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A classification result for helix surfaces
with parallel mean curvature in product spaces

Dorel Fetcu

Abstract. We determine all helix surfaces with parallel mean curvature vector field which

are not minimal or pseudo-umbilical in spaces of type Mn(c)×R, where Mn(c) is a simply con-

nected n-dimensional manifold with constant sectional curvature c.

1. Preliminaries and the main result

Let us consider a space form Mn(c), i.e., a simply connected n-dimensional

manifold with constant sectional curvature c, the product manifold M=Mn(c)×R,

and an isometrically immersed surface Σ2 in M=Mn(c)×R.

The second fundamental form σ of the surface Σ2 is defined by the equation of

Gauss
˙∇XY =∇XY +σ(X,Y ),

for any tangent vector fields X and Y , where ˙∇ and ∇ are the Levi-Civita connec-

tions on M and Σ2, respectively. Then the mean curvature vector field H of Σ2 is

given by H=(1/2) traceσ. The shape operator A and the normal connection ∇⊥

are defined by the equation of Weingarten

˙∇XV =−AV X+∇⊥
XV,

for any tangent vector field X and any normal vector field V .

Definition 1.1. A surface Σ2 is called a helix surface (or a constant angle sur-

face) if the angle function θ∈[0, π) between its tangent spaces and the unit vector

field ξ tangent to R is constant on Σ2.
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A helix surface is characterized by the fact that the tangent part T of ξ has

constant length.

Definition 1.2. If the mean curvature vector field H of a surface Σ2 is parallel

in the normal bundle, i.e., ∇⊥H=0, then Σ2 is called a pmc surface.

In our paper, we consider non-minimal pmc helix surfaces in Mn(c)×R and

prove the following classification theorem.

Theorem 1.3. Let Σ2 be a non-minimal pmc helix surface with Gaussian

curvature K and mean curvature vector field H in Mn(c)×R, with c �=0, and let T

be the tangent part of the unit vector field ξ tangent to R. Then one of the following

holds :

(1) Σ2 is a minimal surface in a non-minimal totally umbilical hypersurface of

Mn(c);

(2) Σ2 is a surface with constant mean curvature in a 3-dimensional totally

umbilical or totally geodesic submanifold of Mn(c);

(3) Σ2 is a vertical cylinder over a circle in Mn(c) with curvature ˇ=2|H|;
(4) c<0 and Σ2 lies in M2(c)×R. Also 4|H|2+c|T |2=0, K=c(1−|T |2)<0,

and the Abresch–Rosenberg differential vanishes on Σ2. If the surface is complete,

then it is a cmc surface of type P 2
H in M2(c)×R;

(5) c>0 and locally Σ2 is the standard product γ1×γ2, where γ1 : I⊂R→
M4(c)×R is a helix in M4(c)×R with curvatures ˇ1=

√
c(1−|T |2) and ˇ2=|T |

√
c,

and γ2 : I⊂R→M4(c)⊂M4(c)×R is a circle in M4(c) with curvature ˇ=√
4|H|2+c(1−|T |2). If the surface is complete, then the above decomposition holds

globally.

Next, we will briefly recall some notions and results that will be used in the

proof of our theorem.

The expression of the curvature tensor R of M=Mn(c)×R can be deduced

from

〈R(X,Y )Z,W 〉= c(〈dπY, dπZ〉〈dπX, dπW 〉−〈dπX, dπZ〉〈dπY, dπW 〉),

where π : M=Mn(c)×R→Mn(c) is the projection map (see [2]). We obtain

R(X,Y )Z = c(〈Y, Z〉X−〈X,Z〉Y −〈Y, ξ〉〈Z, ξ〉X+〈X, ξ〉〈Z, ξ〉Y(1.1)

+〈X,Z〉〈Y, ξ〉ξ−〈Y, Z〉〈X, ξ〉ξ).
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We will also need the Gauss equation of a surface Σ2 in M=Mn(c)×R,

〈R(X,Y )Z,W 〉 = 〈R(X,Y )Z,W 〉+〈σ(Y, Z), σ(X,W )〉(1.2)

−〈σ(X,Z), σ(Y,W )〉,

and its Codazzi equation

(1.3) (R(X,Y )Z)⊥ =(∇⊥
Xσ)(Y, Z)−(∇⊥

Y σ)(X,Z),

where X , Y , Z, and W are tangent vector fields and R is the curvature tensor

corresponding to ∇.

