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Consider the half-eigenvalue problem (φp(x′))′+λa(t)φp(x+)−λb(t)φp(x−) = 0 a.e. t ∈ [0, 1], where
1 < p < ∞, φp(x) = |x|p−2x, x±(·) = max{±x(·), 0} for x ∈ C0 := C([0, 1],R), and a(t) and b(t) are
indefinite integrable weights in the Lebesgue space Lγ := Lγ ([0, 1],R), 1 ≤ γ ≤ ∞. We characterize
the spectra structure under periodic, antiperiodic, Dirichlet, and Neumann boundary conditions,
respectively. Furthermore, all these half-eigenvalues are continuous in (a, b) ∈ (Lγ , wγ )

2, where
wγ denotes the weak topology in Lγ space. The Dirichlet and the Neumann half-eigenvalues are
continuously Fréchet differentiable in (a, b) ∈ (Lγ , ‖ · ‖γ )2, where ‖ · ‖γ is the Lγ norm of Lγ .
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any medium, provided the original work is properly cited.

1. Introduction

Fučik spectrum and half-eigenvalues are useful for solving problems with “jumping
nonlinearities.” Compared with Fučik spectrum, half-eigenvalues have not been paid much
research. However, as half-eigenvalues are concerned with only one parameter, we think the
theory on half-eigenvalues will lead to better knowledge for Fučik spectrum and jumping
nonlinearities.

Given an exponent p ∈ (1,∞), let φp(x) := |x|p−2x for x ∈ R which is used to define
the scalar p-Laplacian. Denote x± = max{±x, 0} for x ∈ R and x±(·) = max{±x(·), 0} for any
x ∈ C0 := C([0, 1],R). For a pair of indefinite (sign-changing) integrable weights (a, b) with
a, b ∈ Lγ := Lγ([0, 1],R), 1 ≤ γ ≤ ∞, we are concerned with the half-eigenvalue problem

(
φp

(
x′))′ + λa(t)φp(x+) − λb(t)φp(x−) = 0, a.e. t ∈ [0, 1], (1.1)

associated with the periodic boundary condition

x(0) − x(1) = x′(0) − x′(1) = 0, (1.2)
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the antiperiodic boundary condition

x(0) + x(1) = x′(0) + x′(1) = 0, (1.3)

the Dirichlet boundary condition

x(0) = x(1) = 0, (1.4)

or the Neumann boundary condition

x′(0) = x′(1) = 0, (1.5)

respectively. Values of λ for which (1.1) has nontrivial solutions x satisfying the boundary
condition (1.2), (1.3), (1.4), or (1.5) will be called periodic, antiperiodic, Dirichlet, or
Neumann half-eigenvalues, respectively, while the corresponding solutions x will be called
half-eigenfunctions. Subscripts P ,A,D, andN will be used to indicate periodic, antiperiodic,
Dirichlet and Neumann boundary conditions, respectively. The set of the half-eigenvalues
under each of the preceding boundary conditions will be denoted by ΣP , ΣA, ΣD, and ΣN ,
respectively. Notice that these spectra are dependent on weights (a, b).

This article studies the half-eigenvalue problem (1.1) from two aspects. One is the
structure of ΣP , ΣA, ΣD, and ΣN , and the other is the dependence of all these spectra on
weights.

Generally speaking, for the p-Laplacian eigenvalue problem, if separated boundary
conditions (such as Dirichlet and Neumann) are imposed and if the weight is definite,
the spectrum structure is similar to that of the classical linear case. However, compared
with separated boundary conditions, definite weights, and L∞ weights (or potentials),
more difficulty will always be brought on by nonseparated boundary conditions, indefinite
weights, and Lγ (1 ≤ γ < ∞) weights (or potentials), respectively. It has been proved very
recently in [1] that with an indefinite weight a ∈ Lγ , 1 ≤ γ ≤ ∞, the spectra structures of

(
φp

(
x′))′ + λa(t)φp(x) = 0 a.e. t ∈ [0, 1] (1.6)

under both boundary conditions (1.4) and (1.5) are the same as when p = 2. Special case
of (1.6) with indefinite weight a ∈ L∞ is also studied by Anane et al. [2], Cuesta [3], and
Eberhard and Elbert [4]. Various spectra (including half-eigenvalues) of p-Laplacian with
potentials are studied by Binding and Rynne in [5]. It is shown that compared with the linear
case p = 2, some new phenomena occur in the periodic problems when p /= 2. The existence
of nonvariational periodic and antiperiodic eigenvalues of p-Laplacian for some potentials in
[6] can partially explain these new phenomena.

We will use the shooting method to obtain spectra structures. To this end, (1.1) is
studied in p-polar coordinates (2.5), and the associated argument function plays a crucial
role. Careful analysis on the argument function leads to partial characterization of ΣP and
ΣA and complete characterization of ΣD and ΣN , see Theorems 3.9, 4.2, and 5.2. Some
quasimonotonicity of the argument function is proved by using the Fréchet derivatives and
the boundary conditions, see Lemmas 3.3, 4.1, and 5.1. The uniformly asymptotical result
is obtained from the w∗ compactness in the Banach-Alaoglu theorem as done in [1], see
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Lemma 2.3. Besides the properties of the argument functions, the Hamiltonian structure
of the problem is essential for us to obtain variational periodic and antiperiodic half-
eigenvalues, see Lemma 3.2. After introducing the rotation number function, we can easily
obtain the ordering of these variational periodic half-eigenvalues, see (3.38).

For regular self-adjoint linear Sturm-Liouville problems, the continuous dependence
of eigenvalues on weights or potentials in the usual Lγ topology is well understood, and
so is the Fréchet differentiable dependence. Many of these results are summarized in [7].
However, since the space of potentials (or weights) is infinite-dimensional, such a continuity
result cannot answer many basic questions. For example, if potentials or weights are confined
to a bounded set or a noncompact set, are the eigenvalues finite? To answer such kind of
questions, a stronger continuity result is obtained in [8] for Sturm-Liouville operators and
Hill’s operators. That is, the eigenvalues are continuous in potentials in weak topology wγ .
Based on such a stronger continuity and the differentiability, variational method and singular
integrals are applied in [9] to obtain the extremal value of smallest eigenvalues of Hill’s
operators with potentials confined to L1 balls. The continuity result in weak topology are
generalized to scalar p-Laplacian for eigenvalues on potentials (see [10]), for (separated)
eigenvalues on indefinite weights (see [1]), and for half-eigenvalues on potentials (see [11]).
Some elementary applications are also presented in [1, 10].

In this paper, we will prove that the variational periodic or antiperiodic half-

eigenvalues λLm and λ
R

m (defined by (3.22) and (3.25), resp.), and all the half-eigenvalues
in ΣD and ΣN , are continuous in weights (a, b) ∈ (Lγ , wγ)

2. See Theorems 3.12, 4.3, and
5.3. Moreover, the Dirichlet and the Neumann half-eigenvalues are continuously Fréchet
differentiable in weights (a, b) ∈ (Lγ , ‖ · ‖γ)2, see Theorems 4.4 and 5.3. Due to the so-
called parametric resonance [12] or the so-called coexistence of periodic and antiperiodic
eigenvalues [13], periodic and antiperiodic half-eigenvalues are, in general, not differentiable
in weights (a, b).

If λ is a half-eigenvalue of (1.1) corresponding to weights (a, b) and satisfying the
boundary condition (1.2), (1.3), (1.4), or (1.5), then −λ is also a half-eigenvalue of (1.1)
corresponding to weights (−a,−b) and satisfying the same boundary condition. So we need
only consider nonnegative half-eigenvalues of (1.1). Some preliminary results are given in
Section 2. However, Sections 3, 4, and 5 are devoted to ΣA/P , ΣD, and ΣN , respectively.

