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We consider an integral variational control system on a Banach space X and we study the
connections between its uniform exponential stability and the (I(R+, X), O(R+, X)) stability, where
I andO are Banach function spaces. We identify the viable classes of input spaces and output spaces
related to the exponential stability of systems and provide optimization techniques with respect to
the input space. We analyze the robustness of exponential stability in the presence of structured
perturbations. We deduce general estimations for the lower bound of the stability radius of a
variational control system in terms of input-output operators acting on translation-invariant spaces.
We apply the main results at the study of the exponential stability of nonautonomous systems and
analyze in the nonautonomous case the robustness of this asymptotic property.
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1. Introduction

In the past few years a significant progress was made in the asymptotic theory of dynamical
systems and their applications in control theory (see [1–41]). It is well known that if X is a
Banach space, Θ is a compact metric space, σ is a flow on Θ, and A : Θ→B(X) is a continuous
mapping, then Φ(θ, t), the solution operator of the linear differential equation

ẋ(t) = A
(
σ(θ, t)

)
x(t), t ≥ 0, (1.1)

is a cocycle and the pair π = (Φ, σ) is a linear skew-product flow. Often, (1.1) arises from
the linearization of nonlinear equations (see [9, 31] and the references therein). Equation
(1.1) is the starting point of our paper. We consider an integral model for the above type of
systems, defined in terms of linear skew-product flows and we study the exponential stability
of solutions.
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Input-output conditions in the study of the asymptotic properties of evolution equations
have a long and impressive history that goes back to the work of Perron. In recent years,
new ideas were developed in this theory, providing input-output theorems for stability,
expansiveness, and dichotomy and also a number of applications in control theory (see
[2, 7, 9, 11, 13, 15, 19–27, 29, 30, 32–41] and the references therein). The aim of our paper is
to establish input-output conditions for uniform exponential stability of variational control
systems, identifying the viable classes for input spaces and output spaces, as well. We provide
a new approach based on the fundamental properties of Banach function spaces. Our attention
is devoted to the relationship between the uniform exponential stability of a variational
system and the stability of a pair of spaces which are translations invariant. We establish
the connections between (I(R+, X), O(R+, X)) stability and uniform exponential stability of a
variational control system on a Banach space X, when the input space I(R+, X) and the output
space O(R+, X) belong to specific classes of Banach function spaces. By examples we motivate
our techniques and also discuss some optimization methods with respect to the input space.

In what follows, we consider a generalization of systems described by differential
equations of the form

ẋ(t) = A
(
σ(θ, t)

)
x(t) + B

(
σ(θ, t)

)
u(t),

y(t) = C
(
σ(θ, t)

)
x(t),

(1.2)

where σ is a flow on a locally compact metric space Θ, A(θ) are unbounded operators
on a Banach space X, and the operators B(θ) ∈ B(U,X), C(θ) ∈ B(X,Y ), where U, Y
are Banach spaces. Roughly speaking, the family {A(θ)}θ∈Θ will be subjected to addi-
tive structured perturbations, so that the perturbed system is ẋ(t) = [A(σ(θ, t)) +
B(σ(θ, t))Δ(σ(θ, t))C(σ(θ, t))]x(t),which may be interpreted as a system obtained by applying
the feedback u(t) = Δ(σ(θ, t))y(t) to the time-varying system (1.2). The main question is how
general may be the perturbation structure such that the property of exponential stability is
preserved. We will answer this question by determining a general lower bound for the stability
radius of such systems.

In the last decades, stability radius became a subject of large interest and various
estimations for the lower bound of the stability radius of systems were obtained (see [11, 17–
20, 32, 33, 41]). This concept was introduced by Hinrichsen, Ilchmann, and Pritchard (see
[18]) and led to a systematic study of the stability of linear infinite-dimensional systems under
structured time-varying perturbations. The main idea was to estimate the size of the smallest
disturbance operator under which the additively perturbed system loses exponential stability.
A significant theoremwhich gives a lower bound for the stability radius of a system associated
to a mild evolution operator in terms of the norm of the input-output operator of the system
has been obtained by Hinrichsen and Pritchard (see [19, Theorem 3.2]). A distinct approach of
this result was given by Clark et al. in [11], employing an evolution semigroup technique. The
variational case was firstly treated in [32], where we obtained a lower bound for the stability
radius in terms of the Perron operators associated with a linear skew-product semiflow. In [41],
Wirth and Hinrichsen introduced a concept of stability radius for the case of discrete time-
varying systems under structured perturbations of multi-output feedback type. In the spirit of
this theory, we have obtained in [33] an estimation for the lower bound of the stability radius
of a control system of difference equations on a Banach space X, under structured infinite
multiperturbations, in terms of the norm of the input-output operator associated with a system
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on lp(N, X) with p ∈ [1,∞]. An interesting approach for systems in finite-dimensional spaces
was presented by Jacob in [20]. There the author deduces a formula for the stability radius of
time-varying systems with coefficients in Lloc

∞ (0,∞;Kn×n), where K ∈ {R,C}, in terms of the
norms of a family of input-output operators.

In the fourth section of the present paper we propose a new approach, deducing a
lower bound for the stability radius of variational systems in terms of input-output operators
acting on rearrangement invariant Banach function spaces. Until now, the most common
function spaces used for estimating the stability radius are the Lp-spaces with p ∈ [1,∞),
which satisfy in particular the requirements of the classes introduced in this paper. Thus, our
results provide a unified treatment in a large class of function spaces, extending the above-
mentioned contributions. As particular cases, we obtain a lower bound for the stability radius
of a variational system in terms of Lp-spaces, with p ∈ [1,∞], and generalize the main result in
[32].

In the last section, the central results of the paper are applied at the study of the uniform
exponential stability of nonautonomous systems. We provide a complete analysis concerning
the implications of the variational case for nonautonomous systems. We point out several
interesting situations and deduce as particular cases the stability results due to Datko, Clark,
Latushkin, Montgomery-Smith, Randolph, Neerven, Megan, and many others. Moreover, as
an application we obtain a lower bound for the stability radius of nonautonomous systems in
terms of the norm of the input-output operators acting on translations invariant spaces. Our
results extend the existing contributions in the literature on this topic.

2. Preliminary results on Banach function spaces

Let M(R+,R) be the linear space of all Lebesgue measurable functions u : R+→R, identifying
the functions equal a.e.

Definition 2.1. A linear subspace B of M(R+,R) is called a normed function space if there is a
mapping |·|B : B→R+ such that

(i) |u|B = 0 if and only if u = 0 a.e.;

(ii) |αu|B = |α| |u|B, for all (α, u) ∈ R × B;
(iii) |u + v|B ≤ |u|B + |v|B, for all u, v ∈ B;
(iv) if |u(t)| ≤ |v(t)| a.e. t ∈ R+ and v ∈ B, then u ∈ B and |u|B ≤ |v|B.

If (B, |·|B) is complete, then B is called a Banach function space.

Remark 2.2. (i) If (B, |·|B) is a Banach function space and un→u in B, then there is a subsequence
(ukn) such that ukn→u a.e. (see, e.g., [28]).

(ii) If (B, |·|B) is a Banach function space and u ∈ B, then |u(·)| ∈ B.

Definition 2.3. A Banach function space (B, |·|B) is said to be invariant to translations if for every
u : R+→R and every t > 0, u ∈ B if and only if the function

ut : R+ −→ R, ut(s) =

{
u(s − t), s ≥ t
0, s ∈ [0, t)

(2.1)

belongs to B and |ut|B = |u|B.
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Let Cc(R+,R) be the linear space of all continuous functions v : R+→R with compact
support contained in R+ and let C0c(R+,R) := {v ∈ Cc(R+,R) : v(0) = 0}. Let L1

loc(R+,R) be the
linear space of all locally integrable functions u : R+→R.

We denote by T(R+) the class of all Banach function spaces B which are invariant to
translations and with the following properties:

(i) Cc(R+,R) ⊂ B ⊂ L1
loc(R+,R);

(ii) if B \ L1(R+,R)/=∅, then there is a continuous function δ ∈ B \ L1(R+,R).

For every A ⊂ R+ we denote by χA the characteristic function of the set A.

Remark 2.4. If B ∈ T(R+), then χ[0,t) ∈ B, for all t > 0.

Indeed, let t > 0. If α : R+→[0, 1] is a continuous function with compact support such
that α(s) = 1, for s ∈ [0, t] and α(s) = 0, for s ≥ t + 1, then we have that χ[0,t)(s) ≤ α(s), for all
s ≥ 0. Since α ∈ B, using (iv) from Definition 2.1, we deduce that χ[0,t) ∈ B.

Definition 2.5. If B ∈ T(R+), then the function FB : (0,∞)→R+, FB(t) = |χ[0,t)|B is called the
fundamental function of the space B.

Remark 2.6. The function FB is nondecreasing.

Example 2.7. Let p ∈ [1,∞). Then the space Lp(R+,R) = {u ∈ M(R+,R) :
∫∞
0 |u(τ)|pdτ < ∞}

with respect to the norm ‖u‖p = (
∫∞
0 |u(τ)|p dτ)1/p is a Banach function space which belongs to

T(R+).

Example 2.8. Let L∞(R+,R) be the linear space of all essentially bounded functions u ∈
M(R+,R). With respect to the norm ‖u‖∞ := ess supt≥0|u(t)|, L∞(R+,R) is a Banach function
space which belongs to T(R+).

Example 2.9 (Orlicz spaces). Let ϕ : R+→R+ be a nondecreasing left-continuous function, which
is not identically zero on (0,∞). The Young function associated with ϕ is defined by Yϕ(t) =
∫ t
0ϕ(s)ds. For every u ∈ M(R+,R) we define Mϕ(u) :=

∫∞
0 Yϕ(|u(s)|)ds. The set Oϕ of all u ∈

M(R+,R) with the property that there is k > 0 such that Mϕ(ku) < ∞ is a linear space. With
respect to the norm |u|ϕ := inf{k > 0 : Mϕ(u/k) ≤ 1}, Oϕ is a Banach space called the Orlicz
space associated with ϕ.

