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Let f and g be distributions and let gn = (g ∗ δn)(x), where δn(x) is a certain sequence
converging to the Dirac-delta function δ(x). The noncommutative neutrix product f ◦ g
of f and g is defined to be the neutrix limit of the sequence { f gn}, provided the limit
h exists in the sense that N-limn→∞〈 f (x)gn(x),φ(x)〉 = 〈h(x),φ(x)〉, for all test functions
in �. In this paper, using the concept of the neutrix limit due to van der Corput (1960),
the noncommutative neutrix products xr+ lnx+ ◦ x−r−1− lnx− and x−r−1− lnx− ◦ xr+ lnx+ are
proved to exist and are evaluated for r = 1,2, . . . . It is consequently seen that these two
products are in fact equal.

Copyright © 2007 Emin Özçaḡ et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Certain operations on smooth functions (such as addition, and multiplication by scalars)
can be extended without difficulty to arbitrary distributions. Others (such as multiplica-
tion, convolution, and change of variables) can be defined only for particular distribu-
tions. We are obliged to impose certain restrictions on the distributions when we try to
define a multiplicative operation for distributions.

The technique of neglecting appropriately defined infinite quantities was devised by
Hadamard and the resulting finite value extracted from the divergent integral is usually
referred to as the Hadamard finite part. In fact, Hadamard’s method can be regarded as
a particular application of the neutrix calculus developed by van der Corput, see [1, 2].
This is a very general principle for the discarding of unwanted infinite quantities from
asymptotic expansions and has been widely exploited in the context of distributions, by
Fisher in connection with the problem of distributional multiplication, see [3–6] or [7].
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Recently, Jack Ng and van Dam applied the neutrix calculus, in conjuction with the
Hadamard integral, developed by van der Corput, to quantum field theories, in particu-
lar, to obtain finite results for the cofficients in the perturbation series. They also applied
neutrix calculus to quantum field theory, obtaining finite renormalization in the loop
calculations, see [8, 9].

In the following we let � be the space of infinitely differentiable functions with com-
pact support and let �′ be the space of distributions.

Definition 1.1. Let f be a distribution in �′ and let α be an infinitely differentiable func-
tion. The product α f is defined by

〈α f ,φ〉 = 〈 f ,αφ〉 (1.1)

for all functions φ in �.
The first extension of the product of a distribution and an infinitely differentiable

function is the following, see, for example, [10].

Definition 1.2. Let f and g be distributions in �′ for which on the interval (a,b), f is the
rth derivative of a locally summable function F in Lp(a,b) and g(r) is a locally summable
function in Lq(a,b) with 1/p+ 1/q = 1. Then the product f g = g f of f and g is defined
on the interval (a,b) by

f g =
r∑

i=0

(
r
i

)
(−1)i

[
Fg(i)](r−i)

. (1.2)

Now let ρ be a fixed infinitely differentiable function having the following properties:
(i) ρ(x)= 0 for |x| ≥ 1,

(ii) ρ(x)≥ 0,
(iii) ρ(x)= ρ(−x),
(iv)

∫ 1
−1ρ(x)dx = 1.

We define the function δn(x)= nρ(nx) for n= 1,2, . . . . It is obvious that {δn} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta function δ(x).
Now let f be an arbitrary distribution and define the function fn by

fn(x)= f∗δn =
∫ 1/n

−1/n
f (x− t)δn(t)dt. (1.3)

Then
{
fn
}

is a sequence of infinitely differentiable functions converging to the distribu-
tion f .

The next definition for the product of two distributions, given in [11], is in general
noncommutative and generalizes Definition 1.2.

Definition 1.3. let f and g be arbitrary distributions and let gn = g∗δn. The product f ·g
of f and g exists and is equal to h on the open interval (a,b) if

lim
n→∞

〈
f gn,φ

〉= 〈h,φ
〉

(1.4)

for all φ ∈�.
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It was proved that if the product exists by Definition 1.2, then it exists by Definition 1.3
and f g = f ·g.

However, there are still many pairs of distributions whose products do not exist by
Definition 1.3.

We need the following definitions of the neutrix and the neutrix limit to define the
product for a considerably larger class of pairs of distributions, see [1, 4, 2].

Definition 1.4. A neutrix N is defined as a commutative additive group of functions ν(ξ)
defined on a domain N ′ with values in an additive group N ′′, where further if for some ν
inN ,ν(ξ)= γ for all ξ ∈N ′, then γ = 0.The functions inN are called negligible functions.