2. Preliminary Results

Given p ∈ (1,∞), denote by (Cp(θ), Sp(θ)) the unique solution of the initial value problem

dx

dθ
= −φp∗

(
y
)
,

dy

dθ
= φp(x),

(
x(0), y(0)

)
= (1, 0). (2.1)

The functions Cp(θ) and Sp(θ) are the so-called p-cosine and p-sine, because they possess
some properties similar to those of cosine and sine functions, such as

(i) both Cp(θ) and Sp(θ) are 2πp-periodic, where

πp =
2π(p − 1)1/p

p sin
(
π/p

) ; (2.2)
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(ii) Cp(θ) = 0 if and only if θ = πp/2+mπp,m ∈ Z, and Sp(θ) = 0 if and only if θ = mπp,
m ∈ Z;

(iii) one has

∣
∣Cp(θ)

∣
∣p +

(
p − 1

)∣∣Sp(θ)
∣
∣p∗ ≡ 1. (2.3)

Given a, b ∈ Lγ , γ ∈ [1,∞], let

y = −φp

(
x′). (2.4)

In the p-polar coordinates

x = r2/pCp(θ), y = r2/p
∗
Sp(θ), (2.5)

the scalar equation

(
φp

(
x′))′ + a(t)φp(x+) − b(t)φp(x−) = 0, a.e. t ∈ [0, 1], (2.6)

is transformed into the following equations for r and θ

θ′ = A(t, θ;a, b)

:=

⎧
⎨

⎩

a(t)
∣∣Cp(θ)

∣∣p +
(
p − 1

)∣∣Sp(θ)
∣∣p∗ , if Cp(θ) ≥ 0,

b(t)
∣∣Cp(θ)

∣∣p +
(
p − 1

)∣∣Sp(θ)
∣∣p∗ , if Cp(θ) < 0,

(2.7)

(
log r

)′ = G(t, θ;a, b)

:=

⎧
⎪⎨

⎪⎩

p

2
(a(t) − 1)φp

(
Cp(θ)

)
φp∗
(
Sp(θ)

)
, if Cp(θ) ≥ 0,

p

2
(b(t) − 1)φp

(
Cp(θ)

)
φp∗
(
Sp(θ)

)
, if Cp(θ) < 0.

(2.8)

For any ϑ0 ∈ R, denote by (θ(t;ϑ0, a, b), r(t;ϑ0, a, b)), t ∈ [0, 1], the unique solution of (2.7) +
(2.8) satisfying θ(0;ϑ0, a, b) = ϑ0 and r(0;ϑ0, a, b) = 1. Let

Θ(ϑ0, a, b) := θ(1;ϑ0, a, b),

R(ϑ0, a, b) := r(1;ϑ0, a, b).
(2.9)

As A(t, θ;a, b) is independent of r and is 2πp-periodic in θ, we have

θ
(
t;ϑ0 + 2mπp, a, b

) ≡ θ(t;ϑ0, a, b) + 2mπp (2.10)

for all t ∈ [0, 1], ϑ0 ∈ R, and m ∈ Z.
An important property of the argument solution θ is the quasimonotonicity as in the

following lemma.
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Lemma 2.1 (see [14]). Let θ(t) = θ(t;ϑ0, a, b) be a solution of (2.7). Then

θ(t) ≥ −πp

2
+mπp at t ∈ [0, 1) =⇒ θ(s) > −πp

2
+mπp ∀s ∈ (t, 1]. (2.11)

Denote by C0 := C([0, 1],R) the space of continuous functions from [0, 1] to R. Some
dependence results of solutions r and θ on (a, b) are collected in the following theorem.

Theorem 2.2 (see [11]). (i) The functional

R × (Lγ , wγ

)2 −→ R, (ϑ, a, b) 
−→ Θ(ϑ, a, b) (2.12)

is continuous. Herewγ denotes the weak topology in Lγ .
(ii) The functional

R ×
(
Lγ , ‖·‖γ

)2 −→ R, (ϑ, a, b) 
−→ Θ(ϑ, a, b) (2.13)

is continuously differentiable. The derivatives of Θ(ϑ, a, b) at ϑ, at a ∈ Lγ , and at b ∈ Lγ (in the
Fréchet sense), denoted, respectively, by ∂ϑΘ, ∂aΘ, and ∂bΘ, are

∂ϑΘ(ϑ, a, b) =
1

R2(ϑ, a, b)
, (2.14)

∂aΘ(ϑ, a, b) = X
p
+ ∈ C0 ⊂

(
Lγ , ‖·‖γ

)∗
, (2.15)

∂bΘ(ϑ, a, b) = X
p
− ∈ C0 ⊂

(
Lγ , ‖·‖γ

)∗
, (2.16)

where

X = X(t) = X(t;ϑ, a, b) :=
{r(t;ϑ, a, b)}2/pCp(θ(t;ϑ, a, b))

{r(1;ϑ, a, b)}2/p
(2.17)

is a solution of (2.6).

To characterize the spectrum structure of (1.1) via shooting method, we need careful
analysis on the associated argument function Θ(ϑ, λa, λb). Given a1,a2,b1,b2 ∈ Lγ , write a1 �
b1 if a1 ≥ b1 and a1(t) > b1(t) holds for t in a subset of [0, 1] of positive measure. Write
(a1, b1) ≥ (a2, b2) if a1 ≥ a2 and b1 ≥ b2. Write (a1, b1) � (a2, b2) if (a1, b1) ≥ (a2, b2) and both
a1(t) > a2(t) and b1(t) > b2(t) hold for t in a common subset of [0, 1] of positive measure.
Denote

Wγ
+ := {(a, b) | a, b ∈ Lγ , (a+, b+) � (0, 0)}. (2.18)

The following asymptotical property of Θ(ϑ, λa, λb) in λ ∈ R plays a crucial role in the
characterization of half-eigenvalues.
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Lemma 2.3. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, one has

lim
λ→∞

(Θ(ϑ, λa, λb) − ϑ) = ∞ (2.19)

uniformly in ϑ ∈ R.

Proof. The proof is a slight extension of that in [1, Lemma 3.4]. We write it out in detail for the
convenience of the readers.

Besides (2.4), we introduce another transformation

xλ = x, yλ = −λ−1/p∗φp

(
x′) = λ−1/p

∗
y (2.20)

when λ > 0. However, (1.1) becomes

xλ = −λ1/pφp∗
(
yλ

)
, y′

λ = λ1/p
{
a(t)φp((xλ)+) + b(t)φp((xλ)−)

}
. (2.21)

In the p-polar coordinates of the (xλ, yλ)-plane

xλ := r
2/p
λ

Cp(θλ), yλ := r
2/p∗

λ
Sp(θλ), (2.22)

the equation for the new argument θλ is

θ′
λ = λ1/p

{
1 + a(t)

(
Cp(θλ)

)p
+ + b(t)

(
Cp(θλ)

)p
− −
∣∣Cp(θλ)

∣∣p
}
. (2.23)

Denote by θλ(t;ϑ, a, b) the solution of (2.23) satisfying the initial condition θλ(0) = ϑ. By
(2.20), the argument functions of (1.1), θλ(t) = θλ(t;ϑ, a, b) and θ(t) = θ(t;ϑ, λa, λb) are
related by an orientation-preserving homeomorphism H : R → R, which fixes the points
{mπp,mπp + πp/2 : m ∈ Z}, in the following relation

θ(t;H(ϑ), a, b) = H(θλ(t;ϑ, a, b)). (2.24)

