
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2009, Article ID 613524, 22 pages
doi:10.1155/2009/613524

Research Article
Strong Convergence of a Hybrid Projection
Algorithm for Equilibrium Problems, Variational
Inequality Problems and Fixed Point Problems in
a Banach Space

Wariam Chuayjan1 and Sornsak Thianwan2

1 Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
2 School of Science and Technology, Naresuan Phayao University, Phayao 56000, Thailand

Correspondence should be addressed to Sornsak Thianwan, sornsakt@nu.ac.th

Received 29 May 2009; Accepted 26 August 2009

Recommended by Simeon Reich

We introduce and study a new hybrid projection algorithm for finding a common element of the
set of solutions of an equilibrium problem, the set of common fixed points of relatively quasi-
nonexpansive mappings, and the set of solutions of the variational inequality for an inverse-
strongly-monotone operator in a Banach space. Under suitable assumptions, we show a strong
convergence theorem. Using this result, we obtain some applications in a Banach space. The results
obtained in this paper extend and improve the several recent results in this area.

Copyright q 2009 W. Chuayjan and S. Thianwan. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space with norm ‖ · ‖ and E∗ the dual space of E. Let C be a nonempty
closed and convex subset of E, and A a monotone operator of C into E∗. A mapping T : C →
C is called nonexpansive if ‖Tx − Ty‖ < ‖x − y‖ for all x, y ∈ C. We denote by F(T) = {x ∈
E : Tx = x} the set of fixed points of T . The classical variational inequality problem [1, 2],
denoted by V I(C,A), is to find u ∈ C such that

〈Au, v − u〉 ≥ 0 (1.1)

for all v ∈ C. One can see that the variational inequality problem (1.1) is connected with the
convex minimization problem, the complementarity problem, the problem of finding a point
u ∈ E satisfying 0 = Au, and so on.
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Recall that an operator A is called monotone if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ C.
An operator A of C into E∗ is said to be α-inverse-strongly-monotone [3–5] if each x, y ∈ C.
We have 〈Ax −Ay, x − y〉 ≥ α‖Ax −Ay‖2, for a constant α > 0.

Assume that the following hold:

(C1) A is α-inverse-strongly-monotone,

(C2) V I(C,A)/= ∅,
(C3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(C,A).

For finding a solution of the variational inequality problem for an operator A that
satisfies conditions (C1)–(C3) in a 2-uniformly convex and uniformly smooth Banach space
E, Iiduka and Takahashi [6] introduced and studied the following algorithm: x1 = x ∈ C,
define a sequence {xn} by

xn+1 = ΠCJ
−1(Jxn − λnAxn) (1.2)

for every n = 1, 2, . . ., where J is the duality mapping from E into E∗, ΠC is the generalized
projection from E onto C, and {λn} is a sequence of positive real numbers. They proved
that under certain appropriate conditions imposed on {λn}, and J is weakly sequentially
continuous, the sequence {xn} generated by (1.2) converges weakly to some element z in
V I(C,A), where z = limn→∞ΠV I(C,A)(xn).

In 2004, Matsushita and Takahashi [7] introduced the following iteration: x0 ∈ C
chosen arbitrarily,

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JTxn), (1.3)

where {αn} is a real sequence in [0, 1], T is a relatively nonexpansive mapping, and ΠC

denotes the generalized projection from E onto a closed convex subset C of E. They prove
that the sequence {xn} generated by (1.3) converges weakly to a fixed point of T .

The problem of finding a common element of the set of the variational inequalities
for monotone mappings in the framework of Hilbert spaces and Banach spaces has been
intensively studied by many authors; see, for instance, [3–5] and the references cited therein.

Let f be a bifunction ofC×C intoR,whereR is the set of real numbers. The equilibrium
problem for f : C × C → R is to find x̂ ∈ C such that

f
(

x̂, y
) ≥ 0 (1.4)

for all y ∈ C. The set of solutions of (1.4) is denoted by EP(f), that is, EP(f) = {x̂ ∈ C :
f(x̂, y) ≥ 0 for all y ∈ C}. Given a mapping T : C → E∗, let f(x, y) = 〈Tx, y − x〉 for all
x, y ∈ C. Then x̂ ∈ EP(f) if and only if 〈Tx̂, y − x̂〉 ≥ 0 for all y ∈ C, that is, x̂ is a solution
of the variational inequality. Many problems in physics, optimization, and economics reduce
to finding a solution of (1.4). Equilibrium problems have been studied extensively; see, for
instance, [8, 9]. Combettes and Hirstoaga [8] introduced an iterative scheme for finding
the best approximation to the initial data when EP(f) is nonempty and proved a strong
convergence theorem.
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For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim sup
t↓0

f
(

tz + (1 − t)x, y
) ≤ f

(

x, y
)

; (1.5)

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

The problem of finding a common element of the set of fixed points and the set of
solutions of an equilibrium problem in the framework of Hilbert spaces and Banach spaces
has been studied by many authors; see [7, 8, 10–18].

