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1. Introduction

In this paper we are concerned with the almost periodicity of solutions of the differential
equation

u′(t) = Au(t) + f(t) t ∈ R, (1.1)

where A is a linear, closed operator on a Hilbert space H and f is a function from R to H.
The asymptotic behavior and, in particular, the almost periodicity of solutions of (1.1) has
been a subject of intensive study for recent decades; see, for example, [1–5] and references
therein. A particular condition for almost periodicity is the countability of the spectrum of
the solution. In this paper we investigate the almost periodicity of mild solutions of (1.1),
when A is a linear, unbounded operator on a Hilbert space H. We use the Hilbert space
AP(R,H) introduced in [4], defined by what follows. Let (·, ·) be the inner product ofH, and
let APb(R, E) be the space of all almost periodic functions from R to H. The completion of
APb(R, E) is then a Hilbert space with the inner product defined by

〈
f, g

〉
:= lim

T →∞
1
2T

∫T

−T

(
f(s), g(s)

)
ds. (1.2)
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First, we establish the relationship between the Bohr transforms of the almost periodic
solutions of (1.1) and those of the inhomogeneity f . We then give a necessary and sufficient
condition so that (1.1) admits a unique almost periodic solution for each almost periodic
inhomogeneity f . As applications, in Section 4 we show a short proof of the Gearhart’s
theorem. If A is generator of a strongly continuous semigroup T(t), then 1 ∈ �(T(1)) if and
only if 2kπi ∈ �(A) and supk∈Z

‖(2kπi −A)−1‖ < ∞.

2. The Hilbert Space of Almost Periodic Functions

Let us fix some notations. Recall that a bounded, uniformly continuous function f from R

to a Banach space H is almost periodic, if the set {S(t)f : t ∈ R} is relatively compact in
BUC(R,H), the space of bounded uniformly continuous functions with sup-norm topology.
Let H be now a Hilbert space with (·, ·), and let ‖ · ‖ be the inner product and the norm in
H, respectively. Let APb(R,H) be the space of all almost periodic functions from R to H. In
APb(R,H) the following expression

〈
f, g

〉
:= lim

T →∞
1
2T

∫T

−T

(
f(s), g(s)

)
ds (2.1)

exists and defines an inner product. Hence, APb(R,H) is a pre-Hilbert space and its
completion, denoted by AP(R,H), is a Hilbert space. The inner product and the norm in
AP(R,H) are denoted by 〈f, g〉 and ‖ · ‖AP , respectively.

For each function f ∈ AP(R,H), the Bohr transform is defined by

a
(
λ, f

)
:= lim

T →∞
1
2T

∫T

−T
f(s)e−iλsds. (2.2)

The set

σ
(
f
)
:=

{
λ ∈ R : a

(
λ, f

)
/= 0

}
(2.3)

is called the Bohr spectrum of f . It is well known that σ(f) is countable for each function
f ∈ AP(R,H), and the Fourier-Bohr series of f is

∑

λ∈σ(f)
a
(
λ, f

)
eiλt, (2.4)

and it converges to f in the norm topology of AP(R, E). The following Parseval’s equality
also holds

∥∥f
∥∥2
AP(R,H) =

∑

λ∈σ(f)

∥∥a
(
λ, f

)∥∥. (2.5)

For more information about the almost periodic functions and properties of the Hilbert space
AP(R,H), we refer readers to [2, 4].
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Let W2(AP) be the space consisting of all almost periodic functions f , such that f ′ ∈
AP(R,H). W2(AP) is then a Hilbert space with the norm

∥
∥f

∥
∥2
W2(AP) :=

∥
∥f

∥
∥2
AP(R,H) +

∥
∥f ′∥∥2

AP(R,H). (2.6)

Note that theW2(AP)-topology is stronger than the sup-norm topology (see [6]). We will use
the following lemma.

