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This study sought to investigate thermal radiation and buoyancy effects on heat and mass transfer
over a semi-infinite stretching surface with suction and blowing. Appropriate transformations
were employed to transform the governing differential equations to nonsimilar form. The
transformed equations were solved numerically by an efficient implicit, iterative finite-difference
scheme. A parametric study illustrating the influence of wall suction or injection, radiation,
Schmidt number and Grashof number on the fluid velocity, temperature and concentration is
conducted. We conclude from the study that the flow is appreciably influenced by thermal
radiation, Schmidt number, as well as fluid injection or suction.
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1. Introduction

There are many transport processes which occur naturally and artificially in which flow
is modified or driven by density differences caused by temperature, chemical composition
differences and gradients, and material or phase constitution. Boundary layer flow and heat
transfer over a continuously stretched surface has received considerable attention in recent
years. This is because of the various possible engineering and metallurgical applications
such as hot rolling, wire drawing, metal and plastic extrusion, continuous casting, glass fibre
production, crystal growing, and paper production.

Gebhart and Pera [1] investigated flows resulting from buoyancy forces which
arise from a combination of temperature and species concentration effects of comparable
magnitude. This circumstance arises often, especially in the natural environment. Pera and
Gebhart [2] analyzed the flow induced by the combined buoyancy effects due to thermal and
chemical species diffusion adjacent to horizontal surfaces having uniform surface conditions
with buoyancy effect primarily away from the surface.
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Bestman [3] studied free convection boundary layer flow with simultaneous heat and
mass transfer in a porous medium when the boundary wall moves in its own plane with
suction. Hossain [4] investigated the effect of uniform transpiration rate on the heat and mass
transfer characteristics in mixed convection flow of a viscous incompressible fluid along a
vertical permeable plate. Acharya et al. [5] analyzed heat and mass transfer occurring in
laminar boundary layer on a linearly accelerating surface with temperature-dependent heat
source subject to suction or blowing.

Hossain et al. [6] determined the effect of radiation on natural convection flow of
an optically thick viscous incompressible flow past a heated vertical porous plate with a
uniform surface temperature and a uniform rate of suction where radiation is included
by assuming the Rosseland diffusion approximation. Rahman and Mulolani [7] examined
natural convection flow over a semi-infinite vertical plate at constant species concentration.

Hussain and Hossain [8] considered the problem of natural convection boundary layer
flow, induced by the combined buoyancy forces from mass and thermal diffusion from a
permeable vertical flat surface with non uniform surface temperature and concentration but
a uniform rate of suction of fluid through the permeable surface.

Chamkha [9] considered the problem of steady, hydromagnetic boundary layer flow
over an accelerating semi infinite porous surface in the presence of thermal radiation,
buoyancy and heat generation or absorption. Hossain et al. [10] numerically investigated
the effect of thermal radiation on natural convection flow along a uniformly heated vertical
porous plate with variable viscosity and uniform suction velocity.

Abel et al. [11] investigated numerically natural convective flows, heat and mass
transfer due to the combined effect of thermal and species diffusion in viscoelastic fluid. Devi
and Kandasamy [12] analyzed the effects of a chemical reaction, heat and mass transfer on an
accelerating surface with a heat source and thermal stratification in the presence of suction
and injection.

Chamkha and Quadri [13] considered simultaneous heat and mass transfer by natural
convection from a vertical semi-infinite plate embedded in a fluid saturated porous medium
in the presence of wall suction or injection, heat generation or absorption effects, porous
medium inertial and thermal dispersion effects. In general, the porous medium thermal
dispersion effects increase the temperature of the fluid causing higher flow rates along
the surface. However, this seems not to be the case in their study, as the peak values of
the temperature and velocity profiles were lowered as porous medium thermal dispersion
parameter increases.

Saha and Hossain [14] numerically studied the problem of laminar doubly diffusive
free convection flows adjacent to a vertical surface in a stable thermally stratified medium.
Abel et al. [15] analyzed the effect of the buoyancy force and thermal radiation in MHD
boundary layer viscoelastic fluid flow over a continuously moving stretching surface.

Azizi et al. [16] investigated numerically the effects of thermal and buoyancy forces on
both upward flow and downward flow of air in a vertical parallel-plates channel. Shateyi et al.
[17] studied magnetohydrodynamic flow past a vertical plate with radiative heat transfer.