In 2008, Takahashi and Zembayashi [15] introduced the shrinking projection method
which is the modification of (1.3) for a relatively nonexpansive mapping. It is given as
follows:

x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(1.6)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfying
lim infn→∞αn(1 − αn) > 0 and {rn} ⊂ [s,∞) for some s > 0. They proved that the sequence
{xn} generated by (1.6) converges strongly to q = ΠF(T)∩EP(f)x0, where ΠF(T)∩EP(f) is the
generalized projection of E onto F(T) ∩ EP(f).

In the same year, Qin et al. [19] extend the iteration process (1.6) from a single
relatively nonexpansive mapping to two relatively quasi-nonexpansive mappings: x0 ∈
E, C1 = C and x1 = ΠC1x0,

yn = J−1
(

αnJxn + βnJTxn + γnJSxn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(1.7)
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for every n ∈ N ∪ {0}. Under appropriate conditions imposed on {αn}, {βn}, {γn}, and
{rn}, they obtain that the sequence {xn} generated by (1.7) converges strongly to q =
ΠF(T)∩F(S)∩EP(f)x0.

In 2009, Wattanawitoon and Kumam [17] introduced the following iterative scheme
which is themodification of (1.6) and (1.7) in a Banach space: x0 ∈ E, C1 = C, and x1 = ΠC1x0,

yn = J−1(δnJxn + (1 − δn)Jzn),

zn = J−1
(

αnJxn + βnJTxn + γnJSxn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ
(

z, yn

) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(1.8)

for finding a common element of the set of solutions of an equilibrium problem and the set of
common fixed points of two relatively quasi-nonexpansivemappings in a Banach space. They
proved that under certain appropriate conditions imposed on {αn}, {βn}, {γn}, {δn}, and {rn},
the sequences {xn} and {un} generated by (1.8) converge strongly to q ∈ F(T)∩F(S)∩EP(f),
where q = ΠF(T)∩F(S)∩EP(f)x0.

For finding common elements of the set of the equilibrium problem, the set of
the variational inequality problem for an inverse-strongly-monotone operator and the
set of common fixed points for relatively quasi-nonexpansive mappings. Cholamjiak [20]
introduced an iterative scheme by using the new hybrid method in a Banach space. The
scheme is defined as follows: x0 ∈ E, C1 = C and x1 ∈ ΠC1x0,,

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(

αnJxn + βnJTxn + γnJSzn
)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(1.9)

for every n ∈ N, where J is the duality mapping on E and {αn}, {βn}, and {γn} are sequences in
[0, 1]. He proved that under certain appropriate conditions imposed on {αn}, {βn}, {γn}, {rn},
and {λn}, the sequences {xn} and {un} generated by (1.9) converge strongly to q =
ΠF(T)∩F(S)∩EP(f)∩V I(C,A)x0.
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Motivated by the recent works, we introduce an iterative scheme by a new hybrid
method as follows: x0 ∈ E,C1 = C and x1 = ΠC1x0,

wn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1(δnJxn + (1 − δn)Jwn),

zn = J−1
(

αnJxn + βnJTxn + γnJSyn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(1.10)

for every n ∈ N, where J is the duality mapping on E, ΠC is the generalized projection from
E onto a closed convex subset C of E, f is an equilibrium bifunction satisfying (A1)–(A4), A
is an operator of C into E∗ satisfying (C1)–(C3), T, S : C → C are two closed relatively quasi-
nonexpansivemappings, {αn}, {βn, {γn}, and {δn} are sequences in [0, 1] such that αn+βn+γn =
1, lim supn→∞ δn < 1, lim infn→∞ αnβn > 0, and lim infn→∞ αnγn > 0, {rn} ⊂ [s,∞) for some
s > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2-uniformly
convexity constant of E. We prove that the sequences {xn} and {un} generated by the above
iterative scheme converge strongly to q = ΠF(T)∩F(S)∩EP(f)∩V I(C,A)x0.

2. Preliminaries

In this section, we recall some well know concepts and results.
Let E be a real Banach space with dimension E ≥ 2. The modulus of E is the function

δE : (0, 2] → [0, 1] defined by

δE(ε) = inf
{

1 −
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: x, y ∈ E, ‖x‖ =
∥

∥y
∥

∥ = 1,
∥

∥x − y
∥

∥ ≥ ε

}

. (2.1)

Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed
real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists a
constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [21–23] for more details. A Banach
space E is said to be smooth if the limit

lim
t→ 0

∥

∥x + ty
∥

∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ U, where U denotes the unit sphere of E (i.e., U = {x ∈ E : ‖x‖ = 1}).
It is also said to be uniformly smooth if the limit (2.2) is attained uniformly for x, y ∈ U. One
should note that no Banach space is p-uniformly convex for 1 < p < 2; see [23]. It is well
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known that a Hilbert space is 2-uniformly convex, uniformly smooth. For each p > 1, the
generalized duality mapping Jp : E → 2E

∗
is defined by

Jp(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1
}

(2.3)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert
space, then J = I, where I is the identity mapping. It is also known that if E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E. See
[24, 25] for more details.

