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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Given a group G, a metric group
(Gy,d), and ¢ > 0, does there exist a § > 0 such that if 1 : G; — G, satisfies

d(h(xy),h(x)h(y)) <6 (1.1)
for all x, y € Gy, then a homomorphism H : G, — G, exists with
d(h(x),H(x)) <¢ (1.2)

for all x € G? If the answer is affirmative, we would say that the equation of homomor-
phism H(xy) = H(x)H(y) is stable.

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach
spaces. In 1951, Bourgin [3] was the second author to treat the Ulam stability problem.
In 1978, Gruber [4] remarked that Ulam’s problem is of particular interest in probability
theory, and in the case of functional equations of different types, and Rassias [5] and then
Gavruta [6] obtained the generalized results of Hyer’s theorem which allow the Cauchy
difference to be unbounded. The stability problems of several functional equations have
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been extensively investigated by a number of authors [7-16]. Rassias [17] and Jun et al.
[18] established the Hyers-Ulam stability of a Cauchy-Jensen functional equation which
has a different type from the one mentioned in this paper.

Throughout this paper, let X and Y be vector spaces. A mapping g : X—Y is called
a Cauchy mapping (resp., a Jensen mapping) if g satisfies the functional equation g(x +

y) =g(x) +g(y) (resp., 2g((x + y)/2) = g(x) +g(y)).
A mapping f: X X X—Y is called a Cauchy-Jensen mapping [19] if f satisfies the
system of equations

flx+y,2) = f(x,2) + f(y,2),

1.3
2f(x,yT+Z> = f(x,y)+ f(x,2). (1.3)

It is easy to see that a mapping f : X X X—Y is a Cauchy-Jensen mapping if and only if
the mapping f satisfies the functional equation

z+
2f<x+y,Tw) = f(x,2)+ f(x,w)+ f(y,2) + f(y,w) (1.4)
for all x, y,z,w € X. For a mapping g : XY, consider the functional equation

gxty+z)+gx)+g(y)+g(z) =glx+y)+g(y+z)+g(z+x). (1.5)

In 2002, Rassias via his paper entitled “On the Ulam stability of mixed type mappings
on restricted domains” investigated the relation (1.5) and established Ulam stability of
mixed type mappings: additive and quadratic. In 2006, Park and Bae [19] investigated
the relation between (1.4) and (1.5) and obtained the stability of (1.3) and (1.4). In this
paper, we improve their results for the relation between (1.4) and (1.5) and obtain better
results by adopting the different method of proof. Also we establish new theorems for the
generalized Hyers-Ulam stability of a Cauchy-Jensen mapping.

2. The relation of (1.4) and (1.5)

In this section, we improve the Park and Bae results [19] for the relation of (1.4) and
(1.5).

TaEOREM 2.1. Let g: X—Y be a mapping satisfying (1.5) and let f: X X X—Y be the
mapping given by

f3) = 5 (gl )~ g(=x) ~g(7) @)
forall x,y € X. Then f satisfies (1.4) for all x, y € X and

g(x) = f(x,x) (2.2)

forallx € X.
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Proof. Lettingx = y = z=01n (1.5), g(0) = 0. Replacing z by —x — y in (1.5),
gx+y) —g(=x—y) = gx) +g(y) —g(—x) —g(=y) (2.3)
for all x, y € X. From (2.1) and the above equality, we have

2f(x+y,2) =glx+y+z)—g(—x—y)—g(2)
=—g(x)—g(y)—2g(2)+g(y+2)+g(z+x) +g(x+y) —g(-x—y)

