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1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Recall
that a mapping f : C → C is a contraction on C if there exists a constant k ∈ (0, 1) such that
‖f(x)−f(y)‖ ≤ k‖x−y‖, x, y ∈ C.We use ΣC to denote the collection of mappings f verifying
the above inequality. That is, ΣC = {f : C → C | f is a contraction with constant k}. Let
T : C → C be a nonexpansive mapping (recall that a mapping T : C → C is nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C) and let F(T) denote the set of fixed points of T ; that is,
F(T) = {x ∈ C : x = Tx}.

We consider the iterative scheme: for T a nonexpansive mapping, f ∈ ΣC and αn ∈
(0, 1),

xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0. (1.1)

As a special case of (1.1), the following iterative scheme:

zn+1 = αnu + (1 − αn)Tzn, n ≥ 0, (1.2)
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where u, z0 ∈ C are arbitrary (but fixed), has been investigated by many authors; see, for
example, Browder [1], Chang [2], Cho et al. [3], Halpern [4], Lions [5], Reich [6, 7], Shioji and
Takahashi [8], Wittmann [9], and Xu [10]. The authors above showed that the sequence {zn}
generated by (1.2) converges strongly to a point in the fixed-point set F(T) under appropriate
conditions on {αn} in Hilbert spaces or certain Banach spaces.

The viscosity approximation method of selecting a particular fixed point of a given
nonexpansive mapping in a Hilbert space was proposed by Moudafi [11] in 2000. In 2004, Xu
[12] extended Theorem 2.2 of Moudafi [11] for the iterative scheme (1.1) to a Banach space
setting by using the following conditions on the sequence {αn}:

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞,
∞∑

n=0
|αn+1 − αn| <∞ or lim

n→∞
αn
αn+1

= 1. (1.3)

For the iterative scheme (1.1)with generalized contractive mappings instead of contractions,
we refer to [13].

In 2005, Kim and Xu [14] provided a simpler modification of Mann iterative scheme
in a uniformly smooth Banach space as follows:

x0 = x ∈ C,
yn = βnxn +

(
1 − βn

)
Txn,

xn+1 = αnu + (1 − αn)yn, n ≥ 0,

(1.4)

where u ∈ C is an arbitrary (but fixed) element, and {αn} and {βn} are two sequences in (0,1).
They proved that the sequence {xn} generated by (1.4) converges to a fixed point of T under
the following control conditions:

(i) limn→∞αn = 0, limn→∞βn = 0;

(ii)
∑∞

n=0αn = ∞,
∑∞

n=0βn = ∞;

(iii)
∑∞

n=0|αn+1 − αn| <∞,
∑∞

n=0|βn+1 − βn| <∞.

Recently, Yao et al. [15] considered the following modified Mann iterative scheme in a
uniformly smooth Banach space as the viscosity approximation method:

x0 = x ∈ C,
yn = βnxn +

(
1 − βn

)
Txn,

xn+1 = αnf(xn) + (1 − αn)yn, n ≥ 0,

(1.5)

and proved strong convergence of the sequence {xn} generated by (1.5) under certain
different control conditions on {αn} and {βn}. In particular, their results remove the condition∑∞

n=0|αn+1 − αn| <∞ imposed on {αn}.



Abstract and Applied Analysis 3

Very recently, Qin et al. [16] proposed the composite Halpern type iterative scheme in
a uniformly smooth Banach space as follows:

x0 = x, u ∈ C,
zn = γnxn +

(
1 − γn

)
Txn,

yn = βnxn +
(
1 − βn

)
Tzn,

xn+1 = αnu + (1 − αn)yn, n ≥ 0,

(1.6)

and showed strong convergence of the sequence {xn} generated by (1.6) under the following
control conditions:

(i)
∑∞

n=0αn = ∞;

(ii) limn→∞αn = 0, limn→∞βn = 0 and 0 < a ≤ γn for some a ∈ (0, 1);

(iii)
∑∞

n=0|αn+1 − αn| <∞,
∑∞

n=0|βn+1 − βn| <∞,
∑∞

n=0|γn+1 − γn| <∞.

