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1. Introduction

The stability problem of functionalequations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms. Let (G1, ·) be a group and let (G2, ∗) be
a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0, such that if a
mapping h : G1 → G2 satisfies the inequality d(h(x ·y), h(x)∗h(y)) < δ for all x, y ∈ G1, then
there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In the
other words, under what condition does there exist a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation. In 1941,
Hyers [2] gave the first affirmative answer to the question of Ulam for Banach spaces. Let
f : E → E′ be a mapping between Banach spaces such that

∥
∥f(x + y) − f(x) − f(y)∥∥ ≤ δ (1.1)

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥
∥f(x) − T(x)∥∥ ≤ δ (1.2)
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for all x ∈ E. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is linear.
Finally, in 1978, Th. M. Rassias [3] proved the following theorem.

Theorem 1.1. Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′

subject to the inequality

∥
∥f(x + y) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ‖y‖p) (1.3)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique additive
mapping T : E → E′ such that

∥
∥f(x) − T(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.4)

for all x ∈ E. If p < 0, then inequality (1.3) holds for all x, y /= 0, and (1.4) for x /= 0. Also, if the
function t �→ f(tx) from R into E′ is continuous in real t for each fixed x ∈ E, then T is linear.

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by
Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations
(see [2, 4–13]). On the other hand, J. M. Rassias [14–16] generalized the Hyers stability result
by presenting a weaker condition controlled by a product of different powers of norms.
According to J. M. Rassias theorem.

Theorem 1.2. If it is assumed that there exist constants Θ ≥ 0 and p1, p2 ∈ R such that p = p1 +
p2 /= 1, and f : E → E′ is a map from a norm space E into a Banach space E′ such that the inequality

∥
∥f(x + y) − f(x) − f(y)∥∥ ≤ ε‖x‖p1‖y‖p2 (1.3p)

for all x, y ∈ E, then there exists a unique additive mapping T : E → E′ such that

∥
∥f(x) − T(x)∥∥ ≤ Θ

2 − 2p
‖x‖p, (1.5)

for all x ∈ E. If in addition for every x ∈ E, f(tx) is continuous in real t for each fixed x, then T is
linear (see [14, 15, 17–22]).

The oldest cubic functional equation, and was introduced by J. M. Rassias [23, 24] is
as follows:

f(x + 2y) + 3f(x) = 3f(x + y) + f(x − y) + 6f(y). (1.6)

Jun and Kim [25] introduced the following cubic functional equation:

f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x), (1.7)
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and they established the general solution and the generalized Hyers-Ulam-Rassias stability
for the functional equation (1.7). The function f(x) = x3 satisfies the functional equation (1.7),
which is thus called a cubic functional equation. Every solution of the cubic functional
equation is said to be a cubic function. Jun and Kim proved that a function f between real
vector spaces X and Y is a solution of (1.7) if and only if there exists a unique function
C : X×X ×X → Y such that f(x) = C(x, x, x) for all x ∈ X, and C is symmetric for each fixed
one variable and is additive for fixed two variables. The oldest quartic functional equation,
and was introducedby J. M. Rassias [16, 26], and then was employed by Park and Bae [27] ,
such that

f(x + 2y) + f(x − 2y) = 4
(

f(x + y) + f(x − y)) + 24f(y) − 6f(x). (1.8)

In fact, they proved that a function f between real vector spaces X and Y is a solution of (1.8)
if and only if there exists a unique symmetric multiadditive function Q : X ×X ×X ×X → Y
such that f(x) = Q(x, x, x, x) for all x (see also [27–33]). It is easy to show that the function
f(x) = x4 satisfies the functional equation (1.8), which is called a quartic functional equation
and every solution of the quartic functional equation is said to be a quartic function.

We deal with the following functional equation deriving from quartic and cubic
functions:

4
(

f(3x + y) + f(3x − y)) = −12(f(x + y) + f(x − y)) + 12
(

f(2x + y) + f(2x − y))

− 8f(y) − 192f(x) + f(2y) + 30f(2x).
(1.9)

It is easy to see that the function f(x) = ax4 + bx3 is a solution of the functional equation
(1.9). In the present paper, we investigate the general solution and the generalized Hyers-
Ulam-Rassias stability of the functional equation (1.9).