Definition 1.4. A surface Σ2 in Mn(c)×R is called a vertical cylinder over γ

if Σ2=π−1(γ), where π : Mn(c)×R→Mn(c) is the projection map and γ : I⊂R→
Mn(c) is a curve in Mn(c).

It is easy to see that vertical cylinders Σ2=π−1(γ) are characterized by the

fact that ξ is tangent to Σ2.

Definition 1.5. Let γ : I⊂R→M
n+1

be a curve parametrized by arc-length.

Then γ is called a Frenet curve of osculating order r, 1≤r≤n+1, if there exist r

orthonormal vector fields {X1=γ′, ..., Xr} along γ such that

˙∇X1X1 =ˇ1X2, ˙∇X1Xi =−ˇi−1Xi−1+ˇiXi+1, ..., ˙∇X1Xr =−ˇr−1Xr−1,

for all i∈{2, ..., r−1}, where {ˇ1,ˇ2, ...,ˇr−1} are positive functions on I called the

curvatures of γ. A Frenet curve of osculating order r is called a helix of order r if

ˇi=constant>0 for 1≤i≤r−1. A helix of order 2 is called a circle, and a helix of

order 3 is simply called helix.

When the ambient space is M2(c)×R, a pmc surface Σ2 is a surface with con-

stant mean curvature (a cmc surface). In order to study such surfaces, U. Abresch

and H. Rosenberg introduced a holomorphic differential, now called the Abresch–

Rosenberg differential, and determined all complete cmc surfaces in M2(c)×R on

which it vanishes (see [1]). They proved that there are four classes of such surfaces,

denoted by S2
H , D2

H , C2
H , and P 2

H , all of them described in detail in [1]. This

holomorphic differential is the (2, 0)-part of a quadratic form Q defined on a cmc

surface by

Q(X,Y )= 2〈σ(X,Y ), H〉−c〈X, ξ〉〈Y, ξ〉.
Complete cmc helix surfaces in M2(c)×R, and actually in all 3-dimensional

homogeneous spaces, were determined in [5, Theorem 2.2], while [3, Theorem 1]

shows that there are no non-minimal pmc helix surfaces with 0<|T |<1 in S
3(1)×R.
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2. The proof of Theorem 1.3

The map p∈Σ2 
→(AH−μ I)(p) is analytic, and, therefore, either Σ2 is a pseudo-

umbilical surface, i.e., AH=|H|2 I; or H is an umbilical direction on a closed set

without interior points. We shall denote by W the set of points where H is not an

umbilical direction, which, in the second case, is an open dense set in Σ2.

If Σ2 is a pmc surface in Mn(c)×R, with mean curvature vector field H , then

either Σ2 is pseudo-umbilical, i.e., H is an umbilical direction everywhere; or, at any

point in W , there exists a local orthonormal frame field that diagonalizes AU for any

normal vector field U defined on W (see [2, Lemma 1]). If Σ2 is a pseudo-umbilical

pmc surface in Mn(c)×R, then it lies in Mn(c), i.e., |T |=0 (see [2, Lemma 3]).

From [2, Remark 1], we also know that, since H is parallel, the immersion of Σ2

in Mn(c)×R is analytic, i.e., the functions of two variables that locally define the

immersion are real-analytic. Therefore, it satisfies a principle of unique continuation

and, as a consequence, it cannot vanish on an open connected subset of Σ2 unless

it vanishes identically.

Now, when |T |=0, our surface lies in Mn(c) and we obtain the first two items

of the theorem using [9, Theorem 4].

When |T |=1, the vector field ξ is tangent to the surface and this means that Σ2

is a pmc vertical cylinder over a curve γ in Mn(c). Since ξ is parallel in Mn(c)×R,

it follows that σ(ξ, ξ)=0 and then we easily get that γ is a circle in Mn(c) with

curvature ˇ=2|H|.
Henceforth, let us assume that 0<|T |<1. It follows that H is not an umbilical

direction on an open dense set W . We will work on this set and then extend our

results throughout Σ2 by continuity.