In this paper, under the framework of a reflexive Banach space having a uniformly Gâteaux
differentiable norm and satisfying that everyweakly compact convex subset ofE has the fixed
point property for nonexpansive mappings, we consider a new composite iterative scheme
for a nonexpansive mapping T as the viscosity approximation method: for f ∈ ΣC and the
initial guess x0 = x ∈ C,

zn = γnxn +
(
1 − γn

)
Txn,

yn = βnxn +
(
1 − βn

)
Tzn,

xn+1 = αnf(xn) + (1 − αn)yn, n ≥ 0,

(IS)

where {αn}, {βn} and {γn} are sequences in (0, 1). First, we prove under certain control
conditions on the sequences {αn}, {βn} and {γn} different from those of Qin et al. [16] that the
sequence {xn} generated by (IS) converges strongly to a fixed point of T , which is a solution
of a certain variational inequality. Next we study the composite iterative scheme (IS) with
the weakly contractive mapping instead of the contractions. The main results develop and
complement the corresponding results of [2, 3, 8, 9, 11, 12, 15, 16]. In particular, if βn = 0 for
all n ≥ 0 in (IS), then (IS) reduces a new viscosity iterative scheme for finding a fixed point of
T :

zn = γnxn +
(
1 − γn

)
Txn,

xn+1 = αnf(xn) + (1 − αn)Tzn, n ≥ 0.
(1.7)

2. Preliminaries and Lemmas

Let E be a real Banach space with norm ‖ · ‖, and let E∗ be its dual. The value of f ∈ E∗ at
x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence in E, then xn → x (resp., xn ⇀ x)
will denote strong (resp., weak) convergence of the sequence {xn} to x.
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The (normalized) duality mapping J from E into the family of nonempty (by Hahn-
Banach theorem) weak-star compact subsets of its dual E∗ is defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f

∥∥2
}
, (2.1)

for each x ∈ E [17].
The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. The norm is said to be uniformly
Gâteaux differentiable if for y ∈ U, the limit is attained uniformly for x ∈ U. The space E is said
to have a uniformly Fréchet differentiable norm (and E is said to be uniformly smooth) if the limit
in (2.2) is attained uniformly for (x, y) ∈ U×U. It is known that E is smooth if and only if each
duality mapping J is single-valued. It is also well-known that if E has a uniformly Gâteaux
differentiable norm, J is uniformly norm-to-weak∗ continuous on each bounded subsets of E
[17].

Let C be a nonempty closed convex subset of E. C is said to have the fixed point property
for nonexpansive mappings if every nonexpansive mapping of a bounded closed convex
subset D of C has a fixed point in D. Let D be a subset of C. Then a mapping Q : C → D is
said to be a retraction from C ontoD ifQx = x for all x ∈ D. A retractionQ : C → D is said to
be sunny if Q(Qx + t(x −Qx)) = Qx for all x ∈ C and t ≥ 0 with Qx + t(x −Qx) ∈ C. A subset
D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction of C ontoD. In a smooth Banach space E, it is well-known [18, page 48] that Q is a
sunny nonexpansive retraction from C onto D if and only if the following condition holds

〈x −Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.3)

We need the following lemmas for the proof of our main results. Lemma 2.1 was also given in
Jung and Morales [19], Lemma 2.2 is Lemma 2 of Suzuki [20] and Lemma 2.3 is essentially
Lemma 2 of Liu [21] (also see [10]).

Lemma 2.1. Let E be a real Banach space and let J be the duality mapping. Then, for any given
x, y ∈ E, one has

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, (2.4)

for all j(x + y) ∈ J(x + y).

Lemma 2.2. Let {xn} and {wn} be bounded sequences in a Banach space E and let {δn} be a sequence
in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

δn ≤ lim sup
n→∞

δn < 1. (2.5)



Abstract and Applied Analysis 5

suppose that

xn+1 = δnxn + (1 − δn)wn, n ≥ 0,

lim sup
n→∞

(‖wn+1 −wn‖ − ‖xn+1 − xn‖) ≤ 0.
(2.6)

Then limn→∞‖wn − xn‖ = 0.

Lemma 2.3. Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnγn + δn, n ≥ 0, (2.7)

where {λn}, {γn}, and {δn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0λn = ∞ or, equivalently,
∏∞

n=0(1 − λn) = 0;

(ii) lim supn→∞γn ≤ 0 or
∑∞

n=1λnγn <∞;

(iii) δn ≥ 0 (n ≥ 0),
∑∞

n=0δn <∞.

Then limn→∞sn = 0.