2.4
=g(y+z)+g(z+x) —g(—x) —g(—y) —2¢(z) 24)
=2f(x,2)+2f(y,2)
for all x, y,z € X. Setting z = y in (1.5) and letting y = z in (1.5), one can obtain
2g(x+y) =g(x) +2¢(y) +g(x+2y) —g(2y), 25
2g(x+z) = g(x) +2g(z) +g(x +2z) — g(22), 2.5)
respectively, for all x, y,z € X. By (1.5) and the above equalities,
4f(x,y+2z)=2g(x+y+2z)—2g¢(—x) —2¢(y+2)
= —2g(x) —2g(y) —2g(z) — 2g(—x) +2g(x+ y) +2g(x + z) 26)
=g(x+22) —g(—x) —g(2z) +g(x+2y) —g(—x) —g(2y) '
=2f(x,2y)+2f(x,22)
forall x, y,z € X. By (2.4) and (2.6), f satisfies (1.4).
Replacing y and z by x and —x, respectively, we get
8(2x) = 3g(x) + g(—x). (2.7)
Setting y = x in (2.1) and using (2.7), we see that the equality (2.2) holds. O

THEOREM 2.2. Let f : X X X—=Y be a mapping satisfying (1.4), and let g : X—Y be the
mapping given by (2.2) for all x € X. Then g satisfies (1.5) and

fay)+f(y,x) =glx+y) - %(g(—x) +8(=y) +g(x) +g(y)) (2.8)
forall x,y € X. In particular, if f(x,y) = f(y,x) forall x,y € X, then (2.1) holds.
Proof. In (1.4), we easily get
f0,x)=0,  2f(xy)=f2xy),  2f(xy) = f(x2y)+ f(x,0) (2.9)

forallx,y € X. Let fi: X xX—-Y and f, : X —Y be the mappings defined by

S y) = flxy) - f(x,0),

flx) == f(x,0) (2.10)
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for all x, y € X. By the definition of f;, we have

fi(x,0) =0, f1(0,x) =0,
2fi(x,y) = fi(x,2y), 2fi(x,y) = (2x,y)

for all x, y € X. By (2.9) and the above equalities, we get
filoy+z) = fx,y+2) - f(x,0)
1 1
= Ef(x,Zy)wL Ef(x,ZZ) - f(x,0)

= f(53) = 3 F 500+ f(52) = 3 f(0) = f(x,0)

= fl(-x’y) +f1(x,z),
filx+y,2) = filx,2) + fi(y,2)

for all x, y,z € X. Also we have

filx+y,z+w) = filx,2) + fi(y,2) + filx, w) + fi(y, W),

filk+y+z,x+y+2)+ filx,x)+ Ay, 9) + filz,2)
= filx+tyx+ )+ fily+z,y+2)+ filz+x,2+x)

for all x, y,z,w € X. By the definition of f;,
fLlx+y) = flx+y,0) = f(x,0)+ f(5,0) = £(x)+ f2(y)
for all x,y € X, and so
Hlx+y+2)+ LX)+ L)+ f(2) = ilx+y)+ HL(y+2)+ Lz +x)
for all x, y,z € X. Since
g(x) = f(x,x) = filx,x) + fo(x),
the equality (1.5) holds by (2.14) and (2.16). By (2.13),

fi(xx) = fi(2x,2x) + f1(2x, —x) + fi(—=x,2x) + fi(—x,—x)
=4£f06x)+2fi(x,—x)+2fi(—x,x) + fi(—x,—x),
fil=x,—x) =4 fi(—x,—x) + 2 fi(x,—x) + 2 fi(—x,%) + f1(x,x)

for all x € X. Hence

filex) = fi(—x,—x)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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forall x € X, and
1 1 1 1 1
28t y) = g(=x) = 1g(=y) = Lg(x) — 2g(y)
= Ayt y) = (%0 + im0+ fi(5))+ A=)
2 Hlcty) = (B0 + 0+ S0+ ()
= SR+ filsy)+ A0+ fi(7:7) (2.20)
RGO fi(y )43 flx+y)
= L(hlo )+ i) + 3 0+ 3 ()
= S+ ()

for all x, y € X. This completes the proof. O

3. Stability of (1.3) and (1.4)

In this section, let Y be a Banach space. For the given mapping f : X X X—Y, we define

Df(x,y,z,w) —2f<x+y, ) fx,2) = fx,w) = f(y,2) — f(y,w)
Dif(x,y,2) = f(x+y,2) = f(x,2) = f(y,2), (3.1)
y+
Dy f(x,3,2) i= Zf(x,T> ~floy) - f(x,2)

forall x,y,z,w € X.