Lemma 2.1. If F is a function in W2(AP) and f = F ′, then we have

a
(
λ, f

)
= λi · a(λ, F). (2.7)

Proof. If λ/= 0, using the integration by part we have

1
2T

∫T

−T
e−iλsf(s)ds =

1
2T

F(t)e−iλt
∣∣∣∣

T

−T
+

iλ

2T

∫T

−T
F(s)e−iλsds

=
F(T)e−iλT − F(−T)eiλT

2T
+ iλ

1
2T

∫T

−T
F(s)e−iλsds.

(2.8)

Let T → ∞, and note that F(t) is bounded, we have (2.7).
If λ = 0, then

a
(
0, f

)
= lim

T →∞
1
2T

∫T

−T
f(s)ds = lim

T →∞
F(T) − F(−T)

2T
= 0, (2.9)

which also satisfies (2.7).

Finally, for a linear, closed operator A in a Hilbert space H, we denote the domain,
the range, the spectrum, and the resolvent set of A by D(A), Range(A), σ(A), and �(A),
respectively.

3. Almost Periodic Mild Solutions of Differential Equations

We now turn to the differential equation

u′(t) = Au(t) + f(t), t ∈ R. (3.1)

First we define two types of solutions to (3.1).

Definition 3.1. (1) A continuous function u is called a mild solution of (3.1) if

u(t) = u(0) +A

∫ t

0
u(s)ds +

∫ t

0
f(s)ds, (3.2)

for all t ∈ R.
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(2) A function u is a classical solution of (3.1), if u(t) ∈ D(A), u is continuously
differentiable, and (3.1) holds for t ∈ R.

Remark 3.2. The mild solution to (3.1) defined by (3.2) is really an extension of classical
solution in the sense that every classical solution is a mild solution and conversely, if a mild
solution is continuously differentiable, then it is a classical solution.

If A is the generator of a C0 semigroup T(t), then a continuous function u : R → E is
a mild solution of (1.1) if and only if it has the form (see [7])

u(t) = T(t − s)u(s) +
∫ t

s

T(t − r)f(r)dr, for s < t. (3.3)

We now consider the almost periodic mild solutions of (3.1). The following proposition
describes the connection between the Bohr transforms of such solutions and those of f(t).

Proposition 3.3. Suppose f ∈ AP(R,H) and u is an almost periodic mild solution of (3.1). Then

(λi −A)a(λ, u) = a
(
λ, f

)
, (3.4)

for every λ ∈ R.

Proof. Suppose λ is a nonzero real number. Multiplying each side of (3.2)with e−iλt and taking
definite integral from −T to T on both sides, we have

∫T

−T
e−iλtu(t)dt =

∫T

−T
e−iλtu(0)dt +A

∫T

−T
e−iλt

∫ t

0
u(s)dsdt

+
∫T

−T
e−iλt

∫ t

0
f(s)dsdt.

(3.5)

Here we used the fact that
∫b
aAu(t)dt = A

∫b
au(t)dt for a closed operatorA. It is easy to see that

∫T

−T
e−iλtu(0)dt = −e

−iλTu(0) − eiλTu(0)
iλ

(3.6)

and, applying integration by part for any integrable function g(t), we have

∫T

−T
e−iλt

∫ t

0
g(s)dsdt = e−iλt

∫ t

0
g(s)ds

∣∣∣∣∣

T

−T
+

1
iλ

∫T

−T
e−iλtg(t)dt

= e−iλT
∫T

0
g(t)dt − eiλT

∫−T

0
g(t)dt +

1
iλ

∫T

−T
e−iλtg(t)dt.