Let E be a smooth, strictly convex, and reflexive Banach space and letC be a nonempty
closed convex subset of E.We denote by φ the function defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥

∥y
∥

∥

2 (2.4)

for all x, y ∈ E. Following Alber [26], the generalized projection ΠC : E → C is a map
that assigns to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is,
ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = inf
y∈C

φ
(

y, x
)

. (2.5)

The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [24, 26–29]. In Hilbert space,ΠC =
PC. It is obvious from the definition of function φ that

(∥

∥y
∥

∥ − ‖x‖)2≤ φ
(

y, x
)

=
(∥

∥y
∥

∥ + ‖x‖)2 (2.6)

for all x, y ∈ E. If E is a Hilbert space, then φ(x, y) = ‖x − y‖2.
If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E, φ(x, y) =

0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From (2.6), we
have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , one has
Jx = Jy. Therefore, we have x = y; see [24, 28] for more details.

Recall that a point p in a closed convex subset C of E is said to be an asymptotic
fixed point of T [30] if C contains a sequence {xn} which converges weakly to p such that
limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed point of T will be denoted by ̂F(T). A
mapping T : C → C is called relatively nonexpansive [11, 31–33] if T satisfies the following
conditions:

(1) F(T)/= ∅;
(2) φ(p, Tx) ≤ φ(p, x) for all p ∈ F(T) and x ∈ C;

(3) ̂F(T) = F(T).

The asymptotic behavior of a relatively nonexpansive mapping was studied in [31–
33].

A mapping T is said to be relatively quasi-nonexpansive if T satisfies conditions (1)
and (2). It is easy to see that the class of relatively quasi-nonexpansive mappings is more
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general than the class of relatively nonexpansive mappings [11, 31–33] which requires the
strong restriction: F(T) = ̂F(T).

We give some examples which are closed relatively quasi-nonexpansive; see [19].

Example 2.1. Let E be a uniformly smooth and strictly convex Banach space and A ⊂ E × E∗

be a maximal monotone mapping such that its zero set A−10/= ∅. Then, Jr = (J + rA)−1J is a
closed relatively quasi-nonexpansive mapping from E onto D(A) and F(Jr) = A−10.

Example 2.2. Let ΠC be the generalized projection from a smooth, strictly convex, and
reflexive Banach space E onto a nonempty closed convex subset C of E. Then, ΠC is a closed
relatively quasi-nonexpansive mapping with F(ΠC) = C.

An operator A of C into E∗ is said to be hemicontinuous if for all x, y ∈ C, the mapping
F of [0, 1] into E∗ defined by F(t) = A(tx + (1 − t)y) is continuous with respect to the weak∗

topology of E∗. We define by NC(v) the normal cone for C at a point v ∈ C, that is,

NC(v) =
{

x∗ ∈ E∗ :
〈

v − y, x∗〉 ≥ 0 ∀y ∈ C
}

. (2.7)

Let C be a nonempty, closed convex subset of a Banach space E and A a monotone,
hemicontinuous operator of C into E∗. Let Te ⊂ E × E∗ be an operator defined as follows:

Tev =

⎧

⎨

⎩

Av +NC(v), v ∈ C,

∅, otherwise.
(2.8)

Then, Te is maximal monotone and T−1
e 0 = V I(C,A); see [34].

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.3 ([22, 35]). Let p be a given real number with p ≥ 2 and E a p-uniformly convex Banach
space. Then, for all x, y ∈ E, jx ∈ Jp(x) and jy ∈ Jp(y),

〈x − y, jx − jy〉 ≥ cp

2p−2p

∥

∥x − y
∥

∥

p
, (2.9)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.

Lemma 2.4 ([29]). Let E be a uniformly convex and smooth Banach space and let {xn} and {yn} be
two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.5 ([26]). Let C be a nonempty closed convex subset of a smooth Banach space E and x ∈ E.
Then x0 = ΠCx if and only if 〈x0 − y, Jx − Jx0〉 ≥ 0 for all y ∈ C.

Lemma 2.6 ([26]). Let C be a nonempty closed convex subset of a reflexive, strictly convex, and
smooth Banach space E and let x ∈ E. Then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.10)
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Lemma 2.7 ([19]). Let E be a uniformly convex, smooth Banach space, letC be a closed convex subset
of E, let T be a closed and relatively quasi-nonexpansive mapping from C into itself. Then F(T) is a
closed convex subset of C.

Lemma 2.8 ([36]). Let E be a uniformly convex Banach space and Br(0) be a closed ball of E. Then
there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such
that

∥

∥αx + βy + γz
∥

∥

2 ≤ α‖x‖2 + β
∥

∥y
∥

∥

2 + γ‖z‖2 − αβg
(∥

∥x − y
∥

∥

)

(2.11)

for all x, y, z ∈ Br(0) and α, β, γ ∈ [0, 1] with α + β + γ = 1.

