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1. Introduction

Initiated by Hilger in his Ph.D. thesis [1] in 1988, the theory of time scales has been improved
greatly ever since, especially in the unification of the theory of differential equations in the
continuous case and the theory of finite difference equations in the discrete case. For the time
being, it remains active and attracts many distinguished researchers’ attention. The reason is
two sided. On the one hand, the calculus on time scales not only can unify differential and
difference equations, but also can provide accurate information of phenomena that manifest
themselves partly in continuous time and partly in discrete time. On the other hand, it is also
widely applied to the research of biology, heat transfer, stock market, wound healing and
epidemic models [2–6], and so forth. For instance, Hoffacker et al. have used the theory to
model how students suffering from the eating disorder bulimia are influenced by their college
friends. With the theory on time scales, they can model how the number of sufferers changes
during the continuous college term as well as during long breaks [5]. Hence, the dynamic
equations on time scales are worth studying theoretically and practically [3, 5, 7].
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Here and hereafter, we denote ϕp(u) is p-Laplacian operator, that is, ϕp(u) = |u|p−2u
for p > 1 and (ϕp)

−1 = ϕq, where 1/p + 1/q = 1. We make the blanket assumption that 0, T
are points in T, by an interval (0, T)

T
we always mean (0, T) ∩ T. Other types of interval are

defined similarly.
Recent research results indicate that considerable work has been made in the existence

problems of solutions of boundary value problems on time scales, for details, see [8–16] and
the references therein. In particular, some of them are considered the existence of positive
solutions of p-Laplacian boundary value problems on time scales, see [17–22]. The main tools
used in these papers are the various fixed point theorems in cones. Very recently, when the
nonlinear term f is allowed to change sign, Su et al. [23–25] proved the existence of positive
solutions to p-Laplacian dynamic equations with sign changing nonlinearity on time scales.

Motivated by references [23–25], we consider the following m-point singular p-
Laplacian boundary value problem on time scales of the form

(
ϕp
(
uΔ(t)

))∇
+ q(t)f(t, u(t)) = 0, t ∈ (0, T)

T
, (1.1)

u(0) = 0, u(T) =
m∑
i=1

ψi
(
uΔ(ξi)

)
, m ∈ N, (1.2)

where f(t, u) : (0, T)
T
× (0,∞) → R is continuous and ψi : R → R are continuous,

nondecreasing and ψi may be nonlinear, 0 ≤ ξ1 < ξ2 < · · · < ξm ≤ T. The singularity may
occur at u = 0, t = 0 and t = T, and the nonlinearity is allowed to change sign. In particular,
the boundary condition (1.2) includes the Dirichlet boundary condition. We obtain some new
existence criteria for positive solutions of the boundary value problem (1.1) and (1.2) by using
the upper and lower method. Our results are new even for the corresponding differential
(T = R) and difference equations (T = Z), as well as in general time scales setting. As an
application, an example is given to illustrate these results. In particular, our results improve
and generalize some known results of Agarwal et al. [26], O’Regan [27] (p = 2) and Lü et al.
[28] when T = R; include the results of Lü et al. [29] when T = R; extend and include the
results of Jiang et al. [30] in the case of T = Z.

For the convenience of statements, nowwe present some basic definitions and lemmas
concerning the calculus on time scales that one needs to read this manuscript, which can be
found in [3, 7]. One of other excellent sources on dynamical systems on time scales is from
the book in [31].

Definition 1.1 (see [3, 7]). A time scale T is a nonempty closed subset of R. It follows that the
jump operators σ, ρ : T → T defined by

σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t} (1.3)

(supplemented by inf∅ := supT and sup∅ := infT ) are well defined. The point t ∈ T

is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t,
respectively. If T has a right-scatteredminimumm, define Tκ = T−{m}; otherwise, set Tκ = T.
If T has a left-scatteredmaximumM, define T

κ = T−{M}; otherwise, set T
κ = T. The forward

graininess is μ(t) := σ(t) − t. Similarly, the backward graininess is ν(t) := t − ρ(t).
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Definition 1.2 (see [7]). We say that a function f : T → R is right-increasing at a point t0 ∈
T \ {max T} provided the following conditions hold.

(i) If t0 is right-scattered, then f(σ(t0)) > f(t0).

(ii) If t0 is right-dense, then there is a neighborhoodU of t0 such that f(t) > f(t0) for all
t ∈ U with t > t0.

Similarly, we say that f is right-decreasing if above in (i), f(σ(t0)) < f(t0) and (ii), f(t) <
f(t0).

Definition 1.3 (see [3]). A function f : T → R is called predifferentiable with (region of
differential) D provided the following conditions hold:

(i) f is continuous on T;

(ii) D ⊂ T
κ;

(iii) T
κ \D is countable and contains no right-scattered elements of T;

(iv) f is differentiable at each t ∈ D.

Next, we list some lemmas which will be used in the sequel.

Lemma 1.4 (see [3, 7]). Suppose f : T → R is a function and let t ∈ T
κ, then one has the following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
=
f(σ(t)) − f(t)

σ(t) − t . (1.4)

(iii) If f is right-dense, then f is differentiable at t if and only one the limit

lim
s→ t

=
f(t) − f(s)

t − s (1.5)

exists as a finite number. In this case

fΔ(t) = lim
s→ t

f(t) − f(s)
t − s . (1.6)

(iv) If f is differentiable at t, then

f(σ(t)) = f(t) + μ(t)fΔ(t) = f(t) + (σ(t) − t)fΔ(t). (1.7)

Lemma 1.5 (see [7]). Suppose f : T → R is differentiable at t0 ∈ T\{maxT}. If f assumes its local
right-minimum at t0, then fΔ(t0) ≥ 0. If f assumes its local right-maximum at t0, then fΔ(t0) ≤ 0.
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Lemma 1.6 ((Mean Value Theorem) [7]). Let f be a continuous function on [a, b] that is
differentiable on [a, b). Then there exist ξ∗, τ∗ ∈ [a, b) such that

fΔ(τ∗) ≤ f(b) − f(a)
b − a ≤ fΔ(ξ∗). (1.8)

Lemma 1.7 (see [3]). Suppose f and g are pre-differential with D. If U is a compact interval with
endpoints r, s ∈ T, then |f(s) − f(r)| ≤ {supt∈Uκ∩D∩T

|fΔ(t)|}|s − r|.

Now, we can obtain the following lemma which is similar to Lemma 1.7. The proofs
are similar to the proofs of Lemma 1.7 by a slight modification and we omit the proofs.