Consider a global orthonormal frame field {E1=T/|T |, E2} on Σ2, and let

N be the normal part of ξ. Then, since Σ2 is a helix surface, it follows that

∇E1E1=∇E1E2=0 and, as ˙∇Xξ=0 implies ∇XT=ANX and σ(T,X)=−∇⊥
XN ,

that ANE1=0 (see [8, Proposition 2.1]). We also have

〈∇E2E2, E1〉 = −〈E2,∇E2E1〉=− 1

|T | 〈E2, ANE2〉=− 1

|T | 〈σ(E2, E2), N〉

= − 1

|T | 〈2H−σ(E1, E1), N〉=−2〈H,N〉
|T | ,
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which means that

(2.1) ∇E2E2 =−2〈H,N〉
|T | E1 and ∇E2E1 =

2〈H,N〉
|T | E2.

Since ANE1=0, we also get that ANE2=2〈H,N〉E2. From the Ricci equation

〈R⊥(X,Y )U, V 〉= 〈[AU , AV ]X,Y 〉+〈R(X,Y )U, V 〉,

where X and Y are tangent vector fields and U and V are normal vector fields, we

obtain [AH , AN ]=0, which means that 〈H,N〉〈AHE1, E2〉=0. As we also have

E2(〈H,N〉)= 〈H,∇⊥
E2

N〉=−|T |〈H,σ(E1, E2)〉=−|T |〈AHE1, E2〉,

one sees that 〈AHE1, E2〉=0. Moreover, again using the Ricci equation, we have

[AH , AU ]=0 for any normal vector field U and then, since H is not umbilical,

σ(E1, E2)=0 and ∇⊥
E2

N=0.

Next, let us denote by λi the eigenfunctions 〈AHEi, Ei〉 of AH and in the

following we will compute Ej(λi), i, j∈{1, 2}.
Using (1.1), (2.1), and σ(E1, E2)=0, we get

∇⊥
E2

σ(E1, E1)= (R(E2, E1)E1)
⊥+2σ(E1,∇E2E1)= 0

and then, from the Codazzi equation (1.3),

∇⊥
E1

σ(E2, E2) = (R(E1, E2)E2)
⊥+2σ(E2,∇E1E2)+∇⊥

E2
σ(E1, E2)(2.2)

−σ(∇E2E1, E2)−σ(E1,∇E2E2)

= −c|T |N+
2〈H,N〉

|T | (σ(E1, E1)−σ(E2, E2)).

Therefore, as H is parallel, we have

(2.3) E1(λ1)=−E1(λ2)=−〈∇⊥
E1

σ(E2, E2), H〉= 〈H,N〉
|T | (4|H|2+c|T |2−4λ1)

and

(2.4) E2(λ1)=−E2(λ2)= 〈∇⊥
E2

σ(E1, E1), H〉=0.

From [6, Proposition 1.4], we know that

1
2Δ|T |2 = |AN |2+K|T |2−2〈AHT, T 〉

and then, since |T |=constant �=0, the Gaussian curvature K of Σ2 is given by

(2.5) K =2λ1−
4〈H,N〉2

|T |2 .
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Since ∇⊥
XN=−σ(X,T ) implies that

(2.6) E1(〈H,N〉)=−|T |λ1 and E2(〈H,N〉)= 0,

from (2.3) and (2.4), we obtain

(2.7) E1(K)=
2〈H,N〉

|T | (4|H|2+c|T |2) and E2(K)= 0.

The fact that Σ2 is not pseudo-umbilical implies that it lies in M4(c)×R (see

[2, Theorem 1]).

In order to describe our surface by taking advantage of the above formulas, we

will first consider the case when H‖N on an open connected subset W0 of Σ2. This

means that 〈H,N〉=±|H| |N |=constant and, from (2.6), one obtains that λ1=0.

Then, from (2.3) and (2.5), we get 4|H|2+c|T |2=0 and K=c(1−|T |2) on W0.

Let {E3=H/|H|, E4, E5} be a global orthonormal frame field in the normal

bundle. Then, as σ(E1, E2)=0, on W0 we have

A3 =

(
0 0

0 2|H|

)
, A4 =

(
a 0

0 −a

)
, and A5 =

(
b 0

0 −b

)
,

where Aα=AEα ; and, from the Gauss equation (1.2), since 〈R(E1, E2)E2, E1〉=
c(1−|T |2), we have

K = c(1−|T |2)−a2−b2.

