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Abstract. In this paper, the bilinear regression model based on normally distributed ran-
dom matrix is studied. For these models, the dispersion matrix has the so called Kronecker
product structure and they can be used for example to model data with spatio-temporal
relationships. The aim is to estimate the parameters of the model when, in addition, one
covariance matrix is assumed to be linearly structured. On the basis of n independent ob-
servations from a matrix normal distribution, estimating equations in a flip-flop relation are
established and the consistency of estimators is studied.

Résumé. Nous abordons dans ce papier du model de regession bilinéaire basé sur une ma-
trice aléatoire gaussienne. Dans les modeles que nous étudions, les matrices de dispersion ont
la structure du produit de Kronecker si bien qu’elles sont capables de modéliser les données
présentant des relations spatio-temporelles. Le but de cette étude est d’estimer les parametres
du modele, lorsqu’en plus une matrice de covariance est supposée étre linéairement struc-
turée. Etant données n observations normalement distribuées, les équations d’estimation
sont établies travers une relation flip-flop. La consistence des estimateurs est étudiée.
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1. Introduction

Multivariate repeated measures data sets, which correspond to multiple measurements that
are taken over time on more than one response variable on each subject or unit, are common
in various research fields such as medicine, pharmacy, environment, engineering, business,
etc. This kind of data is known to have a covariance matrix with the so called Kronecker
product structure ¥ ® X, where ® stands for the matrix Kronecker product. The positive
definite matrices ¥ and 3 are often referred to as the temporal and spatial covariance matrix,
respectively. The Kronecker product structure may also occur in any spatio-temporal process
like multivariate time series or stochastic processes. It comes naturally to base statistical
analyses for this kind of data on the matrix normal model. Apart from the Kronecker product
covariance structure, one or both of the matrices ¥ and ¥ may be structured. In this paper
we are interested in the case where X is linearly structured.

In this paper we consider n independent and identically distributed observation matrices
X; ~ Npo(M, 2, W), ¢ = 1,2,...,n. It follows that the dispersion matrix of X; has a
Kronecker product structure, i.e, D[X;] = ¥ ® X, where D[X;] = D[vecX;] and vec is
the usual vec-operator. For the interpretation we note that ¥ describes the covariances
between the columns of X. These covariances will be the same for each row of X. The
other covariance matrix ¥ describes the covariances between the rows of X which will be
the same for each column of X. The product ¥ ® 3 takes into account the covariances
between columns as well as the covariances between rows. Therefore, ¥ ® X indicates that
the overall covariance consists of the products of the covariances in ¥ and in X, respectively,
ie., Covizij, xp) = oiji, where X = (x;5), X = (04,) and ¥ = (¢v;;). In Dutilleul (1999)
the matrix normal distribution is reviewed and a two-stage algorithm to find maximum
likelihood estimators is proposed.

In addition we suppose that the mean M of X; has a bilinear structure, i.e., E[X;] = ABC,
where A : p x r and C : s x ¢ are known design matrices of regressors. Throughout this
paper, without loss of generality, it is assumed that matrices A and C are of full rank, i.e.,
rank(A) = r and rank(C') = s. Also we assume that the covariance matrices ¥ and ¥ are
positive definite.

When ¥ = I, the identity matrix, we get the well known growth curve model as introduced
in Pothoff and Roy (1964). The growth curve model has been extensively studied and useful
references are Khatri (1966); Kollo and von Rosen (2005); Srivastava and Khatri (1979).
When ¥ is known, the situation is almost similar to the classical growth curve model. In
this case, explicit maximum likelihood estimators (MLEs) were derived by Srivastava et al.
(2009) and their uniqueness were proved under full rank condition of design matrices.

2. Explicit estimators of linearly structured ¥ with unknown parameters and
known ¥

We observe that for matrices X; ~ N, ,(ABC,X,¥), i = 1,2,...,n, we may form a new
matrix X = (X1 : X9 :---: X,), such that

X ~ Np,qn(AB(]';’L ® C)7 EaIn ® ‘I’)7

where 1,, is the n—dimensional vector of ones, and I,, is the n x n identity matrix.
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When W is known and positive definite, we transform the data by letting Y; = XZ-\II_I/2,

where @12 ig a symmetric positive definite square root of ¥. This yields Y = (Y; : Y3 :
:Y,) : p X gn, and the model becomes

Y ~ N, g(AB(1, @ C®~/?) 2. 1),

which is similar to the classical growth curve model.