Definition 1.5. Let N ′ be a set contained in a topological space with a limit point b which
does not belong to N ′. If f (ξ) is a function defined on N ′ with values in N ′′ and it is
possible to find a constant c such that f (ξ)− c ∈N , then c is called the neutrix limit of f
as ξ tends to b and write N-limξ→b f (ξ)= c.

The following definition for the noncommutative product of two distributions was
given in [4] and generalizes Definitions 1.2 and 1.3.

Definition 1.6. let f and g be arbitrary distributions and let gn = g∗δn. The neutrix prod-
uct f ◦ g of f and g exists and is equal to h on the open interval (a,b) (−∞≤ a < b ≤∞)
if

N-lim
n→∞

〈
f gn,φ

〉= 〈h,φ
〉

(1.5)

for all φ ∈�, where N is the neutrix having domain N ′ = {1,2, . . . ,n, . . .} and range N ′′

the real numbers, with negligible functions finite linear sums of the functions

nλln r−1n, ln rn (λ > 0, r = 1,2, . . .) (1.6)

and all functions which converge to zero in the usual sense as n tends to infinity, see
[10, 11] or [2].

The next theorem shows that Definition 1.6 is really the extension of Definition 1.3
and the proof of theorem is immediate.

Theorem 1.7. Let f and g be distributions for which the product f ·g exists. Then the
neutrix product f ◦ g exists and defines the same distribution (see [11]).

2. Results on the neutrix product

In many elementary applications a relatively small class of distributions is sufficient. This
consists of the regular distributions, delta functions, derivatives of delta functions, and
linear combinations of these. This may give the impression that the delta and its deriva-
tives are the only singular distributions which really matter. However, there are many
examples of singular distributions other than these which are of immediate practical in-
terest. We here define the neutrix product of a singular distribution x−r−1− lnx− and the
locally summable function xr+ lnx+.
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In the following theorem, which was proved in [12], the locally summable function
xr+ lnx+ and the distribution x−r− are defined by

xr+ lnx+ =
⎧
⎨
⎩
xr lnx, x > 0,

0, x < 0,
x−r− = − 1

(r− 1)!
(lnx−)(r), (2.1)

where

lnx− =
⎧
⎨
⎩

ln|x|, x < 0,

0, x > 0.
(2.2)

Theorem 2.1. The neutrix products xr+ lnx+ ◦ x−r−1− and x−r−1− ◦ xr+ lnx+ exist and

xr+ lnx+ ◦ x−r−1
− = x−r−1

− ◦ xr+ lnx+ = Lrδ(x) (2.3)

for r = 1,2, . . . , where Lr = (−1)r
[
c2(ρ)−π2/12

]
+ (−1)rc1(ρ)ψ(r) and

c1(ρ)=
∫ 1

0
ln tρ(t)dt, c2(ρ)=

∫ 1

0
ln 2tρ(t)dt. (2.4)

Further the distribution x−r− lnx−, which is distinct from the definition given by Gel’fand and
Shilov [13], is defined by (see [14])

x−r− lnx− = F(x−,−r) lnx− − 1
(r− 1)!

ψ1(r− 1)δ(r−1)(x) (2.5)

for r = 1,2, . . . , where

ψ(r)=

⎧
⎪⎪⎨
⎪⎪⎩

0, r = 0,
r∑

i=1

i−1, r ≥ 1,
ψ1(r)=

⎧
⎪⎪⎨
⎪⎪⎩

0, r = 0,
r∑

i=1

ψ(i)
i

, r ≥ 1,

〈F(x−,−r) lnx−,φ(x)〉

=
∫∞

0
x−r lnx

[
φ(−x)−

r−2∑

i=0

φ(i)(0)
i!

(−x)i− φ(r−1)(0)
(r− 1)!

H(1− x)(−x)r−1

]
dx,

(2.6)

where H(x) denotes the Heaviside function. It can be easily shown by induction that the
distribution x−r− lnx− is also defined by an equation

x−r− lnx− = ψ(r− 1)x−r− − 1
2(r− 1)!