If lemma is not true, then there exist {λn}n∈N
and {ϑn}n∈N

such that λn ↑ ∞ and
{Θ(ϑn, λna, λnb)−ϑn}n∈N

is bounded from above. Combining (2.11), there exists somem0 ∈ N

such that

−πp < Θ(ϑn, λna, λnb) − ϑn < m0πp, ∀n ∈ N. (2.25)

By (2.11) again, we have

−πp < θ(t;ϑn, λna, λnb) − ϑn < (m0 + 1)πp, ∀t ∈ [0, 1], ∀n ∈ N. (2.26)

By (2.10), we may assume

ϑn ∈ [0, 2πp

]
, ∀n ∈ N. (2.27)
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Hence,

−πp < θ(t;ϑn, λna, λnb) < (m0 + 3)πp, ∀t ∈ [0, 1], ∀n ∈ N. (2.28)

Denote θn(t) := θλn(t;ϑn, a, b) for simplicity. By the conjugacy (2.24) and the estimate
(2.28), we have

−πp < θn(t) < (m0 + 3)πp, ∀t ∈ [0, 1], ∀n ∈ N. (2.29)

Denote I0 := {f ∈ L∞ : 0 ≤ f ≤ 1} and define

fn(t) :=
(
Cp(θn(t))

)p
+ ∈ I0,

gn(t) :=
(
Cp(θn(t))

)p
− ∈ I0,

hn(t) :=
∣∣Cp(θn(t))

∣∣p ∈ I0,

(2.30)

for any n ∈ N. By the Banach-Alaoglu theorem [15, pages 229-230], the unit ball B1 :=
{f ∈ L∞ : ‖f‖∞ ≤ 1} is sequentially compact in (L∞, w∞) by considering L∞ as the dual
space of the (separable) Banach space (L1, ‖ · ‖1). The order interval I0 is a closed subset of
(L∞, w∞). Hence, I0(⊂ B1) is also sequentially compact in (L∞, w∞). Consequently, passing
to a subsequence, we may assume

fn −→ f0 ∈ I0, gn −→ g0 ∈ I0, hn −→ h0 ∈ I0, in (L∞, w∞). (2.31)

From (2.23), θn(t) satisfies

θ′
n = λ

1/p
n

{
1 + a(t)fn(t) + b(t)gn(t) − hn(t)

}
a.e. t ∈ [0, 1]. (2.32)

For any t ∈ [0, 1], we have

θn(t) − ϑn

λ
1/p
n

=
∫ t

0

{
1 + a(s)fn(s) + b(s)gn(s) − hn(s)

}
ds

= t +
∫1

0
a(s)χ[0,t](s) · fn(s)ds +

∫1

0
b(s)χ[0,t](s) · gn(s)ds −

∫1

0
χ[0,t](s) · hn(s)ds.

(2.33)

Let n → ∞, by (2.27) and (2.29), the left-hand side tends to 0. Since

a(·)χ[0,t](·), b(·)χ[0,t](·), χ[0,t](·) ∈ L1, (2.34)
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we can use (2.31) to deduce from the above equality

0 = t +
∫1

0
a(s)χ[0,t](s) · f0(s)ds +

∫1

0
b(s)χ[0,t](s) · g0(s)ds −

∫1

0
χ[0,t](s) · h0(s)ds

=
∫ t

0

{
1 + a(s)f0(s) + b(s)g0(s) − h0(s)

}
ds

(2.35)

for all t ∈ [0, 1]. Thus

1 + a(t)f0(t) + b(t)g0(t) − h0(t) = 0, a.e. t ∈ [0, 1]. (2.36)

As hn = fn + gn and the weak∗ limits f0, g0, h0 satisfy 0 ≤ f0(t), g0(t), h0(t) ≤ 1 a.e. t ∈ [0, 1],
this equality implies that

h0(t) = f0(t) + g0(t)/= 0, a.e. t ∈ [0, 1]. (2.37)

Therefore,

a(t)f0(t) + b(t)g0(t) = h0(t) − 1 ≤ 0, a.e. t ∈ [0, 1], (2.38)

which contradicts the assumption (a, b) ∈ Wγ
+.

Remark 2.4. Let a � 0 and b(t) = 0, a.e. t ∈ [0, 1] in (1.1). Then the equation for the
corresponding argument function is

θ′ = λa(t)
(
Cp(θ)

)p
+ +
(
p − 1

)∣∣Sp(θ)
∣∣p∗ (2.39)

(cf. (2.7)). The solution θ(t) takes a constant length of time, say T0 > 0, to start from πp/2 +
2mπp and to reach at 3πp/2+2mπp for anym ∈ Z. Consequently,Θ(−πp/2, λa, λ·0) is bounded
for λ ∈ [0,∞) and (2.19) does not hold in this case.

Notice that in the potential case [11], the associated argument function Θ(ϑ, λ + a, λ +
b) is strictly increasing in λ. However, as we are considering sign-changing weights (a, b),
the monotonicity of Θ(ϑ, λa, λb) in λ does not hold any more. We will develop some quasi-
monotonicity ofΘ(ϑ, λa, λb) in λ by employing the Fréchet derivatives ofΘ and the boundary
conditions, see Lemmas 3.3, 4.1, and 5.1.



Abstract and Applied Analysis 9

3. Periodic and Antiperiodic Spectrum

3.1. Structure of Periodic and Antiperiodic Half-Eigenvalues

Given a, b ∈ Lγ , 1 ≤ γ ≤ ∞, by (2.9), (2.10) and Theorem 2.2(i), one sees that

Θ(a, b) := max
ϑ0∈[0,2πp]

(Θ(ϑ0, a, b) − ϑ0) = max
ϑ0∈R

(Θ(ϑ0, a, b) − ϑ0), (3.1)

Θ(a, b) := min
ϑ0∈[0,2πp]

(Θ(ϑ0, a, b) − ϑ0) = min
ϑ0∈R

(Θ(ϑ0, a, b) − ϑ0) (3.2)

are well-defined. Moreover, we have the following lemma.

Lemma 3.1. Given γ ∈ [1,∞], the functionals

(Lγ , wγ

)2 −→ R, (a, b) 
−→ Θ(a, b),

(Lγ , wγ

)2 −→ R, (a, b) 
−→ Θ(a, b)
(3.3)

are continuous.

Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, we write

Θ(λ) := Θ(λa, λb), Θ(λ) := Θ(λa, λb) (3.4)

for simplicity if there is no ambiguity. By Lemma 3.1, Θ(λ) and Θ(λ) are continuous in λ ∈ R.
By Lemma 2.3, one has

lim
λ→∞

Θ(λ) = lim
λ→∞

Θ(λ) = ∞. (3.5)

Moreover, by setting a = b = 0 in (2.7), we know that

Θ(0) ∈ (0, πp

)
, Θ(0) = 0. (3.6)

Now we are considering the following two sequences of equations for λ

Θ(λ) = mπp, m ∈ N, (3.7)

Θ(λ) = mπp, m ∈ Z
+ := N ∪ {0}. (3.8)

Lemma 3.2. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞.

(i) For any m specified, (3.7) and (3.8) always have solutions in R
+ := {λ ∈ R | λ ≥ 0}.

(ii) All solutions of (3.7) and (3.8) are periodic half-eigenvalues or antiperiodic half-
eigenvalues of (1.1) if m is even or odd, respectively, while the corresponding half-
eigenfunctions have preciselym zeroes in the interval [0, 1).