Recall that a mapping A : C → C is said to be weakly contractive if

∥∥Ax −Ay∥∥ ≤ ∥∥x − y∥∥ − ψ(∥∥x − y∥∥), ∀x, y ∈ C, (2.8)

where ψ : [0,+∞) → [0,+∞) is a continuous and strictly increasing function such that ψ is
positive on (0,∞) and ψ(0) = 0. As a special case, if ψ(t) = (1 − k)t for t ∈ [0,+∞), where
k ∈ (0, 1), then the weakly contractive mapping A is a contraction with constant k. Rhoades
[22] obtained the following result for weakly contractive mapping.

Lemma 2.4 ([22, Theorem 2]). Let (X, d) be a complete metric space and let A be a weakly
contractive mapping on X . Then A has a unique fixed point p in X. Moreover, for x ∈ X, {Anx}
converges strongly to p .

The following Lemma was given in [23, 24].

Lemma 2.5. Let {sn} and {γn} be two sequences of nonnegative real numbers and let {λn} be a
sequence of positive numbers satisfying the conditions:

(i)
∑∞

n=0λn = ∞;

(ii) limn→∞(γn/λn) = 0.

Let the recursive inequality,

sn+1 ≤ sn − λnψ(sn) + γn, n ≥ 0, (2.9)
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be given, where ψ(t) is a continuous and strict increasing function on [0,+∞) with ψ(0) = 0. Then
limn→∞sn = 0.

3. Main Results

First, we study a strong convergence theorem for a viscosity iterative scheme for the
nonexpansive mapping with the contraction.

For T : C → C a nonexpansive mapping, t ∈ (0, 1) and f ∈ ΣC, tf + (1 − t)T : C → C
defines a strict contraction mapping. Thus, by the Banach contraction mapping principle,
there exists a unique fixed point xft satisfying

x
f
t = tf

(
x
f
t

)
+ (1 − t)Txft . (R)

For simplicity we will write xt for x
f
t provided no confusion occurs.

In 2006, the following result was given by Jung [25] (see also Xu [12] for the result in
uniformly smooth Banach spaces).

Theorem J (see [25]). Let E be a reflexive Banach space having a uniformly Gâteaux differentiable
norm. Suppose that every weakly compact convex subset of E has the fixed point property for
nonexpansive mappings. Let C be a nonempty closed convex subset of E and let T be a nonexpansive
mapping from C into itself with F(T)/= ∅. Then {xt} defined by (R) converges strongly to a point in
F(T). If we define Q : ΣC → F(T) by

Q
(
f
)
:= lim

t→ 0+
xt, f ∈ ΣC, (3.1)

then Q(f) is the unique solution of the variational inequality

〈(
I − f)(Q(

f
))
, J
(
Q
(
f
) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (VI)

Remark 3.1. In Theorem J, if f(x) = u ∈ C is a constant, then (VI) become

〈Qu − u, J(Qu − p)〉 ≤ 0, u ∈ C, p ∈ F(T). (3.2)

Hence by (2.3),Q reduces to the sunny nonexpansive retraction fromC to F(T). Namely F(T)
is a sunny nonexpansive retraction of C.

Using Theorem J, we have the following result.

Theorem 3.2. Let E be a reflexive Banach space having a uniformly Gâteaux differentiable norm.
Suppose that every weakly compact convex subset of E has the fixed point property for nonexpansive
mappings. LetC be a nonempty closed convex subset of E and let T be a nonexpansive mapping fromC
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into itself with F(T)/= ∅ . Let {αn}, {βn}, and {γn} be sequences in (0, 1) which satisfy the conditions:

(C1) limn→∞αn = 0,
∑∞

n=0αn = ∞;

(C2) limn→∞βn = 0;

(C3) 0 < lim infn→∞γn ≤ lim supn→∞γn < 1.

Let f ∈ ΣC and the initial guess x0 = x ∈ C be chosen arbitrarily. Let {xn} be the sequence generated
by

zn = γnxn +
(
1 − γn

)
Txn,

yn = βnxn +
(
1 − βn

)
Tzn,

xn+1 = αnf(xn) + (1 − αn)yn, n ≥ 0.

(IS)

If limn→∞‖Tzn − zn‖ = 0, then {xn} converges strongly to Q(f) ∈ F(T), where Q(f) is the unique
solution of the variational inequality

〈(
I − f)(Q(

f
))
, J
(
Q
(
f
) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.3)

Proof. We note that by Theorem J, there exists the unique solution Q(f) of the variational
inequality

〈(
I − f)(Q(

f
))
, J
(
Q
(
f
) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.4)

Namely, Q(f) = limt→ 0+xt where xt is defined by (R). We will show that xn → Q(f).
We proceed with the following steps.

