQX)
(
f̃n
)
+ εn+1.

(1.4)

For the first kind of error analysis, it is widely studied, see [1, 3, 7, 8, 10]. However, the
second and third kinds of error analysis have not been given as much attention. The second
type of error analysis is presented in band-limited signal spaces [13]. The time-jitter errors
without additive noise are studied in [6, 9]. Some results of the third type of error analysis
are shown in reproducing kernel spaces [14]. In this paper, we study the three types of error
for the iterative algorithm in shift-invariant spaces.

The paper is organized as follows. In Section 2, we introduce some concepts such
as bounded partition of unity, shift-invariant spaces, and the iterative algorithm in shift-
invariant spaces. In Section 3, we give error estimates of the iterative algorithm reconstruction
algorithm from noisy samples.
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2. Notations and Preliminaries

The shift-invariant spaces under consideration are of the form

V 2 =

{∑
k∈Z

ckψ(· − k) : {ck} ∈ �2
}
, (2.1)

where ψ is the so-called generator. The generator belongs to a subspace of continuous
functions of Wiener amalgam spaces W0(L1) ⊂ W(L1). A measurable function f belongs
to Wiener amalgam spacesW(L1) if it satisfies

∥∥f∥∥W(L1) =
∑
k∈Z

ess sup
{∣∣f(x + k)

∣∣;x ∈ [0, 1]d
}
<∞. (2.2)

For any f =
∑

k∈Z ckψ(· − k) ∈ V 2,we have the norm equivalences ‖f‖L2 ≈ ‖c‖�2 in [3]; that is,
there exist constants α and β such that

β
∥∥f∥∥L2 ≤ ‖c‖�2 ≤ α

∥∥f∥∥L2 . (2.3)

A set X = {xj : j ∈ J} satisfying infj,l|xj − xl| > 0 is called separated, where J is a
countable index set. For the sampling set X,we can give the following definition of bounded
partition of unity (BPU). A bounded partition of unity (BPU) associated with X = {xj}j∈J is a
set of functions {βj} that satisfy

(1) 0 ≤ βj ≤ 1, where j ∈ J,
(2) supp βj ⊂ Bδ(xj),
(3)
∑

j∈J βj = 1.

The operator QX defined by QXf(x) =
∑

xj∈X f(xj)βxj (x) is a quasi-interpolant of the
sampled values f |X .

Aldroubi and Gröchenig presented the following iterative algorithm in [3].

Theorem 2.1. Let X = {xj : j ∈ J} be sampling set with R
d =
⋃
j∈J Bδ(xj) for some δ > 0 and {βj}

be a BPU associated withX. Let ψ be inW0(L1) and P be a bounded projection from L2(Rd) onto V 2.
Then, there exists density δ such that if X = {xj} is separated, then any f ∈ V 2 can be recovered from
its samples {f(xj)}j∈J on sampling set X by the iterative algorithm

f1 = PQXf,

fn+1 = PQX

(
f − fn

)
+ fn.

(2.4)

3. Error Estimates of Iterative Reconstruction Algorithm

First, for given data {y}j∈J of the form yj = f(xj) + ε(xj),we give the estimation of ‖f − f ′‖ in
Theorem 3.3, where f ′ is recovered via the iterative approximation projection reconstruction
algorithm in Theorem 2.1 from corrupted samples {f(xi) + ε(xi)}. If ε(xj) are noise with zero
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mean and σ2 variance, then the error estimates of E(f(x) − f ′(x)) and Var(f(x) − f ′(x)) are
presented in Theorem 3.1. Second, we discuss the second type of error. The estimate of |f(x)−
f∞(x)| will be shown in Theorem 3.4, where f∞ is recovered via the iterative approximation
projection reconstruction algorithm from corrupted samples {f(xi+δi)+ε(xi)}. Third, if there
exists the numerical error in nth iterative step in the iterative algorithm, then wewill consider
the numerical stability of the iterative algorithm in Theorem 3.5.

Theorem 3.1. Suppose that the initial samples in the iterative approximation projection reconstruc-
tion algorithm as shown by Theorem 2.1 are corrupted, that is, {f(xi) + ε(xi)} for noise ε = {ε(xi)}.
Assume that ε(x), x ∈ X are noises with zero mean and σ2 variance, that is,

E(ε(x)) = 0, Var(ε(x)) = σ2. (3.1)

If there exists a constantM > 0 such that

∑∣∣∣Sxj (x)∣∣∣2 ≤M, (3.2)

then for any x ∈ R
d

E
(
f(x) − f ′(x)

)
= 0, Var

(
f(x) − f ′(x)

) ≤Mσ2, (3.3)

where f ′ is recovered via the iterative approximation projection reconstruction algorithm from
corrupted samples {f(xi) + ε(xi)}, Sxj (x) = (I +

∑∞
n=1(I − PQX)

n)Pβxj (x) and P, QX, and βxj
are defined in Theorem 2.1.

