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We prove that a two-variable p-adic lq-function has the series expansion lp,q(s, t, χ) =
([2]q/[2]F)

∑F
a=1,(p,a)=1(−1)a(χ(a)qa/〈a + pt〉s)∑∞

m=0(
−s
m )(F/〈a + pt〉)mE∗

m,qF
which interpolates the

values lp,q(−n, t, χ) = E∗n,χn,q(pt)− pnχn(p)([2]q/[2]qp)E
∗
n,χn,qp

(t), whenever n is a nonpositive integer.
The proof of this original construction is due to Kubota and Leopoldt in 1964, although the method
given in this note is due to Washington.

Copyright q 2008 Min-Soo Kim et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The ordinary Euler polynomials En(t) are defined by the equation

2etx

ex + 1
=
∞∑

n=0

En(t)
xn

n!
. (1.1)

Setting t = 1/2 and normalizing by 2n gives the ordinary Euler numbers

En= 2nEn

(
1
2

)

. (1.2)

The ordinary Euler polynomials appear in many classical results (see [1]). In [2], the values of
these polynomials at rational arguments were expressed in term of the Hurwitz zeta function.
Congruences for Euler numbers have also received much attention from the point of view of
p-adic interpolation. In [3], Kim et al. recently defined the natural q-extension of ordinary
Euler numbers and polynomials by p-adic integral representation and proved properties
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generalizing those satisfied by En and En(t). They also constructed the one-variable p-adic q-l-
function lp,q(s, χ) for Dirichlet characters χ and s ∈ Cp with |s|p < p1−(1/(p−1)),with the property
that

lp,q(−n, χ) = E∗n,χω−n,q − [2]q[2]−1qp pnχω−n(p)E∗n,χω−n,qp (1.3)

for n = 0, 1, . . . , where E∗n,χω−n,q is a generalized q-Euler number associated with the Dirichlet

characters χω−n (see Section 2 for definitions).
In the present paper, we will construct a specific two-variable p-adic lq-function

lp,q(s, t, χ) by means of a method provided in [4–6]. We also prove that lp,q(s, t, χ) is analytic
in s and t for s ∈ Cp with |s|p < p1−(1/(p−1)) and t ∈ Cp with |t|p ≤ 1, which interpolates the
values

lp,q(−n, t, χ) = E∗n,χn,q(pt) − pnχn(p)
[2]q
[2]qp

E∗n,χn,qp
(t), (1.4)

whenever n is a nonpositive integer. This two-variable function is a generalization of the one-
variable p-adic q-l-function, which is the function obtained by putting t = 0 in lp,q(s, t, χ) (cf.
[3–11]).

Throughout this paper Z, Zp, Qp, and Cp will denote the ring of integers, the ring of p-
adic rational integers, the field of p-adic rational numbers, and the completion of the algebraic
closure of Qp, respectively. We will use Z

+ for the set of nonpositive integers. Let vp be the
normalized exponential valuation of Cp with |p|p = 1/p. When one talks of q-extension, q is
variously considered as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp.
If q ∈ Cp, then we normally assume |1 − q|p < 1. If q ∈ C, then we assume that |q| < 1. Also, we
use the following notations:

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

, (cf. [7, 8]). (1.5)

Let d be a fixed integer, and let

X = Xd = lim
←
N

(Z/dpNZ), X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp, a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.6)

where a ∈ Z lies in 0 ≤ a < dpN . Let UD(Zp) be the space of uniformly differentiable function
on Zp. For f ∈ UD(Zp), the p-adic q-integral is defined by

Iq(f) =
∫

Zp

f(a)dμq(a) =
∫

X

f(a)dμq(a) = lim
N→∞

1
[
dpN

]
q

dpN−1∑

a=0

f(a)qa for |1 − q|p < 1. (1.7)

In [8], the bosonic integral was considered from amore physical point of view to the limit q→ 1
as follows:

I1(f) = lim
q→1

Iq(f) =
∫

Zp

f(a)dμ1(a) = lim
N→∞

1
pN

pN−1∑

a=0

f(a). (1.8)
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Furthermore, we can consider the fermionic integral in contrast to the conventional “bosonic
integral.” That is, I−1(f) =

∫
Zp
f(a)dμ−1(a) (see [9]). From this, we derive I−1(f1) + I−1(f) =

2f(0),where f1(a) = f(a + 1). Also, we have

I−1(fn) + (−1)n−1I−1(f) = 2
n−1∑

a=0

(−1)n−1−af(a), (1.9)

where fn(a) = f(a + n) and n ∈ Z
+ (see [9]). For |1 − q|p < 1, we consider fermionic p-adic

q-integral on Zp which is the q-extension of I−1(f) as follows:

I−q(f) =
∫

Zp

f(a)dμ−q(a) = lim
N→∞

1
[
dpN

]
−q

dpN−1∑

a=0

f(a)(−q)a (cf. [3]). (1.10)

2. q-Euler numbers and polynomials

In this section, we review some notations and facts in [3].
From (1.10), we can derive the following formula:

qI−q
(
f1
)
+ I−q(f) = [2]qf(0), (2.1)

where f1(a) is translation with f1(a) = f(a + 1). If we take f(a) = eax, then we have f1(a) =
e(a+1)x = eaxex. From (2.1), we derive (qex + 1)I−q(eax) = [2]q. Hence, we obtain

I−q
(
eax

)
=
∫

Zp

eaxdμ−q(a) =
[2]q

qex + 1
. (2.2)

We now set

[2]q
qex + 1

=
∞∑

n=0

E∗n,q
xn

n!
. (2.3)

E∗n,q is called the nth q-Euler number. By (2.2) and (2.3), we see that

∫

Zp

andμ−q(a) = E∗n,q. (2.4)

From (2.2), we also note that

∫

Zp

e(t+a)xdμ−q(a) =
[2]q

qex + 1
etx. (2.5)

In view of (2.3) and (2.5), we can consider q-Euler polynomials associated with t as follows:

[2]q
qex + 1

etx =
∞∑

n=0

E∗n,q(t)
xn

n!
,

∫

Zp

(t + a)ndμ−q(a) = E∗n,q(t). (2.6)
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Put limq→ 1E
∗
n,q = E∗n and limq→ 1E

∗
n,q(t) = E∗n(t). Then, we have En(t) = E∗n(t) and

En =
n∑

m=0

2m
(

n
m

)

E∗m, (2.7)

where En and En(t) are the ordinary Euler numbers and polynomials. By (2.3) and (2.6), we
easily see that E∗n,q(t) =

∑n
m=0(

n
m )tn−mE∗m,q. For d ∈ Z

+, let fd(a) = f(a + d). Then, we have

qdI−q(fd) + (−1)d−1I−q(f) = [2]q
d−1∑

a=0

(−1)d−a−1qaf(a), see [3]. (2.8)

If d is an odd positive integer, we have

qdI−q(fd) + I−q(f) = [2]q
d−1∑

a=0

(−1)aqaf(a). (2.9)

Let χ be a Dirichlet character with conductor d = dχ (=odd) ∈ Z
+. If we take f(a) = χ(a)e(t+a)x,

then we have fd(a) = f(a + d) = χ(a)edxe(t+a)x. From (1.7) and (2.9), we derive

∫

X

χ(a)e(t+a)xdμ−q(a) =
[2]q

∑d
a=1(−1)aqaχ(a)e(t+a)x

qdedx + 1
. (2.10)

In view of (2.10), we also consider the generalized q-Euler polynomials associated with χ as
follows:

Fχ,q(x, t) =
[2]q

∑d
a=1(−1)aqaχ(a)e(t+a)x

qdedx + 1
=
∞∑

n=0

E∗n,χ,q(t)
xn

n!
. (2.11)

From (2.10) and (2.11), we derive the following equation:

∫

X

χ(a)(t + a)ndμ−q(a) = E∗n,χ,q(t) (2.12)

for n ≥ 0. Put limq→ 1E
∗
n,χ,q(t) = E∗n,χ(t).On the other hand, the generalized q-Euler polynomials

associated with χ are easily expressed as the q-Euler polynomials:

E∗n,χ,q(t) = dn
[2]q
[2]qd

d∑

a=1

(−1)aqaχ(a)E∗
n,qd

(
a + t

d

)

, n ≥ 0. (2.13)

Let χ be a Dirichlet character with conductor d = dχ ∈ Z
+. It is well known (see [11, 12])

that, for positive integers m and n,

dn∑

a=1

χ(a)am =
1

m + 1
(
Bm+1,χ(dn) − Bm+1,χ(0)

)
, (2.14)
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where Bm+1,χ(t) are the generalized Bernoulli polynomials. When d = dχ (=odd) ∈ Z
+, note that

[2]q
∑d

a=1(−1)aqaχ(a)e(t+a)x
(
1 − ( − qdedx)n)

1 − ( − qdedx)

= [2]q
d∑

a=1

n−1∑

l=0

(−1)a+dlqa+dlχ(a + dl)ex(t+a+dl)= [2]q
dn∑

a=1

(−1)aqaχ(a)ex(t+a)

=
∞∑

m=0

(

[2]q
dn∑

a=1

(−1)aqaχ(a)(t + a)m
)
xm

m!
.