Lemma 2.9 ([10]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach
space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0 and x ∈ E. Then,
there exists z ∈ C such that

f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C. (2.12)

Lemma 2.10 ([19]). Let C be a closed convex subset of a uniformly smooth, strictly convex, and
reflexive Banach space E, and let f be a bifunction from C×C to R satisfying (A1)–(A4). For all r > 0
and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{

z ∈ C : f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C

}

. (2.13)

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [37], that is, for all x, y ∈ E,

〈

Trx − Try, JTrx − JTry
〉 ≤ 〈

Trx − Try, Jx − Jy
〉

; (2.14)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.11 ([16]). Let C be a closed convex subset of a smooth, strictly, and reflexive Banach space
E, let f be a bifucntion from C × C to R satisfying (A1)–(A4), let r > 0. Then, for all x ∈ E and
q ∈ F(Tr),

φ
(

q, Trx
)

+ φ(Trx, x) ≤ φ
(

q, x
)

. (2.15)

We make use of the following mapping V studied in Alber [26]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.16)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).
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Lemma 2.12 ([26]). Let E be a reflexive, strictly convex, smooth Banach space and let V be as in
(2.16). Then

V (x, x∗) + 2
〈

J−1(x∗) − x, y∗
〉

≤ V
(

x, x∗ + y∗) (2.17)

for all x ∈ E and x∗, y∗ ∈ E∗.

3. Main Results

In this section, we prove strong convergence theorems by hybrid methods which solves the
problem of finding a common element of the set of solutions of an equilibrium problem,
the set of common fixed points of relatively quasi-nonexpansive mappings and the set of
solutions of the variational inequality of an α-inverse-strongly-monotone mapping in a 2-
uniformly convex, uniformly smooth Banach space.

Theorem 3.1. Let E be a 2-uniformly convex, uniformly smooth Banach space, C a nonempty closed
convex subset of E, f a bifunction from C × C to R which satisfies (A1)–(A4), A an operator of C
into E∗ satisfying (C1)–(C3), and T, S two closed relatively quasi-nonexpansive mappings from C into
itself such that the set F := F(T) ∩ F(S) ∩ EP(f) ∩ V I(C,A)/= ∅. For an initial point x0 ∈ E with
x1 = ΠC1x0 and C1 = C, define sequences {xn} and {un} of C as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1(δnJxn + (1 − δn)Jwn),

zn = J−1
(

αnJxn + βnJTxn + γnJSyn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(3.1)

for every n ∈ N, where J is the duality mapping on E. Suppose that {αn}, {βn}, {γn}, and {δn} are
sequences in [0, 1] satisfying the restrictions:

(B1) αn + βn + γn = 1;

(B2) lim supn→∞ δn < 1, lim infn→∞ αnβn > 0 and lim infn→∞ αnγn > 0;

(B3) {rn} ⊂ [s,∞) for some s > 0;

(B4) {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2-uniformly
convexity constant of E.

Then, {xn} and {un} converge strongly to q = ΠFx0.
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Proof. We divide the proof into eight steps.

Step 1. Show that ΠFx0 and ΠCn+1x0 are well defined.
It is obvious that V I(C,A) is a closed convex subset of C. By Lemma 2.7, we know that

F(T) ∩ F(S) is closed and convex. From Lemma 2.10 (4), we also have EP(f) is closed and
convex. Hence, F := F(T)∩F(S)∩EP(f)∩V I(C,A) is a nonempty, closed, and convex subset
of C; consequently, ΠFx0 is well defined.

Next, we show that Cn is closed and convex for all n ∈ N.
It is obvious that, C1 = C is closed and convex. Suppose that Ck is closed and convex

for some k ∈ N. For all z ∈ Ck, we know that φ(z, uk) ≤ φ(z, xk) is equivalent to

2〈z, Jxk − Juk〉 ≤ ‖xk‖2 − ‖uk‖2. (3.2)

So, Ck+1 is closed and convex. Then, for any n ∈ N, Cn is closed and convex. This implies that
ΠCn+1x0 is well defined.

Step 2. We prove by induction that F ⊂ Cn for all n ∈ N.
Putting vn = J−1(Jxn − λnAxn). First, we observe that un = Trnzn for all n ∈ N and

F ⊂ C1 = C. Suppose that F ⊂ Ck for some k ∈ N. Let u ∈ F ⊂ Ck. From Lemmas 2.6 and 2.12,
we have

φ(u,wk) = φ(u,ΠCvk)

≤ φ(u, vk)

= φ
(

u, J−1(Jxk − λkAxk)
)

= V (u, Jxk − λkAxk)

≤ V (u, (Jxk − λkAxk) + λkAxk) − 2
〈

J−1(Jxk − λkAxk) − u, λkAxk

〉

= V (u, Jxk) − 2λk〈vk − u,Axk〉
= φ(u, xk) − 2λk〈xk − u,Axk〉 + 2〈vk − xk,−λkAxk〉.

(3.3)

Using (C1) and u ∈ V I(C,A), we have

−2λk〈xk − u,Axk〉 = −2λk〈xk − u,Axk −Au +Au〉
= −2λk〈xk − u,Axk −Au〉 − 2λk〈xk − u,Au〉

≤ −2αλk‖Axk −Au‖2.