Now we assume that the matrix 3 is linearly structured (see Kollo and von Rosen (2005),
Definition 1.3.7). The commonly encountered linear structures for the covariance matrix
are the uniform structure, the compound symmetry structure, the banded structure, the
Toeplitz structure, etc. The linearly structured covariance matrix will be denoted =), For
convenience we define and denote by vecX(K) the column-wise vectorization of 2 where
all 0’s and repeated elements (by modulus) have been disregarded. Then there exists, see
Kollo and von Rosen (2005), a transformation matrix T such that

veeS(K) = TveeE®) or vecD® = T vecn(K), (1)

where T denotes the Moore-Penrose generalized inverse of T.

Put G =1, ® CU 1?2 5 x gn. Then the problem boils down to find estimators in the
model
Y ~ N, n(ABG, =) I). (2)

This problem has been studied by Ohlson and von Rosen (2010). From results in Ohlson
and von Rosen (2010), simple manipulations give explicit estimators of parameters in the
model (2). The explicit estimator of the mean structure is

ABG = A <A'(§§S))1A) A3 'vaea)a, (3)

where igs) is a consistent estimator of () obtained from

~ (s 1 —
Vecﬁi - . sT+ (THYTH) (T") vecS,

in which s = rank(G) = rank(C) and S =Y (I - G'(GG')"GQ)Y".

Again, following Ohlson and von Rosen (2010), another consistent estimator of () is ob-
tained from

(s)

vecS =T ((T+)’?/?T+)7 (T+)’?/vec(5 + ﬁlﬁ;),

where

H, = (I— A (A’(iis’rlA) A'(ii”rl) YG'(GG) G,

Y= (gn—s)I+s (I _A (A’(i?)*A) A'(bozazs/y%olzf))*) ®
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(I —A (A'(i:f))lA) ) A’(if))1> .

From (3) we obtain an unbiased estimator of the parameter matrix B,

B- (A’(flgs))‘lA> A 'yaca) .

3. Estimators of linearly structured ¥ with unknown parameters and unknown
v

In this section we consider the model
X ~N,n(AB(1, @ C), 2,1, ®¥), (4)
in which we assume that ¥ has a linear structure and is unknown, and ¥ is unknown.

In the unstructured case with the only additional estimability condition 14, = 1, the maxi-
mum likelihood estimation equations were derived in Srivastava et al. (2009). Those are

nABC = A(A'S ' A)"A'8 'X(1,0¥% 'C'(C¥ 'C)0C), (5)
ngS = (X - AB(1, © C))Io ¥ (X — AB(1, ® C)), (6)
and
~ 1 & e _—
- S (X, - ABC)S (X, - ABC), (7)
i=1

where S and B are given by

nB=(A'S A)"AS X(1,0% C(CT C)), 8)

1

S=XIo¥  -—n'1,1,e® CCE C)C¥ X 9)

and S is assumed to be positive definite.

Moreover, it has been shown in Srivastava et al. (2009) that solving these equations, using
the flip-flop algorithm, the estimates in the algorithm converge to the unique maximum
likelihood estimators of the parameters. However, when X is linearly structured this approach
will hardly produce an estimator with the desired structure. In fact, we would achieve the
original structure if n is large enough which is not the case for real data sets. The aim of
this paper is to build up a flip-flop relation that will handle the linear structure of X.

To find the estimating equation for the linearly structured 3, hereafter denoted X := E(S),
let ¥ in (4) be fixed. Then, we know that

S=XITeo®'-n'1,1,00'C’'(CP'C)"CT HX' ~ W, (2@, ng — s),
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and hence E[S] = (ng — s)X(). Here Wy(,-) denotes the Wishart distribution. So it is

natural to use S when finding an estimator of > We apply a least squares approach, i.e.,
we minimize

tr{(S (nq—s)E(S))l (Sf (nqs)E(S))} (10)

with respect to =), Here, tr stands for the trace of a matrix.

To find the minimizer of (10), we use techniques based on differentiations. For more details
on matrix differentiation one can consult Kollo and von Rosen (2005). The expression (10)
can be rewritten as

tr {(S — (ng — s)2®)( )} = (vecS — (ng — s)vec®)'(), (11)

where the notation (Q)’() stands for (Q)'(Q). We differentiate (11) with respect to vecX(K)
and equalize to O to get

ax®
—2(ng — —(ng—s)2®)) = 12
(1= 9) 3577 vec(S — (ng = ) 5¢) =0, (12)
in which %((SK)) is given (see Kollo and von Rosen, 2005) by
dxne)
—— = (T"Y. 1
S - T (13)

Combining equations in (1), (12) and (13) we get the linear equation
(T)'vecS = (ng — s) (TT) T vecE(K),
which is consistent. Its general solution is given by

1
ng—s

vecXE(K) = (TTYTH) " (TT)'vecS + (TT)T")’ ,

where z is an arbitrary vector and the notation Q° stands for any matrix of full rank
spanning the orthogonal complement of the column space of Q. Hence, using (1) we obtain
the unique minimizer of (10) given by

1 _
veeS®) = THvecS(K) = T (TT)Th)” (T) vecS.
ng — s
Thus, a first estimator for £ is given by
~(s 1 _ ~
veeS — S T (YT () e, (14)

where W in S has been replaced with its estimator T to get S as in 9).