(2.15)

By (2.11), the relation (2.15) can be rewritten as

[2]q
∑d

a=1(−1)aqaχ(a)e(t+a)x
(
1 − ( − qdedx)n)

1 − ( − qdedx) =
∞∑

m=0

(
E∗m,χ,q(t) + (−1)n+1qdnE∗m,χ,q(t + dn)

)xm

m!
.

(2.16)

Now, we give the q-analog of (2.14) for the generalized Euler polynomials. From (2.15) and
(2.16), it is easy to see that

dn∑

a=1

(−1)aqaχ(a)(t + a)m =
1

[2]q

(
E∗m,χ,q(t) + (−1)n+1qdnE∗m,χ,q(t + dn)

)
(2.17)

for positive integers m and n. In particular, replacing q by 1 in (2.17), if χ = χ0, the principal
character (dχ = 1), and t = 0, then

n−1∑

a=1

(−1)aam =
1
2
(
Em(0) + (−1)n+1Em(n)

)
. (2.18)

Definition 2.1. Let s ∈ C with Re(s) > 1. Let χ be a primitive Dirichlet character with conductor
d = dχ (=odd) ∈ Z

+. One sets

lq(s, t, χ) = [2]q
∞∑

n=0

(−1)nqnχ(n)
(t + n)s

, 0 < t ≤ 1. (2.19)

Remark 2.2. We assume that q ∈ C with |q| < 1. Let χ be a primitive Dirichlet character with
conductor d = dχ (=odd) ∈ Z

+. From (2.11), we consider the below integral which is known as
the Mellin transformation of Fχ,q(x, t) (cf. [13])

1
Γ(s)

∫∞

0
xs−1Fχ,q(−x, t)dx = [2]q

d∑

a=1

(−1)aqaχ(a) 1
Γ(s)

∫∞

0
xs−1 e−(t+a)x

1 − ( − qde−dx)dx

= [2]q
d∑

a=1

(−1)aqaχ(a + dl)
∞∑

l=0

(−1)dl qdl

(a + dl + t)s
.

(2.20)

We write n = a + dl, where n = 1, 2, . . . , and obtain

1
Γ(s)

∫∞

0
xs−1Fχ,q(−x, t)dx = [2]q

∞∑

n=0

(−1)nqnχ(n)
(t + n)s

= lq(s, t, χ). (2.21)
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Note that lq(s, t, χ) is an analytic function in the whole complex s-plane. By using a
geometric series in (2.11), we obtain

[2]qe
tx
∞∑

n=0

(−1)nqnχ(n)enx =
∞∑

n=0

E∗n,χ,q(t)
xn

n!
. (2.22)

We also note that

E∗n,χ,q(t) =
(

d
dx

)k

[2]qe
tx
∞∑

n=0

(−1)nqnχ(n)enx
∣
∣
∣
∣
x=0

. (2.23)

By Definition 2.1 and (2.23), we obtain the following proposition.

Proposition 2.3. For n ∈ Z
+, one has lq(−n, t, χ) = E∗n,χ,q(t).

The values of lq(s, t, χ) at negative integers are algebraic, hence may be regarded as being
in an extension of Qp.We therefore look for a p-adic function which agrees with lq(s, t, χ) at the
negative integers in Section 3.

3. A two-variable p-adic lq-function

We will consider the p-adic analog of the lq-functions which are introduced in the previous
section (see Definition 2.1). Throughout this section we assume that p is an odd prime. Note
that there exist ϕ(p) distinct solutions, modulo p, to the equation xϕ(p)−1 = 0, and each solution
must be congruent to one of the values a ∈ Z, where 1 ≤ a < p, (a, p) = 1. Thus, given
a ∈ Z with (a, p) = 1, there exists a unique ω(a) ∈ Zp, where ω(a)ϕ(p) = 1, such that ω(a) ≡
a (mod pZp). Letting ω(a) = 0 for a ∈ Z, such that (a, p)/= 1, it can be seen that ω is actually
a Dirichlet character having conductor dω = p, called the Teichmüller character. Let 〈a〉 =
ω−1(a)a. Then, 〈a〉 ≡ 1 (mod pZp). For the context in the sequel, an extension of the definition
of the Teichmüller character is needed. We denote a particular subring of Cp as