Lemma 1.8. Suppose f(t, u) and g(t, u) are predifferential with D × (0,+∞). If U is a compact
interval with endpoints r, s ∈ T, then |f(s, u) − f(r, u)| ≤ {supt∈Uκ∩D∩T

|fΔ(t, u)|}|s − r|, here
D ⊂ T

κ.

Throughout this paper, it is assumed that

(H1) f(t, u) : (0, T)
T
× (0,∞) → R is continuous;

(H2) q ∈ C((0, T)
T
, (0,∞)) and q ∈ C∇

ld
[0, T]

T
;

(H3) ψi : R → R are continuous and nondecreasing, here i = 1, 2, . . . , m.

2. Existence Results

Define the Banach space B = C[0, T]
T
with the norm ‖y‖ = supt∈[0,T]

T

|y(t)|.
To demonstrate existence of positive solutions to problem (1.1) and (1.2), we first

approximate the singular problem by means of a sequence of nonsingular problems, and
by using the lower and upper solution for nonsingular problem together with Schauders
fixed point theorem, and then we establish the existence of solutions to each approximating
problem. Our results are new even for the corresponding differential (T = R) and difference
equations (T = Z), as well as in general time scales setting. If we consider the corresponding
differential equation (T = R) of problem (1.1) and (1.2) in the method mentioned above, we
obtain the same existence results to problem (1.1) and (1.2). In the same way, we consider the
corresponding difference equation (T = R) of problem (1.1) and (1.2), we obtain the same
existence results to problem (1.1) and (1.2). Here, the two same existence results are obtained
in different settings by using the essentially same method. Naturally, it is quite necessary
to consider the existence results to problem (1.1) and (1.2) in same setting. In this case,
we need to solve the problem with the help of calculus on time scales, because it not only
can unify differential and difference equations, but also can provide accurate information of
phenomena that manifests themselves partly in continuous time and partly in discrete time.
For example, we can consider the problem (1.1) and (1.2) on time scales

T = {0} ∪
{(

1
2

)N
}
∪
[
1
2
, 1
]
∪ [2, 3]. (2.1)

However, if t is taken from (2.1), we cannot study the problem (1.1) and (1.2) only in
differential case, neither can we study the problem (1.1) and (1.2) only in difference case.

Now we state and prove our main result.
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Theorem 2.1. Let n0 ∈ {1, 2, . . .} be fixed. Assume that (H1)–(H3) hold and the following conditions
are satisfied.

(A1) For each n ∈ {n0, n0 + 1, . . .} ≡ N1, there is a constant ρn such that {ρn} is a
strictly monotone decreasing sequence with limn→∞ρn = 0, and q(t)f(t, ρn) ≥ 0 for
t ∈ [1/2n+1, T]

T
;

(A2) There exists a function α ∈ C[0, T]
T
∩ CΔ(0, T]

T
, ϕp(αΔ) ∈ C∇(0, T)

T
with α(0) =

0, α(T) −∑m
i=1ψi(α

Δ(ξi)) ≤ 0, α > 0 on (0, T]
T
and −(ϕp(αΔ))∇ ≤ q(t)f(t, α) for t ∈

(0, T)
T
;

(A3) There exists a function β ∈ C[0, T]
T
∩ CΔ(0, T]

T
, ϕp(βΔ) ∈ C∇(0, T)

T
with β ≥ α, β ≥

ρn0 for t ∈ [0, T]
T
and β(T) − ∑m

i=1ψi(β
Δ(ξi)) > 0, with −(ϕp(βΔ))∇ ≥ q(t)f(t, β) for

t ∈ (0, T)
T
, and −(ϕp(βΔ))∇ ≥ q(t)f(1/2n0+1, β) for t ∈ (0, 1/2n0+1)

T
.

Then the boundary value problem (1.1) and (1.2) has a positive solution u ∈ C[0, T]
T
∩

CΔ(0, T]
T
, ϕp(uΔ) ∈ C∇(0, T)

T
with u ≥ α for t ∈ [0, T]

T
.

Proof. It follows from the condition (A1) that 1/2n+1 ∈ (0, T]
T
for each n ∈ N1. That is, (0, T]T

is not empty. Without loss of generality, fix n ∈ N1. If ξ1 > 0, then we can suppose that
mint∈[ξ1,T]T

α(t) ≥ ρn, let tn ∈ (0, ξ1)T
be such that

α(tn) = ρn, α ≤ ρn for t ∈ [0, tn]T
. (2.2)

If ξ1 = 0, then we can suppose that mint∈[ξ2,T]T
α(t) ≥ ρn, let tn ∈ (0, ξ2)T

be such that (2.2)
holds. Define

αn(t) =

⎧
⎨
⎩
ρn if t ∈ [0, tn]T

,

α if t ∈ [tn, T]T
,

here α(tn) = ρn. (2.3)

We denote en = [1/2n+1, T]
T
, ωn(t) = max{1/2n+1, t} for t ∈ [0, T]

T
and

fn(t, x) = max
{
f(t, x), f(ωn(t), x)

}
. (2.4)

Define a sequence hn0(t, x) = fn0(t, x) and

hn(t, x) = min
{
fn0(t, x), . . . , fn(t, x)

}
, n = n0 + 1, n0 + 2, . . . . (2.5)

Then

f(t, x) ≤ · · · ≤ hn+1(t, x) ≤ hn(t, x) ≤ · · · ≤ hn0(t, x) for (t, x) ∈ (0, T)
T
× (0,∞),

hn(t, x) = f(t, x) for (t, x) ∈ en × (0,∞).
(2.6)
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Consider the p-Laplacian boundary value problem

(
ϕp
(
uΔ(t)

))∇
+ q(t)h∗n0(t, u(t)) = 0, t ∈ (0, T)

T
, (2.7)

u(0) = ρn0 , u(T) −
m∑
i=1

ψ∗
i

(
uΔ(ξi)

)
= ρn0 , (2.8)

where

h∗n0(t, u(t)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

hn0(t, αn0(t)) + r(αn0(t) − u(t)), u(t) ≤ αn0(t),
hn0(t, u(t)), αn0(t) ≤ u(t) ≤ β,
hn0
(
t, β(t)

)
+ r
(
β(t) − u(t)), u(t) ≥ β,

(2.9)

ψ∗
i (zi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi
(
αΔ(ξi)

)
, zi ≤ αΔn0(ξi) = αΔ(ξi),

ψi(zi), αΔn0(ξi) ≤ zi ≤ βΔ(ξi),
ψi
(
βΔ(ξi)

)
, zi ≥ βΔ(ξi),

i = 1, . . . , m, (2.10)

and r : R → [−1, 1] is the radial retraction function defined by

r(u) =

⎧
⎪⎨
⎪⎩
u, |u| ≤ 1,
u

|u| , |u| > 1.
(2.11)