Step 1. We show that ‖xn − z‖ ≤ max{‖x0 − z‖, (1/(1 − k))‖f(z) − z‖} for all n ≥ 0 and all
z ∈ F(T) and so {xn}, {yn}, {zn}, {f(xn)}, {Txn}, and {Tzn} are bounded.

Indeed, let z ∈ F(T). Then, noting that

‖zn − z‖ ≤ γn‖xn − z‖ +
(
1 − γn

)‖Txn − z‖ ≤ ‖xn − z‖, (3.5)

we have

∥∥yn − z
∥∥ =

∥∥βnxn +
(
1 − βn

)
(Tzn − z)

∥∥

≤ βn‖xn − z‖ +
(
1 − βn

)‖xn − z‖ ≤ ‖xn − z‖,
(3.6)
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which yields that

‖xn+1 − z‖ =
∥∥αn

(
f(xn) − z

)
+ (1 − αn)

(
yn − z

)∥∥

≤ αn
(∥∥f(xn) − f(z)

∥∥ +
∥∥f(z) − z∥∥) + (1 − αn)‖xn − z‖

≤ αnk‖xn − z‖ + αn
∥∥f(z) − z∥∥ + (1 − αn)‖xn − z‖

= (1 − (1 − k)αn)‖xn − z‖ + αn
∥∥f(z) − z∥∥

≤ max
{
‖xn − z‖, 1

1 − k
∥∥f(z) − z∥∥

}
.

(3.7)

Using an induction, we obtain

‖xn − z‖ ≤ max
{
‖x0 − z‖, 1

1 − k
∥∥f(z) − z∥∥

}
, (3.8)

for all n ≥ 0. Hence {xn} is bounded, and so are {yn}, {zn}, {Txn}, {Tzn}, and {f(xn)}.

Step 2. We show that limn →∞‖xn+1 − yn‖ = 0 and limn→∞‖yn − Tzn‖ = 0. Indeed, it follows
from condition (C1) and (C2) that

∥∥xn+1 − yn
∥∥ = αn

∥∥f(xn) − yn
∥∥ −→ 0 (as n −→ ∞),

∥∥yn − Tzn
∥∥ = βn‖xn − Tzn‖ −→ 0 (as n −→ ∞).

(3.9)

Also from limn→∞‖Tzn − zn‖ = 0, we get

∥∥yn − zn
∥∥ ≤ ∥∥yn − Tzn

∥∥ + ‖Tzn − zn‖ −→ 0 (as n −→ ∞). (3.10)

Step 3. We show that limn→∞‖xn+1 − xn‖ = 0. To this end, set δn = (1 − αn)γn for n ≥ 0. Then it
follows from (C1) and (C3) that

0 < lim inf
n→∞

δn ≤ lim sup
n→∞

δn < 1. (3.11)

Define

xn+1 = δnxn + (1 − δn)wn. (3.12)
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Observe that

wn+1 −wn =
xn+2 − δn+1xn+1

1 − δn+1 − xn+1 − δnxn
1 − δn

=
αn+1f(xn+1) + (1 − αn+1)yn+1 − δn+1xn+1

1 − δn+1 − αnf(xn) + (1 − αn)yn − δnxn
1 − δn

=
(
αn+1f(xn+1)
1 − δn+1 − αnf(xn)

1 − δn

)

+
(1 − αn+1)

[
γn+1xn+1 +

(
1 − γn+1

)
Txn+1

] − δn+1xn+1 + (1 − αn+1)
(
yn+1 − zn+1

)

1 − δn+1

− (1 − αn)
[
γnxn +

(
1 − γn

)
Txn

] − δnxn + (1 − αn)
(
yn − zn

)

1 − δn

=
(
αn+1f(xn+1)
1 − δn+1 − αnf(xn)

1 − δn

)
+
(1 − αn+1)

(
1 − γn+1

)
Txn+1 + (1 − αn+1)

(
yn+1 − zn+1

)

1 − δn+1

− (1 − αn)
(
1 − γn

)
Txn + (1 − αn)

(
yn − zn

)

1 − δn

=
(
αn+1f(xn+1)
1 − δn+1 − αnf(xn)

1 − δn

)
+ (Txn+1 − Txn) − αn+1

1 − δn+1 Txn+1 +
αn

1 − δn Txn

+
(1 − αn+1)

(
yn+1 − zn+1

)

1 − δn+1 − (1 − αn)
(
yn − zn

)

1 − δn .