Remark 2.10. It is easy to verify that the Orlicz spaces introduced in Example 2.9 belong to
T(R+).

Remark 2.11. The spaces Lp(R+,R), p ∈ [1,∞] are Orlicz spaces, which may be obtained for
ϕ(t) = ptp−1, if p ∈ [1,∞) and for

ϕ(t) =

{
0, t ∈ [0, 1]

1, t > 1
if p = ∞. (2.2)

Lemma 2.12. Let B ∈ T(R+) and ν > 0. Then the function eν : R+→R+, eν(t) = e−νt, belongs to B.
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Proof. We have that

eν(t) =
∞∑

n=0

e−νtχ[n,n+1)(t) ≤
∞∑

n=0

e−νnχ[n,n+1)(t), ∀t ≥ 0. (2.3)

This shows that eν ∈ B and |eν|B ≤ |χ[0,1)|B/(1 − e−ν).

Definition 2.13. Let u, v ∈ M(R+,R). Say that u and v are equimeasurable if for every t > 0 the
sets {s ∈ R+ : |u(s)| > t} and {s ∈ R+ : |v(s)| > t} have the same measure.

Definition 2.14. A Banach function space (B, |·|B) is rearrangement invariant if for every
equimeasurable functions u, v : R+→R+ with u ∈ B, one has v ∈ B and |u|B = |v|B.

Remark 2.15. The Orlicz spaces are rearrangement invariant (see [4, Theorem 8.9]).

We denote by R(R+) the class of all Banach function spaces B ∈ T(R+) which are
rearrangement invariant.

Remark 2.16. If B ∈ R(R+), then B is an interpolation space between L1(R+,R) and L∞(R+,R)
(see [4, Theorem 2.2, page 106]).

Lemma 2.17. Let B ∈ T(R+) and ν > 0. Then for every u ∈ B the function

ψu : R+ −→ R, ψu(t) =
∫ t

0
e−ν(t−s)u(s)ds (2.4)

belongs to B. Moreover, there is λB > 0 such that |ψu|B ≤ λB|u|B, for all u ∈ B.

Proof. It is easy to see that

Dν : L∞(
R+,R

)
−→ L∞(

R+,R
)
,

(
Dν(u)

)
(t) =

∫ t

0
e−ν(t−s)u(s)ds (2.5)

is a correctly defined bounded linear operator. Moreover, the restriction Dν| :
L1(R+,R)→L1(R+,R) is correctly defined and is a bounded linear operator. Then from
Remark 2.16 it follows that Dν|B : B→B is a correctly defined and bounded linear operator.
Taking λB = ‖Dν|B‖, the proof is complete.

We denote by Q(R+) the class of all Banach function spaces B ∈ T(R+)with the property
that supt>0FB(t) = ∞.

Remark 2.18. If ϕ(t) ∈ (0,∞), for all t > 0, then the Orlicz space Oϕ ∈ Q(R+) (see, e.g., [24,
Proposition 2.1]).

Let C0(R+,R) be the space of all continuous functions u : R+→R with limt→∞u(t) = 0.

Lemma 2.19. If B ∈ T(R+) \ Q(R+), then C0(R+,R) ⊂ B.

Proof. Let u ∈ C0(R+,R). Then there is an unbounded increasing sequence (tn) ⊂ (0,∞) such
that |u(t)| ≤ 1/(n+1), for all t ≥ tn and n ∈ N. We set un = uχ[0,tn). According to our hypothesis,
M := supt>0FB(t) <∞. Then, we observe that

∣∣un+p − un
∣∣
B ≤ 1

n + 1
∣∣χ[tn,tn+p)

∣∣
B ≤ M

n + 1
, ∀p ∈ N

∗, ∀n ∈ N. (2.6)
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Hence, the sequence (un) is fundamental in B, so there is v ∈ B such that un→v in B. From
Remark 2.2 there exists a subsequence (ukn) such that ukn→v a.e. This implies that u = v a.e.,
so u = v in B. It follows that u ∈ B and the proof is complete.

We denote by L(R+) the class of all Banach function spaces B ∈ T(R+)with the property
that B \ L1(R+,R)/=∅.

Remark 2.20. Using Remark 2.2(ii) we have that if B ∈ L(R+), then there is a continuous
function δ : R+→R+ with δ ∈ B \ L1(R+,R).

Lemma 2.21. If B ∈ T(R+), then B ∈ Q(R+) or B ∈ L(R+).

Proof. Suppose by contrary that there exists B ∈ T(R+) such thatB /∈Q(R+) andB /∈L(R+). Then
M := supt>0FB(t) < ∞ and B ⊂ L1(R+,R). It follows that there is c > 0 such that ‖u‖1 ≤ c |u|B,
for all u ∈ B. In particular, for u = χ[0,t) we deduce that t ≤ c |χ[0,t)|B = c FB(t) ≤ cM, for all
t > 0, which is absurd.

Let (X, ‖·‖) be a real or complex Banach space.We denote byCc(R+, X) the linear space of
all continuous functions v : R+→X with compact support, let C0c = {v ∈ Cc(R+, X) : v(0) = 0}
and let L1

loc(R+, X) be the linear space of all locally integrable functions u : R+→X.
For every B ∈ T(R+) we denote by B(R+, X) the linear space of all Bochner measurable

functions u : R+→X with the property that the mappingNu : R+→R+,Nu(t) = ‖u(t)‖ lies in B.
Endowed with the norm ‖u‖B(R+,X) := |Nu|B, B(R+, X) is a Banach space.

3. Stability of variational integral control systems

In the stability theory of evolution operators in Banach spaces, an evolution family U =
{U(t, s)}t≥s≥0 is said to be (E(R+, X), F(R+, X)) stable if for every f ∈ E(R+, X) the mapping
Pf belongs to F(R+, X) where

Pf(t) =
∫ t

0
U(t, s)f(s)ds. (3.1)

The classical input-output results concerning exponential stability of evolution families in
Banach spaces may be stated as follows.

Let U = {U(t, s)}t≥s≥0 be an evolution operator on a Banach space X and p, q ∈ [1,∞) with
p ≤ q. Then the following assertions are equivalent:

(i) U is uniformly exponentially stable;

(ii) U is (C0(R+, X), C0(R+, X)) stable;

(iii) U is (C0(R+, X), Cb(R+, X)) stable;

(iv) U is (Lp(R+, X), Lq(R+, X)) stable.

The implication (iv)⇒(i) was obtained by Datko in 1973 (see [16]), using one of his
stability results contained in the same paper. In the last few years, there were pointed out new
and interesting methods of proving the above theorem. The equivalences (i)⇔(ii)⇔(iv) were
proved by Neerven for the special case of C0 semigroups of linear operators (see [30]) and
p = q. In [11], Clark et al. have provided an inedit technique of proving the equivalences
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(i)⇔(ii)⇔(iv) for the case p = q. There the authors established important connections
between the asymptotic properties of evolution families and those of the associated evolution
semigroups with a large number of applications in control theory. Roughly speaking the
authors described the behavior of a nonautonomous system in terms of the properties of an
associated autonomous system. Therefore, in their approach the input space must coincide
with the output space.

The equivalence (i)⇔(ii)⇔(iii) has been also proved by van Minh et al. (see [29]),
employing an evolution semigroup technique. The equivalence (i)⇔(ii) was also treated by
Buşe in [7]. The case p /= q was completely treated in [23], where several new stability results
of Perron type were established for exponential stability of evolution families, generalizing the
above equivalences and obtaining that uniform exponential stability of an evolution family can
be expressed using boundedly locally dense subsets of Cb(R+, X) and Lp(R+, X), respectively.
The main results in [23]were extended in [25] for the case of linear skew-product flows, where
the input-output operator was replaced with a family of operators acting between the function
spaces of the admissible pair. The stability results obtained in [25] generalized some theorems
from [7, 16, 23, 29, 30]. Moreover, the stability theorems in [25] led to several interesting
consequences in control theory (see [26, 32]).

In what follows, the input-output techniques in the stability theory of variational
equations will be treated from the perspective of Banach function spaces arising from the
interpolation theory. In this section, our main purpose is to give a complete and unified study
of the exponential stability of variational systems via input-output methods, providing the
“structure” of the classes of input and output spaces, respectively.

Let X be a Banach space, let (Θ, d) be a metric space, and let E = X × Θ. We denote by
B(X) the Banach algebra of all bounded linear operators on X. The norm on X and on B(X)
will be denoted by ‖·‖.

Definition 3.1. Let J ∈ {R+,R}. A continuous mapping σ : Θ × J→Θ is called a flow on Θ if
σ(θ, 0) = θ and σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ × J2.

Definition 3.2. A pair π = (Φ, σ) is called a linear skew-product flow on E = X ×Θ if σ is a flow on
Θ and Φ : Θ × R+→B(X) satisfies the following conditions:

(i) Φ(θ, 0) = Id, the identity operator on X, for all θ ∈ Θ;

(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R
2
+ (the cocycle identity);

(iii) (θ, t) 
→ Φ(θ, t)x is continuous, for every x ∈ X;

(iv) there areM ≥ 1 and ω > 0 such that ‖Φ(θ, t)‖ ≤Meωt, for all (θ, t) ∈ Θ × R+.

The mapping Φ given by Definition 3.2 is called the cocycle associated to the linear skew-
product flow π = (Φ, σ).