2. General solution

In this section, we establish the general solution of functional equation (1.9).

Theorem 2.1. Let X,Y be vector spaces, and let f : X → Y be a function. Then f satisfies (1.9) if
and only if there exists a unique symmetric multiadditive function Q : X × X × X × X → Y and
a unique function C : X × X × X → Y such that C is symmetric for each fixed one variable and is
additive for fixed two variables, and that f(x) = Q(x, x, x, x) + C(x, x, x) for all x ∈ X.

Proof. Suppose there exists a symmetric multiadditive function Q : X × X × X × X → Y and
a function C : X × X × X → Y such that C is symmetric for each fixed one variable and is
additive for fixed two variables, and that f(x) = Q(x, x, x, x) + C(x, x, x) for all x ∈ X. Then
it is easy to see that f satisfies (1.9). For the convlet f satisfy (1.9). We decompose f into the
even part and odd part by setting

fe(x) =
1
2
(

f(x) + f(−x)), fo(x) =
1
2
(

f(x) − f(−x)) (2.1)
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for all x ∈ X. By (1.9), we have

4fe(3x + y) + 4fe(3x − y)

=
1
2
[

4f(3x + y) + 4f(−3x − y) + 4f(3x − y) + 4f(−3x + y)
]

=
1
2
[

4f(3x + y) + 4f(3x − y)] + 1
2
[

4f
(

(−3x) + (−y)) + 4f
(

(−3x) − (−y))]

=
1
2
[

12f(2x + y) + 12f(2x − y) − 12f(x + y) − 12f(x − y)

− 8f(y) − 192f(x) + f(2y) + 30f(2x)
]

+
1
2
[

12f(−2x − y) + 12f
(

(−2x) + y)) − 12f(−x − y) − 12f(−x + y)

− 8f(−y) − 192f(−x) + f(−2y) + 30f(−2x)]

= 12
[
1
2
(

f(2x + y) + f
( − (2x + y)

))
]

+ 12
[
1
2
(

f(2x − y) + f( − (2x − y)))
]

− 12
[
1
2
(

f(x + y) + f
( − (x + y)

))
]

− 12
[
1
2
(

f(x − y) + f( − (x − y)))
]

− 8
[
1
2
(

f(y) + f(−y))
]

− 192
[
1
2
(

f(x) + f(−x))
]

+
1
2
[

f(2y) + f(−2y)] + 30
[
1
2
(

f(2x) + f(−2x))
]

= 12
(

fe(2x + y) + fe(2x − y)) − 12
(

fe(x + y) + fe(x − y))

− 8fe(y) − 192fe(x) + fe(2y) + 30fe(2x)

(2.2)

for all x, y ∈ X. This means that fe satisfies (1.9), or

4
(

fe(3x + y) + fe(3x − y)) = −12(fe(x + y) + fe(x − y)) + 12
(

fe(2x + y) + fe(2x − y))

− 8fe(y) − 192fe(x) + fe(2y) + 30fe(2x).
(1.9e)

Now, putting x = y = 0 in (1.9e), we get fe(0) = 0. Setting x = 0 in (1.9e), by evenness of fe
we obtain

fe(2y) = 16fe(y) (2.3)

for all y ∈ X. Hence, (1.9e) can be written as

fe(3x + y) + fe(3x − y) + 3
(

fe(x + y) + fe(x − y))

= 3
(

fe(2x + y) + fe(2x − y)) + 72fe(x) + 2fe(y)
(2.4)
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for all x, y ∈ X.With the substitution y := 2y in (2.4), we have

fe(3x + 2y) + fe(3x − 2y) + 3fe(x + 2y) + 3fe(x − 2y)

= 48fe(x + y) + 48fe(x − y) + 72fe(x) + 32fe(y).
(2.5)

Replacing y by x + 2y in (2.4), we obtain

16fe(2x + y) + 16fe(x − y) + 48fe(x + y) + 48fe(y)

= 3fe(3x + 2y) + 3fe(x − 2y) + 2fe(x + 2y) + 72fe(x).
(2.6)

Substituting −y for y in (2.6) gives

16fe(2x − y) + 16fe(x + y) + 48fe(x − y) + 48fe(y)

= 3fe(3x − 2y) + 3fe(x + 2y) + 2fe(x − 2y) + 72fe(x).
(2.7)

By utilizing (2.5), (2.6), and (2.7), we obtain

4fe(2x + y) + 4fe(2x − y) + fe(x + 2y) + fe(x − 2y) = 20fe(x + y) + 20fe(x − y) + 90fe(x).
(2.8)

Interchanging x and y in (2.5), we get

fe(2x + 3y) + fe(2x − 3y) + 3fe(2x + y) + 3fe(2x − y)
= 48fe(x + y) + 48fe(x − y) + 32fe(x) + 72fe(y).

