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The concept of unbounded Fredholm operators on Hilbert C∗-modules over an arbi-
trary C∗-algebra is discussed and the Atkinson theorem is generalized for bounded and
unbounded Feredholm operators on Hilbert C∗-modules over C∗-algebras of compact
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erators, the index of an unbounded Fredholm operator and the index of its bounded
transform are the same.
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1. Introduction

Hilbert C∗-modules are an often used tool in operator theory and in operator algebras.
The theory of Hilbert C∗-modules is very interesting on its own. Interacting with the
theory of operator algebras and including ideas from noncommutative geometry, it pro-
gresses and produces results and new problems attracting attentions (see [1]).

A bounded operator T on a Hilbert space � is called Fredholm if there is a bounded
operator S on � such that 1− ST and 1−TS are compact operators on �. Atkinson the-
orem declares that a bounded operator is Fredholm if and only if its kernel and cokernel
are finite dimensional and its range is closed (see [2, Theorem 14.1.1]). The Atkinson
theorem has been extended to bounded operators on standard Hilbert module �2(�)
in [2, Section 17.1]. In the present note, we give another generalization of the Atkinson
theorem to Hilbert C∗-modules over C∗-algebras of compact operators.

A (left) pre-HilbertC∗-module over aC∗-algebra � (not necessarily unital) is a left �-
module E equipped with an �-valued inner product 〈·,·〉 : E×E→�, which is �-linear
in the first variable and has the properties
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〈x, y〉 = 〈y,x〉∗, 〈x,x〉 ≥ 0 with equality if and only if x = 0. (1.1)

A pre-Hilbert �-module E is called a Hilbert �-module if it is complete with respect
to the norm ‖x‖ = ‖〈x,x〉‖1/2. The basic theory of Hilbert C∗-modules can be found in
[3, 2].

We denote, by B(E), the C∗-algebra of all adjointable operators on E (i.e., of all maps
T : E→E such that there exists T∗ : E→E with the property 〈Tx, y〉 = 〈x,T∗y〉, for all
x, y ∈ E). It is well known that each adjointable operator is necessarily bounded �-
linear in the sense that T(ax) = aT(x), for all a ∈ �, x ∈ E. In general, bounded �-
linear operator may fail to possess an adjoint (cf., [3]). However, if E is a Hilbert C∗-
module over the C∗-algebra � of all compact operators on a Hilbert space, then it is
known that each bounded �-linear operator on E is necessarily adjointable (see, e.g.,
[4, Remark 5]).

Given elements x, y ∈ E, we define Θx,y : E→E by Θx,y(z)= 〈z,x〉y for each z ∈ E, then
Θx,y ∈ B(E), with (Θx,y)∗ =Θy,x. The closure of the span of {Θx,y : x, y ∈ E} in B(E) is
denoted by K(E), and elements from this set will be called �-compact operators.

In various contexts where the Hilbert C∗-modules arise, one also needs to study “un-
bounded adjointable operators” or what are now known as regular operators. These were
first introduced by Baaj and Julg in [5], where they gave a nice construction of Kasparov
bimodules in KK theory using regular operators, Lance gave a brief indication in his book
[3] about Hilbert modules and regular operators on them. Let us quickly recall the defi-
nition of a regular operator. An operator T from a Hilbert �-module E to E is said to be
regular if

(i) T is closed and densely defined,
(ii) its adjoint T∗ is also densely defined, and

(iii) range of 1 +T∗T is dense in E.

Note that as we set �= C, that is, if we take E to be a Hilbert space, then this is exactly
the definition of a closed operator, except that in that case, both the second and third
conditions follow from the first one. Before starting the other parts, let us fix the rest of
our notation.

Throughout the paper, � = �(�) will be the C∗-algebra of all compact operators
on a Hilbert space �, and � will be an arbitrary C∗-algebra (not necessarily unital).
In this paper, we will deal with bounded and unbounded operators at the same time.
To simplify the notation, we will, as a general rule, denote bounded operators by capital
letters and unbounded operators by small letters, also we will use Dom(·) for the domain
of unbounded operators. We use Ker and Ran for the kernel and the range of operators,
respectively.