Let π = (Φ, σ) be a linear skew-product flow on E = X ×Θ. In what follows, we consider
the variational integral control system

xθ
(
t;x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds, t ≥ 0, θ ∈ Θ (S)

with u ∈ L1
loc(R+, X) and x0 ∈ X.
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Definition 3.3. The system (S) is said to be

(i) uniformly stable if there is L > 0 such that
∥∥xθ

(
t;x0, 0

)∥∥ ≤ L
∥∥x0

∥∥, ∀(θ, t) ∈ Θ × R+, ∀x0 ∈ X; (3.2)

(ii) uniformly exponentially stable if there are K, ν > 0 such that
∥∥xθ

(
t;x0, 0

)∥∥ ≤ Ke−νt
∥∥x0

∥∥, ∀(θ, t) ∈ Θ × R+, ∀x0 ∈ X. (3.3)

Remark 3.4. (i) The system (S) is uniformly stable if and only if there is L > 0 such that
‖Φ(θ, t)‖ ≤ L, for all (θ, t) ∈ Θ × R+.

(ii) The system (S) is uniformly exponentially stable if and only if there areK, ν > 0 such
that ‖Φ(θ, t)‖ ≤ Ke−νt, for all (θ, t) ∈ Θ × R+.

Definition 3.5. Let I,O be two Banach function spaces with I,O ∈ T(R+). The system (S) is said
to be (I(R+, X), O(R+, X)) stable if the following assertions hold:

(i) for every u ∈ C0c(R+, X) and every θ ∈ Θ the solution xθ(·; 0, u) ∈ O(R+, X);

(ii) there is λ > 0 such that ‖xθ(·; 0, u)‖O(R+,X) ≤ λ‖u‖I(R+,X), for all (u, θ) ∈ C0c(R+, X) ×Θ.

I(R+, X) is called the input space and O(R+, X) is called the output space.

We begin with a sufficient condition for uniform stability.

Theorem 3.6. Let I,O ∈ T(R+). If the system (S) is (I(R+, X), O(R+, X)) stable, then the system (S)
is uniformly stable.

Proof. Let α : R+→[0, 2] be a continuous function with suppα ⊂ (0, 1) and
∫1
0 α(τ)dτ = 1.

LetM,ω ∈ (0,∞) be given by Definition 3.2 and let λ > 0 be given by Definition 3.5.
Let (x, θ) ∈ X ×Θ. We consider the function u : R+→X, u(t) = α(t)Φ(θ, t)x.We have that

u ∈ C0c(R+, X) and ‖u(t)‖ = α(t)‖Φ(θ, t)x‖ ≤Meω‖x‖α(t), for all t ≥ 0. This implies that

‖u‖I(R+,X) ≤Meω‖x‖ |α|I . (3.4)

From hypothesis we have that xθ(·; 0, u) ∈ O(R+, X) and
∥∥xθ(·; 0, u)

∥∥
O(R+,X) ≤ λ‖u‖I(R+,X). (3.5)

We observe that

xθ(t; 0, u) =
∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds

=
(∫ t

0
α(s)ds

)
Φ(θ, t)x = Φ(θ, t)x, ∀t ≥ 1.

(3.6)

Then, for t ≥ 2 we deduce that
∥
∥Φ(θ, t)x

∥
∥χ[t−1,t)(s) ≤Meω

∥
∥Φ(θ, s)x

∥
∥ =Meω

∥
∥xθ(s; 0, u)

∥
∥, ∀s ≥ 0 (3.7)
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which implies that

∥∥Φ(θ, t)x
∥∥∣∣χ[t−1,t)

∣∣
O ≤Meω

∥∥xθ(·; 0, u)
∥∥
O(R+,X). (3.8)

Since O is invariant to translations we have that |χ[t−1,t)|O = |χ[0,1)|O = FO(1). Then, from
relations (3.4)–(3.8) we obtain that

∥∥Φ(θ, t)x
∥∥ ≤ λMeω

FO(1)
‖u‖I(R+,X) ≤

λM2e2ω|α|I
FO(1)

‖x‖, ∀t ≥ 2. (3.9)

For t ∈ [0, 2] we have that ‖Φ(θ, t)‖ ≤ Me2ω. Then, for L = max{Me2ω, (λM2e2ω|α|I)/FO(1)}
we deduce that ‖Φ(θ, t)x‖ ≤ L‖x‖, for all t ≥ 0. Taking into account that L does not depend on
θ or x, it follows that ‖Φ(θ, t)x‖ ≤ L‖x‖, for all (θ, t) ∈ Θ × R+ and all x ∈ X and the proof is
complete.

The first main result of this section is the following.

Theorem 3.7. Let I,O ∈ T(R+). If I ∈ L(R+) and the system (S) is (I(R+, X), O(R+, X)) stable,
then the system (S) is uniformly exponentially stable.

Proof. Let λ > 0 be given by Definition 3.5. From Theorem 3.6 we have that there is L > 0 such
that ‖Φ(θ, t)‖ ≤ L, for all (θ, t) ∈ Θ × R+.

Since I ∈ L(R+) from Remark 2.20 it follows that there is a continuous function δ :
R+→R+ such that δ ∈ I \ L1(R+,R). Let h > 0 be such that

∫h

0
δ(s)ds ≥ 2e

λL2|δ|I
FO(1)

. (3.10)

For every n ∈ N
∗ let αn : R+→[0, 1] be a continuous function with αn(t) = 1, for t ∈

[1/n, h], αn(0) = 0, and αn(t) = 0, for t ≥ h + 1. Since

∫h

0
αn(s)δ(s)ds −→

∫h

0
δ(s)ds, as n −→ ∞ (3.11)

there is j ∈ N
∗ such that

a :=
∫h

0
αj(s)δ(s)ds ≥

1
2

∫h

0
δ(s)ds ≥ eλL

2|δ|I
FO(1)

. (3.12)

Let (x, θ) ∈ E = X ×Θ. We consider the function

u : R+ −→ X, u(t) = αj(t)δ(t)Φ(θ, t)x. (3.13)

We have that u ∈ C0c(R+, X), so u ∈ I(R+, X). In addition, ‖u(t)‖ ≤ L‖x‖δ(t), for all t ≥ 0. This
implies that ‖u‖I(R+,X) ≤ L‖x‖|δ|I .We observe that

∥∥xθ(t; 0, u)
∥∥ =

∥∥∥∥

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds

∥∥ =
(∫ t

0
αj(s)δ(s)ds

)∥∥Φ(θ, t)x
∥∥

≥ a
∥
∥Φ(θ, t)x

∥
∥, ∀t ≥ h.

(3.14)
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Then, we have that

∥
∥Φ(θ, h + 1)x

∥∥ ≤ L
∥
∥Φ(θ, t)x

∥
∥ ≤ L

a

∥
∥xθ(t; 0, u)

∥∥, ∀t ∈ [h, h + 1) (3.15)

which implies that

∥∥Φ(θ, h + 1)x
∥∥χ[h,h+1)(t) ≤

L

a

∥∥xθ(t; 0, u)
∥∥, ∀t ≥ 0. (3.16)

Since O is invariant to translations we have that |χ[h,h+1)|O = |χ[0,1)|O = FO(1). Then from (3.16)
we deduce that

∥∥Φ(θ, h + 1)x
∥∥FO(1) ≤

L

a

∥∥xθ(·; 0, u)
∥∥
O(R+,X). (3.17)

According to our hypothesis

∥
∥xθ(·; 0, u)

∥
∥
O(R+,X) ≤ λ‖u‖I(R+,X). (3.18)

Using relations (3.17) and (3.18) it follows that

a
∥∥Φ(θ, h + 1)x

∥∥ ≤ λL

FO(1)
‖u‖I(R+,X) ≤

λL2|δ|I
FO(1)

‖x‖. (3.19)

We set r = h + 1. From (3.19) and (3.12) we obtain that ‖Φ(θ, r)x‖ ≤ (1/e)‖x‖. Since r does not
depend on θ or x we deduce that ‖Φ(θ, r)x‖ ≤ (1/e)‖x‖, for all (x, θ) ∈ E.

Let ν = 1/r and K = Le. Let t ≥ 0. Then there is n ∈ N and s ∈ [0, r) such that t = nr + s.
It follows that ‖Φ(θ, t)‖ ≤ L‖Φ(θ, nr)‖ ≤ Le−n ≤ Ke−νt. This implies that the system (S) is
uniformly exponentially stable.

The second main result of this section is the following.

Theorem 3.8. Let I,O ∈ T(R+). If O ∈ Q(R+) and the system (S) is (I(R+, X), O(R+, X)) stable,
then (S) is uniformly exponentially stable.

Proof. Let λ > 0 be given by Definition 3.5 and let L > 0 be given by Theorem 3.6. Let h > 0 be
such that

FO(h) ≥ 2eλL2FI(1). (3.20)

Let α : R+→[0, 2] be a continuous function with suppα ⊂ (0, 1) and
∫1
0 α(τ)dτ = 1.

Let (x, θ) ∈ E = X ×Θ. We consider the function

u : R+ −→ X, u(t) = α(t)Φ(θ, t)x. (3.21)

Since u ∈ C0c(R+, X) we have that u ∈ I(R+, X). Moreover, ‖u(t)‖ ≤ L‖x‖α(t) ≤ 2L‖x‖χ[0,1)(t),
for all t ≥ 0, which implies that

‖u‖I(R+,X) ≤ 2L‖x‖FI(1). (3.22)
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We observe that xθ(t, 0, u) = Φ(θ, t)x, for all t ≥ 1. Then, we have that

∥
∥Φ(θ, h + 1)x

∥
∥χ[1,h+1)(t) ≤ L

∥
∥Φ(θ, t)x

∥
∥χ[1,h+1)(t) ≤ L

∥
∥xθ(t; 0, u)

∥
∥, ∀t ≥ 0 (3.23)

Since O ∈ T(R+) we have that |χ[1,h+1)|O = |χ[0,h)|O = FO(h). Then from (3.23) and (3.22) we
deduce that

∥∥Φ(θ, h + 1)x
∥
∥FO(h) ≤ L

∥
∥xθ(·; 0, u)

∥
∥
O(R+,X) ≤ λL‖u‖I(R+,X) ≤ 2λL2FI(1)‖x‖. (3.24)

From relations (3.20) and (3.24) it follows that ‖Φ(θ, h + 1)x‖ ≤ (1/e)‖x‖. Taking into account
that h does not depend on θ or x we obtain that ‖Φ(θ, h + 1)x‖ ≤ (1/e)‖x‖, for all (x, θ) ∈ E =
X × Θ. Using similar arguments as in Theorem 3.7 we obtain that the system (S) is uniformly
exponentially stable.