(2.9)

If we add (2.5) to (2.9), we have

fe(2x + 3y) + fe(3x + 2y) + fe(2x − 3y) + fe(3x − 2y) + 3fe(2x + y)

+ 3fe(x + 2y) + 3fe(2x − y) + 3fe(x − 2y)

= 96fe(x + y) + 96fe(x − y) + 104fe(x) + 104fe(y).

(2.10)

And by utilizing (2.6), (2.7), and (2.10), we arrive at

3fe(2x + 3y) + 3fe(2x − 3y)

= −25fe(2x + y) − 25fe(2x − y) − 4fe(x − 2y) − 4fe(x + 2y)

+ 224fe(x + y) + 224fe(x − y) + 456fe(x) + 216fe(y).

(2.11)
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Let us interchange x and y in (2.11). Then we see that

3fe(3x + 2y) + 3fe(3x − 2y)

= −25fe(x + 2y) − 25fe(x − 2y) − 4fe(2x − y) − 4fe(2x + y)

+ 224fe(x + y) + 224fe(x − y) + 456fe(y) + 216fe(x).

(2.12)

Comparing (2.12)with (2.5), we get

4fe(2x − y) + 4fe(2x + y) = −16fe(x + 2y) − 16fe(x − 2y) + 80fe(x + y)

+ 80fe(x − y) + 360fe(y).
(2.13)

If we compare (2.13) and (2.8), we conclude that

fe(x + 2y) + fe(x − 2y) + 6fe(x) = 4fe(x + y) + 4fe(x − y) + 24fe(y). (2.14)

This means that fe is quartic function. Thus, there exists a unique symmetric multiadditive
function Q : X × X × X × X → Y such that fe(x) = Q(x, x, x, x) for all x ∈ X. On the other
hand, we can show that fo satisfies (1.9), or

4
(

fo(3x + y) + fo(3x − y)) = −12(fo(x + y) + fo(x − y)) + 12
(

fo(2x + y) + fo(2x − y))

− 8fo(y) − 192fo(x) + fo(2y) + 30fo(2x).
(1.9o)

Now setting x = y = 0 in (1.9o) gives fo(0) = 0. Putting x = 0 in (1.9o), then by oddness of fo,
we have

fo(2y) = 8fo(y). (2.15)

Hence, (1.9o) can be written as

fo(3x + y) + fo(3x − y) + 3fo(x + y) + 3fo(x − y) = 3fo(2x + y) + 3fo(2x − y) + 12fo(x)
(2.16)

for all x, y ∈ X. Replacing x by x + y, and y by x − y in (2.16) we have

8fo(2x + y) + 8fo(x + 2y) + 24fo(x) + 24fo(y) = 3fo(3x + y) + 3fo(x + 3y) + 12fo(x + y)
(2.17)

and interchanging x and y in (2.16) yields

fo(x + 3y) − fo(x − 3y) + 3fo(x + y) − 3fo(x − y) = 3fo(x + 2y) − 3fo(x − 2y) + 12fo(y).
(2.18)
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Which on substitution of −y for y in (2.16) gives

fo(3x − y) + fo(3x + y) + 3fo(x − y) + 3fo(x + y) = 3fo(2x − y) + 3fo(2x + y) + 12fo(x).
(2.19)

Replace y by x + 2y in (2.16). Then we have

8fo(2x + y) + 8fo(x − y) + 24fo(x + y) − 24fo(y) = 3fo(3x + 2y) + 3fo(x − 2y) + 12fo(x).
(2.20)

From the substitution y := −y in (2.20) it follows that

8fo(2x − y) + 8fo(x + y) + 24fo(x − y) + 24fo(y) = 3fo(3x − 2y) + 3fo(x + 2y) + 12fo(x).
(2.21)