10 Abstract and Applied Analysis

Proof. (i) The solvability of (3.7) and (3.8) follows immediately from (3.5), (3.6) and the
continuity of Θ(λ) and Θ(λ) in λ ∈ R

+.
(ii) Suppose λ ∈ R

+ satisfies (3.7) or (3.8). Then there exists ϑ̂0 ∈ [0, 2πp] such that

Θ
(
ϑ̂0, λa, λb

)
− ϑ̂0 = mπp, (3.9)

d

dϑ0
Θ(ϑ0, λa, λb)

∣
∣
∣
∣
ϑ0=ϑ̂0

= 1. (3.10)

By (2.14), the latter equation is

R
(
ϑ̂0, λa, λb

)
= 1. (3.11)

Geometrically, (3.9) and (3.11) imply that in p-polar coordinates (2.5), the solution of (1.1)
starting at the point (r, θ) = (1, ϑ̂0) arrives at (r, θ) = (1, ϑ̂0 +mπp) after one period. Thus λ is
a periodic or an antiperiodic half-eigenvalue of (1.1) if m is even or odd, respectively.

Denote by x the half-eigenfunction corresponding to λ. Then x(t) = 0 if and only if

θ(t) := θ
(
t; ϑ̂0, λa, λb

)
= −πp

2
+ kπp, k ∈ Z. (3.12)

Notice that θ(0) = ϑ̂0, θ(1) = ϑ̂0 +mπp (see (3.9)), and θ(t) is quasimonotone in t (see (2.11)).
Consequently, if ϑ̂0 = −πp/2 + l0πp for some l0 ∈ Z, then (3.12) holds only for k = l0, l0 + 1, l0 +
2, . . . , l0 +m at (0 =) t0 < t1 < t2 < · · · < tm (= 1). If −πp/2 + l0πp < ϑ̂0 < −πp/2 + (l0 + 1)πp, then
(3.12) holds only for k = l0 + 1, l0 + 2, . . . , l0 +m at (0 <) t1 < t2 < · · · < tm (< 1). In both cases x
has precisely m zeroes in [0, 1).

The following lemma will be used for further study on solutions of (3.7) and (3.8).

Lemma 3.3. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞.

(i) If Θ(μ) = mπp for some μ > 0 and m ∈ N, then there exists δ > 0 such that

Θ(λ) > mπp, ∀λ ∈ (μ, μ + δ
)
. (3.13)

(ii) If Θ(μ) = mπp for some μ > 0 and m ∈ Z
+, then there exists δ ∈ (0, μ) such that

Θ(λ) < mπp, ∀λ ∈ (μ − δ, μ
)
. (3.14)

Proof. We only prove (i) and the proof of (ii) is analogous.
Assume that Θ(μ) = mπp. By Lemma 3.2, μ is a periodic or an antiperiodic half-

eigenvalue of (1.1). Then there exists some ϑ0 ∈ [0, 2πp] such that

Θ
(
ϑ0, μa, μb

) − ϑ0 = mπp, (3.15)
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and the corresponding half-eigenfunction X(t) = X(t;ϑ0, μa, μb) satisfies

(
φp

(
X′))′ + μa(t)φp(X+) − μb(t)φp(X−) = 0, a.e. t ∈ [0, 1], (3.16)

and the boundary condition (1.2) or (1.3). Applying (2.15) and (2.16), we have

d

dλ
Θ(ϑ0, λa, λb)

∣
∣
∣
∣
λ=μ

=
∫1

0

(
aX

p
+ + bX

p
−
)
dt, (3.17)

Multiplying (3.16) by X and integrating over [0, 1], one has

∫1

0

(
aX

p
+ + bX

p
−
)
dt =

1
μ

(∫1

0

∣
∣X′∣∣pdt − X(t)φp(X′(t))

∣
∣1
t=0

)

=
1
μ

∫1

0
|X′|pdt

> 0,

(3.18)

and, therefore,

d

dλ
Θ(ϑ0, λa, λb)

∣∣∣∣
λ=μ

> 0. (3.19)

Then there exists δ > 0 such that

Θ(ϑ0, λa, λb) − ϑ0 > mπp ∀λ ∈ (μ, μ + δ
)
. (3.20)

Consequently, we have

Θ(λ) ≥ Θ(ϑ0, λa, λb) − ϑ0 > mπp, ∀λ ∈ (μ, μ + δ
)
. (3.21)

Definition 3.4. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, define

λLm := min
{
λ > 0 | Θ(λ) = mπp

}
, m ∈ N, (3.22)

λRm := max
{
λ > 0 | Θ(λ) = mπp

}
, m ∈ N, (3.23)

λ
L

m := min
{
λ ≥ 0 | Θ(λ) = mπp

}
, m ∈ Z

+, (3.24)

λ
R

m := max
{
λ ≥ 0 | Θ(λ) = mπp

}
, m ∈ Z

+. (3.25)
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These values λL/Rm and λ
L/R

m are well defined. By Lemma 3.2, they are periodic or
antiperiodic half-eigenvalues. These are what we are interested in. By Lemma 3.3, we have
the following results.

Corollary 3.5. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, one has

Θ(λ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< mπp, if 0 ≤ λ < λLm

∈ [mπp,mπp + πp

)
, if λLm ≤ λ ≤ λRm

> mπp, if λ > λRm

∀m ∈ N,

Θ(λ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

< mπp, if 0 ≤ λ < λ
L

m

∈ (mπp − πp,mπp

]
, if λ

L

m ≤ λ ≤ λ
R

m

> mπp, if λ > λ
R

m.

∀m ∈ Z
+.

(3.26)

Combining (3.5), (3.6), and (3.26), one has the following ordering for these half-
eigenvalues:

(0 <)λL1 ≤ λR1 < λL2 ≤ λR2 < · · · < λLm ≤ λRm < · · · (−→ ∞),

(0 =)λ
L

0 ≤ λ
R

0 < λ
L

1 ≤ λ
R

1 < · · · < λ
L

m ≤ λ
R

m < · · · (−→ ∞).
(3.27)

Moreover, by the definition of λL/Rm and λ
L/R

m , one has

λLm ≤ λ
R

m , λRm, λ
L

m ∈
[
λLm, λ

R

m

]
, ∀m ∈ N. (3.28)

Notice that the ordering between λRm and λ
L

m is not determinate.

Till now, we still do not know the ordering between λ
R

m and λLn with n > m. This will
be partially settled by associating (1.1)with the rotation number function defined by

ρ(λ) = ρ(λ, a, b) := lim
n→∞

Θn(ϑ0, λa, λb) − ϑ0

2nπp
, (3.29)

where Θn is the nth iteration of Θ, namely,

Θn(ϑ0, a, b) = Θ
(
Θn−1(ϑ0, a, b), a, b

)
. (3.30)

It can be proved that the rotation number function ρ(λ) in (3.29) is well defined and is
independent of ϑ0 (cf. [16, Theorem 2.1]).
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Lemma 3.6. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, one has

(i) ρ(λ) ≥ 0 and ρ(0) = 0;

(ii) limλ→∞ρ(λ) = ∞;

(iii) λ ∈ [0, λLm), m ∈ N ⇒ ρ(λ) < m/2;

(iv) λ ∈ (λ
R

m,∞), m ∈ Z
+, ⇒ ρ(λ) > m/2;

(v) λ ∈ [λL2m, λ
R

2m], m ∈ N ⇒ ρ(λ) = m;

(vi) λ = λ
R

0 ⇒ ρ(λ) = 0.

Proof. (i) By (2.11), one has Θn(0, λa, λb) > −πp/2 for any n ∈ N. Thus ρ(λ) ≥ 0 since ρ(λ)
defined by (3.29) is independent of ϑ0. If λ = 0, the equation for the argument function
associated with (1.1) becomes θ′ = (p − 1)|Sp(θ)|p∗ , which has equilibria θ = kπp, k ∈ Z.
Thus Θn(−πp/2, 0 · a, 0 · b) ∈ (−πp/2, 0) for all n ∈ N and consequently ρ(0) = 0.

