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1. Introduction

Let p be a fixed prime. Throughout this paper Zp,Qp,C, and Cp will, respectively, denote the
ring of p-adic rational integers, the field of p-adic rational numbers, the complex number
field, and the completion of algebraic closure of Qp. When one talks about q-extension, q is
variously considered as an indeterminate, a complex q ∈ C, or a p-adic number q ∈ Cp; see
[1–14]. If q ∈ C, then we assume |q| < 1. If q ∈ Cp, then we assume |1 − q|p < 1. For x ∈ Qp,
we use the notation [x]q = (1 − qx)/(1 − q), and [x]−q = (1 − (−q)x)/(1 + q); see [15, 16]. The
normalized valuation in Cp is denoted by | · |p with |p|p = 1/p. We say that f is a uniformly
differentiable function at a point a ∈ Zp and denote this property by f ∈ UD(Zp), if the
difference quotients Ff(x, y) = (f(x) − f(y))/(x − y) have a limit l = f ′(a) as (x, y) → (a, a).
For f ∈ UD(Zp), let us start with the expression

1
[pN]q

∑

0≤j<pN
qjf(j) =

∑

0≤j<pN
f(j)µq

(
j + pNZp

)
, (1.1)

representing a q-analogue of Riemann sums for f ; see [15, 16]. The integral of f on Zp will
be defined as a limit (n → ∞) of those sums, when it exists. The q-deformed bosonic p-adic
integral of the function f ∈ UD(Zp) is defined by

Iq(f) =
∫

Zp

f(x)dµq(x) = lim
N→∞

1
[dpN]q

∑

0≤x<dpN
f(x)qx, (1.2)
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see [15]. Thus, we note that

qIq(f1) = Iq(f) + (q − 1)f(0) +
q − 1
log q

f ′(0), (1.3)

where f1(x) = f(x + 1), f ′(0) = df(0)/dx.
The fermionic p-adic invariant integral on Zp is defined as

I−1(f) =
∫

Zp

f(x)dµ−1(x) = lim
N→∞

1
[pN]−1

pN−1∑

x=0

f(x)(−1)x, (1.4)

see [15].
In this paper, we prove an identity of symmetry for the Frobenius-Euler polynomials.

Finally we investigate the several further interesting properties of the symmetry for the
fermionic p-adic invariant integral on Zp related to the Frobenius-Euler polynomials and
numbers.

2. Some Identities of the Frobenius-Euler Polynomials

Let u(/= 1) ∈ Cp (or C) be algebraic. Then the nth Frobenius-Euler numbersHn(u) are defined
as

H0(u) = 1, (H(u) + 1)n − uHn(u) = 0, if n ≥ 1, (2.1)

with the usual convention about replacing Hn(u) byHn(u).
The nth Frobenius-Euler polynomials Hn(u, x) are also defined as

Hn(u, x) =
n∑

l=0

(
n
l

)
xn−lHl(u). (2.2)

From (1.4), we can easily derive

I−1(f1) + I−1(f) = 2f(0), where f1(x) = f(x + 1). (2.3)

By continuing this process, we see that

I−1(fn) + (−1)n−1I−1(f) = 2
n−1∑

l=0

(−1)n−1−lf(l), where fn(x) = f(x + n). (2.4)

When n is an odd positive integer, we obtain

I−1(fn) + I−1(f) = 2
n−1∑

l=0

(−1)lf(l). (2.5)
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If n ∈ N with n ≡ 0 (mod 2), then we have

I−1(fn) − I−1(f) = 2
n−1∑

l=0

(−1)l−1f(l). (2.6)

From (1.4) and (2.3), we derive

∫

Zp

extqxdµ−1(x) =
2

[2]q

1 − (−q)−1
et − (−q)−1

=
2

[2]q

∞∑

n=0

Hn(−q−1) t
n

n!
. (2.7)

Thus, we note that

∫

Zp

xnqxdµ−1(x) =
2

[2]q
Hn(−q−1),

∫

Zp

(y + x)nqydµ−1(x) =
2

[2]q
Hn(−q−1, x). (2.8)