If we add (2.20) to (2.21), we have

3fo(3x − 2y) + 3fo(3x + 2y) = 8fo(2x + y) + 8fo(2x − y) − 3fo(x + 2y) − 3fo(x − 2y)

+ 32fo(x − y) + 32fo(x + y) − 24fo(x).
(2.22)

Let us interchange x and y in (2.22). Then we see that

3fo(2x + 3y) − 3fo(2x − 3y) = 8fo(x + 2y) − 8fo(x − 2y) − 3fo(2x + y) + 3fo(2x − y)
+ 32fo(x + y) − 32fo(x − y) − 24fo(y).

(2.23)

With the substitution y := x + y in (2.16), we have

fo(4x + y) + fo(2x − y) + 3fo(2x + y) − 3fo(y) = 3fo(3x + y) + 3fo(x − y) + 12fo(x), (2.24)

and replacing −y by y gives

fo(4x − y) + fo(2x + y) + 3fo(2x − y) + 3fo(y) = 3fo(3x − y) + 3fo(x + y) + 12fo(x). (2.25)

If we add (2.24) to (2.25), we have

fo(4x + y) + fo(4x − y) = 3fo(3x + y) + 3fo(3x − y) − 4fo(2x − y) − 4fo(2x + y)

+ 3fo(x − y) + 3fo(x + y) + 24fo(x).
(2.26)

By comparing (2.19) with (2.26), we arrive at

fo(4x + y) + fo(4x − y) = 5fo(2x + y) + 5fo(2x − y) − 6fo(x + y) − 6fo(x − y) + 60fo(x)
(2.27)



8 Abstract and Applied Analysis

and replacing y by 2y in (2.16) gives

fo(3x + 2y) + fo(3x − 2y) = 24fo(x + y) + 24fo(x − y) − 3fo(x + 2y) − 3fo(x − 2y) + 12fo(x).
(2.28)

By comparing (2.28) with (2.22), we arrive at

3fo(x + 2y) + 3fo(x − 2y) = 20fo(x + y) + 20fo(x − y) − 4fo(2x + y) − 4fo(2x − y) + 30fo(x).
(2.29)

Let us interchange x and y in (2.28). Then we see that

fo(2x + 3y) − fo(2x − 3y) = 24fo(x + y) − 24fo(x − y) − 3fo(2x + y) + 3fo(2x − y) + 12fo(y).
(2.30)

Thus combining (2.30)with (2.23) yields

4fo(x + 2y) − 4fo(x − 2y) = 3fo(2x − y) − 3fo(2x + y) + 20fo(x + y) − 20fo(x − y) + 30fo(y).
(2.31)

By comparing (2.31) with (2.18), we arrive at

4fo(x + 3y) − 4fo(x − 3y) = 9fo(2x − y) − 9fo(2x + y) + 48fo(x + y) − 48fo(x − y) + 138fo(y).
(2.32)

Which, by putting y := 2y in (2.17), leads to

64fo(x + y) + 8fo(x + 4y) + 24fo(x) + 192fo(y) = 3fo(3x + 2y) + 3fo(x + 6y) + 12fo(x + 2y).
(2.33)

Replacing y by −y in (2.33) gives

64fo(x − y) + 8fo(x − 4y) + 24fo(x) − 192fo(y) = 3fo(3x − 2y) + 3fo(x − 6y) + 12fo(x − 2y).
(2.34)

If we subtract (2.33) from (2.34), we obtain

8fo(x + 4y) − 8fo(x − 4y) = 3fo(3x + 2y) − 3fo(3x − 2y) + 3fo(x + 6y)

− 3fo(x − 6y) + 12fo(x + 2y) − 12fo(x − 2y)

+ 64fo(x − y) − 64fo(x + y) − 384fo(y).