Now we suppose that f]is) is positive definite (which always holds for large n) and use it in
(8) instead of S to find an estimator of B, given by

nB=AE) 1) A x1, 0% Ccd ). (15)
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To derive the final estimator of (), we follow similar ideas as in Nzabanita et al. (2012) or
Ohlson and von Rosen (2010). Let

Q,=I-A(AS'A) A'S!

and
S =n"1Q,X(1,1, ¥ 'C'(Cc®~'C) Cc¥ HX'Q),.

We want to use the sum of S and S; to find the final estimator of »(). We first observe
that X(1,1/, @ ¥~ 'C'(C®'C’)~C¥ ') X' is independent of S and thus

5118~ W,(Q=VQ), 5).
Again we apply a least squares approach and minimize
tr{(S+ 81~ [(ng - )5 + 5@, =Q1) ()}
with respect to =) This is equivalent to the minimization with respect to =) of
(Vec(S +57) - TVQCE(S))/ (Vec(S +57) - TvecE(s)) ,

where
Y = (ng - s)I +5Q, ® Q.

Using differentiation techniques, as above, a unique minimizer is obtained
vecE®) = T (TT)YY'YTT) ™ (T7) Y vec(S + S1).

Hence, replacing ¥ with its estimator we get an estimating equation for =) given by

veeS” = 1 (YT ) (1) T vee(S + B0), (16)
where ) ) 1
o ~ o~ — ~— ~— ~/
S =n"'QX(1,1,@¥ C'(C¥ C)C¥ )X'Q, (17)
. N O T NP N O N
Q1:I_A A(E1) A A(E1) ) (18)
and
Y = (ng—s)I+sQ,®Q,. (19)

The relation (16) gives us an estimating equation for $*. Thus, modifying (5) using (15),
replacing (6) with (16) and modifying (7) using (15) we obtain the following theorem which
is the main result of this paper. Note that the estimators to be uniquely determined, the
estimability condition is added.
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Theorem 1. Let X ~ N, ,,(AB(1/, ® C), 2 I, ® ¥). Assume that a'(s) 1. The
estimation equations for the parameters =) and ¥ are given by

nABC = A (A(S")'4) AE)) X (1.o¥ ' C(c¥ ') 0), (20)
als) + EANZ v Sro v N +\/ 5 SLq
veeS” =Tt (T YX'XTT) (1) T vee(S + 51, (21)
and n
&= L3 (x;—-aBoysY) ' (x, - ABC), (22)

"Pio
where f:is), S, 81 and X are given by (3), (9), (17) and (19) respectively.

These equations are nested and cannot be solved explicitly. Therefore an iterative algorithm,
like the so called flip-flop algorithm, is required to get estimates of parameters. In addition,
these equations are modification of equations presented in Srivastava et al. (2009) for an
unstructured dispersion matrix where it has been shown that only one solution exists. By
construction this still holds true. Few simulations (not included in this paper) have supported
that and the solution does not depend on the starting values. Next, we show the consistency
of the proposed estimators.

Theorem 2. The estimators 1@, U and 2(5)7 given in Theorem 1, are consistent esti-
mators of ABC, ¥ and 2(5), respectively.

In the sequel, for two random sequences X, and Y,,, the notation X, £ Y,, means that
X, —Y, 25 0,n — oo and the notation “—~” means “converges in probablity”. The
following lemma will be utilized in the proof of Theorem 2.

o) &) = ) ) )
Lemma 1. Let 3, ", ¥ " and ¥ be given in (14), (21) and (22), respectively. Then, the

following hold

()

= a 1 s —
Lot (2O, (23)
p

-1
SN (O <1tr(2(5)(§(8))1)) : (24)
p

S(8) a i (s) (s) ()1 -1
X =X (p r(ZW(3 ) )) . (25)

