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The main purpose of this paper is to present a systemic study of some families of multiple Genocchi
numbers and polynomials. In particular, by using the fermionic p-adic invariant integral on Zp,
we construct p-adic Genocchi numbers and polynomials of higher order. Finally, we derive the
following interesting formula: G(k)

n+k,q(x) = 2kk!
(
n+k
k

)∑∞
l=0

∑
d0+d1+···+dk=k−1,di∈N

(−1)l(l + x)n, where

G
(k)
n+k,q(x) are the q-Genocchi polynomials of order k.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper,Zp, Qp, C, andCp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field and the p-adic completion of the algebraic closure of Qp. Let νp be the normalized
exponential valuation of Cp with |p|p = pνp(p) = 1/p. When one talks of q-extension, q is
variously considered as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp.
If q ∈ C, one normally assumes |q| < 1. If q ∈ Cp, then we assume that |1 − q|p < 1, see [1–6].

In C, the ordinary Euler polynomials are defined as

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
, (|t| < π). (1.1)

In the case x = 0, En(0) = En are called Euler numbers, see [1–13]. Let δ0,n be the Kronecker
symbol. From (1.1)we derive the following relation:

E0 = 1, (E + 1)n + En = 2δ0,n, n ∈ N, (1.2)

mailto:leechae.jang@kku.ac.kr


2 Abstract and Applied Analysis

(cf. [7–13]). Here, we use the technique method notation by replacing En by En (n ≥ 0),
symbolically. The first few are 1,−1/2, 0, 1/4, . . . , and E2k = 0 for k = 1, 2, . . . . A sequence
consisting of the Genocchi numbers Gn satisfies the following relations:

2t
et + 1

=
∞∑

n=0

Gn
tn

n!
, (|t| < π), (1.3)

see [11, 12]. It satisfies G1 = 1, G3 = G5 = G7 = · · · = G2k+1 = 0, k = 1, 2, 3, . . . , and even
coefficients are given by

G2n = 2
(
1 − 22n

)
B2n = 2nE2n−1(0), (1.4)

where Bn is Bernoulli numbers. The first few Genocchi numbers for even integers are
−1, 1,−3, 17,−155, 2073, . . . . The first few prime Genocchi numbers are −3 and 17, which occur
at n = 6 and 8. There are no others with n < 105. We now define the Genocchi polynomials as
follows:

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
, (|t| < π). (1.5)

Thus, we note that

Gn(x) =
n∑

l=0

(
n
l

)

Glx
n−l. (1.6)

In this paper, we use the following notations: [x]q = (1 − qx)/(1 − q) and [x]−q = (1 +
(−q)x)/(1 + q). Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈
UD(Zp), the p-adic q-deformed fermionic integral on Zp is defined as

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)(−q)x, (1.7)

see [1–4]. The fermionic p-adic invariant integral on Zp can be obtained as q → 1. That is,

I−1(f) = lim
q→1

I−q(f) =
∫

Zp

f(x)dμ−1(x). (1.8)

From (1.8), we easily derive the following integral equation related to fermionic invariant p-
adic integral on Zp:

I−1
(
f1
)
+ I−1(f) = 2f(0), (1.9)

where f1(x) = f(x + 1), see [5].
The purpose of this paper is to present a systemic study of some families of multiple

Genocchi numbers and polynomials by using the fermionic multivariate p-adic invariant
integral on Zp. In addition, we will investigate some interesting identities related to Genocchi
numbers and polynomials.
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2. Genocchi numbers associated with fermionic p-adic invariant integral on Zp

From (1.9)we can derive

t

∫

Zp

extdμ−1(x) =
2t

et + 1
=

∞∑

n=0

Gn
tn

n!
,

t

∫

Zp

e(x+y)tdμ−1(y) =
2t

et + 1
ext =

∞∑

n=0

Gn(x)
tn

n!
,

(2.1)

where Gn(x) are Genocchi polynomials. It is easy to check that

t

∫

Zp

e(2x+1)tdμ−1(x) =
2t

et + e−t
= t sech t =

1
2

∞∑

n=0

(
n∑

l=0

(
n
l

)

2lGl

)
tn

n!
. (2.2)

By comparing the coefficient on both sides in (2.1), we easily see that
∫

Zp

(x + y)ndμ−1(x) =
Gn+1(x)
n + 1

. (2.3)

Therefore, we obtain the following proposition.