(2.35)
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Setting x instead of y and y instead of x in (2.27), we get

fo(x + 4y) − fo(x − 4y) = 5fo(x + 2y) − 5fo(x − 2y) + 6fo(x − y) − 6fo(x + y) + 60fo(y).
(2.36)

Combining (2.35) and (2.36) yields

3fo(3x + 2y) − 3fo(3x − 2y) = 28fo(x + 2y) − 28fo(x − 2y) + 3fo(x − 6y) − 3fo(x + 6y)

+ 16fo(x + y) − 16fo(x − y) + 864fo(y)
(2.37)

and subtracting (2.21) from (2.20), we obtain

3fo(3x + 2y) − 3fo(3x − 2y) = 3fo(x + 2y) − 3fo(x − 2y) + 8fo(2x + y) − 8fo(2x − y)
+ 16fo(x + y) − 16fo(x − y) − 48fo(y).

(2.38)

By comparing (2.37) with (2.38), we arrive at

3fo(x + 6y) − 3fo(x − 6y) = 25fo(x + 2y) − 25fo(x − 2y) + 8fo(2x − y)
− 8fo(2x + y) + 912fo(y).

(2.39)

Interchanging y with 2y in (2.32) gives the equation

4fo(x + 6y) − 4fo(x − 6y) = 48fo(x + 2y) − 48fo(x − 2y) + 72fo(x − y)
− 72fo(x + y) + 1104fo(y).

(2.40)

We obtain from (2.39) and (2.40)

44fo(x + 2y) − 44fo(x − 2y) = 32fo(2x − y) − 32fo(2x + y) + 216fo(x + y)

− 216fo(x − y) + 336fo(y).
(2.41)

By using (2.31) and (2.41), we lead to

fo(2x + y) − fo(2x − y) = 4fo(x + y) − 4fo(x − y) − 6fo(y). (2.42)

And interchanging x with y in (2.42) gives

fo(x + 2y) + fo(x − 2y) = 4fo(x + y) + 4fo(x − y) − 6fo(x). (2.43)
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If we compare (2.43) and (2.29), we conclude that

8fo(x + y) + 8fo(x − y) + 48fo(x) = 4fo(2x + y) + 4fo(2x − y). (2.44)

This means that fo is cubic function and that there exits a unique function C : X ×X ×X → Y
such that fo(x) = C(x, x, x) for all x ∈ X, and C is symmetric for each fixed one variable and
is additive for fixed two variables. Thus for all x ∈ X, we have

f(x) = fe(x) + fo(x) = C(x, x, x) +Q(x, x, x, x). (2.45)

This completes the proof of theorem.

The following corollary is an alternative result of Theorem 2.1.

Corollary 2.2. Let X, Y be vector spaces, and let f : X → Y be a function satisfying (1.9). Then the
following assertions hold.

(a) If f is even function, then f is quartic.

(b) If f is odd function, then f is cubic.

3. Stability

We now investigate the generalized Hyers-Ulam-Rassias stability problem for functional
equation (1.9). From now on, let X be a real vector space and let Y be a Banach space.
Now before taking up the main subject, given f : X → Y , we define the difference operator
Df : X ×X → Y by

Df(x, y) = 4
[

f(3x + y) + f(3x − y)] − 12
[

f(2x + y) + f(2x − y)] + 12
[

f(x + y) + f(x − y)]

− f(2y) + 8f(y) − 30f(2x) + 192f(x)
(3.1)

for all x, y ∈ X.We consider the following functional inequality:

∥
∥Df(x, y)

∥
∥ ≤ φ(x, y) (3.2)

for an upper bound φ : X ×X → [0,∞).

Theorem 3.1. Let s ∈ {1,−1} be fixed. Suppose that an even mapping f : X → Y satisfies f(0) = 0,
and

∥
∥Df(x, y)

∥
∥ ≤ φ(x, y) (3.3)

for all x, y ∈ X. If the upper bound φ : X × X → [0,∞) is a mapping such that the series
∑∞

i=0 2
4siφ(0, x/2si) converges, and that limn→∞ 24snφ(x/2sn, y/2sn) = 0 for all x, y ∈ X, then



M. Eshaghi Gordji et al. 11

the limit Q(x) = limn→∞ 24snf(x/2sn) exists for all x ∈ X, and Q : X → Y is a unique quartic
function satisfying (1.9), and

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

16

∞∑

i=(s−1)/2
24s(i+1)φ

(

0,
x

2s(i+1)

)

(3.4)

for all x ∈ X.