The central result of this section is the following.

Theorem 3.9. Let I,O ∈ T(R+) be such that I ∈ L(R+) orO ∈ Q(R+). Then, the following assertions
hold:

(i) if the system (S) is (I(R+, X), O(R+, X)) stable, then (S) is uniformly exponentially stable;

(ii) if I ⊂ O and one of the spaces I,O belongs to the classR(R+), then the system (S) is uniformly
exponentially stable if and only if the system (S) is (I(R+, X), O(R+, X)) stable.

Proof. (i) This follows from Theorems 3.7 and 3.8.
(ii) Necessity. Let K, ν > 0 be such that ‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, for all (x, θ) ∈ E and all

t ≥ 0. Since I ⊂ O, there is γ > 0 such that

|w|O ≤ γ |w|I , ∀w ∈ I. (3.25)

Let u ∈ C0c(R+, X) and let

ψu : R+ −→ R, ψu(t) =
∫ t

0
e−ν(t−s)

∥∥u(s)
∥∥ds. (3.26)

Then for every θ ∈ Θwe have that

∥∥xθ(t; 0, u)
∥∥ ≤ Kψu(t), t ≥ 0. (3.27)

Case 1. I ∈ R(R+) Let λI > 0 be given by Lemma 2.17. Since u ∈ I(R+, X), from Lemma 2.17 we
have that ψu ∈ I and |ψu|I ≤ λI‖u‖I(R+,X). Then from (3.27) it follows that xθ(· ; 0, u) ∈ I(R+, X),
so xθ(· ; 0, u) ∈ O(R+, X). Moreover, from (3.25) and (3.27) we have that

∥
∥xθ(· ; 0, u)

∥
∥
O(R+,X) ≤ γ

∥
∥xθ(· ; 0, u)

∥
∥
I(R+,X) ≤ γKλI‖u‖I(R+,X). (3.28)

Taking λ = γKλI and observing that λ does not depend on u or θ we deduce that the system
(S) is (I(R+, X), O(R+, X)) stable.
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Case 2. O ∈ R(R+) Let λO > 0 be given by Lemma 2.17. From u ∈ O(R+, X), using Lemma 2.17
we have that ψu ∈ O and |ψu|O ≤ λO‖u‖O(R+,X). Then, from (3.25) and (3.27) we deduce that
xθ(· ; 0, u) ∈ O(R+, X) and

∥∥xθ(· ; 0, u)
∥∥
O(R+,X) ≤ KλO‖u‖O(R+,X) ≤ γKλO‖u‖I(R+,X). (3.29)

Taking λ = γKλO we conclude that the system (S) is (I(R+, X), O(R+, X)) stable.
Sufficiency. It follows from (i).
In what follows, we prove that the main result given by Theorem 3.9 is the most

general in this topic. Specifically, we will show that if I /∈L(R+) and O/∈Q(R+), then the
(I(R+, X), O(R+, X)) stability of the system (S) does not imply the uniform exponential stability
of (S).

Example 3.10. Let Θ = R+ and let σ : Θ × R+→Θ, σ(θ, t) = θ + t. Let X = C0(R+,R) and for every
(θ, t) ∈ Θ × R+, let

Φ(θ, t) : X −→ X,
(
Φ(θ, t)x

)
(s) = x(s + t). (3.30)

Then π = (Φ, σ) is a linear skew-product flow on E = X ×Θ. We consider the system

xθ
(
t;x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds, t ≥ 0, θ ∈ Θ (S)

with u ∈ L1
loc(R+, X) and x0 ∈ X. Observing that ‖Φ(θ, t)‖ = 1, for all (θ, t) ∈ Θ×R+, we deduce

that the system (S) is not uniformly exponentially stable.
Let I,O ∈ T(R+) with I /∈L(R+) and O/∈Q(R+). Then I ⊂ L1(R+,R) and from

Lemma 2.19 we have that C0(R+,R) ⊂ O. In what follows, we prove that the system (S) is
(I(R+, X), O(R+, X)) stable.

Let u ∈ L1(R+, X) and θ ∈ Θ. Let ε > 0. Since u ∈ L1(R+, X), there is h > 0 such that∫∞
h ‖u(s)‖ds < ε/2. Let v :=

∫h
0 Φ(σ(θ, τ), h − τ)u(τ)dτ. From v ∈ X we have that there is δ > 0

such that |v(τ)| < ε/2, for all t ≥ δ. Then, for t ≥ δ + h, we deduce that

∥∥∥∥

∫h

0
Φ
(
σ(θ, s), t − s

)
u(s)ds

∥∥∥∥ =
∥∥Φ

(
σ(θ, h), t − h

)
v
∥∥ = sup

r≥0

∣∣v(t − h + r)
∣∣ <

ε

2
. (3.31)

This implies that

∥∥xθ(t; 0, u)
∥∥ ≤

∥∥∥∥

∫h

0
Φ
(
σ(θ, s), t − s

)
u(s)ds

∥∥∥∥ +
∫ t

h

∥∥Φ
(
σ(θ, s), t − s

)∥∥‖u(s)‖ds

<
ε

2
+
∫ t

h

∥
∥u(s)

∥
∥ds < ε, ∀t ≥ δ + h

(3.32)

so xθ(·; 0, u) ∈ C0(R+, X). It follows that for every (u, θ) ∈ L1(R+, X)×Θwe have that xθ(·; 0, u) ∈
C0(R+, X).
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It makes sense to define the linear operator

P : L1(
R+, X

)
−→ C0

(
R+, X

)
, P(u) = x0(·; 0, u). (3.33)

It is easy to verify that P is closed, so from the closed graph theorem we obtain that P is
bounded. Setting γ = ‖P‖ we have that

∥∥x0(·; 0, u)
∥∥
C0(R+,X) ≤ γ ‖u‖L1(R+,X), ∀u ∈ L1(

R+, X
)
. (3.34)

Since I ⊂ L1(R+,R) there is α > 0 such that

‖u‖1 ≤ α |u|I , ∀u ∈ I. (3.35)

Since C0(R+,R) ⊂ O there is β > 0 such that

|w|O ≤ β ‖w‖C0(R+,R), ∀w ∈ C0
(
R+,R

)
. (3.36)

Let (u, θ) ∈ C0c(R+, X) × Θ. Since xθ(·; 0, u) ∈ C0(R+, X) and C0(R+, X) ⊂ O(R+, X) it
follows that xθ(·; 0, u) ∈ O(R+, X). It is easy to observe that xθ(·; 0, u) = x0(·; 0, u). Setting λ =
αβγ , from relations (3.34)–(3.36) we deduce that

∥∥xθ(·; 0, u)
∥∥
O(R+,X) =

∥∥x0(·; 0, u)
∥∥
O(R+,X)≤β

∥∥x0(·; 0, u)
∥∥
C0(R+,X) ≤ βγ‖u‖L1(R+,X) ≤ λ ‖u‖I(R+,X)

(3.37)

Taking into account that λ does not depend on u or θ we conclude that the system (S) is
(I(R+, X), O(R+, X)) stable. But, for all that (S) is not uniformly exponentially stable.

Remark 3.11. The input-output characterizations for asymptotic properties of systems have a
wide applicability area if the input space is as small as possible and the output space is very
general. We note that in the main result given by Theorem 3.9 the input functions belong to
C0c(R+, X), while the output space is a general function space.

Moreover, the class T(R+) is closed to finite intersections. If I1, I2, . . . , In ∈ T(R+), then
we may consider the space I := I1 ∩ I2 ∩ · · · ∩ In with respect to the norm

|u|I := max
{
|u|I1 , |u|I2 , . . . , |u|In

}
(3.38)

which is a Banach function space in T(R+). Now, if we analyze condition (ii) in Definition 3.5,
it is obvious that if the input space is I(R+, X), then in the right member of the inequality we
have a “larger” norm and thus the estimation is more permissive.
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Let q ∈ [1,∞], n ∈ N
∗, and p1, . . . , pn ∈ (1,∞). We consider the space

Ip1,...,pn,q
(
R+,R

)
= Lp1

(
R+,R

)
∩ · · · ∩ Lpn

(
R+,R

)
∩ Lq

(
R+,R

)
(3.39)

which is a Banach space with respect the norm

‖u‖p1,...,pn,q = max
{
‖u‖p1 , . . . , ‖u‖pn , ‖u‖q

}
. (3.40)

Corollary 3.12. The system (S) is uniformly exponentially stable if and only if the system (S) is
(Ip1,...,pn,q(R+, X), Lq(R+, X)) stable.

Proof. If q ∈ [1,∞), then Lq(R+,R) ∈ Q(R+). If q = ∞, then I ∈ L(R+). By applying Theorem 3.9
we obtain the conclusion.

Corollary 3.13. LetW ∈ R(R+). The system (S) is uniformly exponentially stable if and only if (S) is
(W(R+, X),W(R+, X)) stable.

Proof. This follows from Theorem 3.9 and Lemma 2.21.

Lemma 3.14. Let ν > 0 and p, q ∈ [1,∞] with p ≤ q. For every u ∈ Lp(R+,R), the function

fu : R+ −→ R, fu(t) =
∫ t

0
e−ν(t−s)u(s)ds (3.41)

belongs to Lq(R+,R). In addition, there is γ > 0 such that ‖fu‖q ≤ γ‖u‖p, for all u ∈ Lp(R+, X).