(3.13)

It follows from (3.13) that

‖wn+1 −wn‖ − ‖xn+1 − xn‖

≤ αn+1
1 − δn+1

(∥∥f(xn+1)
∥∥ + ‖Txn+1‖

)
+

αn
1 − δn

(∥∥f(xn)
∥∥ + ‖Txn‖

)

+
1 − αn+1
1 − δn+1

∥∥yn+1 − zn+1
∥∥ +

1 − αn
1 − δn

∥∥yn − zn
∥∥.

(3.14)

Since {f(xn)} and {Txn} are bounded, by (C1), (3.10), (3.11), and (3.14) we obtain that

lim sup
n→∞

(‖wn+1 −wn‖ − ‖xn+1 − xn‖) ≤ 0. (3.15)

Hence by Lemma 2.2, we have

lim
n→∞

‖wn − xn‖ = 0. (3.16)
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It follows from (3.11) and (3.12) that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.17)

Step 4. We show that limn→∞‖xn − Txn‖ = 0. In fact, from (IS) it follows that

‖Txn − xn‖ ≤ ‖xn − xn+1‖ +
∥∥xn+1 − yn

∥∥ +
∥∥yn − Tzn

∥∥ + ‖Tzn − Txn‖
≤ ‖xn − xn+1‖ +

∥∥xn+1 − yn
∥∥ +

∥∥yn − Tzn
∥∥ +

(
1 − γn

)‖Txn − xn‖.
(3.18)

So we have

γn‖Txn − xn‖ ≤ ‖xn − xn+1‖ +
∥∥xn+1 − yn

∥∥ +
∥∥yn − Tzn

∥∥. (3.19)

Thus, from condition (C3), Steps 2, and 3, we have

lim
n→∞

‖Txn − xn‖ = 0. (3.20)

Step 5. We show that lim supn→∞〈Q(f) − f(Q(f)), J(Q(f) − xn)〉 ≤ 0. To prove this, let a
subsequence {xnj} of {xn} be such that

lim sup
n→∞

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xn

)〉
= lim

j→∞

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
(3.21)

and xnj ⇀ q for some q ∈ E. From Step 4, it follows that limj→∞‖xnj − Txnj‖ = 0.
Now let Q(f) = limt→ 0+xt, where xt = tf(xt) + (1 − t)Txt. Then we can write

xt − xnj = t
(
f(xt) − xnj

)
+ (1 − t)

(
Txt − xnj

)
. (3.22)

Putting

aj(t) = (1 − t)2
∥∥∥Txnj − xnj

∥∥∥
(
2
∥∥∥xt − xnj

∥∥∥ +
∥∥∥Txnj − xnj

∥∥∥
)
−→ 0

(
j → ∞)

(3.23)
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by Step 4 and using Lemma 2.1, we obtain

∥∥∥xt − xnj
∥∥∥
2 ≤ (1 − t)2

∥∥∥Txt − xnj
∥∥∥
2
+ 2t

〈
f(xt) − xnj , J

(
xt − xnj

)〉

≤ (1 − t)2
(∥∥∥Txt − Txnj

∥∥∥ +
∥∥∥Txnj − xnj

∥∥∥
)2

+ 2t〈f(xt) − xt, J
(
xt − xnj

)
〉 + 2t

∥∥∥xt − xnj
∥∥∥
2

≤ (1 − t)2
∥∥∥xt − xnj

∥∥∥
2
+ aj(t)

+ 2t
〈
f(xt) − xt, J

(
xt − xnj

)〉
+ 2t

∥∥∥xt − xnj
∥∥∥
2
.