(3.7)
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Using (3.7) for g(t) = u(t) and g(t) = f(t) in (3.5), respectively, we have

1
2T

∫T

−T
e−iλtu(t)dt = −e

−iλTu(0) − eiλTu(0)
iλ2T

+
e−iλT

2T

(

A

∫T

0
u(t)dt +

∫T

0
f(t)dt

)

− eiλT

2T

(

A

∫−T

0
u(t)dt +

∫−T

0
f(t)dt

)

+
1

iλ2T

(

A

∫T

−T
e−iλtu(t)dt +

∫T

−T
e−iλtf(t)dt

)

= I1 + I2 + I3,

(3.8)

where

I1 = −e
−iλTu(0) − eiλTu(0)

iλ2T
−→ 0 (3.9)

as T → ∞;

I2 =
e−iλT

2T

(

A

∫T

0
u(t)dt +

∫T

0
f(t)dt

)

− eiλT

2T

(

A

∫−T

0
u(t)dt +

∫−T

0
f(t)dt

)

=
e−iλT

2T
(u(T) − u(0)) − eiλT

2T
(u(−T) − u(0)) −→ 0

(3.10)

as T → ∞, and

I3 =
1
iλ

(
1
2T

A

∫T

−T
e−iλtu(t)dt +

1
2T

∫T

−T
e−iλtf(t)dt

)

. (3.11)

Let uT := (1/2T)
∫T
−Te

−iλtu(t)dt. It is clear that

lim
T →∞

uT = a(λ, u), (3.12)
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and from (3.11), we have

AuT =
1
2T

A

∫T

−T
e−iλtu(t)dt

= iλI3 − 1
2T

∫T

−T
e−iλtf(t)dt

= iλ(uT − I1 − I2) − 1
2T

∫T

−T
e−iλtf(t)dt

−→ iλa(λ, u) − a
(
λ, f

)
as T −→ ∞.

(3.13)

Since A is a closed operator, from (3.12) and (3.13) we obtain a(λ, u) ∈ D(A) and Au(λ, u) =
iλa(λ, u) − a(λ, f), from which (3.4) is followed.

Finally, if λ = 0, let uT = (1/2T)
∫T
−Tu(s)ds. Then, limt→∞uT = a(0, u) and, using the

definition of u in (3.2),

AuT =
1
2T

A

∫T

−T
u(s)ds =

u(T) − u(−T)
2T

− 1
2T

∫T

−T
f(s)ds

−→ −a(0, f) as T −→ ∞.

(3.14)

Again, since A is a closed operator, it implies a(a, u) ∈ D(A) and Au(0, u) = −a(0, f), from
which (3.4) is followed, and this completes the proof.

Note that Proposition 3.3 also holds in a Banach space. We are now going to look for
conditions that (3.1) has an almost periodic mild solution.

Theorem 3.4. Suppose f is an almost periodic function, which is in W2(AP). Then the following
statements are equivalent.

(i) Equation (3.1) has an almost periodic mild solution, which is inW2(AP).
(ii) For every λ ∈ σ(f), a(λ, f) ∈ Range(A) and there exists a series {xλ}λ∈σ(f) in H

satisfying (iλ −A)xλ = a(λ, f), for which the following holds

∑

λ∈σ(f)
‖xλ‖2 < ∞,

∑

λ∈σ(f)
|λ|2‖xλ‖2 < ∞. (3.15)

Proof. (i)⇒(ii) Let u(t) be an almost periodic solution to (3.1), which is in W2(AP). By
Proposition 3.3, (iλ −A)a(λ, u) = a(λ, f). Hence a(λ, f) ∈ Range(A) for all λ ∈ σ(f).

Put now xλ := a(λ, u) for λ ∈ σ(f). Then it satisfies (iλ − A)xλ = a(λ, f). Moreover,
iλxλ = a(λ, u′); hence,

∑

λ∈σ(f)
‖xλ‖2 = ‖u‖2AP ,

∑

λ∈σ(f)
|λ|2‖xλ‖2 =

∥∥u′∥∥2
AP ,

(3.16)

which imply (3.15).
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(ii)⇒(i) Let {xλ}λ∈σ(f) be a series in H satisfying (iλ −A)xλ = a(λ, f), for which (3.15)
holds. Put

fN(t) :=
∑

λ∈σ(f), |λ|<N
eiλta

(
λ, f

)
,

uN(t) :=
∑

λ∈σ(f), |λ|<N
eiλtxλ.