Proof. Using Hölder’s inequality it follows that for every u ∈ Lp(R+,R+) the function fu ∈
Lq(R+,R+). Then, from

∣∣fu(t)
∣∣ ≤

∫ t

0
e−ν(t−s)

∣∣u(s)
∣∣ds, ∀t ≥ 0, ∀u ∈ Lp

(
R+,R

)
(3.42)

we deduce that for every u ∈ Lp(R+,R) the function fu belongs to Lq(R+,R). Hence, it makes
sense to define the linear operator Γ : Lp(R+,R)→Lq(R+,R), Γ(u) = fu. It is easy to see that Γ is
closed, so it is bounded. Setting γ = ‖Γ‖ we obtain the conclusion.

Corollary 3.15. Let p, q ∈ [1,∞] with (p, q)/= (1,∞). The following assertions hold:

(i) if the system (S) is (Lp(R+, X), Lq(R+, X)) stable, then (S) is uniformly exponentially stable;

(ii) if p ≤ q, then the system (S) is uniformly exponentially stable if and only if it is
(Lp(R+, X), Lq(R+, X)) stable.

Proof. (i) It follows from Theorem 3.9(i).
(ii) Necessity. Let γ > 0 be given by Lemma 3.14. Let K, ν > 0 be such that ‖Φ(θ, t)x‖ ≤

Ke−νt‖x‖, for all (x, θ) ∈ E and all t ≥ 0. Let (u, θ) ∈ C0c(R+, X) ×Θ. Then

∥∥xθ(t; 0, u)
∥∥ ≤ K

∫ t

0
e−ν(t−s)

∥∥u(s)
∥∥ds, ∀t ≥ 0. (3.43)
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Using Lemma 3.14 we obtain that xθ(·; 0, u) ∈ Lq(R+, X) and

∥
∥xθ(·; 0, u)

∥
∥
Lq(R+,X) ≤ Kγ‖u‖Lp(R+,X). (3.44)

Taking into account that γ and K do not depend on u or θ, it follows that the system (S) is
(Lp(R+, X), Lq(R+, X)) stable.

Sufficiency. This follows from (i).

Definition 3.16. Let I, O be two Banach function spaces with I,O ∈ T(R+). The system (S) is
said to be completely (I(R+, X), O(R+, X)) stable if the following assertions hold:

(i) for every u ∈ I(R+, X) and every θ ∈ Θ the solution xθ(·; 0, u) ∈ O(R+, X);

(ii) there is λ > 0 such that ‖xθ(·; 0, u)‖O(R+,X) ≤ λ‖u‖I(R+,X), for all (u, θ) ∈ I(R+, X) ×Θ.

Theorem 3.17. Let I,O ∈ T(R+) be such that I ∈ L(R+) or O ∈ Q(R+). Then, the following
assertions hold:

(i) if the system (S) is completely (I(R+, X), O(R+, X)) stable, then (S) is uniformly
exponentially stable;

(ii) if I ⊂ O and one of the spaces I,O belongs to the classR(R+), then the system (S) is uniformly
exponentially stable if and only if the system (S) is completely (I(R+, X), O(R+, X)) stable.

Proof. (i) This follows from Theorem 3.9(i).
(ii) Necessity follows using similar arguments as in the necessity part of Theorem 3.9(ii).
Sufficiency is given by (i).

Corollary 3.18. Let q ∈ [1,∞], n ∈ N
∗ and p1, . . . , pn ∈ (1,∞). The system (S) is uniformly

exponentially stable if and only if the system (S) is completely (Ip1,...,pn,q(R+, X), Lq(R+, X)) stable.

Proof. This follows from Corollary 3.12.

Corollary 3.19. LetW ∈ R(R+). The system (S) is uniformly exponentially stable if and only if (S) is
completely (W(R+, X),W(R+, X)) stable.

Remark 3.20. LetW ∈ R(R+). If the system (S) is uniformly exponentially stable, then for every
θ ∈ Θ the linear operator

PθW :W
(
R+, X

)
−→W

(
R+, X

)
,

(
PθWu

)
(t) =

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds (3.45)

is correctly defined and bounded. Moreover, if λ > 0 is given by Definition 3.16, then we have
that supθ∈Θ‖P

θ
W‖ ≤ λ.

Corollary 3.21. Let p, q ∈ [1,∞] with (p, q)/= (1,∞). The following assertions hold:

(i) if the system (S) is completely (Lp(R+, X), Lq(R+, X)) stable, then (S) is uniformly
exponentially stable;

(ii) if p ≤ q, then the system (S) is uniformly exponentially stable if and only if it is completely
(Lp(R+, X), Lq(R+, X)) stable.
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Proof. (i) This follows from Corollary 3.15(i).
(ii) Necessity follows using similar arguments as in the necessity of Corollary 3.15(ii).

Sufficiency follows from (i).

Remark 3.22. A distinct proof for Corollary 3.21(i) was given in [27] (see Theorem 5.2).

Let Cb(R+,R) be the space of all bounded continuous functions u : R+→R and
C00(R+,R) = {u ∈ C0(R+,R) : u(0) = 0}.

Definition 3.23. Let U,Y ∈ {Cb(R+,R), C0(R+,R), C00(R+,R)}. The system (S) is said to be
completely (U(R+, X), Y (R+, X)) stable if the following assertions hold:

(i) for every u ∈ U(R+, X) and every θ ∈ Θ the solution xθ(·; 0, u) ∈ Y (R+, X);

(i) there is λ > 0 such that ‖xθ(·; 0, u)‖Y (R+,X) ≤ λ‖u‖U(R+,X), for all (u, θ) ∈ U(R+, X) ×Θ.

Corollary 3.24. Let U,Y ∈ {Cb(R+,R), C0(R+,R), C00(R+,R)} with U ⊂ Y . The system (S) is
uniformly exponentially stable if and only if (S) is completely (U(R+, X), Y (R+, X)) stable.

Proof. Necessity is a simple exercise.
Sufficiency. If the system (S) is completely (U(R+, X), Y (R+, X)) stable, then it is

(L∞(R+, X), L∞(R+, X)) stable. By applying Corollary 3.15 we deduce that (S) is uniformly
exponentially stable.

Remark 3.25. A different proof for Corollary 3.24 for the cases (U,Y ) = (C00(R+,R), C00(R+,R))
and (U,Y ) = (C00(R+,R), Cb(R+,R)) was given in [27] (see Theorem 5.1).

4. Stability radius

In this section, we will obtain a lower bound for the stability radius of linear skew-product
flows in terms of input-output operators acting on Banach function spaces which belong to a
class of rearrangement invariant spaces.

Let U, Y be Banach spaces and let Θ be a locally compact metric space. We denote by
B(U,Y ) the space of all bounded linear operators from U into Y and by Cs(Θ,B(U,Y )) the
space of all continuous bounded mappingsH : Θ→B(U,Y ). With respect to the norm ‖|H‖| :=
supθ∈Θ‖H(θ)‖, Cs(Θ,B(U,Y )) is a Banach space.

Remark 4.1. If π = (Φ, σ) is a linear skew-product flow on E = X ×Θ and P ∈ Cs(Θ,B(X)), then
there exists a unique linear skew-product flow denoted πP = (ΦP , σ) on X ×Θ such that

ΦP (θ, t)x = Φ(θ, t)x +
∫ t

0
Φ
(
σ(θ, s), t − s

)
P
(
σ(θ, s)

)
ΦP (θ, s)x ds (4.1)

for all (x, θ, t) ∈ X ×Θ × R+ (see [26, Theorem 2.1]).

Let X be a Banach space, let Θ be a locally compact metric space, and let π = (Φ, σ) be a
linear skew-product flow on E = X ×Θ. We consider the variational integral control system

xθ
(
t;x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds, t ≥ 0, θ ∈ Θ (S)

with u ∈ L1
loc(R+, X) and x0 ∈ X.
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For every P ∈ Cs(Θ,B(X)) we consider the perturbed system

xθ
(
t;x0, u

)
= ΦP (θ, t)x0 +

∫ t

0
ΦP

(
σ(θ, s), t − s

)
u(s)ds, t ≥ 0, θ ∈ Θ (S,P)

with u ∈ L1
loc(R+, X) and x0 ∈ X.

LetU,Y be Banach spaces, let B ∈ Cs(Θ,B(U,X)) and letC ∈ Cs(Θ,B(X,Y )). We consider
the system (S, B,C) described by the following integral model:

xθ
(
t, x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
B
(
σ(θ, s)

)
u(s)ds, t ≥ 0, θ ∈ Θ,

yθ
(
t, x0, u

)
= C

(
σ(θ, t)

)
xθ

(
t, x0, u

)
, t ≥ 0, θ ∈ Θ,

(4.2)

where x0 ∈ X and u ∈ L1
loc(R+, U).

Throughout this section, we suppose that (S) is uniformly exponentially stable. The
stability radius of (S) with respect to the perturbation structure (B,C) is defined by

rstab(S, B,C) = sup
{
r ≥ 0 : ∀Δ ∈ Cs

(
Θ,B(Y,U)

)
with ‖|Δ‖| ≤ r

=⇒ the system (S, BΔC) is uniformly exponentially stable
}
.

(4.3)

Let V(R+) be the class of all Banach function spaces B ∈ R(R+)with the property that for
every u ∈ B, |uχ[0,n)|B→|u|B as n→∞.

Remark 4.2. It is easy to verify that the Orlicz spaces belong to the class V(R+).

Let V ∈ V(R+). Since the system (S) is uniformly exponentially stable from Remark 3.20
we have that for every θ ∈ Θ, the linear operators

PθV : V
(
R+, X

)
−→ V

(
R+, X

)
,

(
PθV u

)
(t) =

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds (4.4)

are bounded and supθ∈Θ‖P
θ
V ‖ <∞.

Lemma 4.3. For every θ ∈ Θ, the linear operators,

BθV : V
(
R+, U

)
−→ V

(
R+, X

)
,

(
BθVu

)
(t) = B

(
σ(θ, t)

)
u(t),

Cθ
V : V

(
R+, X

)
−→ V

(
R+, Y

)
,

(
Cθ
Vu

)
(t) = C

(
σ(θ, t)

)
u(t),

(4.5)

are bounded. Moreover, supθ∈Θ‖B
θ
V ‖ ≤ ‖|B‖| and supθ∈Θ‖C

θ
V ‖ ≤ ‖|C‖|.