THEOREM 3.1. Let @ : X X X X X—[0,00) and y : X X X X X—[0, o) be two functions sat-
isfying

zzi (2/x,2y,2) < o0, > %w(zjx,y,z) < o, (3.2)
j=0 j=0
0 1 3 1 ) )
> RS $,2/z) < o0, z 2— v (x,27y,2/2) < oo, (3.3)
j=0 j=0

Hlez -0(27x,279,2'z) =0 (3.4)

forallx,y,z € X. Let f : X X X—Y be a mapping such that

D1 f (x,3,2)[] < 9(x,y,2), (3.5)
D2 f (x,3,2)[| < w(x,y,2) (3.6)
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forall x,y,z € X. Then there exist a unique Cauchy-Jensen mapping Fy : X x X—=Y and a
unique biadditive mapping F, : X X X =Y such that

Y]

f e y) =Pz )l < 2 2,-1+1 9(2/x,2/x,), (3.7)
j=0
1f(6.p) = f(x,0) = Fa(x, )l < 2}+1 v(x,21*1,0), (3.8)
j=0
Fi(x,y) — Fi1(x,0) = F2(x, ) (3.9)

forall x,y € X. The mappings Fi,F, : X X X—Y are given by
Fi(x,y):= }{Il;%f(ﬂx,y), Fy(x,y):= Jl{rlgoéf(x,ij) (3.10)

forallx,y € X.
Proof. Letting y = x and replacing z by y in (3.5), we get

1f(2x,9) = 2f (6, p)l| < p(x,x, ) (3.11)
for all x, y € X. Thus
! L ripin L (2ix.2
2]f(2 xy) — 2J.Hf(z )| < 2j+1(p(2 x%,2/x,y) (3.12)

for all x, y € X. For given integers I,m (0 < [ < m),

m—1

1 1 o
H?f(zlx,y)—ﬁ (me,y)H 22]+1<p(21x,21x,y) (3.13)

for all x,y € X. By (3.2), the sequence {(1/21')f(2jx,){)} is a Cauchy sequence for all
x,y € X. Since Y is complete, the sequence {(1/2%) f (2’x, y)} converges for all x,y € X.
Define F; : X X X—Y by
Fi(x,y) :=lim %f(ﬂx,y) (3.14)
j—o

for all x,y € X. Putting [ = 0 and taking m—co in (3.13), one can obtain the inequality
(3.7). By (3.5) and (3.6),

Hi.le(fo,ﬂy,z)

< %q)(zjx,ﬂy,z),
(3.15)

1 ,
D2f (@xiy.2) | = 3592 02)

5

forall x, y,z € X and all j. Letting j— co in the above two inequalities and using (3.2), F;
is a Cauchy-Jensen mapping. Now let F] : X X X—Y be another Cauchy-Jensen mapping
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satisfying (3.7). Then we have

1B (o)~ Fi o)l = e l1F (2%3) — B (2, 3) |+ o511 F (2%9) — i (275, 9) |

° 1 . © 1 L
< 2.5 e@x 2% y) + 3 S e(2x 2%, y)
Jj=n j=n
(3.16)

for all n € N and x,y € X. As n—o0, we may conclude that F;(x,y) = F;(x,y) for all
x,y € X. Thus such a Cauchy-Jensen mapping F; : X X X—Y is unique.
Next, replacing y by 2y and z by 0 in (3.6), one can obtain

|(Fn = f0) =3 (F29) - f@0)|| = Jym2n0)  Ga7)

for all x,y € X. By the same method as above, F; is a unique biadditive mapping which
satisfies (3.8), where F>(x, y) := lim j_«(1/2/) f (x,2/ y) for all x, y € X. From (3.17) and
the definitions of F; and F,, the equalities