2. Preliminaries

In this section, we would like to recall some definitions and present a few simple facts
about unbounded regular operators and their bounded transforms. We give a definition
of regular Fredholm operators on Hilbert C∗-modules and then state that a regular op-
erator is Fredholm if and only if its bounded transform is a Fredholm operator.
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Let E be a Hilbert �-module, consider a closed �-linear operator t : Dom(t)⊆ E→E,
where Dom(t) is a dense submodule of E. We define

Dom
(
t∗
)= {y ∈ E : ∃ y′ ∈ E s.t. 〈tx, y〉 = 〈x, y′〉 ∀x ∈Dom(t)

}
. (2.1)

This is the domain of a closed �-linear operator t∗ : Dom(t∗) ⊆ E→E uniquely deter-
mined by 〈tx, y〉 = 〈x, t∗y〉 for all x ∈Dom(t), y ∈Dom(t∗).

Definition 2.1. An operator t as above is called regular if t∗ is densely defined and 1 + t∗t
has dense range. The set of all regular operators on E is denoted by R(E).

If t is a regular operator, so are t∗ and t∗t, moreover, t∗∗ = t, and t∗t is self adjoint
(cf., [3, Corollaries 9.4, 9.6, and Proposition 9.9]), and also we can define

Ft = t
(
1 + t∗t

)−1/2
,

Qt =
(
1 + t∗t

)−1/2
,

(2.2)

then Ft, Qt, and tQ2
t are in B(E) and RanQt =Dom(t) (cf., [3, Chapter 9]).

The map t→Ft defines a bijection (cf., [3, Theorem 10.4])

R(E)−→ {F ∈ B(E) : ‖F‖ ≤ 1 and Ran
(
1−F∗F

)
is dense in E

}
. (2.3)

This map is adjoint preserving, that is, F∗t = Ft∗ and Ft = tQt = t(1 + t∗t)−1/2 is called the
bounded transform of a regular operator t. Moreover, we have Qt = (1− F∗t Ft)

1/2 and
t = Ft(1−F∗t Ft)

−1/2, ‖Ft‖ ≤ 1 .

Recall that the composition of two regular operators t,s ∈ R(E) is the unbounded
operator ts with Dom(ts) = {x ∈ Dom(s) : sx ∈ Dom(t)} given by (ts)x = t(sx) for all
x ∈ Dom(ts). Note that, in general, the composition of regular operators will not be a
regular operator.

Recall that a bounded operator T ∈ B(E) is said to be Fredholm (or �-Fredholm)
if it has a pseudoleft as well as pseudoright inverse, that is, there are S1,S2 ∈ B(E) such
that S1T = 1 mod K(E) and TS2 = 1 mod K(E). This is equivalent to say that there exist
S ∈ B(E) such that ST = TS = 1 mod K(E). For more details about bounded Fredholm
operators on Hilbert C∗-modules and their applications, one can see [1, 2]. The theory
of unbounded Fredholm operators on Hilbert spaces and on standard Hilbert �-module
�2(�) are discussed in [6, 7], respectively. These motivate us to study such operators on
general Hilbert C∗-modules as follow.

Definition 2.2. Let t be a regular operator on a Hilbert �-module E. An adjointable
bounded operator G∈ B(E) is called a pseudoleft inverse of t if Gt is closable and its clo-
sure Gt satisfies Gt ∈ B(E) and Gt = 1 mod K(E). Analogously, G is called a pseudoright
inverse if tG is closable and its closure tG satisfies tG∈ B(E) and tG= 1 mod K(E). The
regular operator t is called Fredholm (or �-Fredholm) if it has a pseudoleft as well as a
pseudoright inverse.
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When we are dealing with Fredholm operators, a useful connection between
unbounded operators and their bounded transforms (on �2(�)) has been given in [7,
Lemma 2.2]. Fortunately its proof can be repeated word by word to get the following
result.

Theorem 2.3. Let E be a Hilbert �-module and t a regular operator on E. Then t is Fred-
holm if and only if Ft is.

Proof. Refer to [7, Lemma 2.2]. �

3. Bounded Fredholm operators

In this section, we introduce a concept of an orthonormal basis for Hilbert C∗-modules
and then we briefly discuss bounded Fredholm operators in Hilbert �-modules. For this
aim, we borrow some definitions from [4].

Let E be a Hilbert �-module, a system (xλ), λ ∈ Λ in E is orthonormal if each xλ is
a basic vector (i.e., e = 〈xλ,xλ〉 is minimal projection in �) and 〈xλ,xμ〉 = 0 for all λ �=μ.
An orthonormal system (xλ) in E is said to be an orthonormal basis for E if it generates
a dense submodule of E. Immediately, a previous definition implies that if x ∈ E satisfies
〈x,x〉 = e for some projection (not necessarily minimal) e ∈�, then 〈ex− x,ex− x〉 = 0,
so ex = x. In particular, the same is true for all basic vectors in E.

