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As is well known, submerged horizontal cylinders can serve as waveguides for surface
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is only one trapped wave. We construct asymptotics of these trapped modes and their
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1. Introduction

It is well known that submerged horizontal cylinders can serve as waveguides for water
waves. The first result in this direction was obtained by Ursell [1] for a cylinder of circular
cross-section. Later it was discovered that horizontal “bumps” on the bottom (underwa-
ter ridges) can also trap waves (see [2, 3]). In [2], Bonnet-Ben Dhia and Joly proved
that for large values of the wavenumber k in the direction of the ridge, there is only one
trapped mode. Their proof can be straightforwardly carried over to the case of one of sev-
eral parallel submerged cylinders. They also showed that the distance of the frequency of
this mode to the cut-off frequency is exponentially small in k and that the corresponding
eigenfunction decays exponentially slowly in the direction orthogonal to the ridge. In our
recent paper [4] we have constructed explicitly this trapped mode for large values of k in
the case of a ridge and also indicated the formula for the frequency in the case of one sub-
merged cylinder. (We use the opportunity to indicate that the corresponding formulas
for the frequencies in [4] lack the numerical factor 2 due to an arithmetical error.)
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In the present paper, we give a detailed proof of this result for one cylinder and obtain
its generalization to the case of two submerged cylinders. We note that the limit k→∞
is to some extent analogous to the limit of small height of the underwater ridge: sur-
face water waves decay exponentially with depth h as exp(−kh), so the influence of an
object submerged at a finite distance from the surface is small, just as the influence of
a small bump on the bottom. The problem of the ridge of small height was treated in
[5], where a close analogy of the problem of water waves and small perturbations of the
one-dimensional Schrödinger equation is established. The latter problem was studied by
a number of authors (we mention, e.g., [6–8], and, in the context of water waves, [9]).
In our case, a technique similar to that of [5] yields the desired result. We note that in
contrast to [5], the asymptotics turns out to be exponential, that is, the distance of the
trapped wave frequency to the cut-off frequency is exponentially small in k. This fact
seemingly could have rendered the problem quite complicated from the point of view of
asymptotic expansions, but, since in fact we construct an exact convergent expansion, no
additional difficulties arise.

2. Mathematical formulation and main results

We begin with the problem of one submerged cylinder. We assume that the cylinder cross-
section is bounded by the curve ΓC = {x = x(t), y = y(t), t ∈ [−π,π]} with smooth x(t)
and y(t),

x′2 + y′2 �= 0, (2.1)

and that max y(t) = y(0) < 0, y′′(0) < 0, x′(0) > 0, where y is the vertical coordinate, x
is the horizontal coordinate orthogonal to the direction of the cylinder. The line ΓF =
{(x,0) : x ∈ R} is the free surface. The water layer Ω is the domain exterior to ΓC and
lying below ΓF (see Figure 2.1 for the geometry of the problem).

Looking for the velocity potential in the form exp{i(ωt− kz)}Φ(x, y), where z is the
horizontal coordinate along the cylinder, ω is the frequency, we come to the problem

Φy = λΦ, y = 0,

Φxx +Φyy − k2Φ= 0 in Ω,

∂Φ

∂�n
= 0 on ΓC,

(2.2)
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for the function Φ; here λ = ω2/g. Solutions of this problem from the Sobolev space
H1(Ω) are called trapped waves and exist only for certain values of λ (the eigenparam-
eter) for k fixed.

It is known that the essential spectrum of (2.2) coincides with the interval [k,∞). There
exists only one eigenvalue λ below the essential spectrum for large values of k (we do
not introduce dimensionless variables for brevity assuming that 1/k is small in compar-
ison with some characteristic length, e.g., the diameter of the cylinder). Our goal is to
construct an asymptotics of this frequency. The main result in the case of one cylinder
consists in the following statement.

Theorem 2.1. The unique eigenvalue λ(k) of (2.2) has the form

λ(k)= k−β2, (2.3)

where

β = k
√

2π∣∣y′′(0)
∣∣e−2k|y(0)|x′(0)

(
1 +O

(
k−1)). (2.4)

Sections 3 and 4 are devoted to the proof of this statement and the construction of the
corresponding eigenfunction.