Suppose

C0[0, T]T
= {u ∈ C[0, T]

T
: u(0) = 0} CΔ

ρn0
[0, T]

T
=
{
u ∈ CΔ[0, T]

T
: u(0) = ρn0

}
. (2.12)

We define the mappings Lp; F : CΔ
ρn0

[0, T]
T
→ C0[0, T]T

× R be such that

Lpu(t) =
(
ϕp
(
uΔ(t)

)
− ϕp

(
uΔ(0)

)
, u(T)

)
, (2.13)

Fu(t) =

(
−
∫ t
0
q(x)h∗n0(x, u(x))∇x,

m∑
i=1

ψ∗
i

(
uΔ(ξi)

)
+ ρn0

)
. (2.14)

By using the Arzela-Ascoli theorem on time scales [2], we can show that F is continuous and
compact. By using the (2.7), (2.8), (2.13) and (2.14), we obtain

(
ϕp
(
uΔ(t)

)
− ϕp

(
uΔ(0)

)
, u(T)

)
=

(
−
∫ t
0
q(x)h∗n0(x, u(x))∇x,

m∑
i=1

ψ∗
i

(
uΔ(ξi)

)
+ ρn0

)
,

(2.15)
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that is

Lpu(t) = Fu(t). (2.16)

If

Lpv =
(
u, γ

)
for u ∈ C0[0, T]T

, γ = ρn0 +
∫T
0
ϕq(u(x) − u(T))Δx, (2.17)

then v(t) = ρn0 +
∫ t
0ϕq(u(x) − u(T))Δx, hence L−1

p exists and is continuous. So

u(t) = L−1
p Fu(t). (2.18)

It is clear that solving the boundary value problem (2.7) and (2.8) is equivalent to finding
a fixed point of u = L−1

p Fu ≡ Nu, where N = L−1
p F : CΔ

ρn0
[0, T]

T
→ CΔ

ρn0
[0, T]

T
is compact.

Schauder’s fixed point theorem guarantees that the boundary value problem (2.7) and (2.8)
has a solution un0(t) ∈ CΔ[0, T]

T
with ϕp(uΔn0(t)) ∈ C∇(0, T)

T
.

We first show that

αn0(t) ≤ un0(t) for t ∈ [0, T]
T
. (2.19)

If (2.19) is not true, the function un0(t) − αn0(t) has a negative minimum for some τ ∈ (0, T]
T
.

We consider two cases, namely, τ ∈ (0, T)
T
and τ = T.

Case 1. Assume that τ ∈ (0, T)
T
, then we claim

(
ϕp
(
uΔn0

))∇
(τ) ≥

(
ϕp
(
αΔn0

))∇
(τ). (2.20)

Since un0(t) − αn0(t) has a negative minimum for some τ ∈ (0, T)
T
, in view of Definition 1.2,

Lemmas 1.4 and 1.5, we have uΔn0(τ) − αΔn0(τ) ≥ 0 and there exists a δ with τ − δ ∈ [0, τ)
T
such

that uΔn0(t) − αΔn0(t) ≤ 0 for t ∈ [τ − δ, τ)
T
. Thus

ϕp
(
uΔn0(t)

)
− ϕp

(
αΔn0(t)

)
≤ ϕp

(
uΔn0(τ)

)
− ϕp

(
αΔn0(τ)

)
for t ∈ [τ − δ, τ)

T
, (2.21)

which leads to

ϕp
(
uΔn0(t)

) − ϕp
(
uΔn0(τ)

)

t − τ ≥ ϕp
(
αΔn0(t)

) − ϕp
(
αΔn0(τ)

)

t − τ for t ∈ [τ − δ, τ)
T
. (2.22)
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If τ is left-dense, in view of Lemma 1.4

(
ϕp
(
uΔn0

))∇
(τ) = lim

t∈[τ−δ,τ)→ τ

ϕp
(
uΔn0(t)

) − ϕp
(
uΔn0(τ)

)

t − τ

≥ lim
t∈[τ−δ,τ)→ τ

ϕp
(
αΔn0(t)

) − ϕp
(
αΔn0(τ)

)

t − τ

=
(
ϕp
(
αΔn0

))∇
(τ).

(2.23)

If τ is left-scattered, by Lemma 1.4 and (2.22) we obtain

(
ϕp
(
uΔn0

))∇
(τ) =

ϕp
(
uΔn0(τ)

) − ϕp
(
uΔn0
(
ρ(τ)

))

τ − ρ(τ)

≥ ϕp
(
αΔn0(τ)

) − ϕp
(
αΔn0
(
ρ(τ)

))

τ − ρ(τ)

=
(
ϕp
(
αΔn0

))∇
(τ).

(2.24)

Hence, (2.20) is established.
However, by (2.3), (2.9) and un0(τ) < αn0(τ),we obtain

(
ϕp
(
uΔn0(τ)

))∇ −
(
ϕp
(
αΔn0(τ)

))∇

= −
[
q(τ)hn0(τ, αn0(τ)) + q(τ)r(αn0(τ) − un0(τ)) +

(
ϕp
(
αΔn0(τ)

))∇]

=

⎧
⎨
⎩
−
[
q(τ)hn0(τ, α(τ)) + q(τ)r(α(τ) − un0(τ)) +

(
ϕp
(
αΔ(τ)

))∇]
, τ ∈ [tn0 , T)T

,

−[q(τ)hn0
(
τ, ρn0

)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈ (0, tn0)T

.

(2.25)

Assume that τ ∈ [1/2n0+1, T]
T
, then gn0(τ, x) = f(τ, x) for x ∈ (0,∞), by (A1) and (A2),

we have

(
ϕp
(
uΔn0(τ)

))∇ −
(
ϕp
(
αΔn0(τ)

))∇

=

⎧
⎨
⎩
−
[
q(τ)f(τ, α(τ)) + q(τ)r(α(τ) − un0(τ)) +

(
ϕp
(
αΔ(τ)

))∇]
, τ ∈ [tn0 , T)T

,

−[q(τ)f(τ, ρn0
)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈ (0, tn0)T

,

< 0,

(2.26)

which implies a contraction.
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Assume that τ ∈ (0, 1/2n0+1)
T
, then hn0(τ, x) = max{f(1/2n0+1, x), f(τ, x)}, in view of

(A1), (A2) and q(τ) > 0, we have

(
ϕp
(
uΔn0(τ)

))∇ −
(
ϕp
(
αΔn0(τ)

))∇

≤

⎧
⎪⎪⎨
⎪⎪⎩

−
[
q(τ)f(τ, α(τ)) + q(τ)r(α(τ) − un0(τ)) +

(
ϕp
(
αΔ(τ)

))∇]
, τ ∈ [tn0 , T)T

,

−
[
q(τ)f

(
1

2n0+1
, ρn0

)
+ q(τ)r

(
ρn0 − un0(τ)

)]
, τ ∈ (0, tn0)T

,

< 0.