Proof. Let θ ∈ Θ. For every u ∈ V (R+, U) we have that

∥∥(BθVu
)
(t)

∥∥ ≤
∥∥B

(
σ(θ, t)

)∥∥∥∥u(t)
∥∥ ≤ ‖|B‖|

∥∥u(t)
∥∥, ∀t ≥ 0 (4.6)

which implies that ‖BθVu‖V (R+,X) ≤ ‖|B‖| ‖u‖V (R+,U). This shows that ‖BθV ‖ ≤ ‖|B‖|, for all θ ∈ Θ.
Similarly, we obtain that ‖Cθ

V ‖ ≤ ‖|C‖|, for all θ ∈ Θ.
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Definition 4.4. For every θ ∈ Θ, we consider the bounded linear operators

LθV : V
(
R+, U

)
−→ V

(
R+, Y

)
, LθV = Cθ

VP
θ
VB

θ
V . (4.7)

The family {LθV }θ∈Θ is called the family of input-output operators associated to the system (S, B,C).
In all what follows we denote

αV (S, B,C) := sup
θ∈Θ

∥
∥LθV

∥
∥. (4.8)

Remark 4.5. Using Remark 3.20 and Lemma 4.3 we have that αV (S, B,C) <∞.

For every Δ ∈ Cs(Θ,B(Y,U)) and every θ ∈ Θ, we consider the bounded linear operator

Δθ
V : V

(
R+, Y

)
−→ V

(
R+, U

)
,

(
Δθ
V u

)
(t) = Δ

(
σ(θ, t)

)
u(t). (4.9)

Then we have that ‖Δθ
V ‖ ≤ ‖|Δ‖|, for all θ ∈ Θ.

In what follows we suppose that there is m > 0 such that ‖C(θ)x‖Y ≥ m ‖x‖X, for all
(x, θ) ∈ X ×Θ.

Theorem 4.6. Let Δ ∈ Cs(Θ,B(Y,U)) with ‖|Δ‖| < 1/αV (S, B,C). Then, for every (x, θ) ∈ X × Θ,
the function

fx,θ : R+ −→ X, fx,θ(t) = ΦBΔC(θ, t)x (4.10)

belongs to V (R+, X).

Proof. Let γV = αV (S, B,C) ‖|Δ‖|. Let K, ν > 0 be such that ‖Φ(θ, t)‖ ≤ Ke−νt, for all (θ, t) ∈
Θ × R+.

Let (x, θ) ∈ E. For every n ∈ N
∗ let

fn : R+ −→ X, fn(t) = χ[0,n)(t)fx,θ(t),

gn : R+ −→ X, gn(t) = C
(
σ(θ, t)

)
fn(t).

(4.11)

Using Remark 4.1, we have that fn(t) = χ[0,n)(t)Φ(θ, t)x + (PθVB
θ
VΔ

θ
V gn)(t), for all t ∈ [0, n),

which implies that

gn(t) = χ[0,n)(t)C
(
σ(θ, t)

)
Φ(θ, t)x +

(
LθVΔ

θ
V gn

)
(t), ∀t ∈ [0, n). (4.12)

Then, for t ∈ [0, n) we have that

∥∥gn(t)
∥∥
Y ≤ ‖|C‖|K‖x‖e−νt +

∥∥LθV
∥∥∥∥Δθ

V

∥∥∥∥gn(t)
∥∥
Y ≤ ‖|C‖|K‖x‖e−νt + γV

∥∥gn(t)
∥∥
Y

(4.13)

Since gn(t) = 0 for t ≥ n, we deduce that

∥
∥gn(t)

∥
∥
Y ≤ ‖|C‖|K ‖x‖e−νt + γV

∥
∥gn(t)

∥
∥
Y , ∀t ≥ 0. (4.14)
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Let eν : R+→R+, eν(t) = e−νt. From V ∈ V(R+) and using Lemma 2.12 we have that
eν ∈ V . Then, from (4.14) it follows that

∥∥gn
∥∥
V (R+,Y )

≤ δx
∣∣eν

∣∣
V + γV

∥∥gn
∥∥
V (R+,Y )

, (4.15)

where δx = ‖|C‖|K‖x‖. The above inequality shows that

∥
∥gn

∥
∥
V (R+,Y )

≤
δx

∣
∣eν

∣
∣
V

1 − γV
, ∀n ∈ N

∗. (4.16)

Since V ∈ V(R+) from (4.16) we deduce that the function gx,θ : R+→Y , gx,θ(t) =
C(σ(θ, t))fx,θ(t) belongs to V (R+, Y ). Then, from m ‖fx,θ(t)‖X ≤ ‖gx,θ(t)‖Y , for all t ≥ 0, we
obtain that fx,θ ∈ V (R+, X).

Theorem 4.7. The following estimation holds:

rstab(S, B,C) ≥
1

αV (S, B,C)
. (4.17)

Proof. Let Δ ∈ Cs(Θ,B(Y,U)) be such that ‖|Δ‖| < 1/αV (S, B,C). Let γV = αV (S, B,C) ‖|Δ‖|.
We prove that the perturbed system (S, BΔC) is completely (V (R+, X), V (R+, X)) stable.

Let v ∈ V (R+, X) and θ ∈ Θ. The corresponding solution of the system (S, BΔC) is

xθ(·; 0, v) : R+ −→ X, xθ(t; 0, v) =
∫ t

0
ΦBΔC

(
σ(θ, s), t − s

)
v(s)ds. (4.18)

Let n ∈ N
∗. We set vn = v χ[0,n) and xn = xθ(n; 0, v). Then, we have that

xθ
(
t; 0, vn

)
= ΦBΔC

(
σ(θ, n), t − n

)
xn, ∀t ≥ n. (4.19)

From Theorem 4.6 we have that the function

ϕ : R+ −→ X, ϕ(t) = Φ
(
σ(θ, n), t

)
xn (4.20)

belongs to V (R+, X). Since V is invariant to translations, it follows that

ψ : R+ −→ X, ψ(t) =

{
Φ
(
σ(θ, n), t − n

)
xn, t ≥ n,

0, t ∈ [0, n),
(4.21)

belongs to V (R+, X).
Since xθ(·; 0, vn) is continuous, setting Mn = supt∈[0,n]‖xθ(t; 0, vn)‖ and using (4.19) we

deduce that

∥∥xθ
(
t; 0, vn

)∥∥ ≤Mn χ[0,n)(t) +
∥∥ψ(t)

∥∥, ∀t ≥ 0 (4.22)

which implies that xθ(·; 0, vn) ∈ V (R+, X).
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Using Remark 4.1 and Fubini’s theorem we deduce that

(
Cθ
Vxθ

(
·; 0, vn

))
(t) =

(
Cθ
VP

θ
V vn

)
(t) +

(
LθVΔ

θ
VC

θ
V xθ

(
·; 0, vn

))
(t), ∀t ≥ 0. (4.23)

This implies that

∥∥Cθ
Vxθ

(
·; 0, vn

)∥∥
V (R+,Y )

≤ ‖|C‖| sup
θ∈Θ

∥∥PθV
∥∥ ‖v‖V (R+,X) + γV

∥∥Cθ
Vxθ

(
·; 0, vn

)∥∥
V (R+,Y )

. (4.24)

Setting δ = ‖|C‖| supθ∈Θ‖P
θ
V ‖ it follows that

∥∥Cθ
Vxθ

(
·; 0, vn

)∥∥
V (R+,Y )

≤ δ

1 − γV
‖v‖V (R+,X). (4.25)

From ‖Cθ
Vxθ(·; 0, vn)‖V (R+,Y ) ≥ m‖xθ(·; 0, vn)‖V (R+,X), using (4.25)we deduce that

∥∥xθ
(
·; 0, vn

)∥∥
V (R+,X) ≤

δ

m
(
1 − γV

) ‖v‖V (R+,X). (4.26)

Taking into account that xθ(t; 0, v) = xθ(t; 0, vn), for all t ∈ [0, n), from (4.26) it follows that

∥∥xθ(·; 0, v)χ[0,n)
∥∥
V (R+,X) ≤

δ

m
(
1 − γV

) ‖v‖V (R+,X), ∀n ∈ N
∗. (4.27)

Since V ∈ V(R+) as n→∞ in (4.27), we obtain that

∥∥xθ(·; 0, v)
∥∥
V (R+,X) ≤

δ

m(1 − γV )
‖v‖V (R+,X). (4.28)

Since δ,m, γV do not depend on θ or v, we deduce that the system (S, BΔC) is completely
(V (R+, X), V (R+, X)) stable. By applying Corollary 3.19, we have that the system (S, BΔC) is
uniformly exponentially stable and the proof is complete.

The main result of this section is the following.

Theorem 4.8. The following estimation holds:

rstab(S, B,C) ≥ sup
V∈V(R+)

1
αV (S, B,C)

. (4.29)

Proof. This follows from Theorem 4.7.

A lower bound for the stability radius of (S) with respect to the perturbation structure
(B,C) in terms of Lp-spaces is given by the following.

Corollary 4.9. The following estimation holds:

rstab(S, B,C) ≥ sup
p∈[1,∞]

1
αLp(S, B,C)

. (4.30)
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5. Applications for nonautonomous systems

In this section, we apply the main results of this paper in order to obtain characterizations
for uniform exponential stability of nonautonomous systems and deduce lower bound for the
stability radius of such systems.

Let X be a Banach space and let Id be the identity operator on X.

Definition 5.1. A family U = {U(t, s)}t≥s≥0 ⊂ B(X) is called an evolution family if the following
properties hold:

(i) U(t, t) = Id andU(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0 ≥ 0;

(ii) there areM ≥ 1 and ω > 0 such that ‖U(t, s)‖ ≤Meω(t−s), for all t ≥ s ≥ 0;

(iii) for every x ∈ X the mapping (t, s) 
→ U(t, s)x is continuous.