3. Reduction to a pair of integral equations

As a first step, we reduce (2.2) to a pair of integral equations on ΓF and ΓC for the func-
tions ϕ = Φ|y=0 and θ = Φ|ΓC . To this end, we apply the Green formula to Φ(ξ,η) and

((−1/2π)K0(kr)), where r =
√

(x− ξ)2 + (y−η)2 and K0 is the Macdonald function (so

that (−1/2π)K0(kr) is the fundamental solution of the operator Δ− k2).
We have by the Green formula

Φ(ξ,η)= λ

2π

∫∞
−∞

K0

(
k
√

(x− ξ)2 +η2
)
ϕ(x)dx

+
kη

2π

∫∞
−∞

K ′0
(
k
√

(x− ξ)2 +η2
)

√
(x− ξ)2 +η2

ϕ(x)dx

− k

2π

∫ π
−π

K ′0
(
k
√(
x(t)− ξ)2

+
(
y(t)−η)2

)
√(
x(t)− ξ)2

+
(
y(t)−η)2

× [y′(t)(x(t)− ξ)− x′(t)(y(t)−η)]θ(t)dt, (ξ,η)∈Ω.

(3.1)
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Passing in (3.1) to the limits when η→ 0−, and ξ → x(t), η→ y(t), we obtain the fol-
lowing integral equations, using the jump formulas for the potentials (see, e.g., [3])

πϕ(ξ)= λ
∫∞
−∞

K0
(
k|x− ξ|)ϕ(x)dx

− k
∫ π
−π

K ′0
(
k
√(
x(t)− ξ)2

+ y(t)2
)

√(
x(t)− ξ)2

+ y(t)2

× [y′(t)(x(t)− ξ)− x′(t)y(t)
]
θ(t)dt,

πθ(t)= λ
∫∞
−∞

K0

(
k
√(
x− x(t)

)2
+ y(t)2

)
ϕ(x)dx

+ ky(t)
∫∞
−∞

K ′0
(
k
√(
x− x(t)

)2
+ y(t)2

)
√(
x− x(t)

)2
+ y(t)2

ϕ(x)dx

− k
∫ π
−π

K ′0
(
k
√(
x
(
t1
)− x(t)

)2
+
(
y
(
t1
)− y(t)

)2
)

√(
x
(
t1
)− x(t)

)2
+
(
y
(
t1
)− y(t)

)2

× [y′(t1)(x(t1)− x(t)
)− x′(t1)(y(t1)− y(t)

)]
θ
(
t1
)
dt1.

(3.2)

In order to apply the technique of [5] to (3.2), it is necessary to pass to the Fourier
transform ϕ̃ of the function ϕ,

�ξ→p
[
ϕ(ξ)

]
(p)≡ ϕ̃(p)= 1√

2π

∫∞
−∞

e−ipξϕ(ξ)dξ. (3.3)

Using the formulas (see [10])

K ′0(z)=−K1(z), �ξ→p
[
K0
(
k|ξ|)](p)=

√
π/2√

k2 + p2
,

�ξ→p

[
K1

(
k
√
ξ2 +h2

0

)
√
ξ2 +h2

0

]
(p)=

√
π/2
kh0

e−h0

√
k2+p2

,

�ξ→p
[
K0

(
k
√
ξ2 +h2

0

)]
(p)=

√
π/2√

k2 + p2
e−h0

√
k2+p2

,

(3.4)
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we come to the following system for ϕ̃(p), θ(t):

(
1− λ

τ(p)

)
ϕ̃(p)=

∫ π
−π
eipx(t)+y(t)τ(p)

(
x′(t)− ipy′(t)

τ(p)

)
θ(t)dt,

θ(t)= 1
2π

∫∞
−∞

e−ip
′x(t)+y(t)τ(p′)

(
1 +

λ

τ(p′)

)
ϕ̃(p′)dp′

− k

π

∫ π
−π

K ′0
(
k
√

ρ
(
t1, t
))

√
ρ
(
t1, t
) σ

(
t1, t
)
θ
(
t1
)
dt1,

(3.5)

where

τ(p) :=
√
k2 + p2,

ρ
(
t1, t
)

:=(x(t1)− x(t)
)2

+
(
y
(
t1
)− y(t)

)2
,

σ
(
t1, t
)

:=y′(t1)(x(t1)− x(t)
)− x′(t1)(y(t1)− y(t)

)
.