(2.27)

which implies a contraction.

Case 2. Assume that τ = T. That is, αn0(T)−un0(T) > 0, by (2.3), (2.8) and (2.10) together with
α(T) ≤∑m

i=1ψi(α
Δ(ξi)),we have the following three subcases.

(a) If uΔn0(ξi) ≤ αΔ(ξi) for i = 1, 2, . . . , m, then

0 < αn0(T) − un0(T)

= α(T) −
m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
− ρn0

<
m∑
i=1

ψi
(
αΔ(ξi)

)
−

m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)

=
m∑
i=1

ψi
(
αΔ(ξi)

)
−

m∑
i=1

ψi
(
αΔ(ξi)

)
= 0,

(2.28)

this is a contradiction.
(b) If αΔ(ξi) < uΔn0(ξi) for i = 1, 2, . . . , m.Assume that uΔn0(ξi) ≤ βΔ(ξi) for i = 1, 2, . . . , m,

then

m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
=

m∑
i=1

ψi
(
uΔn0(ξi)

)
. (2.29)

Assume that βΔ(ξi) < uΔn0(ξi) for i = 1, 2, . . . , m, then

m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
=

m∑
i=1

ψi
(
βΔ(ξi)

)
. (2.30)

Assume that there exist sequences {il1} = {1, 2, . . . , l1} and {ik1} = {1, 2, . . . , k1} such
that βΔ(ξil1 ) < u

Δ
n0(ξil) and u

Δ
n0(ξik1 ) ≤ βΔ(ξik1 ), here l1 + k1 = m, then

m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
=

k1∑
ik1=1

ψik1

(
uΔn0

(
ξik1

))
+

l1∑
il1=1

ψil1

(
βΔ
(
ξil1

))
. (2.31)
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Hence, by (2.29), (2.30) and (2.31) together with the monotonicity of ψi, we have

0 < αn0(T) − un0(T)

= α(T) −
m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
− ρn0

≤
m∑
i=1

ψi
(
αΔ(ξi)

)
−

m∑
i=1

ψ∗
i

(
uΔn0(ξi)

)
− ρn0 < 0,

(2.32)

this is a contradiction.
(c) If there exist sequences {il} = {1, 2, . . . , l} and {ik} = {1, 2, . . . , k} such that αΔ(ξil) <

uΔn0(ξil) and u
Δ
n0(ξik) ≤ αΔ(ξik), here l+k = m. Essentially the same reasoning as before we have

0 < αn0(T) − un0(T) = α(T) −
∑m

i=1ψ
∗
i (u

Δ
n0(ξi)) − ρn0 < 0, this is a contradiction.

Thus, Cases 1–2 imply (2.19) is established. In particular, since α(t) ≤ αn0(t) for t ∈
[0, T]

T
, we obtain α(t) ≤ αn0(t) ≤ un0(t) for t ∈ [0, T]

T
.

Essentially the same reasoning as the proof of inequality (2.19) we obtain un0(t) ≤
β for t ∈ [0, T]

T
.

Hence

α(t) ≤ αn0(t) ≤ un0(t) ≤ β(t) for t ∈ [0, T]
T
. (2.33)

Now, we discuss the boundary value problem

(
ϕp
(
uΔ(t)

))∇
+ q(t)h∗n0+1(t, u(t)) = 0, t ∈ (0, T)

T
,

u(0) = ρn0+1, u(T) −
m∑
i=1

ψ∗
i

(
uΔ(ξi)

)
= ρn0+1,

(2.34)

where

h∗n0+1(t, u(t)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

hn0+1(t, αn0+1(t)) + r(αn0+1(t) − u(t)), u(t) ≤ αn0+1(t),
hn0+1(t, u(t)), αn0+1(t) ≤ u(t) ≤ un0(t),
hn0+1(t, un0(t)) + r(un0(t) − u(t)), u(t) ≥ un0(t),

ψ∗
i (zi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi
(
αΔ(ξi)

)
, zi ≤ αΔn0+1(ξi) = αΔ(ξi),

ψi(zi), αΔn0+1(ξi) ≤ zi ≤ uΔn0(ξi),
ψi
(
uΔn0(ξi)

)
, zi ≥ uΔn0(ξi),

i = 1, . . . , m.

(2.35)

Schauder’s fixed point theorem guarantees that the boundary value problem (2.34) has a
solution un0+1(t) ∈ CΔ[0, T]

T
with ϕp(uΔn0+1(t)) ∈ C∇(0, T)

T
.
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Essentially the same reasoning as the proof of inequality (2.33), we have

α(t) ≤ αn0+1(t) ≤ un0+1(t) ≤ un0(t) for t ∈ [0, T]
T
. (2.36)

If there exists uk(t) for some k ∈ {n0 + 1, n0 + 2, . . .} satisfying αk(t) ≤ uk(t) ≤ uk−1(t)
for t ∈ [0, T]

T
. Then we investigate the boundary value problem

(
ϕp
(
uΔ(t)

))∇ + q(t)h∗k+1(t, u(t)) = 0, t ∈ (0, T)
T
,

u(0) = ρk+1, u(T) −
m∑
i=1
ψ∗
i

(
uΔ(ξi)

)
= ρk+1,

(2.37)

where

h∗
k+1(t, u(t)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

hk+1(t, αk+1(t)) + r(αk+1(t) − u(t)), u(t) ≤ αk+1(t),
hk+1(t, u(t)), αk+1(t) ≤ u(t) ≤ uk(t),
hk+1(t, uk(t)) + r(uk(t) − u(t)), u(t) ≥ uk(t),

ψ∗
i (zi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi
(
αΔ(ξi)

)
, zi ≤ αΔk+1(ξi) = αΔ(ξi),

ψi(zi), αΔ
k+1(ξi) ≤ zi ≤ uΔk (ξi),

ψΔ
i (uk(ξi)), zi ≥ uk(ξi),

i = 1, . . . , m.

(2.38)

It follows from Schauder’s fixed point theorem that the boundary value problem (2.37) has a
solution uk+1(t) ∈ CΔ[0, T]

T
with ϕp(uΔk+1(t)) ∈ C∇(0, T)

T
.