Motivated by the above referenced work and the vast possible industrial applications,
it is of paramount interest in this study to consider effects of thermal radiation, buoyancy and
suction/blowing on natural convection heat and mass transfer over a semi-infinite stretching
surface. The essential difference between the current work and Chamkha [9] and other
related work arises from the absence of an electrically conducting fluid. The inclusion of
mass transfer, as well as suction and blowing and the exclusion of an electrically conducting
fluid in the current work makes it different from Shateyi et al. [17]. The inclusion of thermal
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radiation differentiates this current work from other similar free convection heat and mass
transfer studies.

2. Mathematical formulation

We consider a steady two-dimensional laminar boundary layer flow of an incompressible
viscous fluid over a semi-infinite porous stretching surface. Heat and the concentration are
supplied from the plate to the fluid at uniform rates. The chemical species diffuses into the
nearby fluid inducing a buoyancy force. A change in the temperature of the fluid near the
plate surface also results in additional buoyancy.

Introducing a Cartesian coordinate system, x-axis is chosen along the plate in the
direction of flow and y-axis normal to it. The plate is maintained at a constant temperature Tw
and the concentration is maintained at a constant value Cw. The ambient temperature of the
flow is T∞ and the concentration of uniform flow isC∞. The concentration of diffusing species
is very small in comparison to other chemical species and hence the thermal diffusion and
diffusing thermal energy effects are neglected. Viscous dissipation in the energy is negligible.
Variations in fluid properties are limited only to those density variations which affect the
buoyancy terms and the radiative heat flux in the x-direction is considered negligible in
comparison with that in the y-direction. The concentration is assumed to be nonreactive.

Under the usual Boussinesq approximation, the conservation equations for the steady,
laminar, two-dimensional boundary layer flow problem under consideration can be written
as

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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The boundary conditions are

u(x, 0) = ax, v(x, 0) = Vw,

T(x, 0) = Tw, C(x, 0) = Cw,

u(x,∞) = 0, T(x,∞) = T∞, C(x,∞) = C∞,

(2.5)

where u, v are velocity components along x-axis and y-axis, respectively, g is the acceleration
due to gravity, T is temperature, Tw is the wall temperature, T∞ is the temperature of
the uniform flow, αt is thermal conductivity, cp is the specific heat at constant pressure,
ρ is density of the ambient fluid, and qr is the component of radiative heat flux. C is the
concentration of species, Cw is the wall concentration, C∞ is the concentration of the uniform
flow, D is the molecular diffusivity, Vw is suction/injection velocity, ν is the kinematic
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viscosity, βt is the volumetric coefficient of thermal expansion, βc is the volumetric coefficient
of thermal expansion with concentration, and a is a stretching constant.

The radiative heat flux qr is described by the Rosseland approximation such that

qr = −
4σ∗

3K
∂T4

∂y
, (2.6)

where σ∗ and K are the Stefan-Boltzman constant and the Roseland mean absorption
coefficient, respectively. Following Chamkha [18] and others, we assume that the temperature
differences within the flow are sufficiently small so that the T4 can be expressed as a linear
function after using Taylor series to expand T4 about the free stream temperature T∞ and
neglecting higher-order terms. This results in the following approximation:

T4 ≈ 4T3
∞T − 3T4

∞. (2.7)

Using (2.6) and (2.7) in the last term of (2.3), we obtain

∂qr
∂y

= −16σ∗T3
∞

3K
∂2T

∂y2
. (2.8)

We then nondimensionalize (2.1)–(2.4) using the following transformations:

x = Lξ, y = LGr−1/4η, u =
ν

L
Gr1/2F, v =

ν

L
Gr1/4H,

θ =
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, φ =
C − C∞
Cw − C∞

,

(2.9)

with L being the characteristic length, and the two Grashof numbers are given by Gr =
gβt(Tw − T∞)L3/ν2 and Grc = gβc(Cw − C∞)L3/ν2.

Using these transformations, the governing equations become
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(2.10)

whereN = Grc/Gr is the buoyancy ratio, Pr is the Prandtl number, Sc is the Schmidt number,
and R = 16σT3

∞/3Kλc is the dimensionless thermal radiation coefficient.
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The boundary conditions become

F(ξ, 0) = 1, H(ξ, 0) = V0, θ(ξ, 0) = φ(ξ, 0) = 1,

F(ξ,∞) = H(ξ,∞) = 0, θ(ξ,∞) = φ(ξ,∞) = 0,
(2.11)

where V0 = LVwGr−1/4/ν is the dimensionless wall normal velocity such that V0 > 0 indicates
injection and V0 < 0 indicates suction at the surface.