Proof. The Cramér-Slutsky’s theorem Cramér (1946) will be utilized several times. From
equation (22),

n

vecl — nip S [(Xi - ABC) ® (X; — ABO)vec(S"”) 1,
=1

Since, ABC % ABC (see the proof later), this equation gives

n

veeW < nip > [(Xi— ABC) ® (X; — ABC)'|vec(Z

(),1

) (26)
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As E[(X; — ABC) ® (X; — ABC)] = vecX®)vec' ¥, the law of large numbers yields

n

1 » (X;— ABC) ® (X; — ABC)' % vec¥vec' 5.
n
i=1

Hence, the relation (26) becomes

-, 1 o)
vecW = Vec\Il];tr(E(S)(E( )) b,
or equivalently
PO (s
¥ L olpme ),
p
which establishes (23).
Since
S=XIeo¥'-n 1,1, 'C'(Cce'C)Cce HX' (27)
and 1
SRS YON (28)
ng—s
using (23) in (9), it follows that
g @ (Liso ) -1)
S=(ng—s)% 5‘51‘(2 =) . (29)

From (1) and use of (29) in (14) yield

—1
~(5) a _ 1 ~(5)
e & (THYTH) ™ (TT)vecs® (ptr(g(s>(§:( ) 1))

_ Tt ((T*)’T*)_ (T THvecS(K) (;tr(E(S)(f;(S))_l)) -1
= Tt vecS(K) (;tr(z(s)(ﬁ(s))_l))1

-1

1 (s

= vecn®) (tr(Z(s)(E( ))_1)> :
p

Hence )

&ls) oa 1 Sls)
SRS O (tr(E(s)(E( ) 1))
p

Using (24) in (18), it follows that
Q 21-A (A’(E(S))*1A>_ A1 = Q,. (30)

Note that _ _ _,
S =n"'Q, X(1,1, 0¥ 'C'(Cc¥'C") " Cc¥ HX'Q,
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—0,(X(I, o ¥ HX' - 50,

_ 0, (Z X, X - S> Q.

i=1

where S is given in (27). But, by the law of large numbers
1 ¢ 1y P (s)
= XX gm0,
it
which together with (28) imply that
S, 20 () NO'
S1 = Q1(ngX"™ — (ng — 5)X7)Q,
~ N <!
=50, 27Q;.
Thus, use (23) and (30) in (17) to get
& a4 A s (1 o® -
512:0,200; (Ju0E ) ) (31)

From (29) and (31),

~ ~

-1
vec(S + 81) £ ((nq — )T +sQ, ® él) vecx(®) (;tr(E(s)(i(s))_l)>

~ 1 ~(s) -1
= Yvecx® <tr(2(s)(2 )1)) ,
p

where ¥ = (nq — s)I + sQ, ® 621. Hence, from (21) and (1),

_ L » .
2 TJr ((T+)/T/?T+> (T+)/T’,rvecz(s) <1tr(2(3) (2( ))1))
p

vecs®

1

=T (@) XXT) ()X IT veeS(K) (ptr(2<8>(§:(s))1)) -

1 ~(s -1 1 ~(s -1

— T vecS(K) (ptr(Z(S)(E( ))1)) — vecs () (ptr(E(s)(E( ))1)> :

since Y has full rank and hence
a8 a

1 o® Al
DIRMES WS (tr(E(s)(E )—1)> =5 Y
p

which proves (25).
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Proof (Proof of Theorem 2). From (20) we have

ABC - 1a (A’( 5= 1A) A1 x1, 08 'ocd e o)
n

A<A’( ) 1A) AS ( Zx>qf c'c¥ 'c)c

éA(A’(f:is))—lA) A 1aBCcE 'c(cd ) C
_ ABC,

since the law of large numbers gives

—ZX 2, E[X,]= ABC

i=1
and, A and C are of full column rank and full row rank, respectively. This proves that
ABC -5 ABC.

A pre-multiplication of (25) with (2())~1 gives

(s 1 ~ (s -1,
(2“))*12( . (tr(E(S)(E( ))1)> 20,
p

which implies that

where \;, i = 1,2, ..., p are eigenvalues of (E(S))’lﬁ * and \; > 0 for all i with probability
one. So, we must have i 251 for all 1, which implies that

0L 0

P2 T (32)
Using (32) and Lemma 1 we get that fl(s) 2y ) and ¥ 25 ¥ and the proof of Theorem
2 is complete.

In principle the reasoning in the proof of Theorem 2 can be used to prove the consistency of
estimators in Srivastava et al. (2009) for the unstructured 3 (what has not been done yet)
or any other estimators based on the flip-flop algorithm. For example, equation (6) gives

ngS = (X - AB(1, © C))(I ¥ )(X - AB(1, ® C))
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Z X,- ABC)¥ (X, - ABC)

a = -1 ! ! s B
:;[(Xi—ABC)\II (Xi—ABCH<p“”(EE )) '

Using the law of large numbers and

E[(X;-ABC)¥ (X, - ABC)| =

RS> (;tr (221»_1,

which can be used in a similar way as in the proof of Theorem 2 to prove the consistency of
estimators in Srivastava et al. (2009).

we have
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