(3.17)

It is then easy to find their norms:

‖uN‖2 =
∑

λ∈σ(f), |λ|<N
‖xλ‖2,

∥
∥u′

N

∥
∥2 =

∑

λ∈σ(f), |λ|<N
|λ|2‖xλ‖2. (3.18)

From (3.15) it implies that uN → u and u′
N → v asN → ∞ for some function u and v in the

topology of AP(R,H). Since the differential operator is closed, we obtain u ∈ W2, u′ = v and
limN→∞uN = u in the topology of W2(AP). Hence, u is almost periodic. It remains to show
that u is a mild solution of (1.1). In order to do that, note uN is a classical solution of (3.1),
and hence, a mild one, that is,

uN(t) = uN(0) +A

∫ t

0
uN(s)ds +

∫ t

0
fN(s)ds. (3.19)

For each t ∈ R, we have

lim
N→∞

∫ t

0
fN(s)ds =

∫ t

0
f(s)ds, lim

N→∞

∫ t

0
uN(s)ds =

∫ t

0
u(s)ds, (3.20)

and, using (3.19),

lim
T →∞

A

∫ t

0
uN(s)ds = lim

T →∞

(

uN(t) − uN(0) −
∫ t

0
fN(s)ds

)

= u(t) − u(0) −
∫ t

0
f(s)ds.

(3.21)

Since A is a closed operator, we obtain
∫ t
0u(s)ds ∈ D(A) and

A

∫ t

0
u(s)ds = u(t) − u(0) −

∫ t

0
f(s)ds, (3.22)

which shows that u is a mild solution of (1.1) and the proof is complete.

Note that if condition (ii) in Theorem 3.4 holds, (3.1) may have two or more almost
periodic mild solutions. We are going to find conditions such that for each almost periodic
function f , (3.1) has a unique almost periodic mild solution. We are now in the position to
state the main result.
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Theorem 3.5. Suppose A is a closed operator on a Hilbert space H and M is a closed subset of R.
The following are equivalent.

(i) For each function f ∈ W2(AP) with σ(f) ⊆ M, (3.1) has a unique almost periodic mild
solution u inW2(AP) with σ(u) ⊆ M.

(ii) For each λ ∈ M, iλ ∈ �(A) and

sup
λ∈M

∥
∥
∥(iλ −A)−1

∥
∥
∥ < ∞. (3.23)

Proof. (i)⇒(ii) Let W2(AP)|M be the subspace of all functions f in W2(AP) with σ(f) ∈ M.
Then W2(AP)|M is a Hilbert space by nature. Let x be any vector in H, let λ be a number in
M, and let f(t) = eiλtx. Then f ∈ W2(AP)|M and hence, (3.1) has a unique almost periodic
solution u. By Theorem 3.4, x = a(λ, f) ∈ Range(iλ − A), hence (iλ − A) is surjective for all
λ ∈ M. On the other hand, (iλ − A) is injective; otherwise, u2(t) = u(t) + eiλtx, where x is a
nonzero vector inH satisfying (iλ−A)x = 0, would be another almost periodic mild solution
to (3.1) with σ(u2) = σ(u) ⊆ M. Hence (iλ −A) is bijective and iλ ∈ �(A) for all λ ∈ M.