Theorem 3.1. Let E be a Hilbert �-module, then there exists an orthonormal basis for E.

Proof. Refer to [4, Theorem 4]. �

Definition 3.2. Let E be a Hilbert �-module. The orthonormal dimension of E (denoted
by dim�E) is defined as the cardinal number of any of its orthonormal bases.

Note that every two orthonormal bases of E have the same cardinal number (see [4]).
Now, let us fix a minimal projection e0 ∈� and denote by Ee0 = e0E = {e0x : x ∈ E}

then Ee0 is a Hilbert space with respect to the inner product (·,·) = tr(〈·,·〉), which is
introduced in [4, Remark 4], moreover, dim�E = dimEe0 .

Suppose B(Ee0 ) and K(Ee0 ) are the C∗-algebras of all bounded linear operators and
compact operators on Hilbert space Ee0 , respectively, then B(E) and K(E) can be de-
scribed by the following theorem.

Theorem 3.3. Let E be a Hilbert �-module and let e0 be an arbitrary minimal projection
in �. Then the map Ψ : B(E)→B(Ee0 ), Ψ(T) = T|Ee0 is a ∗-isomorphism of C∗-algebras.
Moreover, T is a compact operator on E if and only if Ψ(T) = T|Ee0 is a compact operator
on the Hilbert space Ee0 .

Proof. Refer to [4, Theorems 5, 6]. �

Remark 3.4. Let E be a Hilbert �-module and X a closed submodule in E. It is well known
that X is orthogonally complemented in E, that is, E = X ⊕X⊥ (cf., [8]).
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Remark 3.5. Let e be an arbitrary minimal projection in � and suppose Ψ has the same
meaning as in Theorem 3.3, then RanΨ(T)= eRanT and KerΨ(T)= eKerT .

Remark 3.6. Let E be a Hilbert �-module and T ∈ B(E), like in the general theory of
Banach spaces, one can easily see that every bounded below operator T on (KerT)⊥ has
a closed range (cf., [9, page 21]). It is easily checked that T : E→E is not bounded below
on (KerT)⊥ if and only if there is a sequence of unit elements xn in (KerT)⊥ such that
limn→∞Txn = 0. This fact will be used in the following theorem.

Theorem 3.7. Let E be a Hilbert �-module and T ∈ B(E). Then T is Fredholm if and only
if the range of T is a closed submodule and both dim�KerT and dim�KerT∗ are finite.

Proof. Let e be a minimal projection in � and let Ψ : B(E)→B(Ee) be the isomorphism
from Theorem 3.3. Suppose T is a Fredholm operator on E, then there exist an operator
S∈ B(E) and two compact operators K1,K2 ∈ K(E) such that TS− 1= K1 and ST − 1=
K2. Since Ψ(K(E)) = K(Ee), the operator Ψ(T) is Fredholm on the Hilbert space Ee. In
particular, Ψ(T) has a closed range and KerΨ(T) and KerΨ(T∗) are finite dimensional,
so by applying Remark 3.5 to the Hilbert modules KerT and KerT∗, respectively, we get
dim�KerT , dim�KerT∗ <∞.

To prove that the range of T is closed, it is enough to show that T|(KerT)⊥ is bounded
from below.

Suppose, on the contrary, T|(KerT)⊥ is not bounded below. Then there exists a sequence
of unit elements (xn)∈ (KerT)⊥ such that limn→∞Txn = 0. This implies limn→∞T(exn)=
elimn→∞Txn = 0, and since (exn)∈ (KerΨ(T))⊥ and the range of Ψ(T) is closed, we ob-
tain a contradiction.