(3.4)

By using Lemma 2.3 and (C3), we have

2〈vk − xk,−λkAxk〉 = 2
〈

J−1(Jxk − λkAxk) − J−1(Jxk),−λkAxk

〉

≤ 2
∥

∥

∥J−1(Jxk − λkAxk) − J−1(Jxk)
∥

∥

∥‖λkAxk‖

≤ 4
c2

∥

∥

∥JJ−1(Jxk − λkAxk) − JJ−1(Jxk)
∥

∥

∥‖λkAxk‖
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=
4
c2
‖Jxk − λkAxk − Jxk‖‖λkAxk‖

=
4
c2
λ2k‖Axk‖2

≤ 4
c2
λ2k‖Axk −Au‖2.

(3.5)

Replacing (3.4) and (3.5) into (3.3) and using (B4), we get

φ(u,wk) ≤ φ(u, xk) + 2a
(

2
c2
b − α

)

‖Axk −Au‖2 ≤ φ(u, xk). (3.6)

By the convexity of ‖ · ‖2 and (3.6), for each u ∈ F ⊂ Ck, we have

φ
(

u, yk

)

= φ
(

u, J−1(δkJxk + (1 − δk)Jwk)
)

= V (u, δkJxk + (1 − δk)Jwk)

= ‖u‖2 − 2〈u, δkJxk + (1 − δk)Jwk〉 + ‖δkJxk + (1 − δk)Jwk‖2

≤ ‖u‖2 − 2δk〈u, Jxk〉 − 2(1 − δk)〈u, Jwk〉
+ δk‖Jxk‖2 + (1 − δk)‖Jwk‖2

= (δk + (1 − δk))‖u‖2 − 2δk〈u, Jxk〉 − 2(1 − δk)〈u, Jwk〉
+ δk‖Jxk‖2 + (1 − δk)‖Jwk‖2

= δk
(

‖u‖2 − 2〈u, Jxk〉 + ‖Jxk‖2
)

+ (1 − δk)
(

‖u‖2 − 2〈u, Jwk〉 + ‖Jwk‖2
)

= δkφ(u, xk) + (1 − δk)φ(u,wk)

≤ δkφ(u, xk) + (1 − δk)φ(u, xk)

= φ(u, xk),

(3.7)

and so

φ(u, uk) = φ(u, Trkzk)

≤ φ(u, zk)

= φ
(

u, J−1
(

αkJxk + βkJTxk + γkJSyk

)

)

= V
(

u, αkJxk + βkJTxk + γkJSyk

)

= ‖u‖2 − 2αk〈u, Jxk〉 − 2βk〈u, JTxk〉 − 2γk
〈

u, JSyk

〉

+
∥

∥αkJxk + βkJTxk + γkJSyk

∥

∥

2

≤ ‖u‖2 − 2αk〈u, Jxk〉 − 2βk〈u, JTxk〉 − 2γk
〈

u, JSyk

〉

+ αk‖Jxk‖2 + βk‖JTxk‖2 + γk
∥

∥JSyk

∥

∥

2
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=
(

αk + βk + γk
)‖u‖2 − 2αk〈u, Jxk〉 − 2βk〈u, JTxk〉 − 2γk

〈

u, JSyk

〉

+ αk‖Jxk‖2 + βk‖JTxk‖2 + γk
∥

∥JSyk

∥

∥

2

= αk

(

‖u‖2 − 2〈u, Jxk〉 + ‖Jxk‖2
)

+ βk
(

‖u‖2 − 2〈u, JTxk〉 + ‖JTxk‖2
)

+ γk
(

‖u‖2 − 2
〈

u, JSyk

〉

+
∥

∥JSyk

∥

∥

2
)

= αkφ(u, xk) + βkφ(u, Txk) + γkφ
(

u, Syk

)

≤ αkφ(u, xk) + βkφ(u, xk) + γkφ
(

u, yk

)

≤ αkφ(u, xk) + βkφ(u, xk) + γkφ(u, xk)

=
(

αk + βk + γk
)

φ(u, xk)

= φ(u, xk).

(3.8)

This shows that u ∈ Ck+1 and hence F ⊂ Ck+1. This implies that F ⊂ Cn for all n ∈ N.

Step 3. Show that limn→∞φ(xn, x0) exists.
From xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ∈ N. (3.9)

Therefore, {φ(xn, x0)} is nondecreasing. From Lemma 2.6, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(u, x0) − φ(u, xn) ≤ φ(u, x0). (3.10)

Then the sequence {φ(xn, x0)} is bounded. It follows that limn→∞φ(xn, x0) exists.

Step 4. Show that {xn} is a Cauchy sequence in C.
Since xm = ΠCmx0 ∈ Cm ⊂ Cn for any positive integer m ≥ n, by Lemma 2.6, we also

have

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.11)

Letting m,n → ∞ in (3.11), we have φ(xm, xn) → 0. It follows from Lemma 2.4 that ‖xm −
xn‖ → 0 as m,n → ∞. Hence, {xn} is a Cauchy sequence. By the completeness of E and the
closedness of C, one can assume that xn → q ∈ C as n → ∞. Further, we obtain

lim
n→∞

φ(xn+1, xn) = 0. (3.12)
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Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn)

−→ 0 (as n −→ ∞).
(3.13)

Applying Lemma 2.4 to (3.12) and (3.13), we have

‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖
≤ ‖un − xn+1‖ + ‖xn+1 − xn‖
−→ 0 (as n −→ ∞).