By using the similar arguments as above, we have

α(t) ≤ αk+1(t) ≤ uk+1(t) ≤ uk(t) for t ∈ [0, T]
T
. (2.39)

Hence, for each n ∈ {n0, n0 + 1, . . .}, the mathematical induction implies that

α(t) ≤ αn(t) ≤ un(t) ≤ un−1(t) ≤ · · · ≤ un0(t) ≤ β(t) for t ∈ [0, T]
T
. (2.40)

Denote

Rn0 = sup
{∣∣f(t, y)∣∣ : t ∈

[
1

2n0+1
, T

]

T

, α(t) ≤ y ≤ un0(t)
}
. (2.41)

It follows from Lemma 1.6 that there exist τ∗1 , τ
∗
2 ∈ [1/2n0+1, T)

T
satisfy

uΔn
(
τ∗1
) ≤ un(T) − un

(
1/2n0+1

)

T − 1/2n0+1
≤ uΔn

(
τ∗2
)
. (2.42)



12 Abstract and Applied Analysis

From (2.42), we have

ϕp
(
uΔn (t)

)
= ϕp

(
uΔn
(
τ∗1
)) −

∫ t
τ∗1

q(s)f(s, u(s))∇s

≤ ϕp
(
un(T) − un

(
1/2n0+1

)

T − 1/2n0+1

)
+ Rn0

∫T
1/2n0+1

q(s)∇s for t ∈
[

1
2n0+1

, T

]

T

,

ϕp
(
uΔn (t)

)
= ϕp

(
uΔn
(
τ∗2
)) −

∫ t
τ∗2

q(s)f(s, u(s))∇s

≥ ϕp
(
un(T) − un

(
1/2n0+1

)

T − 1/2n0+1

)
− Rn0

∫T
1/2n0+1

q(s)∇s for t ∈
[

1
2n0+1

, T

]

T

.

(2.43)

So there exists a positive number K0 such that |uΔn (t)| ≤ K0. By Lemma 1.8, we have

{un(t)}∞n=n0+1 is a bounded, equicontinuous family on t ∈
[

1
2n0+1

, T

]

T

. (2.44)

The Arzela-Ascoli theorem on time scales [2] guarantees the existence of a subsequence Nn0

of integers and a function zn0(t) ∈ C[1/2n0+1, T]
T
with un(t) converging uniformly to zn0(t)

on [1/2n0+1, T]
T
as n → ∞ through Nn0 . Similarly

{un(t)}∞n=n0+1 is a bounded, equicontinuous family on t ∈
[

1
2n0+2

, T

]

T

. (2.45)

Thus there is a subsequence Nn0+1 of Nn0 and a function zn0+1(t) ∈ C[1/2n0+2, T]
T
with

un(t) converging uniformly to zn0+1(t) on [1/2n0+2, T]
T
as n → ∞ through Nn0+1. Since

Nn0+1 ⊆ Nn0 , we have zn0+1(t) = zn0(t) on [1/2n0+1, T]
T
. Proceed inductively to obtain

subsequence of integers Nn0 ⊇ Nn0+1 ⊇ · · · ⊇ Nn ⊇ · · · and functions z(t) ∈ C[1/2n+1, T]
T

with un(t) converging uniformly to zn(t) on [1/2n+1, T]
T
as n → ∞ through Nn and zn(t) =

zn−1(t) on [1/2n, T]
T
.

Now, we define a function u : [0, T] → [0,∞) with u(t) = zn(t) on [1/2n+1, T]
T
and

u(0) = 0. Notice, u(t) is well defined and α(t) ≤ u(t) ≤ un0(t) ≤ β for t ∈ (0, T)
T
. Nextly fix

t ∈ (0, T)
T
and let l ∈ {n0, n0 + 1, . . .} be such that t ∈ (1/2l+1, T)

T
, let N

∗
l = {n ∈ Nl : n ≥ l}, we

have

ψ∗
i (un(ξi)) = ψi(un(ξi)), h∗n(t, un(t)) = hn(t, un(t)) = f(t, un(t)) for n ∈ N

∗
l . (2.46)
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Hence, for n ∈ N
∗
l , we have unwhich is the positive solution of the following boundary value

problem

(
ϕp
(
uΔn (t)

))∇
+ q(t)f(t, un(t)) = 0, t ∈

(
1
2n
, T

)

T

,

un(0) = ρn, un(T) −
m∑
i=1

ψi
(
uΔn (ξi)

)
= ρn.

(2.47)

Let n → ∞ through N
∗
l
, we have u(t)that satisfies

(
ϕp
(
uΔ(t)

))∇
+ q(t)f(t, u(t)) = 0, t ∈ (0, T)

T
,

u(0) = 0, u(T) −
m∑
i=1

ψi
(
uΔ(ξi)

)
= 0.

(2.48)

It remains to show that u(t) is continuous at 0. Now by limn→∞un(0) = 0, there exists n1 ∈
{n0, n0 + 1, . . .} with un1(0) < ε/2. Since un1(t) ∈ C[0, T]

T
there exists δn1 ∈ (0, T)

T
with

un1(t) < ε/2 for t ∈ [0, δn1)T
. By the monotonicity of {un(t)}n∈N0

for each t ∈ [0, T]
T
, we have

α(t) ≤ un(t) ≤ un1(t) < ε/2 for t ∈ [0, δn1)T
and n ≥ n1, which means α(t) ≤ u(t) < ε/2 for

t ∈ [0, δn1)T
. So u(t) is continuous at 0.

If we replace t ∈ [1/2n+1, T]
T
with t ∈ [1/2n+1, T − 1/2n+1]

T
, the singularity occurs at

u = 0, t = 0 and t = T .
If we replace t ∈ [1/2n+1, T]

T
with t ∈ [0, T − 1/2n+1]

T
, the singularity occurs at u = 0

and t = T .
If we replace t ∈ [1/2n+1, T]

T
with t ∈ [0, T]

T
, the singularity occurs at u = 0.

So it is easily obtain the analogue of Theorem 2.1 in this section. See the following
remark.