Proof. Let s = 1. Putting x = 0 in (3.3), we get

∥
∥f(2y) − 16f(y)

∥
∥ ≤ φ(0, y). (3.5)

Replacing y by x/2 in (3.5), yields

∥
∥
∥
∥
f(x) − 16f

(
x

2

)∥
∥
∥
∥
≤ φ

(

0,
x

2

)

. (3.6)

Interchanging x with x/2 in (3.6), and multiplying by 16 it follows that

∥
∥
∥
∥
16f

(
x

2

)

− 162f
(
x

4

)∥
∥
∥
∥
≤ 16φ

(

0,
x

4

)

. (3.7)

Combining (3.6) and (3.7), we lead to

∥
∥
∥
∥
162f

(
x

4

)

− f(x)
∥
∥
∥
∥
≤ φ

(

0,
x

2

)

+ 16φ
(

0,
x

4

)

. (3.8)

From the inequality (3.6) we use iterative methods and induction on n to prove our next
relation:

∥
∥
∥
∥
16nf

(
x

2n

)

− f(x)
∥
∥
∥
∥
≤ 1

16

n−1∑

i=0

16i+1φ
(

0,
x

2i+1

)

. (3.9)

We multiply (3.9) by 16m and replace x by x/2m to obtain that

∥
∥
∥
∥
16m+nf

(
x

2m+n

)

− 16mf
(
x

2m

)∥
∥
∥
∥
≤

n−1∑

i=0

16m+iφ

(

0,
x

2i+m+1

)

. (3.10)

This shows that {16nf(x/2n)} is a Cauchy sequence in Y by taking the limitm → ∞. Since Y
is a Banach space, it follows that the sequence {16nf(x/2n)} converges. We defineQ : X → Y
by Q(x) = limn→∞ 24nf(x/2n) for all x ∈ X. It is clear that Q(−x) = Q(x) for all x ∈ X, and it
follows from (3.3) that

∥
∥DQ(x, y)

∥
∥ = lim

n→∞
16n

∥
∥
∥
∥
Df

(
x

2n
,
y

2n

)∥
∥
∥
∥
≤ lim

n→∞
16nφ

(
x

2n
,
y

2n

)

= 0 (3.11)
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for all x, y ∈ X. Hence, by Corollary 2.2, Q is quartic. It remains to show that Q is unique.
Suppose that there exists another quartic functionQ′ : X → Y which satisfies (1.9) and (3.4).
Since Q(2nx) = 16nQ(x), and Q′(2nx) = 16nQ′(x) for all x ∈ X,we conclude that

∥
∥Q(x) −Q′(x)

∥
∥ = 16n

∥
∥
∥
∥
Q

(
x

2n

)

−Q′
(
x

2n

)∥
∥
∥
∥

≤ 16n
∥
∥
∥
∥
Q

(
x

2n

)

− f
(
x

2n

)∥
∥
∥
∥
+ 16n

∥
∥
∥
∥
Q′

(
x

2n

)

− f
(
x

2n

)∥
∥
∥
∥

≤ 2
∞∑

i=0

16n+iφ
(

0,
x

2n+i+1

)

(3.12)

for all x ∈ X. By letting n → ∞ in this inequality, it follows that Q(x) = Q′(x) for all x ∈ X,
which gives the conclusion. For s = −1, we obtain

∥
∥
∥
∥

f
(

2mx
)

16m
− f(x)

∥
∥
∥
∥
≤ 1

16

n−2∑

i=−1

φ
(

0, 2i+1x
)

16i+1
, (3.13)

from which one can prove the result by a similar technique.

Theorem 3.2. Let s ∈ {1,−1} be fixed. Suppose that an odd mapping f : X → Y satisfies

∥
∥Df(x, y)

∥
∥ ≤ φ(x, y) (3.14)

for all x, y ∈ X. If the upper bound φ : X ×X → [0,∞) is a mapping such that
∑∞

i=0 2
3siφ(0, x/2si)

converges, and that limn→∞ 23siφ(x/2si, y/2si) = 0 for all x, y ∈ X, then the limit C(x) =
limn→∞ 23snf(x/2sn) exists for all x ∈ X, and C : X → Y is a unique cubic function satisfying
(1.9), and

∥
∥f(x) − C(x)∥∥ ≤ 1

8

∞∑

i=(s−1)/2
23s(i+1)φ

(

0,
x

2s(i+1)

)

(3.15)

for all x ∈ X.