(3.14)

This implies that un → q as n → ∞. Since J is uniformly norm-to-norm continuous on
bounded subsets of E, we also obtain

lim
n→∞

‖Jun − Jxn‖ = 0. (3.15)

Step 5. Show that xn → q ∈ F(T) ∩ F(S).
Let r = supn≥1{‖xn‖, ‖Txn‖, ‖Swn‖}. From (3.7) and Lemma 2.8, we obtain

φ(u, un) = φ(u, Trnzn)

≤ φ(u, zn)

= φ
(

u, J−1
(

αnJxn + βnJTxn + γnJSyn

)

)

= V
(

u, αnJxn + βnJTxn + γnJSyn

)

= ‖u‖2 − 2αn〈u, Jxn〉 − 2βn〈u, JTxn〉 − 2γn
〈

u, JSyn

〉

+
∥

∥αnJxn + βnJTxn + γnJSyn

∥

∥

2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2βn〈u, JTxn〉 − 2γn
〈

u, JSyn

〉

+ αn‖Jxn‖2 + βn‖JTxn‖2 + γn
∥

∥JSyn

∥

∥

2 − αnβng(‖Jxn − JTxn‖)

=
(

αn + βn + γn
)‖u‖2 − 2αn〈u, Jxn〉 − 2βn〈u, JTxn〉 − 2γn

〈

u, JSyn

〉

+ αn‖Jxn‖2 + βn‖JTxn‖2 + γn
∥

∥JSyn

∥

∥

2 − αnβng(‖Jxn − JTxn‖)
= αnφ(u, xn) + βnφ(u, Txn) + γnφ

(

u, Syn

) − αnβng(‖Jxn − JTxn‖)
≤ αnφ(u, xn) + βnφ(u, xn) + γnφ

(

u, yn

) − αnβng(‖Jxn − JTxn‖)
≤ αnφ(u, xn) + βnφ(u, xn) + γnφ(u, xn) − αnβng(‖Jxn − JTxn‖)
= φ(u, xn) − αnβng(‖Jxn − JTxn‖).

(3.16)
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This implies that

αnβng(‖Jxn − JTxn‖) ≤ φ(u, xn) − φ(u, un)

= ‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖‖Jxn − Jun‖.

(3.17)

It follows from (3.14), (3.15), and (B2) that

lim
n→∞

g(‖Jxn − JTxn‖) = 0. (3.18)

Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that

lim
n→∞

‖Jxn − JTxn‖ = 0. (3.19)

Since J is uniformly norm-to-norm continuous on bounded sets, so is J−1. Then

lim
n→∞

‖xn − Txn‖ = lim
n→∞

∥

∥

∥J−1(Jxn) − J−1(JTxn)
∥

∥

∥ = 0. (3.20)

In the same manner, we can show that

lim
n→∞

∥

∥xn − Syn

∥

∥ = 0. (3.21)

In addition, φ(u, yn) ≤ δnφ(u, xn) + (1 − δn)φ(u,wn), using (3.6), we have

φ(u, un) ≤ αnφ(u, xn) + βnφ(u, xn) + γnφ
(

u, yn

)

≤ αnφ(u, xn) + βnφ(u, xn) + γn
(

δnφ(u, xn) + (1 − δn)φ(u,wn)
)

= αnφ(u, xn) + βnφ(u, xn) + γnδnφ(u, xn) + γn(1 − δn)φ(u,wn)

≤ αnφ(u, xn) + βnφ(u, xn) + γnδnφ(u, xn)

+ γn(1 − δn)
(

φ(u, xn) + 2a
(

2
c2
b − α

)

‖Axn −Au‖2
)

= αnφ(u, xn) + βnφ(u, xn) + γnδnφ(u, xn)

+ γn(1 − δn)φ(u, xn) + γn(1 − δn)2a
(

2
c2
b − α

)

‖Axn −Au‖2

=
(

αn + βn + γn
)

φ(u, xn) − γn(1 − δn)2a
(

α − 2
c2
b

)

‖Axn −Au‖2

= φ(u, xn) − γn(1 − δn)2a
(

α − 2
c2
b

)

‖Axn −Au‖2,

(3.22)
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which leads to the following:

γn(1 − δn)2a
(

α − 2
c2
b

)

‖Axn −Au‖2 ≤ φ(u, xn) − φ(u, un). (3.23)

Since lim supn→∞δn < 1, 0 < lim infn→∞αnγn ≤ lim infn→∞γn and from (3.17), we observe

lim
n→∞

(

φ(u, xn) − φ(u, un)
)

= 0, (3.24)

which yields that

lim
n→∞

‖Axn −Au‖ = 0. (3.25)

From Lemmas 2.6 and 2.12, and (3.5), we have

φ(xn,wn) = φ(xn,ΠCvn) ≤ φ(xn, vn)

= φ
(

xn, J
−1(Jxn − λnAxn)

)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn)

− 2
〈

J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2〈vn − xn,−λnAxn〉
= 2〈vn − xn,−λnAxn〉

≤ 4
c2
b2‖Axn −Au‖2

−→ 0 (as n −→ ∞).