(ii) GivenM > 0 arbitrarily large, it follows from (3.5) that there exists Λ > 0 such that

Θ(ϑ0, λa, λb) − ϑ0 > 2Mπp, ∀λ > Λ, ∀ϑ0 ∈ R. (3.31)

Thus

Θn(ϑ0, λa, λb) − ϑ0 =
[
Θ
(
Θn−1(ϑ0, λa, λb), λa, λb

)
−Θ

(
Θn−2(ϑ0, λa, λb), λa, λb

)]

+
[
Θ
(
Θn−2(ϑ0, λa, λb), λa, λb

)
−Θ

(
Θn−3(ϑ0, λa, λb), λa, λb

)]

+ · · · + [Θ(ϑ0, λa, λb) − ϑ0]

≥ 2nMπp

(3.32)

for any λ > Λ and any ϑ0 ∈ R. Consequently, ρ(λ) ≥ M for any λ > Λ.
(iii) Given λ ∈ [0, λLm), m ∈ N, it follows from (3.26) that there exists δ = δ(λ) > 0 such

that

Θ(λ) < (m − δ)πp. (3.33)

By the definition of Θ(λ) = Θ(λa, λb) (see (3.1)), this implies that

Θ(ϑ0, λa, λb) − ϑ0 < (m − δ)πp, ∀ϑ0 ∈ R. (3.34)

Now similar arguments as in (ii) show that ρ(λ) ≤ (m − δ)/2 < m/2.
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(iv) The proof is analogous to that of (iii).

(v) Given λ ∈ [λL2m, λ
R

2m], m ∈ N, it follows from (3.26) that

Θ(λ) ≤ 2mπp ≤ Θ(λ). (3.35)

Then there exists ϑ0 such that Θ(ϑ0, λa, λb) − ϑ0 = 2mπp, and therefore ρ(λ) = m.

(vi) By (3.25), if λ = λ
R

0 , then there exists ϑ0 such that Θ(ϑ0, λa, λb) − ϑ0 = 0. Hence
ρ(λ) = 0.

Corollary 3.7. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, one has

λL2m = min
{
λ > 0 | ρ(λ) = m

}
, ∀m ∈ N, (3.36)

λ
R

2m = max
{
λ ≥ 0 | ρ(λ) = m

}
, ∀m ∈ Z

+, (3.37)

and the ordering

(0 ≤)λR0 < λL2 ≤ λ
R

2 < · · · < λL2m ≤ λ
R

2m < λL2m+2 ≤ λ
R

2m+2 · · · (−→ ∞). (3.38)

Proof. The characterization (3.36) follows from Lemma 3.6(iii) and (v), while (3.37) follows
from Lemma 3.6(iv), (v), and (vi).

To prove (3.38), by (3.27) and (3.28), we need only prove λ
R

2m < λL2m+2 for any m ∈ N.

Assume on the contrary that λ
R

2m ≥ λL2m+2 for some m. Then

λL2m < λL2m+2 ≤ λ
R

2m. (3.39)

Now Lemma 3.6(v) shows that m = ρ(λL2m+2) = m + 1, a contradiction.

Corollary 3.8. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, one has

λ ∈
(
λ
R

2m, λ
L
2m+2

)
, m ∈ N =⇒ ρ(λ) ∈ (m,m + 1). (3.40)

In summary, we can now partially characterize the set of periodic half-eigenvalues ΣP

and the set of antiperiodic half-eigenvalues ΣA of (1.1). Denote Σ+
P := ΣP ∩R

+ and Σ+
A := ΣA ∩

R
+. For any m ∈ Z

+, denote by Σ+
m = Σ+

m(a, b) the set of nonnegative periodic or antiperiodic
half-eigenvalues for which the corresponding half-eigenfunctions have precisely m zeroes in
the interval [0, 1). Then

Σ+
P =

∞⋃

m=0

Σ+
2m, Σ+

A =
∞⋃

m=0

Σ+
2m+1. (3.41)
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Theorem 3.9. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞.

(i) For periodic half-eigenvalues, one has

{
0, λ

R

0

}
⊂ Σ+

0 ⊂
[
0, λ

R

0

]
,

{
λL2m, λ

R
2m, λ

L

2m, λ
R

2m

}
⊂ Σ+

2m ⊂
[
λL2m, λ

R

2m

]
, ∀m ∈ N.

(3.42)

Moreover, λL/R2m and λ
L/R

2m satisfy (3.27), (3.28), and (3.38).

(ii) For antiperiodic half-eigenvalues, one has

{
λL2m+1, λ

R
2m+1, λ

L

2m+1, λ
R

2m+1

}
⊂ Σ+

2m+1, ∀m ∈ Z
+. (3.43)

Moreover, λL/R2m+1 and λ
L/R

2m+1 satisfy (3.27) and (3.28).

Proof. By Lemma 3.2 and the definitions of λL/Rm and λ
L/R

m (see (3.22)–(3.25)), we need only
prove

Σ+
0 ⊂

[
0, λ

R

0

]
, Σ+

2m ⊂
[
λL2m, λ

R

2m

]
, ∀m ∈ N. (3.44)

If λ ∈ Σ+
2m, m ∈ Z

+, then λ is a periodic half-eigenvalue of (1.1) and the corresponding half-
eigenfunction has precisely 2m zeroes [0, 1). Consequently, there exists ϑ0 ∈ R such that

θ(ϑ0, λa, λb) = ϑ0 + 2mπp. (3.45)

Hence ρ(λ) = m. Combining (3.36), and the fact ρ(0) = 0 we obtain (3.44).

The following theorem gives the necessary and sufficient condition for λ
R

0 > 0.

Theorem 3.10. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, then

λ
R

0 > 0 ⇐⇒
∫1

0
a(t)dt < 0 or

∫1

0
b(t)dt < 0. (3.46)

Proof. Assume that λ
R

0 > 0. By Lemma 3.2, the half-eigenfunction X = X(t) corresponding to

λ
R

0 is nowhere vanishing and satisfies the periodic boundary condition (1.2). If X(t) > 0 for
any t ∈ [0, 1], then

(
φp

(
X′))′ + λ

R

0 a(t)φp(X) = 0, X /≡ const. (3.47)
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Therefore,

∫1

0
a(t)dt = − 1

λ
R

0

∫1

0

(
φp(X′)

)′

φp(X)
dt

= − 1

λ
R

0

∫1

0
φp

(
X′)d

(
1

φp(X)

)

+
φp(X′(t))

λ
R

0 φp(X(t))

∣
∣
∣
∣
∣
∣

1

t=0

= −
(
p − 1

)

λ
R

0

∫1

0

|X′|p
Xp

dt

< 0.

(3.48)

Similarly, if X(t) < 0 for any t ∈ [0, 1], then
∫1
0b(t)dt < 0.

On the other hand, assume that
∫1
0a(t)dt < 0. Since x(t) ≡ 1 is the periodic half-

eigenfunction corresponding to λ = 0, by (2.4), we have y(t) ≡ 0. Hence in the p-polar
coordinates (2.5) ϑ0 = 0 and the argument solution θ(t;ϑ0, 0 · a, 0 · b) ≡ 0. Then it follows
from (2.15) and (2.16) that

d

dλ
Θ(0, λa, λb)

∣∣∣∣
λ=0

=
∫1

0
a(t)dt < 0. (3.49)

Thus there exists δ > 0 such that

Θ(0, λa, λb) < 0, ∀λ ∈ (0, δ). (3.50)

By the definition of Θ(λ) = Θ(λa, λb) (see (3.2)), we get

Θ(λ) < 0, ∀λ ∈ (0, δ). (3.51)

By (3.5), (3.6) and the continuity ofΘ(λ) in λ ∈ R
+ (see Lemma 3.1), one has λ

R

0 > 0. Similarly

one can obtain λ
R

0 > 0 if
∫1
0b(t)dt < 0.