(3.24)

The last inequality implies

〈
xt − f(xt), J

(
xt − xnj

)〉
≤ t

2

∥∥∥xt − xnj
∥∥∥
2
+

1
2t
aj(t). (3.25)

It follows that

lim sup
j→∞

〈
xt − f(xt), J

(
xt − xnj

)〉
≤ t

2
M, (3.26)

where M > 0 is a constant such that M ≥ ‖xt − xn‖2 for all n ≥ 0 and t ∈ (0, 1). Taking the
lim sup as t → 0 in (3.26) and noticing the fact that the two limits are interchangeable due to
the fact that J is uniformly continuous on bounded subsets of E from the strong topology of
E to the weak∗ topology of E∗, we have

lim sup
j→∞

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
≤ 0. (3.27)

Indeed, letting t → 0, from (3.26) we have

lim sup
t→ 0

lim sup
j→∞

〈
xt − f(xt), J

(
xt − xnj

)〉
≤ 0. (3.28)

So, for any ε > 0, there exists a positive number δ1 such that for any t ∈ (0, δ1),

lim sup
j→∞

〈
xt − f(xt), J

(
xt − xnj

)〉
≤ ε

2
. (3.29)
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Moreover, since xt → Q(f) as t → 0, the set {xt − xnj} is bounded and the duality mapping
J is norm-to-weak∗ uniformly continuous on bounded subset of E, there exists δ2 > 0 such
that, for any t ∈ (0, δ2),

∣∣∣
〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
−
〈
xt − f(xt), J

(
xt − xnj

)〉∣∣∣

=
∣∣∣
〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)
− J

(
xt − xnj

)〉

+
〈
Q
(
f
) − f(Q(

f
)) − (

xt − f(xt)
)
, J
(
xt − xnj

)〉∣∣∣

≤
∣∣∣
〈
Q
(
f
) − f(Q(

f
))
, J
(
xt − xnj

)
− J

(
Q
(
f
) − xnj

)〉∣∣∣

+
∥∥Q

(
f
) − f(Q(

f
)) − (

xt − f(xt)
)∥∥

∥∥∥xt − xnj
∥∥∥ <

ε

2
.

(3.30)

Choose δ = min{δ1, δ2}, we have for all t ∈ (0, δ) and j ∈ N,

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
<
〈
xt − f(xt), J

(
xt − xnj

)〉
+
ε

2
, (3.31)

which implies that

lim sup
j→∞

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
≤ lim sup

j→∞

〈
xt − f(xt), J

(
xt − xnj

)〉
+
ε

2
. (3.32)

Since lim supj→∞〈xt − f(xt), J(xt − xnj )〉 ≤ ε/2, we have

lim sup
j→∞

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
≤ ε. (3.33)

Since ε is arbitrary, we obtain that

lim sup
j→∞

〈
Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xnj

)〉
≤ 0. (3.34)

Step 6. We show that limn→∞‖xn −Q(f)‖ = 0. By using (IS), we have

∥∥xn+1 −Q
(
f
)∥∥ =

∥∥αn
(
f(xn) −Q

(
f
))

+ (1 − αn)
(
yn −Q

(
f
))∥∥. (3.35)
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Applying Lemma 2.1 and (3.6), we obtain

∥∥xn+1 −Q(f)
∥∥2

≤ (1 − αn)2
∥∥yn −Q(f)

∥∥2 + 2αn〈f(xn) −Q
(
f
)
, J
(
xn+1 −Q

(
f
))〉

≤ (1 − αn)2
∥∥xn −Q(f)

∥∥2 + 2αn〈f(xn) − f
(
Q
(
f
))
, J
(
xn+1 −Q

(
f
))〉

+ 2αn〈f
(
Q
(
f
)) −Q(

f
)
, J
(
xn+1 −Q

(
f
))〉

≤ (1 − αn)2
∥∥xn −Q(f)

∥∥2 + 2kαn
∥∥xn −Q

(
f
)∥∥∥∥xn+1 −Q

(
f
)∥∥

+ 2αn〈f
(
Q
(
f
)) −Q(

f
)
, J
(
xn+1 −Q

(
f
))〉

≤
(
1 − 2αn + α2n

)∥∥xn −Q(f)
∥∥2 + kαn

(∥∥xn −Q(f)
∥∥2 +

∥∥xn+1 −Q(f)
∥∥2
)

+ 2αn〈f
(
Q
(
f
)) −Q(

f
)
, J
(
xn+1 −Q

(
f
))〉.