Let U = {U(t, s)}t≥s≥0 be an evolution family on X. We consider the nonautonomous
integral control system

xs
(
t;x0, u

)
= U(t, s)x0 +

∫ t

s

U(t, τ)u(τ)dτ, t ≥ s, s ≥ 0 (SU)

with u ∈ L1
loc(R+, X) and x0 ∈ X.

Definition 5.2. The system (SU) is said to be uniformly exponentially stable if there are K, ν > 0
such that ‖xs(t;x0, 0)‖ ≤ Ke−ν(t−s)‖x0‖, for all t ≥ s ≥ 0 and all x0 ∈ X.

Definition 5.3. Let I, O be two Banach function spaces with I,O ∈ T(R+). The system (SU) is
said to be (I(R+, X), O(R+, X)) stable if the following properties hold:

(i) for every u ∈ C0c(R+, X) the solution x0(·; 0, u) ∈ O(R+, X);

(ii) there is λ > 0 such that ‖x0(·; 0, u)‖O(R+,X) ≤ λ ‖u‖I(R+,X), for all u ∈ C0c(R+, X).

Lemma 5.4. Let B ∈ T(R+), u ∈ B, and t > 0. Then, the function ũt : R+→R, ũt(s) = u(s+ t) belongs
to B and |ũt|B ≤ |u|B.

Proof. Let

v : R+ −→ R, v(s) =

{
u(s), s ≥ t,
0, s ∈ [0, t).

(5.1)

Then v ∈ B and |v|B ≤ |u|B. Using the invariance to translations of B, we obtain that ũt ∈ B and
|ũt|B = |v|B, which concludes the proof.

The first main result of this section is as follows.

Theorem 5.5. Let I,O ∈ T(R+) be such that I ∈ L(R+) and O ∈ Q(R+). Then, the following
assertions hold:

(i) if the system (SU) is (I(R+, X), O(R+, X)) stable, then (SU) is uniformly exponentially stable;

(ii) if I ⊂ O and one of the spaces I or O belongs to R(R+), then the system (SU) is uniformly
exponentially stable if and only if the system (SU) is (I(R+, X), O(R+, X)) stable.
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Proof. (i) Let λ > 0 be given by Definition 5.3.
Let Θ = R+ and let σ : Θ × R+→Θ, σ(θ, t) = θ + t. For every (θ, t) ∈ Θ × R+, let Φ(θ, t) =

U(t+θ, θ). Then π = (Φ, σ) is a linear skew-product flow onX×Θ. We consider the variational
integral control system

xθ
(
t;x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds, t ≥ 0, θ ∈ Θ. (S)

We prove that (S) is (I(R+, X), O(R+, X)) stable.
Indeed, let u ∈ C0c(R+, X) and let θ ∈ Θ. We consider the function

uθ : R+ −→ X, uθ(s) =

{
u(s − θ), s ≥ θ,
0, s ∈ [0, θ).

(5.2)

Then uθ ∈ C0c(R+, X) and from I ∈ T(R+) we have that ‖uθ‖I(R+,X) = ‖u‖I(R+,X). From
hypothesis we have that the function

x0
(
t; 0, uθ

)
=
∫ t

0
U(t, τ)uθ(τ)dτ, t ≥ 0 (5.3)

belongs to O(R+, X). Because O(R+, X) ∈ T(R+), using Lemma 5.4 we have that the function

ϕ : R+ −→ X, ϕ(t) = x0
(
t + θ; 0, uθ

)
(5.4)

belongs to O(R+, X) and ‖ϕ‖O(R+,X) ≤ ‖x0(·; 0, uθ)‖O(R+,X). Observing that

ϕ(t) =
∫ t+θ

0
U(t + θ, τ)uθ(τ)dτ =

∫ t+θ

θ

U(t + θ, τ)u(τ − θ)dτ

=
∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds = xθ(t; 0, u), ∀t ≥ 0,

(5.5)

it follows that

∥∥xθ(·; 0, u)
∥∥
O(R+,X) ≤

∥∥x0
(
·; 0, uθ

)∥∥
O(R+,X) ≤ λ

∥∥uθ
∥∥
I(R+,X) = λ‖u‖I(R+,X). (5.6)

Since u ∈ C0c(R+, X) and θ ∈ Θ were arbitrary, we deduce that the system (S) is
(I(R+, X), O(R+, X)) stable. By applying Theorem 3.9(i) we deduce that the system (S) is
uniformly exponentially stable, so there are K, ν > 0 such that

∥∥Φ(θ, t)x0
∥∥ ≤ Ke−νt

∥∥x0
∥∥, ∀t ≥ 0, ∀x0 ∈ X. (5.7)

This implies that

∥∥xs
(
t;x0, 0

)∥∥=
∥∥U(t, s)x0

∥∥=
∥∥Φ(s, t − s)x0

∥∥ ≤ Ke−ν(t−s)‖x0‖, ∀t ≥ s ≥ 0, ∀x0 ∈ X. (5.8)

In conclusion, the system (SU) is uniformly exponentially stable.
(ii) Necessity follows using similar arguments as those used in the proof of Theorem 3.9.

Sufficiency follows from (i).
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Remark 5.6. From Example 3.10 we deduce that the result given by Theorem 5.5 is the most
general in this topic. Precisely, if I /∈L(R+) orO/∈Q(R+), then the (I(R+, X), O(R+, X)) stability
of the system (SU) does not assure the uniform exponential stability of (SU).

Definition 5.7. Let I,O ∈ T(R+). The system (SU) is said to be completely (I(R+, X), O(R+, X))
stable if for every u ∈ I(R+, X), the solution x0(·; 0, u) ∈ O(R+, X).

Remark 5.8. If the system (SU) is completely (I(R+, X), O(R+, X)) stable, then it makes sense to
consider the linear operator

P : I
(
R+, X

)
−→ O

(
R+, X

)
, P(u) = x0(·; 0, u). (5.9)

It is easy to see that P is closed, so it is bounded.

Remark 5.9. If the system (SU) is completely (I(R+, X), O(R+, X)) stable, then (SU) is
(I(R+, X), O(R+, X)) stable (with λ = ‖P‖).

As an application of Theorem 5.5 and using Remark 5.9 we obtain the following.

Theorem 5.10. Let I,O ∈ T(R+) be such that I ∈ L(R+) and O ∈ Q(R+). Then, the following
assertions hold:

(i) if the system (SU) is completely (I(R+, X), O(R+, X)) stable, then (SU) is uniformly
exponentially stable;

(ii) if I ⊂ O and one of the spaces I or O belongs to R(R+), then the system (SU) is uniformly
exponentially stable if and only if the system (SU) is completely (I(R+, X), O(R+, X)) stable.

Corollary 5.11. If W ∈ R(R+), then the system (SU) is uniformly exponentially stable if and only if
the system (SU) is completely (W(R+, X),W(R+, X)) stable.

Corollary 5.12. Let p, q ∈ [1,∞] with (p, q)/= (1,∞). The following assertions hold:

(i) if the system (SU) is completely (Lp(R+, X), Lq(R+, X)) stable, then (SU) is uniformly
exponentially stable;

(ii) if p ≤ q, then the system (SU) is uniformly exponentially stable if and only if it is completely
(Lp(R+, X), Lq(R+, X)) stable.

Remark 5.13. For p, q ∈ [1,∞), Corollary 5.12 (i) was firstly proved by Datko in [16]. Recently,
for p = q ∈ [1,∞), Corollary 5.11 was proved by Clark et al. in [11], using evolution
semigroups techniques. A different proof for this corollary was given by Megan et al. in [23].
The autonomous case was treated by van Neerven in [30], for p = q ∈ [1,∞).

Corollary 5.14. Let U,Y ∈ {Cb(R+,R), C0(R+,R), C00(R+,R)} with U ⊂ Y . The system (SU) is
uniformly exponentially stable if and only if the system (SU) is completely (U(R+, X), Y (R+, X)) stable.

Proof. Necessity is immediate.
Sufficiency follows from Theorem 5.10 observing that the complete (U(R+, X), Y (R+, X))

stability implies the (L∞(R+, X), L∞(R+, X)) stability of (SU).
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Remark 5.15. A distinct proof of Corollary 5.14 was given in [23]. The case U = Y = C0(R+,R)
was obtained in [11], reducing the nonautonomous case to the autonomous case and using
evolution semigroups.

An interesting application of the results obtained in the fourth section is the study of
the persistence of stability properties for the case of nonautonomous systems. We mention that
the nonautonomous case was treated by Hinrichsen et al. in valuable papers (see [17–19, 41]),
which represent the starting point for many research studies in this area.

Inwhat follows, wewill deduce a lower bound for the stability radius of nonautonomous
systems, as a consequence of the behavior in the variational case, providing the connections
between these cases.

Let X be a Banach space and let U = {U(t, s)}t≥s≥0 be an evolution family on X.

Remark 5.16. For every P ∈ Cs(R+,B(X)) (see, e.g., [14]) there is a unique evolution family
UP = {UP (t, s)}t≥s≥0 such that

UP (t, s)x = U(t, s)x +
∫ t

s

U(t, τ)P(τ)UP (τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X. (5.10)

We consider the nonautonomous integral control system

xs
(
t;x0, u

)
= U(t, s)x0 +

∫ t

s

U(t, τ)u(τ)dτ, t ≥ s, s ≥ 0 (SU)

with u ∈ L1
loc(R+, X), x0 ∈ X, and respectively, for every P ∈ Cs(R+, B(X)) we consider the

perturbed system

xs
(
t;x0, u

)
= UP (t, s)x0 +

∫ t

s

UP (t, τ)u(τ)dτ, t ≥ s, s ≥ 0 (SU, P)

with u ∈ L1
loc(R+, X), x0 ∈ X.