(3.26)

It follows from Lemma 2.4 and (3.25) that

lim
n→∞

‖xn −wn‖ = 0. (3.27)

Hence wn → q as n → ∞ and

lim
n→∞

‖Jxn − Jwn‖ = 0. (3.28)
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By using (3.26), we have

φ
(

xn, yn

)

= φ
(

xn, J
−1(δnJxn + (1 − δn)Jwn)

)

= V (u, δnJxn + (1 − δn)Jwn)

= ‖xn‖2 − 2〈xn, δnJxn + (1 − δn)Jwn〉 + ‖δnJxn + (1 − δn)Jwn‖2

≤ ‖xn‖2 − 2δn〈xn, Jxn〉 − 2(1 − δn)〈xn, Jwn〉

+ δn‖Jxn‖2 + (1 − δn)‖Jwn‖2

= (δn + (1 − δn))‖xn‖2 − 2δn〈xn, Jxn〉 − 2(1 − δn)〈xn, Jwn〉

+ δn‖Jxn‖2 + (1 − δn)‖Jwn‖2

= δn‖xn‖2 + (1 − δn)‖xn‖2 − 2δn〈xn, Jxn〉 − 2(1 − δn)〈xn, Jwn〉

+ δn‖Jxn‖2 + (1 − δn)‖Jwn‖2

= δnφ(xn, xn) + (1 − δn)φ(xn,wn)

≤ φ(xn,wn)

−→ 0 (as n −→ ∞).

(3.29)

Applying Lemma 2.4, we get

lim
n→∞

∥

∥xn − yn

∥

∥ = 0. (3.30)

Hence, yn → q as n → ∞.
In addition,

∥

∥Syn − yn

∥

∥ =
∥

∥Syn − xn + xn − yn

∥

∥

≤ ∥

∥Syn − xn

∥

∥ +
∥

∥xn − yn

∥

∥.
(3.31)

It follows from (3.21), (3.30), and (3.31) that

lim
n→∞

∥

∥Syn − yn

∥

∥ = 0. (3.32)

From (3.20), (3.32) and by the closedness of T and S, we get q ∈ F(T) ∩ F(S).

Step 6. Show that xn → q ∈ EP(f).
From (3.16), we have

φ(u, zn) ≤ φ(u, xn). (3.33)
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Note that un = Trnzn. From (3.33) and Lemma 2.11, we have

φ(un, zn) = φ(Trnzn, zn) ≤ φ(u, zn) − φ(u, Trnzn)

≤ φ(u, xn) − φ(u, Trnzn)

= φ(u, xn) − φ(u, un).

(3.34)

Using (3.24), we have limn→∞φ(un, zn) = 0. By Lemma 2.4, we obtain

lim
n→∞

‖un − zn‖ = 0. (3.35)

Since rn ≥ s, we have

‖Jun − Jzn‖
rn

−→ 0 as n −→ ∞. (3.36)

From un = Trnzn, we have

f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0, ∀y ∈ C. (3.37)

By using (A2), we have

∥

∥y − un

∥

∥

‖Jun − Jzn‖
rn

≥ 1
rn

〈

y − un, Jun − Jzn
〉

≥ −f(un, y
) ≥ f

(

y, un

)

, ∀y ∈ C.

(3.38)

From (A4) and un → q, we get f(y, q) ≤ 0 for all y ∈ C. For t with 0 < t ≤ 1 and y ∈ C, let
yt = ty + (1 − t)q. Since y ∈ C and q ∈ C, we have yt ∈ C and hence f(yt, q) ≤ 0. So from (A1),
we have 0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, q) ≤ tf(yt, y). That is, f(yt, y) ≥ 0. It follows
from (A3) that f(q, y) ≥ 0 for all y ∈ C and hence q ∈ EP(f).

Step 7. Show that xn → q ∈ V I(C,A).
Define Te ⊂ E×E∗ be as in (2.8), which yields that Te is maximal monotone and T−1

e 0 =
V I(C,A). Let (v,w) ∈ G(Te). Since w ∈ Tev = Av + NC(v), we get w − Av ∈ NC(v). From
wn ∈ C, we have

〈v −wn,w −Av〉 ≥ 0. (3.39)

On the other hand, from wn = ΠCJ
−1(Jxn − λnAxn) and Lemma 2.5, we have 〈v −wn, Jwn −

(Jxn − λnAxn)〉 ≥ 0, and hence

〈

v −wn,
Jxn − Jwn

λn
−Axn

〉

≤ 0. (3.40)
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It follows from (3.39) and (3.40) that

〈v −wn,w〉 ≥ 〈v −wn,Av〉

≥ 〈v −wn,Av〉 +
〈

v −wn,
Jxn − Jwn

λn
−Axn

〉

= 〈v −wn,Av −Axn〉 +
〈

v −wn,
Jxn − Jwn

λn

〉

= 〈v −wn,Av −Awn〉 + 〈v −wn,Awn −Axn〉

+
〈

v −wn,
Jxn − Jwn

λn

〉

≥ −‖v −wn‖‖wn − xn‖
α

− ‖v −wn‖‖Jxn − Jwn‖
a

≥ −M
(‖wn − xn‖

α
+
‖Jxn − Jwn‖

a

)

,

(3.41)

where M = supn≥1{‖v −wn‖}. By taking the limit as n → ∞ and from (3.27) and (3.28), we
obtain 〈v−q,w〉 ≥ 0. By the maximality of Te, we have q ∈ T−1

e 0 and hence q ∈ V I(C,A). That
is, q ∈ F.