Proof. Applying (2.4) iteratively leads to

fn =

(
I +

n∑
k=1

(I − PQX)k
)
f1(x), (3.4)

which together with the convergence of (2.4) implies that

f(x) =
∑
xj∈X

f
(
xj
)
Sxj (x), (3.5)

where Sxj (x) = (I +
∑∞

n=1(I − PQX)
n)Pβxj (x), QXf(x) =

∑
xj∈X f(xj)βxj (x).

Combining (3.5)with E(ε(x)) = 0 leads to

E
(
f(x) − f ′(x)

)
= E

⎛
⎝∑

xj∈X
ε
(
xj
)
Sxj (x)

⎞
⎠ =

∑
xj∈X

E
(
ε
(
xj
))
Sxj (x) = 0. (3.6)
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By Var(ε(x)) = σ2, (3.2), and (3.6), we obtain

Var
(
f(x) − f ′(x)

)
= E

⎛
⎝∑

xj∈X
ε
(
xj
)
Sxj (x)

⎞
⎠

2

= σ2
∑
xj∈X

∣∣∣Sxj (x)∣∣∣2 ≤Mσ2. (3.7)

Remark 3.2. If we add some restricted conditions presented in [14] for generator ψ, that is,

∥∥∥∥∥sup
Z∈Rd

| K(· + z, z)
∥∥∥∥∥
L1(Rd)

<∞, lim
δ→ 0

∥∥∥∥∥sup
Z∈Rd

| ωδK(· + z, z)
∥∥∥∥∥
L1(Rd)

= 0, (3.8)

where ωδ(f)(x) = supx′∈[−δ,δ]|f(x + x′) − f(x)|, K(x, y) =
∑

k∈Z
ψ(x − k)ψ̃(y − k) and {ψ̃(· −

k)}k∈Z
is the dual of ψ(· − k)}k∈Z

, then it is easy to check that (3.2) holds in shift-invariant
space. Song et al. obtained the restricted conditions such that (3.2) holds for bandlimited
space in [15]. From Lemma 2.1 of [16], (3.2) holds for special shift-invariant, that is spline
subspace.

Theorem 3.3. If the initial samples in the iterative approximation projection reconstruction algorithm
as shown by Theorem 2.1 are corrupted, that is, {f(xi) + ε(xi)} for noise ε = {ε(xi)}, then ‖f − f ′‖
is bounded by the �2 norm of the noise. More precisely,

∥∥f − f ′∥∥ ≤ δ1/2 1
1 − γ ‖P‖op‖‖ε‖�2 , (3.9)

where f ′ is recovered via the iterative approximation projection reconstruction algorithm from
corrupted samples {f(xi) + ε(xi)} and γ := ‖I − PQX‖op.

Proof. Let

f ′
1 = PQXf1,

f ′
n+1 = PQX

(
f1 − f ′

n

)
+ f ′

n,
(3.10)

where f1 = f + ε.
From the iterative (3.10),

f ′
n+1 − f ′

n = (I − PQX)
(
f ′
n − f ′

n−1
)
= · · · = (I − PQX)nf ′

1 (n ≥ 1). (3.11)

Using Lemma 8.3 of [3], we may choose δ so small that

γ := ‖I − PQX‖op < 1. (3.12)
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By (3.4),(3.11), and (3.12) , we have

∥∥f ′
n − f

∥∥
2 ≤

∞∑
k=n+1

∥∥∥(I − PQX)k
(
f ′
1 − PQXε

)∥∥∥
L2

+
n∑
k=0

∥∥∥(I − PQX)kPQXε
∥∥∥
L2

≤
∞∑

k=n+1

γk
∥∥f ′

1 − PQXε
∥∥
L2 +

n∑
k=0

γk‖PQXε‖L2

≤
∞∑

k=n+1

γk
∥∥f ′

1

∥∥
L2 +

∞∑
k=0

γk‖PQXε‖L2

≤ 1
1 − γ

(
γn+1
∥∥f ′

1

∥∥
L2 + ‖PQXε‖L2

)

≤ ‖P‖opδ1/2
1

1 − γ
(
γn+1
∥∥(f(xi) + ε(xi))∥∥�2 + ‖(ε(xi))‖�2

)
.

(3.13)

This implies that ‖f − f ′‖ ≤ δ1/21/(1 − γ)‖P‖op‖ε‖�2 .

Theorem 3.4. Assume that the initial samples in the iterative approximation projection reconstruc-
tion algorithm as shown by Theorem 2.1 are corrupted, that is, {f(xi + δi) + ε(xi)} for noise δ = {δi}
with sup|δi| ≤ δ and ε = {ε(xi)}. If there exist constants L,M > 0 such that

∑
xj∈X

∣∣ψ ′(x + xj
)∣∣ ≤ L < +∞,

∑∣∣∣Sxj (x)∣∣∣2 ≤M < +∞, ∀x ∈ R, (3.14)

for the generator ψ and sampling set X, then

∣∣f(x) − f∞(x)∣∣ ≤
√√√√2M

(
α2δ2L2

∥∥f∥∥2 +∑
n

|εn|2
)
, (3.15)

where f∞ is recovered via the iterative approximation projection reconstruction algorithm from
corrupted samples {f(xi + δi) + ε(xi)}, {Sxj} as defined in Theorem 3.1 and α as defined in (2.3).