InW2(AP)|M we define the operator L by what follows. For each f ∈ W2(AP)|M, L(f)
is the unique almost periodic mild solution to (1.1) corresponding to f . By the assumption, L
is everywhere defined. We will prove that L is a bounded operator by showing L is closed in
W2(AP)|M. Let fn → f and Lfn → u inW2(AP)|M, where

(
Lfn

)
(t) =

(
Lfn

)
(0) +A

∫ t

0

(
Lfn

)
(s)ds +

∫ t

0
fn(s)ds. (3.24)

For each t ∈ R, we have limn→∞Lfn(t) = u(t), limN→∞
∫ t
0fn(s)ds =

∫ t
0f(s)ds, and

limn→∞
∫ t
0Lfn(s)ds =

∫ t
0u(s)ds. Moreover, from (3.24)we have

A

∫ t

0

(
Lfn

)
(s)ds =

(
Lfn

)
(t) − (

Lfn
)
(0) −

∫ t

0
fn(s)ds

n→∞−→ u(t) − u(0) −
∫ t

0
f(s)ds,

(3.25)

for each t ∈ R. Since A is a closed operator,
∫ t
0u(s)ds ∈ D(A) and

A

∫ t

0
u(s)ds = u(t) − u(0) −

∫ t

0
f(s)ds, (3.26)

which means u is a mild solution to (3.1) corresponding to f . Thus, f ∈ D(L), Lf = u and
hence, L is closed.

Next, for any x ∈ H and λ ∈ M, put f(t) = eiλtx, then u(t) = eiλt(2kπi −A)−1x is the
unique almost periodic solution to (3.1), that is, u = Lf . Using the boundedness of operator
L, we obtain

(|λ| + 1)
∥∥∥(iλ −A)−1x

∥∥∥ = ‖u‖W2(AP) � ‖L‖‖u‖W2(AP) = ‖L‖(|λ| + 1)‖x‖, (3.27)



International Journal of Differential Equations 9

which implies

∥
∥
∥(iλ −A)−1x

∥
∥
∥ � ‖L‖ · ‖x‖. (3.28)

for any x ∈ E and any λ ∈ M. Thus, (3.33) holds.
(ii)⇒(i) Suppose f is a function inW2(AP)|M. Put xλ := (iλ −A)−1a(λ, f). Then

∑

λ∈σ(f)
‖xλ‖2 � sup

λ∈σ(f)

∥
∥
∥(iλ −A)−1

∥
∥
∥
2 ∑

λ∈σ(f)

∥
∥a

(
λ, f

)∥∥2

� sup
λ∈M

∥
∥
∥(iλ −A)−1

∥
∥
∥
2∥
∥f

∥
∥2

< ∞,

∑

λ∈σ(f)
λ2‖xλ‖2 � sup

λ∈σ(f)

∥
∥∥(iλ −A)−1

∥
∥∥
2 ∑

λ∈σ(f)
λ2
∥∥a

(
λ, f

)∥∥2

= sup
λ∈M

∥∥∥(iλ −A)−1
∥∥∥
2∥∥f ′∥∥2

< ∞.

(3.29)

By Proposition 3.3, (3.1) has an almost periodic mild solution in W2(AP)|M. That solution is
unique, since its Bohr transforms are uniquely determined by a(λ, u) = (iλ −A)−1a(λ, f) for
all λ ∈ M.

We can apply Theorem 3.5 to some particular sets for M. First, if M = R, we have the
following.

Corollary 3.6. Suppose A is a closed operator on a Hilbert spaceH. The following are equivalent.
(i) For each function f ∈ W2(AP), (3.1) has a unique 1-periodic mild solution inW2(AP).
(ii) iR ⊆ �(A) and

sup
λ∈R

∥∥∥(iλ −A)−1
∥∥∥ ≤ ∞. (3.30)

Let now L2(0, 1) be the Hilbert space of integrable functions f from (0, 1) toH with the norm

∥∥f
∥∥2
L2(0,1)

=
∫1

0

∥∥f(t)
∥∥2
dt < ∞. (3.31)

If M = {2kπ : k ∈ Z}, then the space W2(AP)|M becomes W1
2 (1), the space of all periodic functions

f of period 1 with f ′ ∈ L2(0, 1). W1
2 (1) is then a Hilbert space with the norm