(3.36)

It then follows that

∥∥xn+1 −Q(f)
∥∥2

≤
(
1 − 2(1 − k)αn

1 − kαn

)∥∥xn −Q(f)
∥∥2 +

α2n
1 − kαn

∥∥xn −Q(f)
∥∥2

+
2αn

1 − kαn 〈Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xn+1

)〉

≤
(
1 − 2(1 − k)αn

1 − kαn

)∥∥xn −Q(f)
∥∥2 +

α2n
1 − kαnM

2

+
2αn

1 − kαn 〈Q
(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xn+1

)〉,

(3.37)

whereM = supn≥0‖xn −Q(f)‖. Put

λn =
2(1 − k)αn
1 − kαn ,

γn =
αn

2(1 − k)M
2 +

1
1 − k 〈Q

(
f
) − f(Q(

f
))
, J
(
Q
(
f
) − xn+1

)〉.
(3.38)

From the condition (C1) and Step 5, it follows that λn → 0,
∑∞

n=0λn = ∞, and lim supn→∞γn ≤
0. Since (3.37) reduces to

∥∥xn+1 −Q(f)
∥∥2 ≤ (1 − λn)

∥∥xn −Q(f)
∥∥2 + λnγn, (3.39)

from Lemma 2.3 with δn = 0, we conclude that limn→∞‖xn − Q(f)‖ = 0. This completes the
proof.
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Corollary 3.3. Let E be a uniformly smooth Banach space. Let C, T , {αn}, {βn}, {γn}, f , x0, {zn},
{yn}, and {xn} be the same as in Theorem 3.2. Then the conclusion of Theorem 3.2 still holds.

Proof. Since E is a uniformly smooth Banach space, E is reflexive, the norm is uniformly
Gâteaux differentiable, and every nonempty weakly compact convex subset of E has the fixed
point property for nonexpansivemappings. Thus the conclusion of Corollary 3.3 follows from
Theorem 3.2 immediately.

Corollary 3.4. Let C be a nonempty closed convex subset of a uniformly smooth Banach space E .
Let T : C → C be a nonexpansive mapping with F(T)/= ∅ . Let {αn} , {βn} , and {γn} be three
sequences in (0, 1) which satisfy the control conditions (C1)–(C3) in Theorem 3.2. Then for the initial
guess x0 ∈ C and u ∈ C , the sequence {xn} generated by (1.6) converges strongly to a fixed point of
T under the assumption limn→∞‖Tzn − zn‖ = 0 .

Remark 3.5. (1) In general, the condition (C3) in Theorem 3.2 and the condition
∑∞

n=0|γn+1 −
γn| < ∞ of Qin et al. [16, Theorem 2.1] are not comparable; neither of them implies the other.
Theorem 3.2 (and Corollary 3.4) removes the conditions

∑∞
n=0|αn+1 − αn| <∞ and

∑∞
n=0|βn+1 −

βn| <∞ imposed on the control parameters {αn} and {βn} of Qin et al. [16, Theorem 2.1].
(2) Theorem 3.2 (and Corollary 3.3) complements the corresponding results in

Moudafi [11], Xu [12], and Yao et al. [15]. In particular, if βn = 0 in (IS), then (IS) in
Theorem 3.2 reduces a new one for finding a fixed point of T :

zn = γnxn +
(
1 − γn

)
Txn,

xn+1 = αnf(xn) + (1 − αn)Tzn, n ≥ 0.
(3.40)

(3) Corollary 3.4 with βn = 0 in (IS) develops the corresponding results of Shioji and
Takahashi [8], Wittmann [9] without the condition

∑∞
n=0|αn+1 − αn| < ∞ as well as the result

of Chang [2] in which the condition limn→∞‖Txn − xn‖ = 0 was assumed.
Next, we consider the viscosity iterative schemewith theweakly contractivemappings

instead of the contractions.

Theorem 3.6. Let E be a reflexive Banach space having a uniformly Gâteaux differentiable norm.
Suppose that every weakly compact convex subset of E has the fixed point property for nonexpansive
mappings. Let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping
from C into itself with F(T)/= ∅. Let {αn}, {βn}, and {γn} be sequences in (0, 1) which satisfy the
conditions (C1)–(C3) in Theorem 3.2. Let A : C → C be a weakly contractive mapping and let
x0 ∈ C be chosen arbitrarily. Let{xn} be the sequence generated by

zn = γnxn +
(
1 − γn

)
Txn,

yn = βnxn +
(
1 − βn

)
Tzn,

xn+1 = αnAxn + (1 − αn)yn, n ≥ 0.