3. Method of solution

Equations (2.10) are coupled with nonlinear partial differential ones which possess no
similarity or closed-form solutions. Therefore a numerical solution of the problem under
consideration is needed (see, e.g., Abel et al. [11], Abel et al. [15], Chamkha and Khaled [19],
among others). In general, closed-form or similarity solutions are very useful in validating
numerical methods. Since 1970, when Blottner first discussed it, the implicit finite-difference
method has proven to be adequate and accurate for equations similar to (2.10). For this
reason, the implicit finite-difference method discussed by Blottner [20] is employed in the
present work. Also since the finite-difference method is more accurate and more flexible
in setting the limiting condition far from the surface than most numerical methods such
as Runge-kutta methods, it is one of the reasons why it is adopted in the present work.
Finite-difference procedure leads to a system which is triadiagonal and therefore speedy to
solve and also economical of memory space to store the coefficients. Although the shooting
methods can be used for solving problems presented in this study, they often present
problems of instability. Finite-difference methods have better stability characteristics, though
they generally require more work to obtain a specified accuracy.

Owing to the nonlinear nature of the equations, we employed an iterative procedure
with 10−6 as the maximum absolute error between two successive iterations. The computa-
tional domain consisted of more than 300 nodal points of nonuniform distribution employed
to accommodate steep changes in the velocity, temperature, and chemical species in the
immediate vicinity of the wall. After many numerical experiments were performed to assess
grid independence and accuracy of the results, the choice of an initial step size of ∇η1 of
0.001 and a growth factor k of 1.02, such that ∇ηi+1 = k∇ηi, was made. We chose the relative
difference between the current and the previous iterations to be the convergence criterion.
When this difference reached 10−6, the solution was assumed converged and the iteration
process was terminated.

4. Results and discussion

A graphical representation of the numerical results is illustrated in Figure 1 through Figure 7
to show the influence of the wall suction or blowing, Schmidt number, radiation parameter,
and Grashof number. Figure 1 depicts the influence of the suction/injection parameter V0 on
the flow velocity in the boundary layer. It is now known that imposition of wall fluid injection
increases the hydrodynamic boundary layer which indicates an increase in the fluid velocity.
However, the exact opposite behaviour is produced by imposition of wall fluid suction. These
behaviours are clear from Figures 1(a) and 1(b). As is clearly depicted in Figure 1, the velocity
profiles rise from an initial velocity 1 up to respective maximum values before asymptotically
tend to zero as we move away from the moving wall. In Figure 1(b), we can see that as the
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Figure 1: The variation of the velocity distribution with increasing (a) injection parameter and (b) suction
parameter with ξ = 5, Gr = Gc = 1, Pr = 0.72, Sc = 1, R = 1.

suction parameter increases, the maximum fluid velocity decreases. This can be physically
interpreted by the fact that suction is to take away the warm solute on the vertical plate
thereby decreasing the velocity with a reduction in the intensity of the natural convection
rate.

Figure 2 shows the effect of the injection parameter on the temperature and
concentration profiles. As injection rate increases, more warm fluid is added and thus the
thermal and concentration boundary layer thicknesses increase. In Figure 3, it is shown
that as suction parameter value increases, both the temperature and concentration profiles
decrease. This is because as the suction rate is increased, more warm fluid is taken away from
the boundary layer.

Diffusing chemical species of most interest in air has Schmidt numbers in the range
from 0.1 to 10 [8]. In the present investigation, we consider hydrogen (Sc = 0.22), water
vapour (Sc = 0.66), and carbon dioxide (Sc = 0.94). The effect of these chemical species
on the velocity and concentration distribution is shown in Figure 4. It can be seen that the
presence of a heavier species (lager Schmidt number) is to decrease both the fluid velocity
and the concentration in the boundary layer. This is due to the thinning of the momentum
and concentration boundary layer with the introduction of a heavier species diffusion.

The effects of thermal radiation parameter R on the velocity and temperature profiles
in the boundary layer are illustrated in Figures 5(a) and 5(b), respectively. Increasing the
thermal radiation parameter R produces an increase in the thermal condition of the fluid and
its thermal boundary layer. More flow is induced in the boundary layer by the increase in the
fluid temperature thereby causing the velocity of the fluid to increase as well.