∥∥f
∥∥2
W1

2 (1)
=
∥∥f

∥∥2
L2(0,1)

+
∥∥f ′∥∥2

L2(0,1)
. (3.32)

Corollary 3.7. Suppose A is a closed operator on a Hilbert spaceH. The following are equivalent.
(i) For each function f ∈ W1

2 (1), (3.1) has a unique 1-periodic mild solution inW1
2 (1).
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(ii) For each k ∈ Z, 2kiπ ∈ �(A) and

sup
k∈Z

∥
∥
∥(2kiπ −A)−1

∥
∥
∥ < ∞. (3.33)

4. Application: A C0-Semigroup Case

If A generates a C0-semigroup (T(t))t≥0, then (see [7, Theorem2.5]), mild solutions of (3.1)
can be expressed by

u(t) = T(t − s)u(s) +
∫ t

s

T(t − τ)f(τ)dτ, (4.1)

for t ≥ s. If f is a 1-periodic function, then it is easy to see that the above solution u is
1-periodic if and only if u(1) = u(0). Hence, to consider 1-periodic solution, it suffices to
consider u in [0, 1] and in this interval we have

u(t) = T(t)u(0) +
∫ t

0
T(t − s)f(s)ds. (4.2)

We obtain the following results, in which we show the Gearhart’s theorem (the equivalence
(iv)⇔(v))with a short proof.

Theorem 4.1. Let A generate a C0-semigroup (T(t)) on a Hilbert H, then the following are
equivalent.

(i) For each function f ∈ L2(0, 1), (3.1) has a unique 1-periodic mild solution.
(ii) For each function f ∈ W1

2 (1), (3.1) has a unique 1-periodic classical solution.
(iii) For each function f ∈ W1

2 (1), (3.1) has a unique 1-periodic solution contained inW1
2 (1).

(iv) For each k ∈ Z, 2kπi ∈ �(A) and

sup
k∈Z

∥∥∥(2kπi −A)−1
∥∥∥ < ∞. (4.3)

(v) 1 ∈ ρ(T(1)).

Proof. The equivalence (iii)⇔(iv) is shown in Corollary 3.7, (i)⇔(ii) can be easily proved by
using standard arguments, (i)⇔(v) has been shown in [8], and (ii)⇒(iii) is obvious. So, it
remains to show the inclusion (iii)⇒(ii).

Let f be any function inW1
2 (1) and let u(t) be the unique mild solution of (3.1), which

is in W1
2 (1). Since for each f ∈ W1

2 (1), the function g(t) :=
∫ t
0T(t − s)f(s)ds is continuously

differentiable and g(t) ∈ D(A) for all t ∈ [0, 1] (see [9]), to show u is a classical solution, it
suffices to show u(0) ∈ D(A).

From the above observation and from formula (4.2), the function t �→ T(t)u(0) = u(t)−∫ t
0T(t − s)f(s)ds is differentiable almost everywhere on [0, 1]. It follows that T(t)u(0) ∈ D(A)
for almost everywhere t (since t �→ T(t)x is differentiable at t0 if and only if T(t0)x ∈ D(A)).
Hence, T(1)u(0) ∈ D(A). By formula (4.2), u(1), and thus, u(0) = u(1), belongs to D(A). The
uniqueness of this 1-periodic classical solution is obvious and the proof is complete.
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[8] J. Prüss, “On the spectrum of C0-semigroups,” Transactions of the American Mathematical Society, vol.
284, no. 2, pp. 847–857, 1984.

[9] R. Nagel and E. Sinestrari, “Inhomogeneous Volterra integrodifferential equations for Hille-Yosida
operators,” in Functional Analysis (Essen, 1991), K. D. Bierstedt, A. Pietsch, W. M. Ruess, and D. Vogt,
Eds., vol. 150 of Lecture Notes in Pure and Applied Mathematics, pp. 51–70, Marcel Dekker, New York, NY,
USA, 1994.