(3.6)

Rewrite system (3.5) as

(
1− λ

τ(p)

)
ϕ̃(p)= (M̂1θ

)
(p), (3.7)

[(
1− M̂3

)
θ
]
(x)= (M̂2ϕ̃

)
(x), (3.8)

where

(
M̂1θ

)
(p)=

∫ π
−π
M1(p, t)θ(t)dt,

(
M̂2ϕ̃

)
(t)=

∫∞
−∞

M2(p′, t)ϕ̃(p′)dp′,

(
M̂3θ

)
(t)=

∫ π
−π
M3
(
t1, t
)
θ
(
t1
)
dt1,

(3.9)

with

M1(p, t)=eipx(t)+y(t)τ(p)
(
x′(t)− ipy′(t)

τ(p)

)
,

M2(p′, t)= 1
2π

e−ip
′x(t)+y(t)τ(p′)

(
1 +

λ

τ(p′)

)
,

M3
(
t1, t
)=− k

π

K ′0
(
k
√

ρ
(
t1, t
))

√
ρ
(
t1, t
) σ

(
t1, t
)
.

(3.10)

Obviously, a solution of (3.7), (3.8) gives via (3.1) a solution of (2.2).
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4. Solution of the system of integral equations

Consider (3.8). It is not hard to see, using the asymptotics of K1(z) for small and large
z, that the operator M̂3 in (3.8) is bounded by constk−1/2. In fact, the following lemma
holds.

Lemma 4.1. One has

∣∣∣∣
∫ π
−π
M3
(
t1, t
)
θ
(
t1
)
dt1

∣∣∣∣≤ Ck−1/2‖θ‖, (4.1)

where C is a constant and ‖θ‖ = supt∈[−π,π] |θ(t)|.

Proof. For a given δ > 0, we divide the interval of integration in two domains, k|t1− t| < δ
and k|t1 − t| > δ. In the first domain, we use the asymptotics K ′0(z) ∼ 1/z, and in the
second, the asymptotics K ′0(z) ∼

√
π/2z e−z. For k|t− t1| < δ, we have by (3.10)

∣∣M3
(
t1, t
)∣∣≤ C1

∣∣σ(t1, t
)∣∣

ρ
(
t1, t
) . (4.2)

The numerator here is O((t1− t)2) and

√
ρ
(
t1, t
)≥ c∣∣t1− t∣∣, c > 0, (4.3)

by (2.1). Hence M3(t1, t) is bounded in this domain. For k|t1 − t| > δ we have, again by
(3.10),

∣∣M3
(
t1, t
)∣∣≤ C2k

1/2e−k
√

ρ
(
t1,t
) ∣∣σ(t1, t

)∣∣(
ρ
(
t1, t
))3/4 . (4.4)

The last factor is bounded by virtue of (4.3) and by the same inequality we obtain

∣∣M3
(
t1, t
)∣∣≤ C3k

1/2e−ck|t1−t|. (4.5)
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Since e−k|t1−t| ≥ e−δ = const for |t1− t| < δ/k, we see that (4.5) holds for all t1, t. Now

∣∣∣∣
∫ π
−π
M3
(
t1, t
)
θ
(
t1
)
dt1

∣∣∣∣≤ const
∫ π
−π
k1/2e−ck|t1−t|dt1‖θ‖ ≤ Ck−1/2‖θ‖ (4.6)

as claimed. �

Hence, we can invert the operator (1− M̂3) in (3.8) using the Neumann series and
obtain

θ(t)=
[(

1− M̂3
)−1

M̂2ϕ̃
]

(t), (4.7)

where (1− M̂3)−1 =∑∞
n=0 M̂

n
3 . Substituting (4.7) in (3.7), we finally come to

(
1− λ

τ(p)

)
ϕ̃(p)=

[
M̂1
(
1− M̂3

)−1
M̂2ϕ̃

]
(p). (4.8)

We apply the reasoning of [5] to (4.8). Indeed, we know that λ is given by (2.3), where
β is exponentially small in k [2]. Hence the first factor in the left-hand side of (4.8),

L(p) := 1− λ

τ(p)
= 1− k−β2√

k2 + p2
, (4.9)

is exponentially small in k for p = 0. In fact, the roots of L(p)= 0 which tend to zero as
k→∞, as it is not hard to see, are simple and given by

p = p± = ± i
√

2β√
ε

+O
(
ε1/2β3), ε = 1

k
. (4.10)