Notice that for the antiperiodic half-eigenvalues, it does not hold

Σ2m+1 ⊂
[
λL2m+1, λ

R

2m+1

]
, ∀m ∈ Z

+, (3.52)

for general a, b ∈ Lγ . This is because A(t, θ;a, b) in (2.7) is 2πp-periodic in θ but not πp-
periodic in θ. Hence (2.10) holds but one can not obtain

θ
(
t;ϑ0 +mπp, a, b

) ≡ θ(t;ϑ0, a, b) +mπp, ∀t ∈ [0, 1], ϑ0 ∈ R, m ∈ Z. (3.53)
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However, if a = b, then A(t, θ;a, a) is πp-periodic in θ and

θ
(
t;ϑ0 +mπp, a, a

) ≡ θ(t;ϑ0, a, a) +mπp, ∀t ∈ [0, 1], ϑ0 ∈ R, m ∈ Z. (3.54)

The following theorem characterizes periodic and antiperiodic eigenvalues of (1.6). Now
Σ+
m = Σ+

m(a, a),m ∈ Z
+, is the set of all those nonnegative periodic or antiperiodic eigenvalues

of (1.6) for which the corresponding eigenfunctions have precisely m zeroes in [0, 1).

Theorem 3.11. Given γ ∈ [1,∞] and a = b ∈ Lγ with a+ � 0.

(i) All solutions of (3.7) and (3.8) are periodic or antiperiodic eigenvalues of (1.6) ifm is even
or odd, respectively.

(ii) One has

{
0, λ

R

0

}
⊂ Σ+

0 ⊂
[
0, λ

R

0

]
,

{
λLm, λ

R
m, λ

L

m, λ
R

m

}
⊂ Σ+

m ⊂
[
λLm, λ

R

m

]
, ∀m ∈ N.

(3.55)

(iii) One has the ordering

(0 ≤)λR0 < λL1 ≤ λ
R

1 < λL2 ≤ λ
R

2 < · · · < λLm ≤ λ
R

m < · · · (−→ ∞). (3.56)

(iv) Finally λ
R

0 > 0 ⇔ ∫1
0a(t)dt < 0.

Proof. By Theorems 3.9 and 3.10, we need only prove (3.52) and

λ
R

2m < λL2m+1, λ
R

2m+1 < λL2m+2, ∀m ∈ Z
+. (3.57)

If λ ∈ Σ+
m,m ∈ N, then there exists ϑ0 ∈ R such that Θ(ϑ0, λa, λa) − ϑ0 = mπp. By (3.54)

and the definition of ρ(·) in (3.29), one has

λ ∈ Σ+
m =⇒ ρ(λ) =

m

2
, (3.58)

in particular

ρ
(
λL2m+1

)
= ρ

(
λ
R

2m+1

)
=

2m + 1
2

, ∀m ∈ Z
+. (3.59)
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Then it follows from Lemma 3.6(iii) and (iv) that

λL2m+1 = min
{
λ ≥ 0 | ρ(λ) = m + 1

2

}
, m ∈ Z

+,

λ
R

2m+1 = max
{
λ ≥ 0 | ρ(λ) = m + 1

2

}
, m ∈ Z

+.

(3.60)

Hence (3.52) follows immediately from (3.58) and (3.60).

Suppose λ
R

2m ≥ λL2m+1 for somem ∈ Z
+. By Lemma 3.6(iii) and (v)we obtain ρ(λL2m+1) ≤

m, which contradicts (3.59). Thus λ
R

2m > λL2m+1 for anym ∈ Z
+. Similarly one can prove λ

R

2m+1 <

λL2m+2, ∀m ∈ Z
+, proving the desired results in (3.57).

3.2. Continuity of Periodic and Antiperiodic
Half-Eigenvalues in Weak Topology

Theorem 3.12. Given γ ∈ [1,∞], for any admissiblem, the following functionals

(
Wγ

+, wγ ×wγ

)
−→ R, (a, b) 
−→ λLm(a, b)

(
Wγ

+, wγ ×wγ

)
−→ R, (a, b) 
−→ λ

R

m(a, b)
(3.61)

are continuous. Here wγ denotes the weak topology in Lγ .

Proof. We only prove the result for λLm(a, b). The result for λ
R

m(a, b) can be attained
analogously. Suppose (an, bn) → (a, b) in (Wγ

+, wγ × wγ) as n → ∞. Then an → a and
bn → b in (Lγ , wγ). Denote νn := λLm(an, bn). We aim to prove νn → λLm(a, b).

Firstly, we show that the sequence {νn}n∈N
is bounded. If this is false, without loss of

generality, we may assume that νn → ∞ as n → ∞. Then given anyΛ > 0, there existsN ∈ N

such that

νn > Λ, ∀n > N. (3.62)

It follows from (3.26) that

Θ(Λan,Λbn) < mπp, ∀n > N. (3.63)

Let n → ∞, we obtain by Lemma 3.1

Θ(Λa,Λb) ≤ mπp, (3.64)

which contradicts (3.5) since Λ > 0 can be chosen arbitrarily large. Thus {νn}n∈N
is bounded.



Abstract and Applied Analysis 19

Since {νn}n∈N
is bounded, passing to a subsequence, we assume that νn → ν0 as n →

∞. By the definition of νn, we have

Θ(νnan, νnbn) = mπp. (3.65)

Let n → ∞, by Lemma 3.1 again, we get

Θ(ν0a, ν0b) = mπp. (3.66)

Now it suffices to prove ν0 = λLm(a, b).
If this is not true, by the definition in (3.22) there holds ν0 > λLm(a, b). Then it follows

from Lemma 3.3(i) that there exists

λ ∈
(
λLm(a, b), ν0

)
(3.67)

such that

Θ(λa, λb) > mπp. (3.68)

Since Θ(λan, λbn) → Θ(λa, λb) as n → ∞, we may assume, without loss of generality, that

Θ(λan, λbn) > mπp, ∀n ∈ N. (3.69)

Therefore, by (3.26), we have

λ > λLm(an, bn) = νn, ∀n ∈ N. (3.70)

Let n → ∞, one has λ ≥ ν0, which contradicts the choice of λ in (3.67).

4. The Dirichlet Spectrum

4.1. Structure of Dirichlet Half-Eigenvalues

Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, in this section we use the following notations for simplicity if

there is no ambiguity

Θ(λ) = Θ(λa, λb) = Θ
(
−πp

2
, λa, λb

)
,

X(t) = X(t;a, b) = X

(
t;−πp

2
, a, b

)
.

(4.1)
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For a = b = 0, (2.7) is θ′ = (p − 1)|Sp(θ)|p∗ , which has equilibria θ = kπp, k ∈ Z. Hence,
we have

Θ(0) ∈
(
−πp

2
, 0
)
. (4.2)

Therefore, λ = 0 is not a Dirichlet half-eigenvalue of (1.1), namely, 0/∈ΣD. Due to the jumping
nonlinearity of (1.1), λ ∈ Σ+

D := ΣD ∩ R
+ if and only if λ > 0 is determined by one of the

following two equations

Θ
(
−πp

2
, λa, λb

)
= −πp

2
+mπp, (4.3)

Θ
(
πp

2
, λa, λb

)
=

πp

2
+mπp, (4.4)

for some m ∈ Z. The range of mwill be proved to be N.
The following lemma shows that Θ(λ) is quasimonotone in λ ∈ R

+.