(ln 2x−)(r). (2.7)

The following lemma is easily proved.
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Lemma 2.2. Let ρ(x) be infinitely differentiable function with the properties given in the
introduction. For positive integer r,

∫ 1

0
yr ln ydy =− 1

(r + 1)2 ,

∫ 1

0
yr ln(1− y)dy =−ψ(r + 1)

r + 1
,

∫ 1

0
yr ln y ln(1− y)dy = ψ(r + 1)

(r + 1)2 −
1

r + 1

[
ξ(2)−ψ2(r + 1)

]
,

∫ 1

0
yr ln 2(1− y)dy = 2

r + 1
ψ1(r + 1),

∫ 1

0
yr ln yln 2(1− y)dy =− 2

(r + 1)2ψ1(r + 1) +
2

r + 1
ξ(2)ψ(r + 1)− 2

r + 1

r+1∑

i=1

ψ2(i)

i

+
2

r + 1

∞∑

i=1

ψ(i)

(i+ 1)2 −
2

r + 1

r+1∑

i=1

ψ(i)
i2

= αr ,
∫ 1

0
ur+1ρ(r+1)(u)du= 1

2
(−1)r+1(r + 1)!,

∫ 1

0
ur+1 lnuρ(r+1)(u)du= (−1)r+1(r + 1)!

[
c1(ρ) +

1
2
ψ(r + 1)

]
,

∫ 1

0
ur+1ln 2uρ(r+1)(u)du= (−1)r+1(r + 1)!

[
c2(ρ) + 2c1(ρ)ψ(r + 1) +ψ3(r + 1)

]= βr ,
∫ 1

0
ur+1ln 3uρ(r+1)(u)du= (−1)r+1(r + 1)!

[
c3(ρ) + 2c2(ρ)ψ(r + 1)

+ 6c1(ρ)ψ3(r + 1) + 3ψ4(r + 1)
]= θr ,

(2.8)

where

ψ2(r)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, r = 0,
r∑

i=1

i−2, r ≥ 1, ξ(2)= π2

6
, c3(ρ)=

∫ 1

0
ln 3tρ(t)dt,

ψ3(r)=

⎧
⎪⎪⎨
⎪⎪⎩

0, r = 0,
r∑

i=1

ψ(i− 1)
i

, r ≥ 1,
ψ4(r)=

⎧
⎪⎪⎨
⎪⎪⎩

0, r = 0,
r∑

i=1

ψ3(i− 1)

i
, r ≥ 1.

(2.9)

We now prove the following theorem.

Theorem 2.3. The neutrix products xr+ lnx+ ◦ x−r−1− lnx− and x−r−1− lnx− ◦ xr+ lnx+ exist
and

xr+ lnx+ ◦ x−r−1
− lnx− = Δr(ρ)δ(x) (2.10)

= x−r−1
− lnx− ◦ xr+ lnx+ (2.11)
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for r = 1,2, . . . , where

Δr(ρ)= (−1)r(r + 1)αr

[
c1(ρ) +

1
2
ψ(r + 1) +

1
4

]
+Lrψ(r)− θr

2(r + 1)!

+
βr
r!

[
1

2(r + 1)2 +
ψ(r + 1)
r + 1

]
+ (−1)r

[
c1(ρ) +

1
2
ψ(r + 1)

]
ψ1(r + 1).

(2.12)

Proof. We put

(x−r−1− lnx−)n = x−r−1− lnx−∗δn(x)= ψ(r)
(
x−r−1−

)
n−

1
2r!

[
ln 2x−

](r+1)
n (2.13)

so that

(x−r−1− lnx−)n =
ψ(r)
r!

∫ 1/n

x
ln(t− x)δ(r+1)

n (t)dt− 1
2r!

∫ 1/n

x
ln 2(t− x)δ(r+1)

n (t)dt (2.14)

on the interval [0,1/n], the intersection of the supports of xr+ lnx+ and (x−r−1− lnx−)n. The
neutrix limit of the sequence xr+ lnx+·(x−r−1− )n obviously converges, as n tends to infinity,
to the neutrix product xr+ lnx+ ◦ x−r−1− given as in (2.3). Thus it is sufficient to evaluate the

neutrix product of the distributions xr+ lnx+ and [ln 2x−]
(r+1)

so as to complete the proof
of the theorem. �

Now we have on the interval [0,1/n] that

〈
xr+ lnx+

[
ln 2x−

](r+1)
n ,xk

〉
=
∫ 1/n

0
xr+k lnx

∫ 1/n

x
ln 2(t− x)δ(r+1)

n (t)dtdx. (2.15)

Making the substitutions nx = v and nt = u,

∫ 1/n

0
xr+k lnx

∫ 1/n

x
ln 2(t− x)δ(r+1)

n (t)dtdx

= n−k
∫ 1

0
vr+k[lnv− lnn]

∫ 1

v
[ln(u− v)− lnn]2ρ(r+1)(u)dudv.