Proof. Let s = 1. Set x = 0 in (3.14). We obtain

∥
∥8f(y) − f(2y)∥∥ ≤ φ(0, y). (3.16)

Replacing y by x/2 in (3.16) to get

∥
∥
∥
∥
8f

(
x

2

)

− f(x)
∥
∥
∥
∥
≤ φ

(

0,
x

2

)

. (3.17)
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An induction argument now implies

∥
∥
∥
∥
8nf

(
x

2n

)

− f(x)
∥
∥
∥
∥
≤ 1

8

n−1∑

i=0

8i+1φ
(

0,
x

2i+1

)

. (3.18)

Multiply (3.18) by 8m and replace x by x/2m, we obtain that

∥
∥
∥
∥
8m+nf

(
x

2m+n

)

− 8mf
(
x

2m

)∥
∥
∥
∥
≤

n−1∑

i=0

8m+iφ

(

0,
x

2m+i+1

)

. (3.19)

The right hand side of the inequality (3.19) tends to 0 asm → ∞ because of

∞∑

i=0

8iφ
(

0,
x

2i+1

)

<∞ (3.20)

by assumption, and thus the sequence {23nf(x/2n)} is Cauchy in Y , as desired. Therefore we
may define a mapping C : X → Y as C(x) = limn→∞ 23nf(x/2n). The rest of proof is similar
to the proof of Theorem 3.1.

Theorem 3.3. Let s ∈ {1,−1} be fixed. Suppose a mapping f : X → Y satisfies f(0) = 0, and
‖Df(x, y)‖ ≤ φ(x, y) for all x, y ∈ X. If the upper bound φ : X × X → [0,∞) is a mapping such
that

∞∑

i=0

[
(|s| + s)24siφ

(

0,
x

2si−1

)

+
(|s| − s)23siφ

(

0,
x

2si−1

)]

<∞,

lim
n→∞

[
(|s| + s)2(4sn−1)φ

(
x

2sn
,
y

2sn

)

+
(|s| + s)23snφ

(
x

2sn
,
y

2sn

)]

= 0

(3.21)

for all x, y ∈ X. Then there exists a unique quartic function Q : X → Y and a unique cubic function
C : X → Y satisfying

∥
∥f(x) −Q(x) − C(x)∥∥ ≤

∞∑

i=(s−1)/2

{(
24s(i+1)

32
+
23s(i+1)

16

)[

φ

(

0,
x

2s(i+1)

)

+ φ
(

0,
−x

2s(i+1)

)]}

(3.22)

for all x ∈ X.

Proof. Let fe(x) = (1/2)(f(x) + f(−x)) for all x ∈ X. Then fe(0) = 0 and fe is even function
satisfying ‖Dfe(x, y)‖ ≤ (1/2)[φ(x, y) + φ(−x,−y)] for all x, y ∈ X. From Theorem 3.1, it
follows that there exists a unique quartic function Q : X → Y satisfies

∥
∥fe(x) −Q(x)

∥
∥ ≤ 1

32

∞∑

i=(s−1)/2

{

24s(i+1)φ
(

0,
x

2s(i+1)

)

+ 24s(i+1)φ
(

0,
−x

2s(i+1)

)}

(3.23)
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for all x ∈ X. Let now fo(x) = (1/2)(f(x) − f(−x)) for all x ∈ X. Then fo is odd function
satisfying

∥
∥Dfo(x, y)

∥
∥ ≤ 1

2
[

φ(x, y) + φ(−x,−y)] (3.24)

for all x, y ∈ X. Hence, in view of Theorem 3.2, it follows that there exists a unique cubic
function C : X → Y such that

∥
∥fo(x) − C(x)

∥
∥ ≤ 1

16

∞∑

i=(s−1)/2

{

23s(i+1)φ
(

0,
x

2s(i+1)

)

+ 23s(i+1)φ
(

0,
−x

2s(i+1)

)}

(3.25)

for all x ∈ X.On the other hand, we have f(x) = fe(x)+fo(x) for all x ∈ X. Then by combining
(3.23) and (3.25), it follows that

∥
∥f(x) − C(x) −Q(x)

∥
∥ ≤ ∥

∥fe(x) −Q(x)
∥
∥ +

∥
∥fo(x) − C(x)

∥
∥

≤
∞∑

i=(s−1)/2

{(
24s(i+1)

32
+
23s(i+1)

16

)[

φ

(

0,
x

2s(i+1)

)

+ φ
(

0,
−x

2s(i+1)

)]}

(3.26)

for all x ∈ X, and the proof of theorem is complete.