Let U, Y be Banach spaces, let B ∈ Cs(R+,B(U,X)) and let C ∈ Cs(R+,B(X,Y )). We
consider the system (SU, B, C) described by the following integral model

xs
(
t;x0, u

)
= U(t, s)x0 +

∫ t

s

U(t, τ)B(τ)u(τ)dτ, t ≥ s, s ≥ 0,

ys
(
t;x0, u

)
= C(t)xs

(
t;x0, u

)
, t ≥ s, s ≥ 0,

(5.11)

with u ∈ L1
loc(R+, U), x0 ∈ X.

In what follows we suppose that (SU) is uniformly exponentially stable. The stability
radius of (SU) with respect to the perturbation structure (B,C) is defined by

rstab
(
SU, B, C

)
= sup

{
r ≥ 0 : ∀Δ ∈ Cs

(
R+,B(Y,U)

)
with ‖|Δ‖| ≤ r

=⇒
(
SU, BΔC

)
is uniformly exponentially stable

}
.

(5.12)

Let V ∈ V(R+). Since the system (SU) is uniformly exponentially stable, we have that
(SU) is completely (V (R+, X), V (R+, X)) stable, so it makes sense to consider the linear operator

PV : V
(
R+, X

)
−→ V

(
R+, X

)
,

(
PV u

)
(t) =

∫ t

0
U(t, τ)u(τ)dτ. (5.13)

It is easy to verify that PV is closed, so it is bounded.
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We consider the operators

BV : V
(
R+, U

)
−→ V

(
R+, X

)
,

(
BV u

)
(t) = B(t)u(t),

CV : V
(
R+, U

)
−→ V

(
R+, X

)
,

(
CV u

)
(t) = C(t)u(t),

(5.14)

and we note that BV , CV are bounded linear operators with ‖BV ‖ ≤ ‖|B‖| and ‖CV ‖ ≤ ‖|C‖|.

Definition 5.17. The operator

LV : V
(
R+, U

)
−→ V

(
R+, Y

)
, LV (u) =

(
CVPVBV

)
(u), (5.15)

is called the input-output operator associated with the system (SU, B, C).

In what follows, we suppose that there ism > 0 such that ‖C(t)x‖Y ≥ m‖x‖, for all x ∈ X
and all t ≥ 0.

The second main result of this section is the following.

Theorem 5.18. The following estimation holds:

rstab
(
SU, B, C

)
≥ 1
∥∥LV

∥∥ . (5.16)

Proof. Let Δ ∈ Cs(R+,B(Y,U)) be such that ‖|Δ‖| ‖LV ‖ < 1.
LetΘ = R+, σ : Θ×R+ −→ Θ, σ(θ, t) = θ+t and letΦ(θ, t) = U(t+θ, θ), for all θ, t ≥ 0. Then

π = (Φ, σ) is a linear skew-product flow. We consider the variational integral control system

xθ
(
t;x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
u(s)ds, t ≥ 0, θ ∈ Θ (S)

with u ∈ L1
loc(R+, X) and x0 ∈ X and, respectively, the system (S, B,C) given by

xθ
(
t, x0, u

)
= Φ(θ, t)x0 +

∫ t

0
Φ
(
σ(θ, s), t − s

)
B
(
σ(θ, s)

)
u(s)ds, t ≥ 0, θ ∈ Θ,

yθ
(
t, x0, u

)
= C

(
σ(θ, t)

)
xθ

(
t, x0, u

)
, t ≥ 0, θ ∈ Θ,

(5.17)

where x0 ∈ X and u ∈ L1
loc(R+, U).

For every θ ∈ Θ we associate with the system (S, B,C) the operators PθV , B
θ
V , C

θ
V , and L

θ
V

according to the definitions in Section 4. We denote by αV (S, B,C) := supθ∈Θ‖L
θ
V ‖.

We prove that αV (S, B,C) ≤ ‖LV ‖. Indeed, let θ ∈ Θ and let u ∈ V (R+, U). Since V is
invariant to translations, the function

uθ : R+ −→ U, uθ(t) =

{
u(t − θ), t ≥ θ,
0, t ∈ [0, θ),

(5.18)

belongs to V (R+, U) and ‖uθ‖V (R+,U) = ‖u‖V (R+,U). In addition, using Lemma 5.4 we have that
the function

ϕ : R+ −→ Y, ϕ(t) =
(
LV uθ

)
(t + θ), (5.19)
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belongs to V (R+, Y ) and ‖ϕ‖V (R+,Y ) ≤ ‖LV (uθ)‖V (R+,Y ). We observe that

LθV (u)(t) = C(θ + t)
∫ t

0
U(θ + t, θ + s)B(θ + s)u(s)ds

= C(θ + t)
∫θ+t

θ

U(θ + t, τ)B(τ)u(τ − θ)dτ

= C(θ + t)
∫θ+t

0
U(θ + t, τ)B(τ)uθ(τ)dτ

=
[
LV

(
uθ

)]
(t + θ) = ϕ(t), ∀t ≥ 0.

(5.20)

This implies that
∥∥LθV (u)

∥∥
V (R+,Y )

=‖ϕ‖V (R+,Y )≤
∥∥LV

(
uθ

)∥∥
V (R+,Y )

≤
∥∥LV

∥∥∥∥uθ
∥∥
V (R+,U) =

∥∥LV

∥∥ ‖u‖V (R+,U) (5.21)

Since u ∈ V (R+, U) and θ ∈ Θ were arbitrary, from the above inequality we obtain that ‖LθV ‖ ≤
‖LV ‖, for all θ ∈ Θ, so αV (S, B,C) ≤ ‖LV ‖.

Since ‖|Δ‖| ‖LV ‖ < 1, we have that ‖|Δ‖|αV (S, B,C) < 1. Then, from Theorem 4.7 it
follows that the perturbed system (S, BΔC) is uniformly exponentially stable, so there are
K, ν > 0 such that

∥∥ΦBΔC(θ, t)
∥∥ ≤ Ke−νt, ∀t ≥ 0, ∀θ ∈ Θ. (5.22)

But

ΦBΔC(θ, t)x = U(t + θ, θ)x +
∫ t

0
U(θ + t, θ + s)(BΔC)(θ + s)ΦBΔC(θ, s)x ds, ∀θ, t ≥ 0, ∀x ∈ X.

(5.23)

which is equivalent to

ΦBΔC(θ, t − θ)x = U(t, θ)x +
∫ t

θ

U(t, τ)(BΔC)(τ)ΦBΔC(θ, τ − θ)x dτ, ∀t ≥ θ ≥ 0, ∀x ∈ X.

(5.24)

On the other hand, we have that

UBΔC(t, θ)x = U(t, θ)x +
∫ t

θ

U(t, τ)(BΔC)(τ)UBΔC(τ, θ)x dτ, ∀t ≥ θ ≥ 0, ∀x ∈ X. (5.25)

Let θ ≥ 0. For every T > 0 and x ∈ X, let

ϕx,T : [θ, θ + T] −→ X, ϕx,T(τ) = ΦBΔC(θ, τ − θ)x −UBΔC(τ, θ)x. (5.26)

If M,ω > 0 are such that ‖U(t, s)‖ ≤ Meω(t−s), for all t ≥ s ≥ 0, then from (5.24) and (5.25) it
follows that

∥∥ϕx,T(t)
∥∥ ≤ K

∫ t

θ

∥∥ϕx,T(τ)
∥∥dτ, ∀t ∈ [θ, θ + T], (5.27)
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where K = MeωT‖|BΔC‖|. From (5.27), using Gronwall’s lemma, we deduce that ϕx,T(τ) = 0,
for all τ ∈ [θ, θ + T]. This implies that

ΦBΔC(θ, τ − θ)x = UBΔC(τ, θ)x, ∀τ ∈ [θ, θ + T], ∀x ∈ X. (5.28)

Since T > 0, x ∈ X, and θ ∈ Θwere arbitrary, we deduce that

ΦBΔC(θ, τ − θ) = UBΔC(τ, θ), ∀τ ≥ θ ≥ 0. (5.29)

Then, from (5.22)we obtain that
∥∥UBΔC(τ, θ)

∥
∥ ≤ Ke−ν(τ−θ), ∀τ ≥ θ ≥ 0. (5.30)

In conclusion, the perturbed system (SU, BΔC) is uniformly exponentially stable and the proof
is complete.

Concluding the above estimations, we deduce the following.

Theorem 5.19. The following estimation holds:

rstab
(
SU, B, C

)
≥ sup

V∈V(R+)

1
∥∥LV

∥∥ . (5.31)

A lower bound for the stability radius of nonautonomous systems in terms of Lp-spaces
is given by the following.

Corollary 5.20. The following estimation holds:

rstab
(
SU, B, C

)
≥ sup

p∈[1,∞]

1
∥∥LLp

∥∥ . (5.32)

Remark 5.21. For the case p ∈ [1,∞), the result given by Corollary 5.20 was firstly proved in
[19] (see [19, Theorem 3.2]) for a very general class of nonautonomous systems described by
mild evolution families. A distinct proof for Corollary 5.20was presented in [11], for p ∈ [1,∞),
using evolution semigroups techniques (see [11, Theorem 4.2]).

Remark 5.22. A distinct approach for the estimation of the stability radius was given by Jacob
in [20] for the case of time-varying systems in finite dimensional spaces. There, the author
considered a time-varying system (A,B,C) with A ∈ L∞

loc([0,∞),Kn×n), B ∈ L∞([0,∞),Kn×m),
C ∈ L∞([0,∞),Kq×n), where K ∈ {R,C}. The family of input-output operators {Lt0}t0≥0 is
defined by

(
Lt0

)
u(t) := C(t)

∫ t

t0

ΦA(t, τ)B(τ)u(τ)dτ, t ≥ t0 ≥ 0, u ∈ Lp
([
t0,∞

)
,Km), (5.33)

where {ΦA(t, s)}t≥s≥0 denotes the evolution family generated by A. In this case, the author
proved that

rstab(A,B,C) = sup
t0≥0

1
∥∥Lt0

∥∥ . (5.34)
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