Remark 2.2. If (A3) is appropriately adjusted, we can replace t ∈ [1/2n+1, T]
T
in (A1) by

t ∈
[

1
2n+1

, T − 1
2n+1

]

T

, (2.49)

t ∈
[
0, T − 1

2n+1

]

T

, (2.50)

or

t ∈ [0, T]
T
. (2.51)

For example, if (2.49) occurs, (A3) is replaced by
(A3′) There exists a function β ∈ C[0, T]

T
∩ CΔ(0, T]

T
, ϕp(βΔ) ∈ C∇(0, T)

T
such that

β ≥ α and β ≥ ρn0 for t ∈ [0, T]
T
, β(T) −∑m

i=1ψi(β
Δ(ξi)) > 0, −(ϕp(βΔ))∇ ≥ q(t)f(t, β) for t ∈

(0, T)
T
, −(ϕp(βΔ))∇ ≥ q(t)f(1/2n0+1, β) for t ∈ (0, 1/2n0+1)

T
and −(ϕp(βΔ))∇ ≥ q(t)f(T −

1/2n0+1, β) for t ∈ (T − 1/2n0+1, T)
T
.
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Assume that (H1)–(H3), (A1) and (A2) hold, and in addition suppose the following
conditions are satisfied:

(A4) −(ϕp(αΔ))∇ < q(t)f(t, u) for

(t, u) ∈ (0, T]
T
×
{
u ∈ C[0, T]

T
∩ CΔ(0, T]

T
: 0 < u ≤ α

}
; (2.52)

(A5) There exists a function β ∈ C[0, T]
T
∩ CΔ(0, T]

T
, ϕp(βΔ) ∈ C∇(0, T)

T
such that

β ≥ ρn0 for t ∈ [0, T]
T
, β(T) −∑m

i=1ψi(β
Δ(ξi)) > 0, −(ϕp(βΔ))∇ ≥ q(t)f(t, β) for t ∈ (0, T)

T
and

−(ϕp(βΔ))∇ ≥ q(t)f(1/2n0+1, β) for t ∈ (0, 1/2n0+1)
T
;

(A6) β(T) ≥ α(T).

Then the result in Theorem 2.1 is also true. This follows immediately from Theorem 2.1
if we show (A3) holds. That is to say, if we show β ≥ α for t ∈ [0, T]

T
, then the result

holds. Assume it is not true, in view of (A6) we obtain β − α has a negative minimum
for some τ6 ∈ (0, T)

T
, so (β − α)Δ(τ6) ≥ 0 and essentially the same reasoning as the proof

of inequality (2.20), we have (ϕp(αΔ))
∇(τ6) ≤ (ϕp(βΔ))

∇(τ6). However, by (A4), (A5) and

α(τ6) > β(τ6) > 0, we obtain −(ϕp(αΔ))∇(τ6) < q(τ6)f(τ6, β(τ6)). Hence (ϕp(αΔ))
∇(τ6) −

(ϕp(βΔ))
∇(τ6) ≥ (ϕp(αΔ))

∇(τ6) + q(τ6)f(τ6, β(τ6)) > 0,which implies a contradiction.

Corollary 2.3. Let n0 ∈ {1, 2, . . .} be fixed, suppose (H1)–(H3), (A1), (A2) and (A4)–(A6) hold,
then the boundary value problem (1.1) and (1.2) has a solution u ∈ C[0, T]

T
∩ CΔ(0, T]

T
, ϕp(uΔ) ∈

C∇(0, T)
T
with u ≥ α for t ∈ [0, T]

T
.

3. Construction of α and β

In this section, we consider how to construct a lower solution α and an upper solution β in
certain circumstances. In this section, we assume that

m∑
i=1

ψi(xi) ≥ 0 for xi ∈ R. (3.1)

Lemma 3.1. Assume that there exists a nonincreasing positive sequence {εn} with limn→∞εn = 0,
then there exist a function λ(t) ∈ CΔ[0, T]

T
satisfying

(i) ϕp(λΔ(t)) ∈ C∇[0, T]
T
, λ(t) > 0 for t ∈ (0, T]

T
and maxt∈[0,T]

T
|(ϕp(λΔ(t)))∇| > 0;

(ii) λ(0) = 0, λ(T) −∑m
i=1ψi(λ

Δ(ξi)) < 0 and 0 < λ(t) ≤ εn for t ∈ (0, T]
T
.

Proof. Let en = [1/2n+1, T]
T
(n ≥ n0). Assume that r : [0, T]

T
→ [0,∞) be such that r(0) =

0, r(t) = ε
p−1
n /(2T)p+1 for t ∈ en \ en−1, n ≥ n0 and r(t) = ε

p−1
n0 /(2T)

p+1 for t ∈ [1/2n0 , T]
T
.

Let u(t) =
∫ t
0r(s)Δs, v(t) = [

∫ t
0u(s)∇s]1/(p−1), w(t) =

∫ t
0v(s)Δs. Suppose τ7 ∈ en \ en−1for n ≥

n0, τ8 ∈ (0, T]
T
satisfy τ7 < τ8 and 2τ8−T ≥ τ7. It is easy to show that u, v,w : [0, τ7]T

→ [0,∞)
are continuous and increasing. Denote

a(t) = [c0(τ8 − t) + c1t]1/(p−1) for t ∈ [τ7, T]T
, (3.2)
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here

c0 = −τ7
τ8
u(τ7) +

1
τ8
(v(τ7))p−1, c1 =

τ8 − τ7
τ8

u(τ7) +
1
τ8
(v(τ7))

p−1. (3.3)

Hence, a(t) > 0 for t ∈ [τ7, T]T
and is nondecreasing. Define

b(t) =
∫ t
τ7

a(s)Δs +w(τ7) for t ∈ [τ7, τ8]T
,

P(t) =

⎧
⎨
⎩
b(t), t ∈ [τ7, τ8]T

,

b(2τ8 − t), t ∈ [τ8, T]T
,

λ(t) =

⎧
⎨
⎩
w(t), t ∈ [0, τ7]T

,

P(t), t ∈ [τ7, T]T
.

(3.4)

We can easily prove w(τ7) = P(τ7), wΔ(τ7) = PΔ(τ7), (ϕp(wΔ))∇(τ7) = (ϕp(PΔ))∇(τ7) and
w ∈ CΔ[0, τ7]T

, P ∈ CΔ[τ7, T]T
, ϕp(wΔ) ∈ C∇[0, τ7]T

, ϕp(PΔ) ∈ C∇[τ7, T]T
. Thus, we have

λ ∈ CΔ[0, T]
T
and ϕp(λΔ) ∈ C∇[0, T]

T
with max0≤t≤T |(ϕp(λΔ))∇(t)| > 0. Now since w(t) > 0

for t ∈ (0, τ7]T
and P(t) > 0 for t ∈ [τ7, T]T

,we have λ(t) > 0 for t ∈ (0, T]
T
.On the other hand,

u(τ7) =
∫ τ7
0
r(s)Δs ≤ τ7 ε

p−1
n

(2T)p+1
<

ε
p−1
n

(2T)p
,

v(τ7) =
[∫ τ7

0
u(s)∇s

]1/(p−1)
<

(
τ7

ε
p−1
n

(2T)p

)1/(p−1)
<

εn

2p/(p−1)T
, w(τ7) < τ7 × εn

2p/(p−1)T
<
εn
2
,

(3.5)

by the monotonicity of P(t) on [τ7, τ8]T
, [τ8, T]T

, respectively, we have

λ(τ8) = max
t∈[τ7,T]T

λ(t)

=
∫ τ8
τ7

a(s)Δs +w(τ7)

≤ (τ8 − τ7) max
t∈[τ7,τ8]T

[c0(τ8 − t) + c1t]1/(p−1) +w(τ7)

≤ (τ8 − τ7)
[
(τ8 − τ7)u(τ7) + (v(τ7))

p−1
]1/(p−1)

+w(τ7)

< T

[
T
ε
p−1
n

(2T)p
+

ε
p−1
n

2(2T)p−1

]1/(p−1)
+
εn
2
<
εn
2

+
εn
2

= εn.