Fi(x,y) — Fi1(x,0) = (Fl(x,Zy) Fi(x,0)),
Fi(y) = Fi(60) = 3.F1 (2'y) ~ 2. F1(50), (3.18)
Fy(x,y) = Zflan (x,2"y)
hold for all # € N and for all x, y € X. Hence the inequality

||F1(x, ) = Fi(x,0) = F>(x, y)||
_‘L
-5

= L1lF 2y - B2+ Ll1£ 060~ B0

1
Fi(x,2"y) — *F1(X)0) -

%Fz (x,2"y) H

(3.19)
+%vaﬁw—fmrm—amﬂnu

1S ) o S | )
?Z 1 (9(2/%,27%,2"y) + 9(2/x,27x,0)) + JZ S ¥ (62717,0)

holds for all n € N and for all x, y € X. Taking n— oo and using (3.3) and (3.4), we have
(3.9). O
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THEOREM 3.2. Let ¢,y : X X X X X—[0, c0) be two functions satisfying
i X )y > X
> 2=, = > 2y =
.:2¢(2]»,2j,z)<oo, ,_ozw(zf’y’z><°°
2/ (x 5) <00 g 2y ) <00
(P ,)’, 2] > 2] 2] >

)/ z
hmzzzj (2/ 20 21)20

1— 00

~
Me T

0

-
Il

(3.20)

(3.21)

(3.22)

forallx,y,z € X. Let f : X X X—Y be amapping satisfying (3.5) and (3.6) forallx, y,z € X.
Then there exist a unique Cauchy-Jensen mapping Fy : X X X—=Y and a unique biadditive

mapping F> : X X X—Y such that

1 Goy) B xy>||<221 (5 577):

15~ 50 - sl = 3 2w (x 2,0),
=0

Fi(x,y) = Fi1(x,0) = F5(x, )

forall x,y € X. The mappings Fi,F, : X X X—Y are given by

Fi(x,y) = }ig;ﬂf(%,y), Fa(x,y)i= lim2) (f(xzy—]> —f(x,O))

forallx,y € X.
Proof. Replacing x, y, z by x/2, x/2, y in (3.5), respectively, we have

e -21(3) =o(3:5)

for all x, y € X. Thus
X

. X . X . X
H”f (57) -2 (2J+1’y)H =20 ( 555

for all x, y € X. For given integers [, m (0 < [ < m),

m—1
Y mef X ; X X
2r(5r) 213l ]Z_f"/’(zww’y

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

for all x, y € X. By (3.20), the sequence {2{f(x/2f,y)} is a Cauchy sequence for all x, y €
X. Since Y is complete, the sequence {2/ f(x/2/,y)} converges for all x,y € X. Define
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F: X xX-Y by
Fi(x,y):= l'im2jf<f2xj ,y) (3.30)
jmoo

for all x,y € X. Putting [ = 0 and taking m— oo in (3.29), one can obtain the inequality
(3.23). By (3.5) and (3.6),

. x y
<29(55372)

=2v(57)

p X
s (3535

s (35:2)

(3.31)

forall x,y,z € X and all j. Letting j— co in the above two inequalities and using (3.20), F,
is a Cauchy-Jensen mapping. Now let F : X X X—Y be another Cauchy-Jensen mapping
satistying (3.23). Then we have

|[Fy(x, y) = Fi(x,p)|| < 2"

1) -5

X X "
f(w) ‘Fl(zﬂ)H”

o [ x  x
2.2 (P<zf+1’zi+1’y)
j=n

(3.32)

for all n € N and x,y € X. As n—oo, we may conclude that F;(x,y) = F{(x, y) for all
x,y € X. Thus such a Cauchy-Jensen mapping F; : X X X—Y is unique.
Next, replacing z by 0 in (3.6), one can obtain

H(f(x,y) - f(x,0)) —2<f(x,%> —f(x,o))H < y(x,,0) (3.33)

for all x, y € X. By the same method as above, F, is a unique biadditive mapping which
satisfies (3.24), where F(x,y) := limjamzf(f(x,y/Zj) — f(x,0)) for all x,y € X. From
(3.33) and the definitions of F; and F,, the equalities