Proof. From (3.2) and (3.5), we have

∣∣f(x) − f∞(x)∣∣2 =
∣∣∣∣∣∣
∑
j

[
f
(
xj
) − f(xj + δj) − εj]Sxj (x)

∣∣∣∣∣∣
2

≤
∑
j

∣∣f(xj) − f(xj + δj) − εj∣∣2∑
j

∣∣∣Sxj (x)∣∣∣2

≤ 2M

⎛
⎝∑

j

∣∣f(xj) − f(xj + δj)∣∣2 +∑
j

∣∣εj∣∣2
⎞
⎠.

(3.16)
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Next, we will estimate
∑

j |f(xj) − f(xj + δj)|2.
By the Hölder inequality and (3.14),

∑
j

∣∣f(xj) − f(xj + δj)∣∣2 =∑
j

∣∣∣∣∣
∫δj
0
f ′(t + xj)dt

∣∣∣∣∣
2

≤
∑
j

δj

∫δj
0

∣∣f ′(t + xj)∣∣2dt

≤ δ
∫δ
0

∑
j

∣∣f ′(t + xj)∣∣2dt

= δ
∫δ
0

∑
j

∣∣∣∣∣
∑
k

c(k)ψ ′(t + xj − k)
∣∣∣∣∣
2

dt

≤ δ2L2
∑
k

|c(k)|2 ≤ α2δ2L2∥∥f∥∥2.

(3.17)

The last inequality follows from (2.3).
So, we have

∣∣f(x) − f∞(x)∣∣2 ≤ 2

⎛
⎝∑

j

∣∣f(xj) − f(xj + δj)∣∣2 +∑
j

∣∣εj∣∣2
⎞
⎠∑

j

∣∣∣Sxj (x)∣∣∣2

≤ 2M

(
α2δ2L2∥∥f∥∥2 +∑

n

|εn|2
)
.

(3.18)

Lastly, we will consider the numerical stability of the iterative algorithm.

Theorem 3.5. Assume that the numerical error in nth iterative step in the iterative algorithm as
shown in Theorem 2.1 is εn, that is,

f̃1 = PQXf + ε1,

f̃n+1 = f̃1 + (I − PQX)
(
f̃n
)
+ εn+1.

(3.19)

Then, we have the following estimation

∥∥∥f − f̃n
∥∥∥
L2
≤
(
1+

‖P‖opδ1/2
1 − γ

)⎛⎝(n − 1)‖ε1‖L2+
n∑
j=1

∥∥εj∥∥L2

⎞
⎠+

γn

1 − γ ‖P‖opδ
1/2∥∥(f(xj))∥∥�2 ,

(3.20)

where γ := ‖I − PQX‖op.
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Proof. By induction, we obtain f̃n − fn = −∑n−1
k=1(I − PQ)n−1−kPQXε̃k + ε̃n, where ε̃1 = ε1 and

ε̃k = kε1 + ε2 + · · · + εk for k ≥ 2.
Using Lemma 8.3 of [3], we may choose δ so small such that (3.12) holds.
Therefore,

∥∥∥f̃n − fn∥∥∥
L2

=
n−1∑
k=1

∥∥∥(I − PQX)n−1−kPQXε̃k
∥∥∥
L2

+ ‖ε̃n‖L2

≤
n−1∑
k=1

γn−1−k‖P‖opδ1/2‖ε̃k‖L2 + ‖ε̃n‖L2

≤
n−1∑
k=1

γn−1−k‖P‖opδ1/2
⎛
⎝k‖ε1‖L2 +

k∑
j=2

∥∥εj∥∥L2

⎞
⎠

+ n‖ε1‖L2 +
n∑
j=2

∥∥εj∥∥L2

≤
(
1 +

‖P‖opδ1/2
1 − γ

)⎛⎝(n − 1)‖ε1‖L2 +
n∑
j=1

∥∥εj∥∥L2

⎞
⎠.

(3.21)

The iterative algorithm converges exponentially too, precisely

∥∥fn − f∥∥ ≤ γn

1 − γ
∥∥f1∥∥. (3.22)

In fact, by the iterative algorithm

fn+1 − fn = (I − PQX)
(
fn − fn−1

)
= · · · = (I − PQX)nf1, (n ≥ 1). (3.23)

From (3.12) , we have ‖fn − f‖ ≤ γn/(1 − γ)‖f1‖.
Combining (3.21) with (3.22), we have

∥∥∥f − f̃n
∥∥∥
L2

≤
∥∥∥f̃n − fn∥∥∥

L2
+
∥∥fn − f∥∥L2

≤
(
1 +

‖P‖opδ1/2
1 − γ

)⎛⎝(n − 1)‖ε1‖L2 +
n∑
j=1

∥∥εj∥∥L2

⎞
⎠ +

γn

1 − γ
∥∥f1∥∥

≤
(
1 +

‖P‖opδ1/2
1 − γ

)⎛⎝(n − 1)‖ε1‖L2 +
n∑
j=1

∥∥εj∥∥L2

⎞
⎠

+
γn

1 − γ ‖P‖opδ
1/2∥∥(f(xj))∥∥�2 .

(3.24)
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