(3.6)

Consequently, 0 < λ(t) ≤ εn, t ∈ (0, T]
T
.
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Without loss of generality,
∑m

i=1ψi(λ
Δ(ξi)) ≥ εn > λ(T). We have

λ(T) −
m∑
i=1

ψi
(
λΔ(ξi)

)
< 0. (3.7)

Now we discuss how to construct a lower solution α(t) in (A2) and (A4).
(A7) For each n ∈ {1, 2, . . .}, there exist a constant k0 and a strictly monotone

decreasing sequence {ρn} with limn→∞ρn = 0, and q(t)f(t, u) ≥ k0 for (t, u) ∈ [1/2n+1, T]
T
×

{u ∈ C[0, T]
T
∩ CΔ(0, T]

T
: 0 < u ≤ ρn};

(A8) There exists a function β ∈ C[0, T]
T
∩ CΔ(0, T]

T
, ϕp(βΔ) ∈ C∇(0, T)

T
such that

β ≥ 0 for t ∈ [0, T]
T
, β(T) −∑m

i=1ψi(β
Δ(ξi)) > 0, −(ϕp(βΔ))∇ ≥ q(t)f(t, β) for t ∈ (0, T)

T
and

−(ϕp(βΔ))∇ ≥ q(t)f(1/2n0+1, β) for t ∈ (0, 1/2n0+1)
T
.

Theorem 3.2. Let n0 ∈ {3, 4, . . .} be fixed. If (H1)–(H3), (3.1) and (A7)-(A8) hold, then boundary
value problem (1.1) and (1.2) has a solution u ∈ C[0, T]

T
∩CΔ(0, T]

T
with ϕp(uΔ) ∈ C∇(0, T)

T
and

u(t) > 0 for t ∈ (0, T]
T
.

Proof. By Corollary 2.3, we need only show that conditions (A1), (A2), (A4)–(A6) are
satisfied. Without loss of generality, suppose

β(t) > ρn0 for t ∈ [0, T]
T
, β(T) −

m∑
i=1

ψi
(
βΔ(ξi)

)
> ρn0 , (3.8)

by (A7), (A8) and (3.8), we obtain that (A1) and ( A5) hold.
From Lemma 3.1 there exists a function λ(t) ∈ CΔ[0, T]

T
satisfying

(i) ϕp(λΔ(t)) ∈ C∇[0, T]
T
, λ(t) > 0 for t ∈ (0, T]

T
and R1 = maxt∈[0,T]

T
|(ϕp(λΔ(t)))∇| > 0.

(ii) λ(0) = 0, λ(T) −∑m
i=1ψi(λ

Δ(ξi)) < 0 and 0 < λ(t) ≤ ρn for t ∈ (0, T]
T
.

Assume m = min{1, (k0/2R1)
1/(p−1), ρn0/|λ|}. Let α(t) = mλ(t) for t ∈ [0, T]

T
. Then

α(t) ∈ C[0, T]
T
∩ CΔ(0, T]

T
, ϕp(αΔ(t)) ∈ C∇(0, T)

T
, α(0) = 0 with 0 < α(t) ≤ λ(t) ≤ ρn for

t ∈ (1/2n+1, T]
T
. Without loss of generality, we have α(T) −∑m

i=1ψi(α
Δ(ξi)) < 0. For arbitrary

(t, u) ∈ (0, T]
T
× {u ∈ C[0, T]

T
∩ CΔ(0, T]

T
: 0 < u ≤ α(t)}, there exists n ∈ {n0, n0 + 1, . . .} such

that (t, u) ∈ [1/2n+1, T]
T
× {u ∈ C[0, T]

T
∩ CΔ(0, T]

T
: 0 < u ≤ α(t)}.We have

q(t)f(t, u) +
(
ϕp
(
αΔ(t)

))∇ ≥ k0 +
(
ϕp
(
mλΔ(t)

))∇

= k0 +mp−1
(
ϕp
(
λΔ(t)

))∇

≥ k0 −mp−1
∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣

≥ k0 − k0
2R1

∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣

≥ k0 − k0
2R1

max
t∈[0,T]

∣∣∣∣
(
ϕp
(
λΔ(t)

))∇∣∣∣∣ =
k0
2
> 0.

(3.9)



Abstract and Applied Analysis 17

Thus (A4) holds and (A2) is also true if u(t) = α(t). Also since α(T) ≤ supt∈[0,T]
T

|α(t)| =
m supt∈[0,T]

T

|λ| ≤ ρn0 , we have β(T) ≥ ρn0 ≥ α(T), then (A6) is fulfilled. By Corollary 2.3, the
boundary value problem (1.1) and (1.2) has a solution u(t) ∈ C[0, T]

T
∩CΔ(0, T]

T
, ϕp(uΔ(t)) ∈

C∇(0, T)
T
with u(t) ≥ 0 for t ∈ (0, T]

T
.

We can replace t ∈ [1/2n+1, T]
T
with t ∈ [0, T − 1/2n+1]

T
or t ∈ [1/2n+1, T − 1/2n+1]

T
. So

it is easily obtain (see Remark 2.2) the analogue of Theorem 3.2 in this section.
Looking at Theorem 3.2, it is difficulty for us to discuss examples in constructing β(t)

in (A8). The following theorem removes (A8) and replaces it with an easy verified condition.

Theorem 3.3. Let n0 ∈ {1, 2, . . .} be fixed. If (H1)–(H3), (A1) and (A2) hold, in addition suppose
that the following conditions are satisfied:

M1 > 0, M2 > max

{
sup
t∈[0,T]

α(t), ρn0

}
, here M1, M2 are constants, (3.10)

q(t)f(t,M1t +M2) ≤ 0 for t ∈ (0, T)
T
,

q(t)f
(

1
2n0+1

,M1t +M2

)
≤ 0 for t ∈

(
0,

1
2n0+1

)

T

,

M1T +M2 −
m∑
i=1
ψi(M1) > 0.