Fi(x,y) - Fi(x,0) = 2 <F1 <x, ) _F (x,O)),

SIS

[

n

)2

Fi(x,y) - Fi(%,0) = 2"F, (x, ) 2", (x,0), (3.34)

e %

Fy(x,y) =2"F, (x,

[\
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hold for all n € N and for all x, y € X. Hence, by (3.23), (3.24), and (3.34), the inequality

||F1(X,)/) — Fi(x,0) —Fz(x,)/)H

- 2"F1(x,2y—n>—2"F1(x,0) Z"Fz(x’zj;)H
< on f(x)zln)_Fl(x,%)HJrZ”Hf(x,O)—Fl(x>0)|| (3.35)
+2n f(x,zln)_f(x,o) F2<x’2")H

noo x
=2 Z(,z]< (2J+1’2J+1’2n)+‘P<2J+1’2J+1’ )) zzl ( )
p

holds for all n € N and for all x, y € X. Taking n— o0 and using (3.21) and (3.22), we have
(3.25). O

THEOREM 3.3. Let ¢,y : X X X X X—[0,00) be two functions satisfying (3.2), (3.21), and
im2'S" L o(27x,27, 2
}£11(>102 ZE)E(P 27x,2 y5i) = 0 (3.36)
i=

forallx,y,z € X. Let f : X X X—Y be a mapping satisfying (3.5) and (3.6) forallx, y,z € X.
Then there exist a unique Cauchy-Jensen mapping Fy : X X X—Y and a unique biadditive
mapping F, : X X X=Y satisfying (3.7), (3.9), and (3.24) for all x,y € X. The mappings
Fi,F, : X X X—Y are given by

Rey) =l f@xy), By =lim2(f(x ) - rx0)  637)

forallx,y € X.

Proof. By the proofs of Theorems 3.1 and 3.2, there exist a unique Cauchy-Jensen map-
ping F; : X X X—Y and a unique biadditive mapping F, : X X X—Y satisfying (3.7) and
(3.24) for all x, y € X. The mappings F;,F, : X X X—Y are given by (3.37). From (3.33)
and the definitions of F; and F, the equalities in (3.34) hold for all » € N and for all
X,y € X. Hence the inequality

||F1(x,y) = F1(x,0) = F2(x, )|

et s ()
o f<x,2yn> P <le) ‘+2”||f(x,0)—F1(x’0)|| (3.38)
+2n f<x,2}}7>—f(x’) F2<x’2">H

| S o =
< 2";2].H ((p(zfx,zfx,zy—n) +g0(21x,21x,0)) +;n21w(x,2yj,o>
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holds for all n € N and for all x, y € X. Taking n— o0 and using (3.21) and (3.36), we have
(3.9). a

THEOREM 3.4. Let ¢,y : X X X X X —[0,00) be two functions satisfying (3.3), (3.20), and

lim— zzf ( 2Jz> 0 (3.39)

oo 21

forallx,y,z € X. Let f : X X X—Y be amapping satisfying (3.5) and (3.6) forallx, y,z € X.
Then there exist a unique Cauchy-Jensen mapping Fy : X X X—Y and a unique biadditive
mapping F, : X x XY satisfying (3.8), (3.9), and (3.23) for all x,y € X. The mappings
F1,F,: X X X—Y are given by

Fi(x,y) = lim2/ f(i, y>, Fa(x,y) = lim > f(x,21y) (3.40)
j—oo 27 ]—'002]

forallx,y € X.

Proof. By the proofs of Theorems 3.1 and 3.2, there exist a unique Cauchy-Jensen map-
ping F; : X X X—Y and a unique biadditive mapping F, : X X X—Y satisfying (3.8) and
(3.23) for all x, y € X. The mappings F;,F, : X X X—Y are given by (3.40). From (3.17)
and the definitions of F; and F, the equalities in (3.18) hold for all » € N and for all
x,y € X. Hence we have the inequality

|[F1(x, y) = F1(x,0) — Fa(x, y)||

nFl (x,2"y) — —Fl(x 0) — ! —F (x,Z”y)H

2 2n 2n

1 1
—f(x,2"y) - 27F1 (x,Z”y)H + ?||F1(x,0)||

1 (3.41)
+—ﬂﬂ%?w—fmﬂm—5wi”H+—ﬂﬂ%mH

.. [ x d -
= 21(P<2]+1’2]+1’ ) Z 2J+1‘// x,2/"y,0)

|ﬁuon+ﬂvumn

Taking n— oo and using (3.3) and (3.39), we have (3.9).
From Theorems 3.1 and 3.3, we obtain the stability of the functional equation (1.4) in
the following corollary. U
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CoROLLARY 3.5. Let ¢,9, : X X X—[0, ) be two functions satisfying