Proposition 2.1. For k ∈ Z+,

(i)
∫
Zp

(x + y)ndμ−1(x) = Gn+1(x)/(n + 1) (Witt’s formula for Genocchi polynomials);

(ii)
∫
Zp

e(2x+1)tdμ−1(x) = (1/(n+ 1))((1/2)
∑n+1

l=0
(
n+1
l

)
2lGl), where

( n
l

)
= (n(n− 1) · · · (n− l +

1))/l!.

Let ϑCp
= {x ∈ Cp | |x|p ≤ 1} be the integer ring of Cp. We note that i = (−1)1/2 ∈ ϑCp

. By
using Taylor expansion, we see that

eix =
∞∑

n=0

in
xn

n!
=

∞∑

n=0

(−1)nx2n

(2n)!
+ i

∞∑

n=0

(−1)nx2n+1

(2n + 1)!
. (2.4)

In the p-adic number field, sinx and cos x are defined as

sinx =
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

cos x = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · .

(2.5)

From (2.4) and (2.5), we derive

eix = cos x + i sinx. (2.6)

This is equivalent to

cos x =
eix + e−ix

2
, sinx =

eix − e−ix

2i
. (2.7)
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By (2.7), we easily see that

sec t =
2

eit + e−it
=
∫

Zp

e(2x+1)itdμ−1(x) =
∞∑

n=0

∫

Zp

(2x + 1)ndμ−1(x)
intn

n!
. (2.8)

It is not difficult to show that
∫
Zp

(2x + 1)2n+1dμ−1(x) = 0 for n ∈ Z+ = N ∪ {0}. From (2.8), we
note that

sec t =
∞∑

n=0

in
∫

Zp

(2x + 1)ndμ−1(x)
tn

n!
=

∞∑

n=0

(−1)n
∫

Zp

(2x + 1)2ndμ−1(x)
t2n

(2n)!
. (2.9)

Thus, we have

t sec t =
1
2

∞∑

n=0

(−1)n
(

2n+1∑

l=0

(
2n + 1

l

)

2lGl

)
t2n+1

(2n + 1)!
. (2.10)

Now we consider the fermionic multivariate p-adic invariant integral on Zp as follows:

tk
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

e(x1+x2+···+xk)tdμ−1
(
x1
) · · ·dμ−1

(
xk

)
= 2k

tk
(
et + 1

) · · · (et + 1
)

︸ ︷︷ ︸
k-times

=
∞∑

n=0

G
(k)
n

tn

n!
, (2.11)

where G(k)
n are the nth Genocchi number of order k. By comparing the coefficient on both sides

in (2.11), we see that G(k)
0 = G

(k)
1 = · · · = G

(k)
n = 0, and

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

(
x1 + x2 + · · · + xk

)n
dμ−1

(
x1
) · · ·dμ−1

(
xk

)
(n + k)k = G

(k)
n+k, (2.12)

where (n + k)k is the Jordan factor which is defined by (n + k)k = (n + k) · · · (n + 1). Thus, we
note that

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

(
x1 + x2 + · · · + xk

)n
dμ−1

(
x1
) · · ·dμ−1

(
xk

)
=

G
(k)
n+k(

n+k
n

)
n!
, (2.13)

for k ∈ N, n ∈ Z+.

Theorem 2.2. For n ∈ Z+, k ∈ N,

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

(
x1 + x2 + · · · + xk

)n
dμ−1

(
x1
) · · ·dμ−1

(
xk

)
=

G
(k)
n+k(

n+k
n

)
n!
. (2.14)
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The multinomial coefficient is well known as

(
x1 + x2 + · · · + xk

)n =
∑

l1+···+lk=n
l1 ,...,lk>0

(
n

l1, . . . , lk

)

xl1
1 x

l2
2 · · ·xlk

k
. (2.15)

Therefore, we obtain the following corollary.