(3.11)

Then boundary value problem (1.1) and (1.2) has a solution u ∈ C[0, T]
T
∩CΔ(0, T]

T
with ϕp(uΔ) ∈

C∇(0, T)
T
and u > 0 for t ∈ (0, T]

T
.

Proof. Denote β(t) = M1t +M2 for t ∈ [0, T]
T
, then β(t) ∈ C[0, T]

T
∩ CΔ(0, T]

T
, ϕp(βΔ(t)) ∈

C∇(0, T)
T
with β(t) ≥ α(t) and β(t) ≥ ρn0 for t ∈ [0, T]

T
,

β(T) −
m∑
i=1

ψi
(
βΔ(ξi)

)
> 0, (3.12)

with

−
(
ϕp
(
βΔ(t)

))∇ ≥ q(t)f(t, β) for t ∈ (0, T)
T
,

−
(
ϕp
(
β(t)Δ(t)

))∇ ≥ q(t)f
(

1
2n0+1

, β(t)
)

for t ∈
(
0,

1
2n0+1

)

T

,

(3.13)

then (A3) holds. By Theorem 2.1 the result holds.

From Theorems 3.2 and 3.3 we have the following theorem.

Theorem 3.4. Let n0 ∈ {1, 2, . . .} be fixed. If (H1)–(H3), (3.1) and (A7) hold, in addition suppose
there exist constants M1,M2 > 0 such that (3.11) and (3.5) are true. Then the problem (1.1) and
(1.2) has a solution u ∈ C[0, T]

T
∩ CΔ(0, T]

T
with ϕp(uΔ) ∈ C∇(0, T)

T
and u > 0 for t ∈ (0, T]

T
.
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Proof. Without loss of generality suppose ρn0 < M2, by (A7) we have (A1) which holds and

M2 > ρn0 > ρn0+1 > . . . , lim
n→∞

ρn = 0. (3.14)

By the similar way as the proof of the Theorem 3.2, there exists a function α ∈ C[0, T]
T
∩

CΔ(0, T]
T
, ϕp(αΔ) ∈ C∇(0, T)

T
with α(0) = 0, α(T) −∑m

i=1ψi(α
Δ(ξi)) < 0, α(t) > 0 for t ∈ (0, T]

T
,

such that −(ϕp(αΔ(t)))∇ ≤ q(t)f(t, α(t)) for t ∈ (0, T)
T
and α(t) ≤ supt∈[0,T]

T

|α| ≤ ρn0 . This
together with (3.14) we have M2 > max{supt∈[0,T]α(t), ρn0}. Thus all the conditions of the
Theorem 3.3 are fulfilled.

4. An Example

In this section, we present an example to illustrate our results. Let

T = {0} ∪
{(

1
2

)N
}
∪
[
1
2
, 1
]
. (4.1)

Consider the following boundary value problem

−
(∣∣∣uΔ(t)

∣∣∣
2
uΔ(t)

)∇
= q(t)f(t, u(t)) for t ∈ (0, 1)

T
,

u(0) = 0, u(1) − 1
5
uΔ
(
1
8

)
− 1
10
uΔ
(
1
4

)
− 1
5
uΔ
(
3
4

)
− 1
10
uΔ(1) = 0.

(4.2)

It is obvious that T = 1, p = 4, m = 4, ψ1(x) = ψ3(x) = (1/5)x, ψ2(x) = ψ4(x) = (1/10)x. Denote
q(t) = t8+5 and f(t, u(t)) = t/u7(t)+u7(t)−λ2, here λ2 ≥ 2 is constant. Let n0 ∈ {1, 2, . . .}, ρn =
(1/2n+1(λ2 + a1))

1/7 and k0 = a1 > 0 is a constant.We have ρn0 ≤ 1. Note that (H1)–(H3) and
(3.1) hold. For n ∈ {1, 2, . . .}, t ∈ [1/2n+1, 1]

T
and 0 < u ≤ ρn,we have

q(t)f(t, u) ≥
(
t8 + 5

)( 1
2n+1ρ7n

− λ2
)

≥
(
t8 + 5

)(
λ2 + a1 − λ2

)
> a1, (4.3)

which implies (A7) is satisfied.
Now we show that (A8) holds with β = t1/7.
Notice that if t ∈ (1/2, 1]

T
, then βΔ(t) = β′(t) = (1/7)t−6/7,

∣∣∣βΔ(t)
∣∣∣
2
βΔ(t) =

1
343

t−18/7,
(∣∣∣βΔ(t)

∣∣∣
2
βΔ(t)

)∇
= − 18

2401
t−25/7 ≤ 0. (4.4)

If t = 1/2, then βΔ(t) = (1/7)t−6/7 and |βΔ(t)|2βΔ(t) = (1/343)t−18/7,

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
=

2
343

(
1
2

)−18/7
− 2
343

(
1
4

)−18/7
≈ −0.1714 ≤ 0. (4.5)
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If t = 1/2n(n = 2, 3, . . .), then σ(t) = 2t, ρ(t) = t/2, μ(t) = t, ν(t) = t/2, we have

βΔ(t) =
1
t

[
(2t)1/7 − t1/7

]
,

∣∣∣βΔ(t)
∣∣∣
2
βΔ(t) =

1
t3

[
(2t)1/7 − t1/7

]3
, (4.6)

by induction, one gets

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
= 24n+1

[(
1

2n−1

)1/7

−
(

1
2n

)1/7
]3

− 24n+4
[(

1
2n

)1/7

−
(

1
2n+1

)1/7
]3

≤ 0.

(4.7)

Thus, for t ∈ (0, 1)
T
, we have

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
+ q(t)f

(
t, β
) ≤

(
t8 + 5

)( t
t
+
(
t1/7

)7 − λ2
)

≤
(
t8 + 5

)(
2 − λ2

)
≤ 0,

(∣∣∣βΔ(t)
∣∣∣
2
βΔ(t)

)∇
+ q(t)f

(
1

2n0+1
, β

)
≤
(
t8 + 5

)( 1
2n0+1

(
t1/7

) +
(
t1/7

)7 − λ2
)

≤
(
t8 + 5

)(
2 − λ2

)
≤ 0 for t ∈

(
0,

1
2n0+1

)

T

.

(4.8)

Now

β(1) − ψ1

(
βΔ
(
1
8

))
− ψ2

(
β

(
1
4

))
− ψ3

(
βΔ
(
3
4

))
− ψ4

(
β(1)

)
> 0. (4.9)

Hence, all conditions of the Theorem 3.2 are satisfied. As a result, the problem (4.2) has a
positive solution.
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