But, as we have seen, K=c(1−|T |2) on W0, which implies that a=b=0 on W0.

Consider the subbundle L=span{Imσ}=span{H} in the normal bundle. It follows

that ξ∈TΣ2⊕L and TΣ2⊕L is parallel with respect to ˙∇ and invariant by R.

Therefore, we use [4, Theorem 2] to show that W0 lies in M2(c)×R. From the

analyticity of the immersion of Σ2 in M4(c)×R, it follows that Σ2 lies in M2(c)×R

(see [2, Remark 1] for more details). As a direct consequence, we have H‖N on Σ2

and then λ1=0, 4|H|2+c|T |2=0, and K=c(1−|T |2)<0 on Σ2. Now, it is easy to

verify that the Abresch–Rosenberg differential vanishes on the surface. Moreover,

if Σ2 is complete, all these properties of Σ2 lead to the conclusion that our surface

is a cmc surface of type P 2
H .

Next, we will consider the remaining case, when H‖N only at isolated points.

We can then define a local orthonormal frame field
{
E3 =

1

|H| sinβH− cotβ

|N | N, E4 =
N

|N | , E5

}

in the normal bundle, where β∈(0, π) is the angle between H and N . Therefore,

since
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AH =

(
λ1 0

0 λ2

)
=

(
λ1 0

0 2|H|2−λ1

)
,

AN =

(
0 0

0 2〈H,N〉

)
=

(
0 0

0 2|H| |N | cosβ

)
,

with respect to {E1, E2}, we can write

A3 =

⎛

⎜
⎝

λ1

|H| sinβ 0

0 2|H| sinβ− λ1

|H| sinβ

⎞

⎟
⎠ ,

A4 =

⎛

⎝
0 0

0
2〈H,N〉

|N |

⎞

⎠ ,

A5 =

(
λ 0

0 −λ

)
,

and then, from the Gauss equation (1.2), one obtains

(2.8) K = c(1−|T |2)+2λ1−
λ2
1

|H|2 sin2 β
−λ2.

Using equation (2.5), we have

(2.9) λ2 = c(1−|T |2)− λ2
1

|H|2 sin2 β
+
4〈H,N〉2

|T |2

and then

(2.10) 2λE1(λ)=E1

(
− λ2

1

|H|2 sin2 β
+
4〈H,N〉2

|T |2

)
.

Next, we shall compute E1(λ). Using (2.2), the fact that H is parallel and

∇⊥
XN=−σ(X,T ), we obtain

E1(λ)=−E1(〈σ(E2, E2), E5〉)

=−〈∇⊥
E1

σ(E2, E2), E5〉−〈σ(E2, E2),∇⊥
E1

E5〉

=−4〈H,N〉
|T | λ−〈σ(E2, E2), E3〉〈∇⊥

E1
E5, E3〉−〈σ(E2, E2), E4〉〈∇⊥

E1
E5, E4〉



256 Dorel Fetcu

=−4〈H,N〉
|T | λ+

(
2|H| sinβ− λ1

|H| sinβ

)
〈E5,∇⊥

E1
E3〉+

2〈H,N〉
|N | 〈E5,∇⊥

E1
E4〉

=−4〈H,N〉
|T | λ− |T |

|H||N |
cosβ

sin2 β
λλ1,

since

〈E5,∇⊥
E1

E3〉=
|T |
|N |λ cotβ and 〈E5,∇⊥

E1
E4〉=− |T |

|N |λ.

Replacing in (2.10) and using (2.3) and (2.6), we get, after a straightforward

computation

(2.11) 〈H,N〉
(
2λ1−

λ2
1

|H|2 sin2 β
−λ2

)
=0,

which, together with (2.8), leads to 〈H,N〉(K−c(1−|T |2))=0, which, taking (2.7)

into account, can be written as E1((K−c(1−|T |2))2)=0. Again from (2.7), we have

E2((K−c(1−|T |2))2)=0. It follows that K−c(1−|T |2)=constant and then, using

(2.5), one obtains

E1

(
2λ1−

4〈H,N〉2
|T |2

)
=0.