For this reason, the heuristic considerations of [5, Section 2] are applicable to (4.8). Fol-
lowing these arguments, we look for ϕ̃ in the form ϕ̃(p)= A(p)/L(p). As we will see (see
formula (4.17) below), A(p) and M2(p, t) are analytic in a strip containing the real axis,
and we can change the contour of integration in the integral

∫∞
−∞

M2(p, t)
A(p)
L(p)

dp (4.11)

to the one shown in Figure 4.1 (with a suitable a > 0 such that in the disc |p| < a there are
no zeros of L(p) apart from p±).
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We have, by the residue theorem,

∫∞
−∞

M2(p, t)
A(p)
L(p)

dp =
∫
γ
M2(p, t)

A(p)
L(p)

dp+ 2πi
M2
(
p+, t

)
A
(
p+
)

(d/dp)L(p)|p=p+

. (4.12)

Thus (4.8) transforms into

A(p)=
[
M̂1
(
1− M̂3

)−1
M̂4A

]
(p) +

[
M̂1
(
1− M̂3

)−1
f (t)

]
A
(
p+
)
, (4.13)

where

[
M̂4A

]
(t)=

∫
γ
M2(p, t)

A(p)
L(p)

dp, f (t)= 2πi
M2
(
p+, t

)
(d/dp)L(p)|p=p+

. (4.14)

Note that now the operator M̂5 = M̂1(1− M̂3)−1M̂4 is small in ε since |L(p)| ≥ constk−2

along γ and M2(p, t) is exponentially small. Indeed, on the arc we have up to O(k−∞)

∣∣L(p)
∣∣=

∣∣∣∣∣1− 1√
1 + p2/k2

∣∣∣∣∣= a2

2k2
+O

(
k−4), (4.15)

and on the part of the contour which lies on the real axis the minimum of |L(p)| is
attained at the points p =±a, hence, the above estimate still holds. Rewriting (4.13) as

(
1− M̂5

)
A(p)= g(p)A

(
p+
)
, (4.16)

where g(p)= M̂1(1− M̂3)−1 f (t), we see that (1− M̂5) is invertible and

A(p)= (1− M̂5
)−1

g(p)A
(
p+
)
. (4.17)

Let us show that A(p) is indeed analytic in a strip containing the real axis.

Lemma 4.2. Let f (t) be continuous in t ∈ [−π,π]. Then, g(p)= M̂1(1− M̂3)−1 f (t) is an-
alytic in a strip containing γ, and |g(p)| ≤ Ce−h0�τ/2‖ f ‖, p ∈ γ, h0 = |y(0)|.
Remark 4.3. Note that�τ = k+O(k−1) for finite p and�τ = τ for p real.
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Proof. By Lemma 4.1, (1− M̂3)−1 is bounded on C[−π,π]. The assertion now follows di-
rectly from the explicit formula for M1(p, t) since M1(p, t) is analytic in p for
|
p| < k. �

Lemma 4.4. Let g(p) be analytic in a strip containing γ and ‖g‖ = supp∈γ |g(p)| <∞.

Then, A(p)= (1− M̂5)−1g(p) is analytic in p in a strip containing γ and ‖A‖ ≤ C‖g‖.

Proof. We have (1− M̂5)−1 =∑∞
n=0 M̂

n
5 and

∣∣M̂5g
∣∣= ∣∣∣M̂1

(
1− M̂3

)−1
M̂4g

∣∣∣≤ Ce−h0�τ−h0k/2‖g‖ (4.18)

by Lemma 4.1, (4.15), and the explicit form of M1,2. M̂5g is analytic in the strip since
M1(p, t) is. Iterating (4.18), we see that

∣∣M̂n
5 g
∣∣≤ Cne−nh0k/2−h0�τ‖g‖, (4.19)

hence, the series
∑∞

n=0 M̂
n
5 g converges uniformly for sufficiently large k and its sum is

analytic by the Weierstrass theorem. �

Applying now Lemma 4.2 to g(p)= M̂1(1− M̂3)−1 f (t) with f (t) given by (4.14) and
then using Lemma 4.4, we see that A(p) given by (4.17) is indeed analytic.