(2.16)

If k > 0, then

N-lim
n−∞

〈
xr+ + lnx+

[
ln 2x−

](r+1)
n ,xk

〉
= 0. (2.17)



Emin Özçaḡ et al. 7

For k = 0, we have

N-lim
n−∞

∫ 1/n

0
xr lnx

∫ 1/n

x
ln 2(t− x)δ(r+1)

n (t)dtdx

=
∫ 1

0
vr lnv

∫ 1

v
ln 2(u− v)ρ(r+1)(u)du dv

=
∫ 1

0
ρ(r+1)(u)

∫ u

0
vr lnvln 2(u− v)dvdu

=
∫ 1

0
ur+1ln 3uρ(r+1)(u)

∫ 1

0
yrdy du

+ 2
∫ 1

0
ur+1ln 2uρ(r+1)(u)

∫ 1

0
yr ln(1− y)dydu

+
∫ 1

0
ur+1ρ(r+1)(u)

∫ 1

0
yr ln yln 2(1− y)dydu

+
∫ 1

0
ur+1ln 2uρ(r+1)(u)

∫ 1

0
yr ln ydydu

+ 2
∫ 1

0
ur+1 lnuρ(r+1)(u)

∫ 1

0
yr ln y ln(1− y)dy du

+
∫ 1

0
ur+1 lnuρ(r+1)(u)

∫ 1

0
yr ln 2(1− y)dydu

(2.18)

on making the substitution v = uy.
It immediately follows from Lemma 2.2 and (2.15) that

N-lim
n→∞

〈
xr+ lnx+

[
− 1

2r!

(
ln 2x−

)(r+1)
n

]
,xk
�
= Δr(ρ)−Lrψ(r). (2.19)

Further when k = 1, we have

〈
xr+ lnx+

[
ln 2x−

](r+1)
n ,x

〉

= n−1
∫ 1

0
vr+1[lnv− lnn]

∫ 1

v
[ln(u− v)− lnn]2ρ(r+1)(u)dudv =O(n−1 lnn

)
.

(2.20)

Let φ(x) be an arbitrary function in �. Then by the mean value theorem φ(x) = φ(0) +
xφ′(ξx) where 0 < ξ < 1. It follows that

〈
xr+ lnx+

(
x−r−1
− lnx−

)
n,φ(x)

〉

= ψ(r)
〈
xr+ lnx+

(
x−r−1
−

)
n,φ

(
x
)〉− 1

2r!

〈
xr+ lnx+

[
ln 2x−

](r+1)
n ,φ(x)

〉

= ψ(r)
〈
xr+ lnx+

(
x−r−1
−

)
n,φ

(
x
)〉− 1

2r!

〈
xr+ lnx+

[
ln 2x−

](r+1)
n ,φ(0)

〉

− 1
2r!

〈
xr+ lnx+

[
ln 2x−

](r+1)
n ,xφ′(ξx)

〉

(2.21)
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and so

N-lim
n→∞

〈
xr+ lnx+

(
x−r−1
− lnx−

)
n,φ

(
x
)〉= Δr

(
ρ
)
φ
(
0
)= Δr

〈
δ
(
x
)
,φ
(
x
)〉

(2.22)

on using (2.15), (2.17), and (2.19). Equation (2.11) follows.
Next, we consider the neutrix product of x−r−1− lnx− and xr+ lnx+. Similarly, it follows

from (2.7) that the neutrix limit of the sequence x−r−1− (xr+ lnx+)n converges to the neutrix
product x−r−1− ◦ xr+ lnx+ as n→∞.As in the proof of (2.11) we evaluate the neutrix product

of [ln 2x−]
(r+1)

and xr+ lnx+.
Now

〈[
ln 2x−

](r+1)(
xr+ lnx+

)
n,xk

〉
= (− 1

)r+1
〈

ln 2x−,
[(
xr+ lnx+

)
nx

k
](r+1)〉

= (−1)r+1
k∑

j=0

(
r + 1
j

)
k!

(k− j)!