Now, from equations (2.3) and (2.6), we have (4|H|2+c|T |2)〈H,N〉=0. We

will consider two cases as 4|H|2+c|T |2=0 or 4|H|2+c|T |2 �=0.

Case 1. 4|H|2+c|T |2=0. Let us assume that 〈H,N〉=0 on an open connected

set W0. From (2.6) it follows that λ1=0 and then, from (2.5), that K=0 on W0.

But, from (2.8), we have K=c(1−|T |2)−λ2, which means that λ2=c(1−|T |2). This
implies c>0 which is a contradiction, since 4|H|2+c|T |2=0. Therefore 〈H,N〉=0

on a closed set without interior points and then, from (2.11), we have

2λ1−
λ2
1

|H|2 sin2 β
−λ2 =0

and K=c(1−|T |2) on an open dense set. Since 4|H|2+c|T |2=0, from (2.5), one

obtains sin2 β=2λ1/c|N |2 and then λ2=2λ1/|T |2, which means that λ1=0, λ=0

and sin2 β=0 on an open dense set. The last identity shows that H‖N on an open

dense set, which is a contradiction.

Case 2. 4|H|2+c|T |2 �=0. In this case, 〈H,N〉=0 on an open dense set and,

from (2.6), it follows that λ1=0 and then, from (2.5), we have K=0 and, from (2.9),

λ2=c(1−|T |2), which implies c>0. The shape operator is given by

A3 =

(
0 0

0 2|H|

)
, A4 =

(
0 0

0 0

)
, and A5 =

(
λ 0

0 −λ

)
.
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From the equations (2.1), we see that ∇E1=∇E2=0 and we then can apply the de

Rham decomposition theorem ([7]) to show that locally Σ2 is the standard product

γ1×γ2 of two Frenet curves γ1 : I⊂R→M4(c)×R and γ2 : I⊂R→M4(c)×R such

that γ′
1=E1 and γ′

2=E2. We note that γ2 actually lies in M4(c). If the surface is

complete, then this decomposition holds globally.

Next, we will characterize γ1 and γ2 by using their Frenet equations. Let

{X1
1=E1, X

1
2 , ..., X

1
r } be the Frenet frame field of γ1. We have that

˙∇E1E1 =σ(E1, E1)=λE5,

and then, from the first Frenet equation, it follows that ˇ1=|λ|=
√
c(1−|T |2) and

X1
2=±E5.

Next, we have 〈∇⊥
E1

E5, E3〉=0, since E3=H/|H| is parallel, and

〈∇⊥
E1

E5, E4〉=−〈E5,∇⊥
E1

E4〉=
|T |
|N | 〈E5, σ(E1, E1)〉=

|T |
|N |λ.

Therefore, one obtains

˙∇E1X
1
2 =±˙∇E1E5 =∓A5E1±∇⊥

E1
E5 =∓λE1±

|T |
|N |λE4.

From the second Frenet equation, we get

ˇ2 =
|T |
|N | |λ|= |T |

√
c and X1

3 =±E4.

It follows that

˙∇E1X
1
3 =±˙∇E1E4 =±∇⊥

E1
E4 =∓ |T |

|N |σ(E1, E1)=∓ |T |
|N |λE5 =−ˇ2X

1
2

and we have just proved that γ1 is a helix.

Now, let {X2
1=E2, X

2
2 , ..., X

2
r } be the Frenet frame field of γ2. Then, from

˙∇E2E2 =σ(E2, E2)= 2|H|E3−λE5,

and the first Frenet equation of γ2, one obtains

ˇ=
√

4|H|2+λ2 =
√

4|H|2+c(1−|T |2) and X2
2 =

1

ˇ

(2|H|E3−λE5).

It is easy to verify, using ˙∇ξ=0, that ∇⊥
E2

E5=0. Then, since E3 is parallel,

we have
˙∇E2X

2
2 =− 1

ˇ

(2|H|A3E2+λA3E2)=−ˇE2

and we conclude.
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Remark 2.1. From the proof of Theorem 1.3 it is easy to see that the only

non-minimal pmc helix surfaces in M3(c)×R are those given by the first four cases

of our theorem.
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