Putting p = p+ in the equality (4.17) and dividing by A(p+), we obtain an equation
for β:

1= (1− M̂5
)−1

g(p)|p=p+ . (4.20)

A standard application of the Laplace method of asymptotic evaluation of integrals to
the leading term in (4.20) yields formula (2.4). In fact, from the leading term in (4.20) we
have, using (4.10) and multiplying by β

β∼

√
2π
ε3/2

∫ π
−π
M1
(
p+, t1

)
M2
(
p+, t1

)
dt1. (4.21)

We have λ= k−β2 and τ(p+)= k(1 +O(εβ2)), hence 1 + (λ/τ(p+))= 2(1 +O(εβ2)). Thus
in the leading term we have

β∼

√
2

ε3/2

∫ π
−π
e−2k|y(t1)|x′

(
t1
)
dt1. (4.22)

Applying the Laplace method to the last integral, we obtain (2.4).
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5. Generalization to the case of two cylinders

The geometry of the problem is as follows: we assume that ΓC = {x = x(t), y = y(t), t ∈
[−π,π]} with smooth x(t) and y(t), x′2 + y′2 �= 0, and max y(t) = y(0) < 0, y′′(0) < 0,
x′(0) > 0; similarly, ΓD = {x = u(t), y = v(t), t ∈ [−π,π]} with smooth u(t) and v(t),
x′2 + y′2 �= 0, and maxv(t)= v(0) < 0, v′′(0) < 0, u′(0) > 0, where y is the vertical coordi-
nate, x is the horizontal coordinate orthogonal to the direction of the cylinders, ΓC and
ΓD describe curves bounding their cross-sections. We assume that ΓC and ΓD do not in-

tersect,
√

(x(t)−u(t1))2 + (y(t)− v(t1))2 ≥ d > 0. ΓF = {(x,0) : x ∈ R} is the free surface.
The water layer Ω is the domain exterior to ΓC and ΓD and lying below ΓF (see Figure 5.1).

Looking for the velocity potential in the form exp{i(ωt− kz)}Φ(x, y), where z is the
horizontal coordinate along the cylinders, ω is the frequency, we come to the problem

Φy = λΦ, y = 0,

Φxx +Φyy − k2Φ= 0 in Ω,

∂Φ/∂�nC = 0 on ΓC,

∂Φ/∂�nD = 0 on ΓD,

(5.1)

for the function Φ; here λ= ω2/g. Just as in Section 2, solutions of this problem from the
Sobolev space H1(Ω) are called trapped waves and exist only for certain values of λ (the
eigenparameter) for k fixed. As in the case of one cylinder, the essential spectrum of (5.1)
coincides with the interval [k,∞). There exists only one eigenvalue λ below the essential
spectrum for large values of k. Our goal is to construct an asymptotics of this frequency.
Our main result in this case is as follows.

Theorem 5.1. The unique eigenvalue λ(k) of (5.1) has the form

λ= k−β2, (5.2)

where

β = k
(√

2π∣∣y′′(0)
∣∣e−2k|y(0)|x′(0)

(
1 +O

(
k−1))+

√
2π∣∣v′′(0)

∣∣e−2k|v(0)|u′(0)
(
1 +O

(
k−1))).

(5.3)
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Remark 5.2. Of course, if |y(0)| < |v(0)|, then the second summand in (5.3) is negligible,
and the result in fact is the same as in the case of one cylinder.

In the next section, we perform the steps analogous to Sections 3 and 4 and construct
the corresponding eigenfunction.

6. Reduction to integral equations and their solution

As in Section 3, we reduce (5.1) to three integral equations on ΓF , ΓC, and ΓD for the
functions ϕ=Φ|y=0, θ =Φ|ΓC , and α=Φ|ΓD . We have by the Green formula

Φ(ξ,η)= λ

2π

∫∞
−∞

K0

(
k
√

(x− ξ)2 +η2
)
ϕ(x)dx

+
kη

2π

∫∞
−∞

K ′0
(
k
√

(x− ξ)2 +η2
)

√
(x− ξ)2 +η2

ϕ(x)dx

− k

2π

∫ π
−π

K ′0(k
√(
x(t)− ξ)2

+
(
y(t)−η)2

)
√(
x(t)− ξ)2

+
(
y(t)−η)2

× [y′(t)(x(t)− ξ)− x′(t)(y(t)−η)]θ(t)dt

− k

2π

∫ π
−π

K ′0
(
k
√(
u(t)− ξ)2

+
(
v(t)−η)2

)
√(
u(t)− ξ)2

+
(
v(t)−η)2

× [v′(t)(u(t)− ξ)−u′(t)(v(t)−η)]α(t)dt, (ξ,η)∈Ω.