Figure 6(a) shows that the velocity rises steeply near the vertical wall as the Grashof
number is increased. Moving away from the wall, a cross flow in the velocity is induced as
the velocity profiles turn to zero at slower rates for small Grashof numbers. The thermal
boundary layer and the concentration boundary layer reduce as the Grashof number
increases causing the fluid temperature to reduce at every point other than the wall. It is
observed that the effect of the Grashof number is to reduce the concentration distribution as
concentration species is dispersed away. This is clearly depicted in Figures 6(b) and 7(a). In



S. Shateyi 7

0

0.2

0.4

0.6

0.8

1

θ

0 10 20 30

η

V0 = 1

V0 = 0.5

V0 = 0

(a)

0

0.2

0.4

0.6

0.8

1

φ

0 5 10 15 20

η

V0 = 1

V0 = 0.5

V0 = 0

(b)

Figure 2: The variation of (a) the temperature distribution and (b) the concentration profiles with
increasing injection parameter numbers with ξ = 5, Gr = Grc = 1, Pr = 0.72, Sc = 1, R = 1.
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Figure 3: The variation of (a) the temperature distribution and (b) the concentration profiles with
increasing injection parameter numbers with ξ = 5, Gr = Grc = 1, Pr = 0.72, Sc = 1, R = 1.

Figure 7(b) we see that radiation has no significant effect on the concentration composition of
the flow. However, it can be seen that increasing radiation slightly reduces the concentration
boundary layer.

5. Conclusion

In this paper, investigations were made on the effects of thermal radiation, combined
buoyancy and suction/blowing on natural convection heat and mass transfer over a semi-
infinite stretching surface. Implicit finite difference method was employed and graphical
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Figure 4: The variation of (a) the velocity and (b) the concentration profiles with different Schmidt
numbers with ξ = 5, Gr = Grc = 1, Pr = 0.72, V0 = 0.1, R = 1.
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Figure 5: The variation of (a) velocity and (b) the temperature profiles with increasing radiation parameter
numbers with ξ = 5, Gr = Grc = 1, Pr = 0.72, V0 = 0.1, Sc = 1.

results were obtained to illustrate the details of flow characteristics and their dependence on
some of the physical parameters. It was found that when the Grashof number increased, the
fluid velocity increased. However, this same effect was found to decrease both thermal and
concentration boundary layers. The present analysis has shown that the flow is appreciably
influenced by thermal radiation. It was observed that increasing the thermal radiation
parameter produces significant increases in the thermal conditions of the fluid temperature
which consequently induces more fluid in the boundary layer through buoyancy effect,
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Figure 6: The variation of (a) velocity and (b) the temperature distribution with increasing Grashof number
values with ξ = 5, Pr = 0.72, Sc = 1, V0 = 0.1, R = 1.
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Figure 7: The variation of concentration distribution (a) with increasing buoyancy numbers with ξ =
5, Pr = 0.72, Sc = 1, V0 = 0.1, R = 1 and (b) with increasing radiation parameter numbers with
ξ = 5, Gr = Grc = 1, Pr = 0.72, Sc = 1, V0 = 0.1.

causing the velocity in the fluid there to increase. The hydrodynamic boundary layer and
thermal boundary layer thicknesses were observed to increase as a result of increasing
radiation. However, the concentration boundary layer thickness was reduced as a result
of increases in the thermal radiation parameter. It was also observed that increasing the
Schmidt number caused reduction in the concentration distribution in the boundary layer.
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The study noted that velocity, temperature, and concentration profiles decrease with increases
in the suction effect and that injection has opposite effects on these profiles. It is hoped that
the present work will serve as a tool for understanding more complex problems involving
various physical effects investigated in this study.

Nomenclature

a: Stretching constant
C: Species concentration at any point in the flow field
Cw: Species concentration at the wall
cp: Specific heat at constant pressure
C∞: Species concentration at the free stream
D: Molecular diffusivity of the species concentration
F: Nondimensional streamwise velocity
H: Nondimensional normal velocity
g: Acceleration due to gravity
Grc: Concentration buoyancy parameter
Gr: Grashof number
K: Mean absorption coefficient
L: Typical length scale
N: Buoyancy ratio
Pr: Prandtl number
qr : Rossel and approximation
R: Thermal radiation parameter
Sc: Schmidt number
T : Fluid temperature at any point
Tw: Fluid temperature at the wall
T∞: Free stream temperature
u: Streamwise velocity
v: Normal velocity
V0: Dimensionless wall normal velocity
Vw: Suction/injection velocity
x: Streamwise coordinate axis
y: Normal coordinate axis.

Greek Symbol

αt: Thermal conductivity
μ: Dynamic viscosity
ν: Kinematic viscosity
βc: Volumetric coefficient expansion with concentration
βt: Volumetric coefficient of thermal expansion
ρ: Density of the fluid
σ∗: Stefan-Boltzman constant
ξ: Scaled streamwise variable
η: Scaled normal variable
θ: Nondimensional temperature
φ: Dimensionless concentration
λc: Fluid thermal conductivity.
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Subscripts

∞: Far away from the wall surface
w: At the wall surface.
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