Let n ∈ N with n ≡ 1 (mod 2). Then we obtain

[2]q
n−1∑

l=0

(−1)lqllm = qnHm(−q−1, n) +Hm(−q−1). (2.9)

For n ∈ N with n ≡ 0 (mod 2), we have

qnHm(−q−1, n) −Hm(−q−1) = [2]q
n−1∑

l=0

(−1)l−1qllm. (2.10)

By substituting f(x) = qxext into (2.5), we can easily see that

∫

Zp

qn+xe(x+n)tdµ−1(x) +
∫

Zp

qxextdµ−1(x) = 2
qnent + 1
qet + 1

= 2
n−1∑

l=0

(−1)lqlelt. (2.11)

Let Sk,q(n) =
∑n

l=0(−1)llkql. Then Sk,q(n) is called the alternating sums of powers of
consecutive q-integers. From the definition of the fermionic p-adic invariant integral on Zp,
we can derive

∫

Zp

qx+ne(x+n)tdµ−1(x) +
∫

Zp

qxextdµ−1(x) =
2
∫

Zp
qxextdµ−1(x)

∫
Zp
enxtqnxdµ−1(x)

. (2.12)

By (2.12), we easily see that

∫

Zp

qnxenxtdµ−1(x) =
2

qnent + 1
. (2.13)
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Letw1, w2(∈ N) be odd. By using double fermionic p-adic invariant integral on Zp, we
obtain

∫
Zp

∫
Zp
e(w1x1+w2x2)tqw1x1+w2x2dµ−1(x1)dµ−1(x2)

∫
Zp
ew1w2xtqw1w2xdµ−1(x)

=
2
(
qw1w2ew1w2t + 1

)
(
qw1ew1t + 1

)(
qw2ew2t + 1

) . (2.14)

Now we also consider the following fermionic p-adic invariant integral on Zp

associated with Frobenius-Euler polynomials:

∫
Zp

∫
Zp
e(w1x1+w2x2+w1w2x)tqw1x1+w2x2dµ−1(x1)dµ−1(x2)

∫
Zp
ew1w2xtqw1w2xdµ−1(x)

=
2ew1w2xt

(
qw1w2ew1w2t + 1

)
(
qw1ew1t + 1

)(
qw2ew2t + 1

) . (2.15)

From (2.15) and (2.12), we can derive

2
∫

Zp
qxextdµ−1(x)

∫
Zp
ew1xtqw1xdµ−1(x)

= 2
w1−1∑

l=0

(−1)lqlelt

=
∞∑

k=0

(
2
w1−1∑

l=0

(−1)lqllk
)

tk

k!

=
∞∑

k=0

2Sk,q(w1 − 1)
tk

k!
.

(2.16)

Let

M(w1,w2)(t, x) =

∫
Zp

∫
Zp
qw1x1+w2x2e(w1x1+w2x2+w1w2x)tdµ−1(x1)dµ−1(x2)

∫
Zp
ew1w2x3tqw1w2x3dµ−1(x3)

. (2.17)

By (2.15), (2.16), and (2.17), we see that

M(w1,w2)(t, x) =
ew1w2xt

(
qw1w2ew1w2t + 1

)
(
qw1ew1t + 1

)(
qw2ew2t + 1

) . (2.18)

From (2.17) we derive

M(w1,w2)(t, x) =

(
1
2

∫

Zp

ew1(x1+w2x)tqw1x1dµ−1(x1)

)( 2
∫

Zp
ew2x2tqw2x2dµ−1(x2)

∫
Zp
ew1w2xtqw1w2xdµ−1(x)

)
. (2.19)
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By (2.16) and (2.19), we see that

M(w1,w2)(t, x) =

(
1

1 + qw1

∞∑

i=0

Hi

( − q−w1 , w2x
)wi

1

i!
ti
)( ∞∑

l=0

Sl,qw2 (w1 − 1)
wl

2

l!
tl
)

=
∞∑

n=0

(
n∑

i=0

(
n
i

)
Hi

( − q−w1 , w2x
)

1 + qw1
Sn−i,qw2 (w1 − 1)wi

1w
n−i
2

)
tn

n!
.