〈
ln 2x−,

(
xr+ lnx+

)(r− j+1)
n xk− j

〉

(2.23)

for k = 0,1,2, . . . .
Then we have on the interval [−1/n,0], the intersection of the supports of ln 2x− and

(xr+ lnx+)n, that

〈
ln 2x−,

(
xr+ lnx+

)(r− j+1)
n xk− j

〉

=
∫ 0

−1/n
xk− j ln 2(−x)

∫ x

−1/n
(x− t)r ln(x− t)δ(r− j+1)

n (t)dtdx

= (− 1
)r−k+1

n−k
∫ 1

0
vk− j

[
lnv− lnn

]2
∫ 1

v
(u− v)r

[
ln(u− v)− lnn

]
ρ(r− j+1)(u)dudv

(2.24)

on making the substitutions −nt = u and −nx = v.
Thus

N-lim
n→∞

〈
ln 2x−,

(
xr+ lnx+

)(r− j+1)
n xk− j

〉
= 0 (2.25)

for k > 0.
If k = 0, then

〈[
ln 2x−

](r+1)
,
(
xr+ lnx+

)
n

〉

=
∫ 1

0

[
lnv− lnn

]2
∫ 1

v
(u− v)r

[
ln(u− v)− lnn

]
ρ(r+1)(u)dudv.

(2.26)

It immediately follows that

N-lim
n→∞

〈[
ln 2x−

](r+1)
,
(
xr+ lnx+

)
n

〉
=
∫ 1

0
ln 2v

∫ 1

v
(u− v)r ln(u− v)ρ(r+1)(u)dudv.

(2.27)
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We have, on making the substitution v = uy,

∫ 1

0
ln 2v

∫ 1

v
(u− v)2 ln(u− v)ρ(r+1)(u)dudv

=
∫ 1

0
ρ(r+1)(u)

∫ u

0
(u− v)r ln 2v ln(u− v)dvdu

=
∫ 1

0
ur+1ρ(r+1)(u)

∫ 1

0
(1− y)r[lnu+ ln(1− y)][lnu+ ln y]2dydu,

∫ 1

0
ln 2v

∫ 1

v
(u− v)2 ln(u− v)ρ(r+1)(u)dudv

=
∫ 1

0
ur+1ρ(r+1)(u)

∫ 1

0
(1− y)r[lnu+ ln(1− y)][lnu+ ln y]2dydu

=
∫ 1

0
ur+1ln 3uρ(r+1)(u)

∫ 1

0
wrdwdu

+ 2
∫ 1

0
ur+1ln 2uρ(r+1)(u)

∫ 1

0
wr ln(1−w)dwdu

+
∫ 1

0
ur+1ρ(r+1)(u)

∫ 1

0
wr lnwln 2(1−w)dwdu

+
∫ 1

0
ur+1ln 2uρ(r+1)(u)

∫ 1

0
wr lnwdwdu

+ 2
∫ 1

0
ur+1 lnuρ(r+1)(u)

∫ 1

0
wr lnw ln(1−w)dwdu

+
∫ 1

0
ur+1 lnuρ(r+1)(u)

∫ 1

0
wr ln 2(1−w)dwdu,

(2.28)

on making another substitution w = 1− y.
And so we obtain the same integrals as in Lemma 2.2. Thus

N-lim
n→∞

〈
− 1

2r!

[
ln 2x−

](r+1)
,
(
xr+ lnx+

)
nx

k
�
= Δr(ρ)−Lrψ(r). (2.29)

Further
〈[

ln 2x−
](r+1)

,
(
xr+ lnx+

)
nx
〉
=O(n−1 lnn

)
. (2.30)

Again let φ(x) be arbitrary function in � with φ(x)= φ(0) + xφ′(ξx), then

〈
x−r−1
− lnx−

(
xr+ lnx+

)
n,φ(x)

〉

= ψ(r)〈x−r−1
−

(
xr+ lnx+

)
n,φ

(
x
)〉− 1

2r!

〈[
ln 2x−

](r+1)(
xr+ lnx+

)
n,φ(0)

〉

− 1
2r!

〈[
ln 2x−

](r+1)(
xr+ lnx+

)
n,xφ

(
ξx
)〉

(2.31)

for r = 1,2, . . . , and so

N-lim
n→∞

〈
x−r−1
− lnx−

(
xr+ lnx+

)
n,φ

(
x
)〉= Δr

(
ρ
)
φ
(
0
)= Δr

〈
δ
(
x
)
,φ
(
x
)〉

(2.32)
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on using (2.23), (2.25), (2.27), and (2.29). Equation (2.11) follows and the proof is com-
plete.
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