Lemma 4.1. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, if there exist μ > 0 and m ∈ Z such that

Θ
(
μ
)
= −πp

2
+mπp, (4.5)

then

d

dλ
Θ(λ)

∣∣∣∣
λ=μ

> 0, (4.6)

Θ(λ) > (<) − πp

2
+mπp ∀λ > (<)μ. (4.7)

Proof. If μ > 0 satisfies (4.5), then μ is a Dirichlet half-eigenvalue of (1.1) and the
corresponding half-function X(t) = X(t;λa, λb) satisfies the boundary condition (1.4). By
(2.15) and (2.16),

d

dλ
Θ(λ)

∣∣∣∣
λ=u

=
∫1

0

(
aX

p
+ + bX

p
−
)
dt

=
1
μ

(∫1

0

∣∣X′(t)
∣∣pdt − X(t)φp(X′(t))

∣∣1
t=0

)

=
1
μ

∫1

0

∣∣X′(t)
∣∣pdt

> 0,

(4.8)

proving (4.6), and, therefore, (4.7) holds.
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It follows from (4.2), Lemmas 2.3 and 4.1 that (4.3) has a positive solution if and only if
m ∈ N. For eachm ∈ N, (4.3) has the unique positive solution denoted by λ+m(a, b). Moreover,
one has

(0 <)λ+1 (a, b) < λ+2 (a, b) < · · · < λ+m(a, b) · · · (−→ ∞). (4.9)

One can prove similarly that (4.4) has a positive solution if and only if m ∈ N, and for each
m ∈ N, (4.4) has the unique positive solution denoted by λ−m(a, b). Moreover, one has

(0 <)λ−1 (a, b) < λ−2 (a, b) < · · · < λ−m(a, b) · · · (−→ ∞). (4.10)

Let z = −x in (1.1). Then z+ = x−, z− = x+, and

(
φp

(
z′
))′ + λb(t)φp(z+) − λa(t)φp(z−) = 0. (4.11)

Consequently, we have

λ−m(a, b) = λ+m(b, a) ∀m ∈ N. (4.12)

In summary, we can completely characterize the structure of Σ+
D.

Theorem 4.2. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, then Σ+

D consists of two sequences (4.9) and (4.10),
which are related to each other by (4.12). Moreover, the half-eigenfunctions corresponding to λ±m(a, b)
have preciselym − 1 zeroes in the interval (0, 1).

Proof. We need only prove the nodal property, while this can be obtained by (2.11) as done in
Lemma 3.2.

4.2. Dependence of Dirichlet Half-Eigenvalues on Weights

By (4.12), we only discuss the dependence of λ+m(a, b) on weights (a, b). Analogous results
hold for λ−m(a, b).

Theorem 4.3. Given γ ∈ [1,∞] and m ∈ N, the functional

(
Wγ

+, wγ ×wγ

)
−→ R, (a, b) 
−→ λ+m(a, b), (4.13)

is continuous. Herewγ denotes the weak topology in Lγ .

Proof. Suppose (an, bn) → (a, b) in (Wγ
+, wγ ×wγ). Denote νn := λ+m(an, bn). We aim to prove

νn → λ+m(a, b) as n → ∞.
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We claim that the sequence {νn}n∈N
is bounded. If this is false, we may assume that

νn → ∞. Then for any Λ > 0, there exists N ∈ N such that νn > Λ for any n > N. By the
definition of νn and Lemma 4.1, we have

Θ(Λan,Λbn) < −πp

2
+mπp, ∀n ∈ N. (4.14)

Let n → ∞, it follows from Theorem 2.2(i) that

Θ(Λa,Λb) ≤ −πp

2
+mπp, (4.15)

which contradicts with Lemma 2.3, because Λ can be chosen arbitrarily large. Thus, the claim
is true.

Since {νn}n∈N
is bounded and νn > 0, without loss of generality, we may assume that

νn → ν0 ≥ 0. By the definition of νn, one has

Θ(νnan, νnbn) = −πp

2
+mπp, ∀n ∈ N. (4.16)

Let n → ∞, by Theorem 2.2(i) again, one has

Θ(ν0a, ν0b) = −πp

2
+mπp. (4.17)

Therefore, ν0 = λ+m(a, b)(> 0), proving the desired result.

Given (a, b) ∈ Wγ , 1 ≤ γ ≤ ∞, and m ∈ N, denote

Em(t) = Em(t;a, b) :=
X(t)

{∫1
0

(
aX

p
+ + bX

p
−
)
dt
}1/p , (4.18)

where X(t) = X(t;λ+ma, λ
+
mb) (see (2.17)) is the half-eigenfunction of (1.1) associated with

the half-eigenvalue λ+m = λ+m(a, b). Then Em is the half-eigenfunction associated with λ+m and
satisfying the normalized condition

∫1

0

(
a(Em)

p
+ + b(Em)

p
−
)
dt = 1. (4.19)

Theorem 4.4. Given γ ∈ [1,∞] and m ∈ N, the functional

(
Wγ

+, ‖·‖γ × ‖·‖γ
)
−→ R, (a, b) 
−→ λ+m = λ+m(a, b) (4.20)
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is continuously differentiable. Moreover, the Fréchet derivatives of λ+m at a and at b, denoted by ∂aλ
+
m

and ∂bλ
+
m, respectively, are given by the following functionals:

∂aλ
+
m = −λ+m(Em)

p
+ ∈ C0 ⊂

(
Lγ , ‖·‖γ

)∗
, (4.21)

∂bλ
+
m = −λ+m(Em)

p
− ∈ C0 ⊂

(
Lγ , ‖·‖γ

)∗
, (4.22)

where Em(·) = Em(·;a, b) is the normalized half-eigenfunction associated with λ+m(a, b) as defined in
(4.18).

Proof. Consider (4.3) and let F(λ, a, b) := Θ(−πp/2, λa, λb). By Theorem 2.2(ii), F is
continuously differentiable in (λ, a, b) ∈ R ×Wγ

+. We have proved in Lemma 4.1 that

∂F

∂λ
(λ+m(a, b), a, b) > 0. (4.23)

Thus the Implicit Function Theorem implies that the functional λ = λ+m = λ+m(a, b)(> 0)
determined by (4.3) is continuously differentiable in (a, b) ∈ Wγ

+. Moreover, for any h ∈ Lγ ,
one has

∂aΘ ◦ (λ + a∂aλ) ◦ h + ∂bΘ ◦ (b∂aλ) ◦ h = 0. (4.24)

By (2.15) and (2.16), this reads

∫1

0

{
X

p
+[λh + (∂aλ)ha] +X

p
−[(∂aλ)hb]

}
dt = 0, (4.25)

where X(·) = X(·;λ+ma, λ+mb) is the half-eigenfunction of (1.1) associated with the half-
eigenvalue λ+m. Since ∂aλ : Lγ → R and (∂aλ)h ∈ R, one has

(∂aλ)h
∫1

0

(
aX

p
+ + bX

p
−
)
dt = −λ

∫1

0
X

p
+hdt,

(∂aλ)h =
−λ∫10X

p
+hdt

∫1
0

(
aX

p
+ + bX

p
−
)
dt

= −λ
∫1

0
(Em)

p
+hdt,

(4.26)

which proves (4.21). One can obtain (4.22) analogously.