(3.41)

If limn→∞‖Tzn−zn‖ = 0, then {xn} converges strongly toQ(Ax∗) = x∗ ∈ F(T), whereQ is a sunny
nonexpansive retraction from C onto F(T).
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Proof. It follows from Remark 3.1 that F(T) is the sunny nonexpansive retract of C. Denote
by Q the sunny nonexpansive retraction of C onto F(T). Then Q ◦ A is a weakly contractive
mapping of C into itself. Indeed,

∥∥Q(Ax) −Q(
Ay

)∥∥ ≤ ∥∥Ax −Ay∥∥ ≤ ∥∥x − y∥∥ − ψ(∥∥x − y∥∥), ∀x, y ∈ C. (3.42)

Lemma 2.4 assures that there exists a unique element x∗ ∈ C such that x∗ = Q(Ax∗). Such a
x∗ ∈ C is an element of F(T).

Now we define an iterative scheme as follows:

un = γnwn +
(
1 − γn

)
Twn,

vn = βnwn +
(
1 − βn

)
Tun,

wn+1 = αnAx∗ + (1 − αn)vn, n ≥ 0.

(3.43)

Let {wn} be the sequence generated by (3.37). Then, by taking un as zn in limn→∞‖Tzn−zn‖ =
0, Theorem 3.2 with f = Ax∗ a constant assures that {wn} converges strongly to Q(Ax∗) = x∗

as n → ∞. For any n ≥ 0, observe that

∥∥yn − vn
∥∥ ≤ βn‖xn −wn‖ +

(
1 − βn

)‖Tzn − Tun‖
≤ βn‖xn −wn‖ +

(
1 − βn

)‖zn − un‖
≤ βn‖xn −wn‖ +

(
1 − βn

)∥∥γnxn +
(
1 − γn

)
Txn −

(
γnwn +

(
1 − γn

)
Twn

)∥∥

≤ βn‖xn −wn‖ +
(
1 − βn

)[
γn‖xn −wn‖ +

(
1 − γn

)‖xn −wn‖
]

= ‖xn −wn‖

(3.44)

Then we have

‖xn+1 −wn+1‖ ≤ αn‖Axn −Ax∗‖ + (1 − αn)
∥∥yn − vn

∥∥

≤ αn(‖Axn −Awn‖ + ‖Awn −Ax∗‖) + (1 − αn)‖xn −wn‖
≤ αn‖xn −wn‖ − αnψ(‖xn −wn‖) + αn

(‖wn − x∗‖ − ψ(‖wn − x∗‖))

+ (1 − αn)‖xn −wn‖
≤ ‖xn −wn‖ − αnψ(‖xn −wn‖) + αn‖wn − x∗‖.

(3.45)

Thus, for sn = ‖xn −wn‖, we obtain the following recursive inequality:

sn+1 ≤ sn − αnψ(sn) + αn‖wn − x∗‖. (3.46)
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Since ‖wn − x∗‖ → 0, it follows from Lemma 2.5 that limn→∞‖xn −wn‖ = 0. Hence

lim
n→∞

‖xn − x∗‖ ≤ lim
n→∞

(‖xn −wn‖ + ‖wn − x∗‖) = 0. (3.47)

This completes the proof.

Corollary 3.7. Let E be a uniformly smooth Banach space. Let C, T , A, x0, {αn}, {βn}, {γn}, {zn},
{yn}, and {xn} be the same as in Theorem 3.6. Then the conclusion of Theorem 3.6 still holds.

Remark 3.8. (1) Theorem 3.6 (and Corollary 3.7) develops and complements the correspond-
ing results inMoudafi [11], Qin et al. [16], Shioji and Takahashi [8], Wittmann [9], Xu [10, 12],
and Yao et al. [15].

(2) Even in the case of βn = 0 in Theorem 3.6, Theorem 3.6 appears to be independent of
Theorem 5.6 of Wong et al. [13] in which the control conditions (C1) and

∑∞
n=0|αn+1 −αn| <∞

were utilized. In fact, it appears to be unknown whether a reflexive and strictly convex space
satisfies the fixed point property for nonexpansive mappings.

(3) The merits of our results in this paper are that fewer restrictions are imposed on
the control parameters {αn}, {βn}, and {γn}. All of our results can be viewed as a supplement
to the results obtained by Qin et al. [16], Kim and Xu [14], and Yao et al. [15].

(4) The conclusions of Theorems 3.2 and 3.6 still hold if E is assumed to be strictly
convex instead of having the fixed point property for nonexpansive mappings.
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