(2.20)

By the symmetry of p-adic invariant integral on Zp, we also see that

M(w1,w2)(t, x) =
∞∑

n=0

(
n∑

i=0

(
n
i

)
Hi(−q−w2 , w1x)

1 + qw2
Sn−i,qw1 (w2 − 1)wi

2w
n−i
1

)
tn

n!
, (2.21)

where Hn(−q−1, x) are the nth Frobenius-Euler polynomials.
By comparing the coefficients on the both sides of (2.20) and (2.21), we obtain the

following theorem.

Theorem 2.1. For w1, w2, n ∈ N with n ≡ 1 (mod 2), w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), one has

n∑

i=0

(
n
i

)
Hi

( − q−w1 , w2x
)

1 + qw1
Sn−i,qw2 (w1 − 1)wi

1w
n−i
2

=
n∑

i=0

(
n
i

)
Hi

( − q−w2 , w1x
)

1 + qw2
Sn−i,qw1 (w2 − 1)wi

2w
n−i
1 ,

(2.22)

whereHn(q, x) are the nth Frobenius-Euler polynomials.

If we take w2 = 1 in Theorem 2.1, then we have

Hn

( − q−1, w1x
)

1 + q
=

n∑

i=0

(
n
i

)
Hi

( − q−w1 , x
)

1 + qw1
Sn−i,q(w1 − 1)wi

1. (2.23)

From (2.11) and (2.12), we derive

M(w1,w2)(t, x) =

(
ew1w2xt

2

∫

Zp

ew1x1tqw1x1dµ−1(x1)

)( 2
∫

Zp
ew2x2tqw2x2dµ−1(x2)

∫
Zp
ew1w2xtqw1w2xdµ−1(x)

)

=

(
ew1w2xt

2

∫

Zp

ew1x1tqw1x1dµ−1(x1)

)(
2
w1−1∑

l=0

(−1)lqw2lew2lt

)

=
w1−1∑

l=0

(−1)lqw2l

∫

Zp

e(x1+w2x+(w2/w1)l)tw1qx1w1dµ−1(x1)

=
∞∑

n=0

(
2
w1−1∑

l=0

(−1)l Hn

( − q−w1 , w2x + (w2/w1)l
)

1 + qw1
qw2l

)
tn

n!
.

(2.24)
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From the symmetry of M(w1,w2)(t, x), we note that

M(w1,w2)(t, x) =
∞∑

n=0

(
2
w2−1∑

l=0

(−1)l Hn

( − q−w2 , w1x + (w1/w2)l
)

1 + qw2
qw1l

)
tn

n!
. (2.25)

By comparing the coefficients on the both sides of (2.24) and (2.25), we obtain the following
theorem.

Theorem 2.2. Let w1, w2(∈ N) be odd, and let n ∈ Z+ with n ≡ 1 (mod 2). Then, one has

w1−1∑

l=0

(−1)l Hn

( − q−w1 , w2x + (w2/w1)l
)

1 + qw1
qw2l =

w2−1∑

l=0

(−1)l Hn

( − q−w2 , w1x + (w1/w2)l
)

1 + qw2
qw1l.

(2.26)

By settingw2 = 1 in Theorem 2.2, we get the multiplication theorem for the Frobenius-
Euler polynomials as follows:

Hn

( − q−1, w1x
)

1 + q
=

w1−1∑

l=0

(−1)lqlHn

(
− q−w1 , x +

l

w1

)
. (2.27)

Remark 2.3. By using the fermionic p-adic invariant q-integral onZp, the symmetric properties
related to Frobenius-Euler polynomials are studied in [17]. In this paper, we have studied
the symmetric properties of Frobenius-Euler polynomials, which are different from the
symmetric properties treated in a previous paper [17]. To derive the symmetric properties
of Frobenius-Euler polynomials, we used the ordinary fermionic p-adic invariant integrals
on Zp in this paper.
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