Corollary 4.5. Given γ ∈ [1,∞] and (ai, bi) ∈ Wγ
+, i = 0, 1, one has

(a0, b0) � (≥)(a1, b1) =⇒ λ+m(a0, b0) < (≤)λ+m(a1, b1), ∀m ∈ N. (4.27)
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Proof. Let aτ = τa0 + (1 − τ)a1 and bτ = τb0 + (1 − τ)b1 for any τ ∈ [0, 1]. Although Wγ
+ is not

convex, if (a0, b0) ≥ (a1, b1), we still have (aτ , bτ) ∈ Wγ
+ for any τ ∈ [0, 1]. Therefore, for any

given m ∈ N, the function

M : [0, 1] −→ (0,∞), τ 
−→ M(τ) = λ+m(aτ , bτ), (4.28)

is well-defined (by Theorem 4.2) and is continuously differentiable (by Theorem 4.4).
Moreover, by (4.21) and (4.22), one has

M′(τ) = −M(τ)
∫1

0

{
(Em)

p
+(a0 − a1) + (Em)

p
−(b0 − b1)

}
dt, ∀τ ∈ [0, 1], (4.29)

where Em(·) = Em(·;aτ , bτ) is the normalized half-eigenfunction of (1.1) associated with
λ+m(aτ , bτ) (cf. (4.18)). Consequently, one has M(τ) < (≤) 0 if only (a0, b0) � (≥)(a1, b1),
proving the desired results.

5. The Neumann Spectrum and Positive Principal Eigenvalues

5.1. Structure of Neumann Half-Eigenvalues

Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, in this section we use the following notations for simplicity if

there is no ambiguity

Θ̃(λ) = Θ̃(λa, λb) := Θ(0, λa, λb),

X̃(t) = X̃(t;a, b) := X(t; 0, a, b).
(5.1)

Notice that 0 ∈ ΣN with the constant half-eigenfunctions. Due to the jumping nonlinearity
of (1.1), λ ∈ Σ+

N := ΣN ∩ R
+ if and only if λ ≥ 0 is determined by one of the following two

equations:

Θ(0, λa, λb) = mπp, (5.2)

Θ
(
πp, λa, λb

)
= πp +mπp, (5.3)

for some m ∈ Z. We still need to specify the range ofm.
The following lemma shows that Θ̃(λ) is quasimonotone in λ ∈ R

+. We omit the proof
because it is similar to that of Lemma 4.1.

Lemma 5.1. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, if there exist μ > 0 and m ∈ Z such that

Θ̃
(
μ
)
= mπp, (5.4)
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then

d

dλ
Θ̃(λ)

∣
∣
∣
∣
λ=μ

> 0,

Θ̃(λ) > (<) − πp

2
+mπp ∀λ > (<)μ.

(5.5)

Notice that Θ̃(0) = 0. As a consequence of Lemmas 2.3 and 5.1, (5.2) has a solution
if and only if m ∈ Z

+. More precisely, for each m ∈ N, (5.2) has the unique solution λ =
λ̃+m(a, b) > 0, and for m = 0, (5.2) has the zero solution λ = 0 and has at most one additional
positive solution (called positive principal half-eigenvalue) λ = λ̃+0 (a, b). Moreover, one has

0 < λ̃+0 (a, b) < λ̃+1 (a, b) < λ̃+2 (a, b) < · · · < λ̃+m(a, b) · · · (−→ ∞). (5.6)

Similar arguments as in the proof of Theorem 3.10 show that

λ̃+0 (a, b)(> 0) exists ⇐⇒
∫1

0
a(t)dt < 0. (5.7)

By Lemma 5.1, if the principal half-eigenvalue λ̃+0 exists, then

Θ̃(λ) < 0, ∀λ ∈
(
0, λ̃+0

)
. (5.8)

Similar results hold for (5.3). Denote the positive solution of (5.3) by λ̃−m(a, b) for any
m ∈ Z

+. One has

0 < λ̃−0 (a, b) < λ̃−1 (a, b) < λ̃−2 (a, b) < · · · < λ̃−m(a, b) · · · (−→ ∞), (5.9)

where λ̃−0 (a, b) is also called positive principal half-eigenvalue and

λ̃−0 (a, b)(> 0) exists ⇐⇒
∫1

0
b(t)dt < 0. (5.10)

It can also be proved that

λ̃−m(a, b) = λ̃+m(b, a), ∀m ∈ Z
+ (5.11)

if only both λ̃+m(b, a) and λ̃−m(a, b) exist.
In summary, we can completely characterize the structure of Σ+

N .

Theorem 5.2. Given (a, b) ∈ Wγ
+, 1 ≤ γ ≤ ∞, then Σ+

N consists of two sequences (5.6) and
(5.9), which satisfy (5.7), (5.10), and (5.11). The half-eigenfunctions corresponding to λ̃±m(a, b) have
preciselym − 1 zeroes in the interval (0, 1).
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5.2. Dependence of Neumann Half-Eigenvalues on Weights

By (5.11), we only discuss the dependence of λ̃+m(a, b) on weights (a, b). Analogous results
hold for λ̃−m(a, b). Given (a, b) ∈ Wγ

+ and m ∈ Z
+, denote

Ẽm(t) = Ẽm(t;a, b) :=
X̃(t)

{∫1
0

(
aX̃

p
+ + bX̃

p
−
)
dt
}1/p , (5.12)

where X̃(t) = X̃(t; λ̃+ma, λ̃
+
mb) is the half-eigenfunction of (1.1) associated with the half-

eigenvalue λ̃+m = λ̃+m(a, b). Then Ẽm is also a half-eigenfunction, and it satisfies the normalized
condition

∫1

0

(
a
(
Ẽm

)p

+
+ b
(
Ẽm

)p

−

)
dt = 1. (5.13)

Denote

Wγ
+− :=

{

(a, b) ∈ Wγ
+ |
∫1

0
a(t)dt < 0

}

. (5.14)

Theorem 5.3. Given γ ∈ [1,∞], the functionals

Wγ
+ −→ R, (a, b) 
−→ λ̃+m = λ̃+m(a, b) (m ∈ N),

Wγ
+− −→ R, (a, b) 
−→ λ̃+0 = λ̃+0 (a, b),

(5.15)

are continuous with respect to the weak topologywγ ×wγ , and are continuously Fréchet differentiable
with respect to ‖ · ‖γ × ‖ · ‖γ . Moreover, for any m ∈ Z

+, the derivatives of λ̃+m at a and at b, denoted
by ∂aλ̃+m and ∂bλ̃

+
m, respectively, are given by

∂aλ̃
+
m = −λ̃+m

(
Ẽm

)p

+
∈ C0 ⊂

(
Lγ , ‖ · ‖γ

)∗
,

∂bλ̃
+
m = −λ̃+m

(
Ẽm

)p

−
∈ C0 ⊂

(
Lγ , ‖ · ‖γ

)∗
,

(5.16)

where Ẽm = Ẽm(t;a, b) is the normalized half-eigenfunction associated with λ̃+m(a, b) as defined in
(5.12).

Proof. By checking the proof of Theorems 4.3 and 4.4, the only matter to be proved is the
continuity of

λ̃+0 :
(
Wγ

+−, wγ

)
−→ (0,∞), (5.17)

while this can be attained by using (5.8) and similar arguments as in the proof of
Theorem 3.12.
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Corollary 5.4. (i) If (ai, bi) ∈ Wγ
+, i = 0, 1, and (a0, b0) � (≥) (a1, b1), then

λ̃+m(a0, b0) < (≤) λ̃+m(a1, b1), ∀m ∈ N. (5.18)

(ii) If (ai, bi) ∈ Wγ
+−, i = 0, 1, and (a0, b0) � (≥) (a1, b1), then

λ̃+m(a0, b0) < (≤) λ̃+m(a1, b1), ∀m ∈ Z
+. (5.19)
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