Corollary 2.3. For n ∈ Z+, k ∈ N,

∑

l1+···+lk=n
l1 ,...,lk>0

(
n

l1, . . . , lk

)(
Gl1+1

l1 + 1

)(
Gl2+1

l2 + 1

)
· · ·

(
Glk+1

lk + 1

)
=

G
(k)
n+k(

n+k
n

)
n!
. (2.16)

For q ∈ Cp with |1 − q| < 1, it is not difficult to show that

t

∫

Zp

qxextdμ−1(x) =
2t

qet + 1
. (2.17)

Now, we define the q-extension of the Genocchi numbers as follows:

2t
qet + 1

=
∞∑

n=0

Gn,q
tn

n!
. (2.18)

By (2.17) and (2.18), we easily see that

Gn+1,q

n + 1
=
∫

Zp

qxxndμ−1(x). (2.19)

With the same motivation to construct the Genocchi polynomials of higher order, we can
consider the q-extension of higher-order Genocchi numbers as follows:

tk
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

qx2+2x3+···+(k−1)xke(x+x1+x2+···+xk)tdμ−1(x1) · · ·dμ−1(xk)

=
tk2k

(
et + 1

)(
qet + 1

) · · · (qk−1et + 1
)

︸ ︷︷ ︸
k-times

ext =
∞∑

n=0

G
(k)
n,q

tn

n!
,

(2.20)

whereG(k)
n,q are the q-Genocchi polynomials of order k. The basic q-natural numbers are defined

as

[n]q =
1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1, n ∈ N. (2.21)

The q-factorial of n is defined as

[n]q! = [n]q[n − 1]q · · · [2]q[1]q =
(
1 + q + · · · + qn−1

) · · · (1 + q
) · 1. (2.22)



6 Abstract and Applied Analysis

The q-binomial coefficient is also defined as
(
n
k

)

q

=
[n]q!

[n − k]q![k]q!
=
[n]q[n − 1]q · · · [n − k + 1]q

[k]q!
. (2.23)

Note that limq→1
( n
k

)
q =

( n
k

)
= (n(n − 1) · · · (n − k + 1))/k!. The q-binomial coefficient satisfies

the following recurrsion formula:
(
n + 1
k

)

q

=

(
n

k − 1

)

q

+ qk
(
n
k

)

q

= qn−k
(

n
k − 1

)

q

+

(
n
k

)

q

. (2.24)

From this recurrsion formula, we can derive
(
n
k

)

q

=
∑

d0+d1+···+dk=k−1
di∈N

q0·d0+1·d1+···+k·dk . (2.25)

The q-binomial expansion is given by

n∏

i=1

(
a + bqi−1

)
=

n∑

k=0

(
n
k

)

q

q

(
k
2

)
an−kbk,

n∏

i=1

(
1 − bqi−1

)−1
=

∞∑

k=0

(
n + k − 1

k

)

q

bk.

(2.26)

By (2.20) and (2.26), we see that

tk
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

qx2+2x3+···+(k−1)xke(x+x1+x2+···+xk)tdμ−1
(
x1
) · · ·dμ−1

(
xk

)

= tk2k
k∏

i=1

(
1 − ( − qi−1

)
et
)−1

ext

= tk2k
∞∑

l=0

(
k + l − 1

l

)

q

(−1)le(l+x)t

= tk
∞∑

n=0

(

2k
∞∑

l=0

(
k + l − 1

l

)

q

(−1)l(l + x)n
)

tn

n!
.

(2.27)

Therefore, we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, k ∈ N, we have
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

qx2+2x3+···+(k−1)xk
(
x1 + x2 + · · · + xk

)n
dμ−1

(
x1
) · · ·dμ−1

(
xk

)

= 2k
∞∑

l=0

(
k + l − 1

l

)

q

(−1)l(l + x)n.

(2.28)
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By (2.20), it is not difficult to show that

G
(k)
n+k,q(x) = k!

(
n + k
k

)∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

qx2+2x3+···+(k−1)xk × (
x + x1 + x2 + · · · + xk

)k

× dμ−1
(
x1
) · · ·dμ−1

(
xk

)
(n + k)k,

G
(k)
0,q = G

(k)
1,q = · · · = G

(k)
n,q = 0,

(2.29)

where n = 0, 1, 2, . . . . Therefore, we obtain the following corollary.

Corollary 2.5. For n ∈ Z+, k ∈ N,

G
(k)
n+k,q(x)

k!
(
n+k
k

) = 2k
∞∑

l=0

(
k + l − 1

l

)

q

(−1)l(l + x)n. (2.30)

Corollary 2.6. For n ∈ Z+, k ∈ N,

G
(k)
n+k,q(x) = 2kk!

(
n + k
k

) ∞∑

l=0

∑

d0+d1+···+dk=k−1
di∈N

q0·d0+1·d1+···+k·dk(−1)l(l + x)n. (2.31)
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