Zzi (27x,27y) < o0, Z%‘P (27x,27y) < oo, (3.42)
=0 =0
or
ii (2/x,27y) < o0, szgo ( )/) < 00 (3.43)
prt 02 par) 2\ 2i’2i

forallx,y € X. Let f : X x X—Y be a mapping such that
IDf (x, 2wl < 9, (x, y)p, (2, w) (3.44)

for all x, y,z,w € X. Then there exists a unique Cauchy-Jensen mapping F : X X X =Y such
that

[

If (e, p) = Fx,p)|| <> ZTIH% (27x,27x) 9, (3, y) (3.45)
=0

forall x,y € X. The mapping F : X X X =Y is given by

F(x,y) = lim 2= f (2/x,) (3.46)
j—oo
forallx,y € X.
Proof. From (3.44), we have
D1 f(x,y,2)|| = H Df(x,y,z,z) ¢,(%,¥)9,(2,2),
1 X x
D2 f (x, y,2) ||—HDf<2 SO ) f<2 50y ,y) Df<5,§,z,z) (3.47)
<o, (53) (02 + 30000+ 30,(22)
_¢l 2’2 gDZ y’ Z(PZ y’y 24)2 4
forall x,y,z € X. Let ¢, : X X X X X—[0, ) be the maps defined by
1
P(x,y,2) := Egol(x,y)(pz(z,Z),
(3.48)

1 1
v2)i=0,(5:5) (00094 3000+ 30,22)

for all x, y,z € X. Then we can apply Theorem 3.1 for the case ¢, and ¢, satisfying (3.42),
and Theorem 3.3 for the case ¢, and ¢, satisfying (3.43); we get the desired results.
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From Theorems 3.2 and 3.4, we obtain another stability of the functional equation
(1.4) in the following corollary. O

COROLLARY 3.6. Let ¢, 9, : X X X—[0,00) be two functions satisfying
Xy i (XY
j jp 2. £
Zz (p1<ZJ 2]) ®, jgoz ¢2(2j,2j><oo (3.49)
forall x,y € X, or satisfying

Zzupl(; zyj) < o, Zzi (2x,27y) < (3.50)

j=0
forallx,y € X. Let f : X x X—Y be a mapping such that
IDf(x, y,2:w)l| < @, (x, ), (2,w) (3.51)

forall x, y,z,w € X. Then there exists a unique Cauchy-Jensen mapping F : X X X—Y such
that

156 - Fell = 327, (550525 ) gatny) (3:52)

j=0

forall x,y € X. The mapping F : X X X =Y is given by
. i X

F(x,y):= 1,1m2’f<*»,y) (3.53)
j—oo 27

forallx,y € X.

Now we obtain the stability of the Cauchy-Jensen functional equation (1.4) on a
normed space in the following corollary.

CoROLLARY 3.7. Let p,q# 1, 0 be nonnegative real numbers and X a normed space. Let
f: X xX—=Y be amapping such that

IIDf(x, y,z,w)[| < O(lxlI? + 1ylIP) (17 + [[wllT) (3.54)

forall x, y,z,w € X. Then there exists a unique Cauchy-Jensen mapping F : X x X =Y such
that

If(x.y) - F(e )| < ﬁnxnpn S, (3.55)
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Proof. Let ¢,,¢, : X x X—[0, ) be the maps defined by

¢, (xp) = 0(lxNP + 1 y1IP), @, (%, ) = llxllT+ [yl (3.56)
for all x,y € X. For the cases 0 < p < 1 and 1 < p, we can apply Corollaries 3.5 and 3.6,
respectively. O
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