R =
{
a ∈ Cp | |a|p ≤ 1

}
. (3.1)

If t ∈ Cp, such that |t|p ≤ 1, then for any a ∈ Z, a + pt ≡ a (mod pR). Thus, for t ∈ Cp, |t|p ≤
1, ω(a+pt) = ω(a).Also, for these values of t, let 〈a+pt〉 = ω−1(a)(a+pt). Let χ be the Dirichlet
character of conductor d = dχ. For n ≥ 1, we define χn to be the primitive character associated
with the character χn : (Z/lcm(d, p)Z)× →C

× defined by χn(a) = χ(a)ω−n(a).
We define an interpolation function for generalized q-Euler polynomials.

Definition 3.1. Let χ be the Dirichlet character with conductor d = dχ (=odd) and let F be a
positive integral multiple of p and d. Now, one defines the two-variable p-adic lq-function as
follows:

lp,q(s, t, χ) =
[2]q
[2]qF

F∑

a=1
(p,a)=1

(−1)aχ(a)qa〈a + pt〉−s
∞∑

m=0

(
−s
m

)(
F

〈a + pt〉
)m

E∗
m,qF

. (3.2)
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Let D = {s ∈ Cp | |s|p < p1−(1/(p−1))} and let a ∈ Z, (a, p) = 1. For t ∈ Cp, |t|p ≤ 1, the
same argument as that given in the proof of the main theorem of [4, 5] can be used to show that
the functions

∑∞
m=0(

s
m )(F/(a + pt))mE∗

m,qF
and 〈a + pt〉s = ∑∞

m=0(
s
m )(〈a + pt〉 − 1)m are analytic

for s ∈ D. According to this method, we see that the function
∑∞

m=0(
s
m )(F/(a + pt))mE∗

m,qF

is analytic for t ∈ Cp, |t|p ≤ 1, whenever s ∈ D. It readily follows that 〈a + pt〉s =
〈a〉s∑∞

m=0(
s
m )(a−1pt)m is analytic for t ∈ Cp, |t|p ≤ 1,when s ∈ D. Therefore,

lp,q(s, t, χ) is analytic for t ∈ Cp, |t|p ≤ 1, (3.3)

provided s ∈ D (see [5]).
We set

hp,q(s, t, a | F) = (−1)aqa〈a + pt〉−s
[2]q
[2]qF

∞∑

m=0

(
−s
m

)(
F

a + pt

)m

E∗
m,qF

. (3.4)

Thus, we note that

hp,q(−n, t, a | F) = ω−n(a)(−1)aqaFn
[2]q
[2]qF

E∗
n,qF

(
a + pt

F

)

(3.5)

for n ∈ Z
+. We also consider the two-variable p-adic lq-functions which interpolate the

generalized q-Euler polynomials at negative integers as follows:

lp,q(s, t, χ) =
F∑

a=1
(p,a)=1

χ(a)hp,q(s, t, a | F). (3.6)

We will in the process derive an explicit formula for this function. Before we begin this
derivation, we need the following result concerning generalized q-Euler polynomials.

Lemma 3.2. Let F be a positive integral multiple of p and d = dχ. Then, for each n ∈ Z, n ≥ 0,

E∗n,χ,q(t) = Fn
[2]q
[2]qF

F∑

a=1

(−1)aqaχ(a)E∗
n,qF

(
a + t

F

)

. (3.7)

Proof. By (2.6) and (2.11), we note that

Fχ,q(x, t) =
[2]q
[2]qd

d∑

a=1

(−1)aqaχ(a)
∞∑

n=0

E∗
n,qd

(
a + t

d

)
(dx)n

n!
. (3.8)

Then, we have

E∗n,χ,q(t) = dn
[2]q
[2]qd

d∑

a=1

(−1)aqaχ(a)E∗
n,qd

(
a + t

d

)

. (3.9)
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On the other hand, if F = dp, then we get

[2]q
[2]qF

F∑

a=1

(−1)aqaχ(a)
∞∑

n=0

E∗
n,qF

(
a + t

F

)
(Fx)n

n!