Step 8. Show that q = ΠFx0.
From xn = ΠCnx0, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn. (3.42)

Since F ⊂ Cn, we also have

〈xn − u, Jx0 − Jxn〉 ≥ 0, ∀u ∈ F. (3.43)

By taking the limit in (3.43), we obtain that

〈

q − u, Jx0 − Jq
〉 ≥ 0, ∀u ∈ F. (3.44)

By Lemma 2.5, we can conclude that q = ΠFx0. From (3.14), we have limn→∞‖un − xn‖ = 0,
and it follows that limn→∞‖un − q‖ = 0. This completes the proof.

Finally, we prove two strong convergence theorems in a 2-uniformly convex,
uniformly smooth Banach space by using Theorem 3.1.

First, we consider the problem of finding a zero point of an inverse-strongly-monotone
operator of E into E∗. Assume that A satisfies the conditions:

(D1) A is α-inverse-strongly monotone,

(D2) A−1(0) = {u ∈ E : Au = 0}/= ∅.
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Theorem 3.2. Let E be a 2-uniformly convex, uniformly smooth Banach space, f a bifunction from
E × E to R which satisfies (A1)–(A4), A an operator of E into E∗ satisfying (D1)–(D2), and T, S
two closed relatively quasi-nonexpansive mappings from E into itself such that F := F(T) ∩ F(S) ∩
EP(f) ∩A−1(0)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = E, define sequences {xn}
and {un} as follows:

wn = J−1(Jxn − λnAxn),

yn = J−1(δnJxn + (1 − δn)Jwn),

zn = J−1
(

αnJxn + βnJTxn + γnJSyn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0, ∀y ∈ E,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(3.45)

for every n ∈ N, where J is the duality mapping on E. Suppose that {αn}, {βn}, {γn}, and {δn} are
sequences in [0, 1] satisfying conditions (B1)–(B4) of Theorem 3.1.

Then, {xn} and {un} converge strongly to q = ΠFx0.

Proof. Putting C = E in Theorem 3.1, we have ΠE = I. We also have V I(E,A) = A−1(0) and
then condition (C3) of Theorem 3.1 holds for all y ∈ E and u ∈ A−1(0). So, we obtain the
desired result.

Next, letK be a nonempty closed convex cone in E andA an operator ofK into E∗. We
define its polar in E∗ to be the set

K∗ =
{

y∗ ∈ E∗ :
〈

x, y∗〉 ≥ 0 ∀x ∈ K
}

. (3.46)

Then the element u ∈ K is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (3.47)

The set of solutions of the complementarity problem is denoted by C(K,A).
Assume that A is an operator satisfying the conditions:

(E1) A is α-inverse-strongly-monotone,

(E2) C(K,A)/= ∅,
(E3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ K and u ∈ C(K,A).

Theorem 3.3. Let E be a 2-uniformly convex, uniformly smooth Banach space, K a nonempty closed
convex cone in E, f a bifunction fromK×K to R which satisfies (A1)–(A4),A an operator ofK into E∗

satisfying (E1)–(E3), and T, S two closed relatively quasi-nonexpansive mappings from K into itself
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such that F := F(T)∩F(S)∩EP(f)∩C(K,A)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and
C1 = K, define sequences {xn} and {un} as follows:

wn = ΠKJ
−1(Jxn − λnAxn),

yn = J−1(δnJxn + (1 − δn)Jwn),

zn = J−1
(

αnJxn + βnJTxn + γnJSyn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jzn
〉 ≥ 0, ∀y ∈ K,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0

(3.48)

for every n ∈ N, where J is the duality mapping on E. Suppose that {αn}, {βn}, {γn}, and {δn} are
sequences in [0, 1] satisfying conditions (B1)–(B4) of Theorem 3.1.

Then, {xn} and {un} converge strongly to q = ΠFx0.

Proof. From [24, Lemma7.1.1], we have V I(K,A) = C(K,A). So by Theorem 3.1, we obtain
the desired result.
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[35] C. Zălinescu, “On uniformly convex functions,” Journal of Mathematical Analysis and Applications, vol.
95, no. 2, pp. 344–374, 1983.

[36] Y. J. Cho, H. Zhou, and G. Guo, “Weak and strong convergence theorems for three-step iterations
with errors for asymptotically nonexpansive mappings,” Computers & Mathematics with Applications,
vol. 47, no. 4-5, pp. 707–717, 2004.

[37] F. Kohsaka and W. Takahashi, “Existence and approximation of fixed points of firmly nonexpansive-
type mappings in Banach spaces,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 824–835, 2008.