(6.1)

Passing in (6.1) to the limits when η→ 0−, ξ → x(t), η→ y(t), and ξ → u(t), η→ v(t), we
obtain the following integral equations:

πϕ(ξ)= λ
∫∞
−∞

K0
(
k|x− ξ|)ϕ(x)dx

− k
∫ π
−π

K ′0
(
k
√(
x(t)− ξ)2

+ y(t)2
)

√(
x(t)− ξ)2

+ y(t)2

× [y′(t)(x(t)− ξ)− x′(t)y(t)
]
θ(t)dt

− k
∫ π
−π

K ′0
(
k
√(
u(t)− ξ)2

+ v(t)2
)

√(
u(t)− ξ)2

+ v(t)2

× [v′(t)(u(t)− ξ)−u′(t)v(t)
]
α(t)dt,
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πθ(t)= λ
∫∞
−∞

K0

(
k
√(
x− x(t)

)2
+ y(t)2

)
ϕ(x)dx

+ ky(t)
∫∞
−∞

K ′0
(
k
√(
x− x(t)

)2
+ y(t)2

)
√(
x− x(t)

)2
+ y(t)2

ϕ(x)dx

− k
∫ π
−π

K ′0
(
k
√(
x
(
t1
)− x(t)

)2
+
(
y
(
t1
)− y(t)

)2
)

√(
x
(
t1
)− x(t)

)2
+
(
y
(
t1
)− y(t)

)2

× [y′(t1)(x(t1)− x(t)
)− x′(t1)(y(t1)− y(t)

)]
θ
(
t1
)
dt1

− k
∫ π
−π

K ′0
(
k
√(
u
(
t1
)− x(t)

)2
+
(
v
(
t1
)− y(t)

)2
)

√(
u
(
t1
)− x(t)

)2
+
(
v
(
t1
)− y(t)

)2

× [v′(t1)(u(t1)− x(t)
)−u′(t1)(v(t1)− y(t)

)]
α
(
t1
)
dt1,

πα(t)= λ
∫∞
−∞

K0

(
k
√(
x−u(t)

)2
+ v(t)2

)
ϕ(x)dx

+ kv(t)
∫∞
−∞

K ′0
(
k
√(
x−u(t)

)2
+ v(t)2

)
√(
x−u(t)

)2
+ v(t)2

ϕ(x)dx

− k
∫ π
−π

K ′0
(
k
√(
x
(
t1
)−u(t)

)2
+
(
y
(
t1
)− v(t)

)2
)

√(
x
(
t1
)−u(t)

)2
+
(
y
(
t1
)− v(t)

)2

× [y′(t1)(x(t1)−u(t)
)− x′(t1)(y(t1)− v(t)

)]
θ
(
t1
)
dt1

− k
∫ π
−π

K ′0
(
k
√(
u
(
t1
)−u(t)

)2
+
(
v
(
t1
)− v(t)

)2
)

√(
u
(
t1
)−u(t)

)2
+
(
v
(
t1
)− v(t)

)2

× [v′(t1)(u(t1)−u(t)
)−u′(t1)(v(t1)− v(t)

)]
α
(
t1
)
dt1.

(6.2)

As in Section 3, passing to the Fourier transform ϕ̃ of the function ϕ and using (3.4),
we come to the following system for ϕ̃(p), θ(t), and α(t):

(
1− λ

τ(p)

)
ϕ̃(p)=

∫ π
−π
eipx(t)+y(t)τ(p)

(
x′(t)− ipy′(t)

τ(p)

)
θ(t)dt

+
∫ π
−π
eipu(t)+v(t)τ(p)

(
u′(t)− ipv′(t)

τ(p)

)
α(t)dt,

(6.3)
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θ(t)= 1
2π

∫∞
−∞

e−ip
′x(t)+y(t)τ(p′)

(
1 +

λ

τ(p′)

)
ϕ̃(p′)dp′

− k

π

∫ π
−π

K ′0
(
k
√

ρ
(
t1, t
))

√
ρ
(
t1, t
) σ1

(
t1, t
)
θ
(
t1
)
dt1

− k

π

∫ π
−π

K ′0
(
k
√
ϑ
(
t, t1
))

√
ϑ
(
t, t1
) σ3

(
t1, t
)
α
(
t1
)
dt1,

(6.4)