= [2]q
d∑

a=1

p−1∑

b=0

(−1)a+bdqa+bdχ(a + bd)
e(a+bd)xetx

qFeFx + 1

= [2]q
d∑

a=1

(−1)aqaχ(a)e(a+t)x
p−1∑

b=0

(−1)bdqbdebdx 1
qFeFx + 1

=
[2]q
[2]qd

d∑

a=1

(−1)aqaχ(a)
∞∑

n=0

E∗
n,qd

(
a + t

d

)
(dx)n

n!
.

(3.10)

This completes the proof.

Set χn = χω−n. From (3.5) and (3.6), we obtain

lp,q(−n, t, χ) = Fn
[2]q
[2]qF

F∑

a=1
(p,a)=1

χn(a)(−1)aqaE∗n,qF
(
a + pt

F

)

= Fn
[2]q
[2]qF

F∑

a=1

χn(a)(−1)aqaE∗n,qF
(
a + pt

F

)

− Fn
[2]q
[2]qF

F/p∑

a=1

χn(pa)(−1)paqpaE∗n,qF
(
pa + pt

F

)

.

(3.11)

for n ∈ Z
+. From Lemma 3.2, we see that

E∗n,χn,q(pt) = Fn
[2]q
[2]qF

F∑

a=1

(−1)aqaχn(a)E∗n,qF
(
a + pt

F

)

,

E∗n,χn,qp
(t) =

(
F

p

)n [2]qp

[2](qp)F/p

F/p∑

a=1

(−1)a(qp)aχn(a)E∗n,(qp)F/p
(
a + t

F/p

)

.

(3.12)

From (3.3), (3.11), and (3.12), we obtain the following theorem.

Theorem 3.3. Let F (=odd) be a positive integral multiple of p and dχ. Then, the two-variable p-adic
lq-function

lp,q(s, t, χ) =
[2]q
[2]qF

F∑

a=1
(p,a)=1

(−1)aχ(a)qa〈a + pt〉−s
∞∑

m=0

(
−s
m

)(
F

〈a + pt〉
)m

E∗
m,qF

(3.13)

admits an analytic function for t ∈ Cp with |t|p ≤ 1 and s ∈ D and satisfies the relation

lp,q(−n, t, χ) = E∗n,χn,q(pt) − pnχn(p)
[2]q
[2]qp

E∗n,χn,qp
(t) (3.14)

for n ∈ Z
+ and t ∈ Cp with |t|p ≤ 1.
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From (3.5) and Theorem 3.3, it follows that hp,q(s, t, a | F) is analytic for t ∈ Cp with
|t|p ≤ 1 and s ∈ D.

Remark 3.4. Let 〈a + pt〉 = ω−1(a)(a + pt), and let t ∈ Cp with |t|p ≤ 1 and s ∈ D. Then the
two-variable p-adic lq-function defined above is redefined by

lp,q(s, t, χ) =
∫

X∗
χ(a)〈a + pt〉−sdμ−q(a), compared to [3, 10]. (3.15)

Then, we have

lp,q(−n, t, χ) =
∫

X

χn(a)(a + pt)ndμ−q(a) −
∫

X

χn(pa)(pa + pt)ndμ−q(pa)

(2.10)
= E∗n,χn,q(pt) − pnχn(p)

[2]q
[2]qp

E∗n,χn,qp
(t),

(3.16)

since X∗ = X − pX and [2]qpdμ−q(pa) = [2]qdμ−qp(a).

If q→ 1 in Theorem 3.3 and Remark 3.4, we obtain the following corollary.

Corollary 3.5. Let F (=odd) be a positive integral multiple of p and dχ, and let the two-variable p-adic
l-function

lp(s, t, χ) =
F∑

a=1
(p,a)=1

(−1)aχ(a)〈a + pt〉−s
∞∑

m=0

(
−s
m

)(
F

〈a + pt〉
)m

E∗m. (3.17)

Then,

(1) lp(s, t, χ) is analytic for t ∈ Cp with |t|p ≤ 1 and s ∈ D.

(2) lp(−n, t, χ) = E∗n,χn
(pt) − pnχn(p)E∗n,χn

(t) for n ∈ Z
+.

(3) lp(s, t, χ) =
∫
X∗χ(a)〈a + pt〉−sdμ−1(a) for t ∈ Cp with |t|p ≤ 1 and s ∈ D.

Acknowledgment

This work is supported by Kyungnam University Foundation grant, 2007.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, vol. 55 of National Bureau of Standards Applied Mathematics Series, US Government
Printing Office, Washington, DC, USA, 1964.
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