We are going to investigate the Hyers-Ulam-Rassias stability problem for functional
equation (1.9).

Corollary 3.4. Let p ∈ (−∞, 3) ∪ (4,+∞), θ > 0. Suppose f : X → Y satisfies f(0) = 0, and
inequality

∥
∥Df(x, y)

∥
∥ ≤ θ(‖x‖p + ‖y‖p), (3.27)

for all x, y ∈ X. Then there exists a unique quartic functionQ : X → Y , and a unique cubic function
C : X → Y satisfying

∥
∥f(x) −Q(x) − C(x)∥∥ ≤

⎧

⎪⎪
⎨

⎪⎪⎩

θ‖x‖p
(

1
2p − 24

+
1

2p − 23

)

, p > 4,

θ‖x‖p
(

1
24 − 2p

+
1

23 − 2p

)

, p < 3
(3.28)

for all x ∈ X.

Proof. Let s = 1 in Theorem 3.3. Then by taking φ(x, y) = θ(‖x‖p + ‖y‖p) for all x, y ∈ X, the
relations (3.21) hold for p > 4. Then there exists a unique quartic function Q : X → Y and a
unique cubic function C : X → Y satisfying

∥
∥f(x) −Q(x) − C(x)∥∥ ≤ θ

∥
∥
∥
∥

x

2

∥
∥
∥
∥

p( 1
1 − 24−p

+
1

1 − 23−p

)

(3.29)
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for all x ∈ X. Let now s = −1 in Theorem 3.3 and put φ(x, y) = θ(‖x‖p + ‖y‖p) for all x, y ∈ X.
Then the relations (3.21) hold for p < 3. Then there exists a unique quartic function Q : X →
Y and a unique cubic function C : X → Y satisfying

∥
∥f(x) −Q(x) − C(x)∥∥ ≤ θ‖x‖p

(
1

24 − 2p
+

1
23 − 2p

)

(3.30)

for all x ∈ X.
Similarly, we can prove the following Ulam stability problem for functional equation

(1.9) controlled by the mixed type product-sum function

(x, y) �−→ θ
(‖x‖uX‖y‖vX + ‖x‖p + ‖y‖p) (3.31)

introduced by J. M. Rassias (e.g., [34]).

Corollary 3.5. Let u, v, p be real numbers such that u + v, p ∈ (−∞, 3) ∪ (4,+∞), and let θ > 0.
Suppose f : X → Y satisfies f(0) = 0, and inequality

∥
∥Df(x, y)

∥
∥ ≤ θ(‖x‖uX‖y‖vX + ‖x‖p + ‖y‖p), (3.32)

for all x, y ∈ X. Then there exists a unique quartic functionQ : X → Y , and a unique cubic function
C : X → Y satisfying

∥
∥f(x) −Q(x) − C(x)∥∥ ≤

⎧

⎪⎪⎨

⎪⎪
⎩

θ‖x‖p
(

1
2p − 24

+
1

2p − 23

)

, p > 4,

θ‖x‖p
(

1
24 − 2p

+
1

23 − 2p

)

, p < 3
(3.33)

for all x ∈ X.

By Corollary 3.4, we solve the following Hyers-Ulam stability problem for functional
equation (1.9).

Corollary 3.6. Let ε be a positive real number. Suppose f : X → Y satisfies f(0) = 0, and
‖Df(x, y)‖ ≤ ε, for all x, y ∈ X. Then there exists a unique quartic function Q : X → Y , and
a unique cubic function C : X → Y satisfying

∥
∥f(x) −Q(x) − C(x)∥∥ ≤ 22

105
ε (3.34)

for all x ∈ X.
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36(56), no. 1, pp. 63–72, 2001.
[24] J. M. Rassias, “Solution of the Ulam problem for cubic mappings,” Analele Universităţii din Timişoara.
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