α(t)= 1
2π

∫∞
−∞

e−ip
′u(t)+v(t)τ(p′)

(
1 +

λ

τ(p′)

)
ϕ̃(p′)dp′

− k

π

∫ π
−π

K ′0
(
k
√
ϑ
(
t1, t
))

√
ϑ
(
t1, t
) σ4

(
t1, t
)
θ
(
t1
)
dt1

− k

π

∫ π
−π

K ′0
(
k
√
�
(
t1, t
))

√
�
(
t1, t
) σ2

(
t1, t
)
α
(
t1
)
dt1,

(6.5)

where

τ(p) :=
√
k2 + p2,

ρ
(
t1, t
)

:=(x(t1)− x(t)
)2

+
(
y
(
t1
)− y(t)

)2
,

�
(
t1, t
)

:=(u(t1)−u(t)
)2

+
(
v
(
t1
)− v(t)

)2
,

ϑ
(
t1, t
)

:=(x(t1)−u(t)
)2

+
(
y
(
t1
)− v(t)

)2
,

σ1
(
t1, t
)

:=y′(t1)(x(t1)− x(t)
)− x′(t1)(y(t1)− y(t)

)
,

σ2
(
t1, t
)

:=v′(t1)(u(t1)−u(t)
)−u′(t1)(v(t1)− v(t)

)
,

σ3
(
t1, t
)

:=v′(t1)(u(t1)− x(t)
)−u′(t1)(v(t1)− y(t)

)
,

σ4
(
t1, t
)

:=y′(t1)(x(t1)−u(t)
)− x′(t1)(y(t1)− v(t)

)
.

(6.6)

Rewrite system (6.3)–(6.5) as

(
1− λ

τ(p)

)
ϕ̃(p)= (M̂1θ

)
(p) +

(
M̂2α

)
(p), (6.7)

[(
1− M̂5

)
θ
]
(t)= (M̂3ϕ̃

)
(t) +

(
M̂4α

)
(t), (6.8)

[(
1− M̂8

)
α
]
(t)= (M̂6ϕ̃

)
(t) +

(
M̂7θ

)
(t), (6.9)
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where

(
M̂1θ

)
(p)=

∫ π
−π
M1(p, t)θ(t)dt,

(
M̂2α

)
(p)=

∫ π
−π
M2(p, t)α(t)dt,

(
M̂j ϕ̃

)
(t)=

∫∞
−∞

Mj(p′, t)ϕ̃(p′)dp′, j = 3,6,

(
M̂jα

)
(t)=

∫ π
−π
Mj
(
t1, t
)
α
(
t1
)
dt1, j = 4,8,

(
M̂jθ

)
(t)=

∫ π
−π
Mj
(
t1, t
)
θ
(
t1
)
dt1, j = 5,7,

(6.10)

with

M1(p, t)= eipx(t)+y(t)τ(p)
(
x′(t)− ipy′(t)

τ(p)

)
,

M2(p, t)= eipu(t)+v(t)τ(p)
(
u′(t)− ipv′(t)

τ(p)

)
,

M3(p′, t)= 1
2π

e−ip
′x(t)+y(t)τ(p′)

(
1 +

λ

τ(p′)

)
,

M4
(
t1, t
)=− k

π

K ′0
(
k
√
ϑ
(
t, t1
))

√
ϑ
(
t, t1
) σ3

(
t1, t
)
,

M5
(
t1, t
)=− k

π

K ′0
(
k
√

ρ
(
t1, t
))

√
ρ
(
t1, t
) σ1

(
t1, t
)
,

M6(p′, t)= 1
2π

e−ip
′u(t)+v(t)τ(p′)

(
1 +

λ

τ(p′)

)
,

M7
(
t1, t
)=− k

π

K ′0
(
k
√
ϑ
(
t1, t
))

√
ϑ
(
t1, t
) σ4

(
t1, t
)
,

M8
(
t1, t
)=− k

π

K ′0
(
k
√
�
(
t1, t
))

√
�
(
t1, t
) σ2

(
t1, t
)
.