Conversely, supposeT ∈ B(E) has a closed range and both dim�KerT and dim�KerT∗

are finite, then Remark 3.5 implies that the range of Ψ(T) is closed and both KerΨ(T) and
KerΨ(T∗) are finite dimensional. Therefore, Ψ(T) is a Fredholm operator on the Hilbert
space Ee, that is, there exists an operator S ∈ B(Ee) such that Ψ(T)S− 1, SΨ(T)− 1 ∈
K(Ee). Utilizing the mapping Ψ−1, we have TΨ−1(S)− 1, Ψ−1(S)T − 1 ∈ K(E), and T is
therefore a Fredholm operator on E. �

Definition 3.8. Let E be a Hilbert �-module and T ∈ B(E) a Fredholm operator. The
Fredholm index of T is an integer defined by

indT = dim�KerT −dim�KerT∗. (3.1)

The preceding discussion shows how the theory of Fredholm operators on Hilbert �-
modules is reduced to the classical theory of Fredholm operators on Hilbert spaces. In
fact, if E is a Hilbert �-module, all properties of an operator T ∈ B(E) can be deduced by
a simple procedure: first, consider a Hilbert space operator Ψ(T) (by using Theorem 3.3)
and then lift the relevant information back to B(E). This enables us to conclude some
results, for example, if T ∈ B(E), then T is Fredholm operator with indT = 0 if and only
if T is a compact perturbation of an invertible operator.
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4. Unbounded Fredholm operators

Let E be a Hilbert �-module. We recall that a densely defined closed operator t : Dom(t)
⊆ E→E is said to be regular if t∗ is densely defined and 1 + t∗t has dense range, moreover,

Ft = tQt = t
(
1 + t∗t

)−1/2 ∈ B(E), F∗t = Ft∗ ,

Qt =
(
1 + t∗t

)−1/2 ∈ B(E), RanQt =Dom(t).
(4.1)

In this section, we are going to prove the Atkinson theorem for unbounded regular
Fredholm operators.

Lemma 4.1. Let E be a Hilbert �-module and t : Dom(t)⊆ E→E a regular operator, then
Ker t = {x ∈Dom (t) : tx = 0} and Ker t∗ = {x ∈Dom(t∗) : t∗x = 0} are closed submod-
ules of E.

Proof. Let (xn) be a sequence in Ker t and xn→x, then t(xn)= 0, for all n∈N. Therefore,
xn→x and t(xn)→0. It follows, by the closedness of t, that x ∈Dom(t) and tx = 0, that is,
x ∈ Ker t, and so Ker t is closed. Since t is regular, so is t∗ and similarly Ker t∗ is a closed
submodule of E. �

Lemma 4.2. Let t be a regular operator on a Hilbert �-module E, then
(i) Ran t = RanFt and Ran t∗ = RanFt∗ ;

(ii) Ker t∗ = (Ran t)⊥ and Ker t = (Ran t∗)⊥;
(iii) Ker t = KerFt and Ker t∗ = KerFt∗ .

Proof. (i) Recall that Ft = tQt and RanQt =Dom(t), then Ran t = RanFt. Since t is regu-
lar and so is t∗, thus Ran t∗ = RanFt∗ .

(ii) We notice that y ∈ Ker t∗ if and only if 〈tx, y〉 = 〈x,0〉 = 0 for all x ∈Dom(t), or
if and only if y ∈ (Ran t)⊥. Thus we have Ker t∗ = (Ran t)⊥. The second equality follows
from the first equality and [3, Corollary 9.4].

(iii) By [2, Theorem 15.3.5], we have KerFt∗ = (RanFt)
⊥, and therefore,

KerFt∗ =
(
RanFt

)⊥ = (Ran t)⊥ = Ker t∗. (4.2)

Similarly, we have KerFt = Ker t. �

Now, we are ready to prove the main theorem of this paper.

Theorem 4.3. Let E be a Hilbert �-module and t a regular operator on E. Then t is Fred-
holm if and only if the range of t is a closed submodule of E, and both dim�Ker t and
dim�Ker t∗ are finite.

Proof. By Lemma 4.2, we have dim�Ker t = dim�KerFt, dim�Ker t∗ = dim�KerFt∗ , and
since Ran t = RanFt, the statement is deduced from Theorems 2.3 and 3.7. �

Let t be a regular Fredholm operator on Hilbert �-module E, then we can define an
index of t formally, that is, we can define

ind t = dim�Ker t−dim�Ker t∗, (4.3)

and since dim�Ker t = dim�KerFt, dim�Ker t∗ = dim�KerFt∗ , we have ind t = indFt.
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Birkhäuser, Boston, Mass, USA, 2000.

[2] N. E. Wegge-Olsen, k-Theory and C∗-Algebras: A Friendly Approach, The Clarendon Press, Ox-
ford University Press, New York, NY, USA, 1993.

[3] E. C. Lance, Hilbert C∗-Modules, vol. 210 of London Mathematical Society Lecture Note Series,
Cambridge University Press, Cambridge, UK, 1995.
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