(6.11)

Consider equations (6.8), (6.9). Repeating the arguments of Lemma 4.1, we obtain
‖M̂5,8‖ ≤ constk−1/2. Hence the operators (1− M̂5), (1− M̂8) are invertible. Moreover,
M̂4,7 are exponentially small since

√
ϑ(t1, t) ≥ d > 0. Solving (6.8), (6.9) for θ and α,
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we obtain

θ(t)=
{[

1− (1− M̂5
)−1

M̂4
(
1− M̂8

)−1
M̂7

]−1

× (1− M̂5
)−1
[
M̂3 + M̂4

(
1− M̂8

)−1
M̂6

]
ϕ̃
}

(t),

α(t)=
{[

1− (1− M̂8
)−1

M̂7
(
1− M̂5

)−1
M̂4

]−1

× (1− M̂8
)−1
[
M̂6 + M̂7

(
1− M̂5

)−1
M̂3

]
ϕ̃
}

(t),

(6.12)

where (1− M̂j)−1 =∑∞
n=0 M̂

n
j . Substituting (6.12) in (6.3), we finally come to

(
1− λ

τ(p)

)
ϕ̃(p)= [M̂11ϕ̃

]
(p), (6.13)

where

M̂11 = M̂9M̂3 + M̂10M̂6,

M̂9 = M̂1

[
1− (1− M̂5

)−1
M̂4
(
1− M̂8

)−1
M̂7

]−1(
1− M̂5

)−1

+ M̂2

[
1− (1− M̂8

)−1
M̂7
(
1− M̂5

)−1
M̂4

]−1(
1− M̂8

)−1
M̂7
(
1− M̂5

)−1
,

M̂10 = M̂1

[
1− (1− M̂5

)−1
M̂4
(
1− M̂8

)−1
M̂7

]−1(
1− M̂5

)−1
M̂4
(
1− M̂8

)−1

+ M̂2

[
1− (1− M̂8

)−1
M̂7
(
1− M̂5

)−1
M̂4

]−1(
1− M̂8

)−1
.

(6.14)

We repeat the procedure of Section 4. We look for ϕ̃ in the form ϕ̃(p) = A(p)/L(p).
Assuming that A(p) is analytic and using the fact that Mj(p, t), j = 3,6, are analytic in a
strip containing the real axis, we can change the contour of integration in the integrals

∫∞
−∞

Mj(p, t)
A(p)
L(p)

dp, j = 3,6, (6.15)

to the one shown in Figure 4.1. We have, by the residue theorem,

∫∞
−∞

Mj(p, t)
A(p)
L(p)

dp =
∫
γ
Mj(p, t)

A(p)
L(p)

dp+ 2πi
Mj
(
p+, t

)
A
(
p+
)

(d/dp)L(p)|p=p+

, j = 3,6. (6.16)

Thus (6.13) transforms into

A(p)= M̂γ
11A(p) + g(p)A

(
p+
)
, (6.17)
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where

M̂
γ
11 = M̂9M̂

γ
3 + M̂10M̂

γ
6 ,

[
M̂

γ
j A
]
(t)=

∫
γ
Mj(p′, t)

A(p′)
L(p′)

dp′, f j(t)= 2πi
Mj
(
p+, t

)
(d/dp)L(p)|p=p+

, j = 3,6,

g(p)= M̂9 f3(t) + M̂10 f6(t).
(6.18)

The operator M̂
γ
11 is small in ε, ε = 1/k, just as operator M̂5 in Section 4.

Rewriting (6.17) as

[(
1− M̂γ

11

)
A
]
(p)= g(p)A

(
p+
)
, (6.19)

we see that (1− M̂γ
11) is invertible and

A(p)= [(1− M̂γ
11

)−1
g
]
(p)A

(
p+
)
. (6.20)

Putting p = p+ in the last equality and dividing by A(p+), we obtain an equation for β:

1= [(1− M̂11
)−1

g
]
(p)|p=p+ . (6.21)

A standard application of the Laplace method of asymptotic evaluation of integrals to
the leading term in (6.21) yields formula (5.3). In fact, from the leading term in (6.21),

β∼

√
2π
ε3/2

∫ π
−π

(
M1
(
p+, t1

)
M3
(
p+, t1

)
+M2

(
p+, t1

)
M6
(
p+, t1

))
dt1, (6.22)

with Mj(p+, t1), j = 1,2,3,6, defined in (6.11). As in Section 4, we have

β∼

√
2

ε3/2

∫ π
−π

(
e−2k|y(t1)|x′

(
t1
)

+ e−2k|v(t1)|u′
(
t1
))
dt1. (6.23)

Applying the Laplace method to the last integral, we obtain (5.3).
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