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Maximal regularity via reverse Hölder
inequalities for elliptic systems of n-Laplace

type involving measures

Tero Kilpeläinen, Nageswari Shanmugalingam and Xiao Zhong

Abstract. In this note, we consider the regularity of solutions of the nonlinear elliptic

systems of n-Laplacian type involving measures, and prove that the gradients of the solutions are

in the weak Lebesgue space Ln,∞. We also obtain the a priori global and local estimates for the

Ln,∞-norm of the gradients of the solutions without using BMO-estimates. The proofs are based

on a new lemma on the higher integrability of functions.

1. Introduction

In this note, we consider the regularity of solutions u : Ω!Rm of the nonlinear
elliptic system

(1.1)

{
− div σ(x, u, Du)=µ in D′(Ω),

u=0 on ∂Ω.

Here Ω is an open set in Rn and µ a Radon measure on Ω with finite mass. The
prototypical problem is the n-Laplace system

− div(|Du|n−2Du)= µ.

The precise assumptions on the function σ in system (1.1) are listed in Section 2;
throughout this note, we assume that σ satisfies the assumptions (H0)–(H3), and
one of the conditions (i)–(iii).
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It was proven in [8] that the solutions u of system (1.1) enjoys the maximal
regularity: the derivative is in the weak Ln space, Du∈Ln,∞(Ω). Moreover, in [8]
the authors establish an a priori global estimate for the Ln,∞-norm of Du. In this
note (Theorem 1.2) we give a new proof for this global estimate; we also obtain
local(1) and boundary estimates.

For the global and boundary estimates, we need to impose a condition on
the complement of Ω. We assume that Rn\Ω is geometrically dense, i.e. there is
a constant K so that

|B(x, r)\Ω| ≥Krn

for all x∈Rn\Ω and r>0. Actually, we can relax this geometrical density condition
on the domain in Theorem 1.2 below; we can assume that the complement of Ω is
uniformly n-fat, see Section 2 for the definition.

Theorem 1.2. Let Ω⊂Rn be a bounded open set such that its complement
is geometrically dense. Let µ be an Rm-valued Radon measure on Ω with finite
mass. Then system (1.1) has a solution u∈W 1,q

0 (Ω;Rm) for all q<n. Moreover,
Du belongs to the weak Lebesgue space Ln,∞(Ω;Rm×n), and obeys both the global
estimate

(1.3) ‖Du‖Ln,∞(Ω) ≤C(‖µ‖1/(n−1)
M(Ω) +‖g‖1/n

L1(Ω)),

and the local estimate
(1.4)

‖Du‖Ln,∞(B(a,r)) ≤C

(
‖µ‖1/(n−1)

M(B(a,2r))+‖g‖1/n
L1(B(a,2r))+

1
r

(∫
B(a,2r)

|∇u|n/2 dx

)2/n)

for all balls B(a, r)⊂Rn, where

g = |γ3|+|γ4|n/(n−1)+γ5|Du|s+|γ6|;

here the constant C depends only on the dimension n, the geometric density const-
ant K, and the operator structure constants γ1 and γ2.

The function g in Theorem 1.2 depends on the assumptions on the function σ,
see Section 2. We denote by ‖µ‖M(Ω) the total mass of a Radon measure µ in Ω.

In Theorem 1.2, we assume that u is defined on the whole space Rn by setting
u=0 outside Ω. The local estimate (1.4) is true for all balls in Rn. Thus (1.4) gives
not only the interior estimate, but also the boundary estimate. These interior and
boundary estimates are both new.

(1) Giuseppe Mingione informed the authors that he found a different, new proof for the
local estimate, see Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 195–261.
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The outline of our proof of Theorem 1.2 is the following. We first show in
Lemma 4.2 that Du satisfies a kind of reverse Hölder inequality. Our Lemma 4.2
resembles [8, Lemma 3.3], but the main new feature here is that our estimate
does not involve the BMO-norm of u. Consequently, we first derive the weak Ln

estimates (1.3) and (1.4) for Du, and the BMO-norm estimate for u then follows
by the Poincaré inequality. The argument in [8] is in reverse order: they first
establish the BMO-estimate for u via a delicate blow up argument, and their weak
Ln estimate for Du relies heavily on the BMO-estimate.

Our key observation is that the above mentioned reverse Hölder type inequality
for Du enables us to prove higher integrability. In other words, the weak Ln-estimate
of Du follows from two lemmas on the higher integrability of functions: a global
version and a local version.

Lemma 1.5. Let f∈Lp(Rn) be nonnegative, 1<p<∞, and µ be a nonnegative
measure with finite mass in Rn. Suppose that there are constants γ>0 and p<q<∞
such that the inequality

(1.6)
(∫

B

fp dx

)1/p

≤ γ

∫
2B

f dx+
(

µ(2B)
|2B|

)1/q

holds for all balls B in Rn. Then there is a constant δ=δ(n, p, γ)>0 such that
f∈Lq,∞(Rn) whenever q−p<δ. Moreover,

(1.7) ‖f‖q
Lq,∞(Rn) ≤ c‖µ‖M(Rn),

where c=c(n, p, q)>0.

The following local version of the above lemma will be proved using Lemma 1.5.

Lemma 1.8. Let f∈Lp
loc(Ω) be nonnegative, 1<p<∞, and µ be a nonnegative

Radon measure in Ω⊂Rn. Suppose that there are constants γ>0 and p<q<∞ such
that the inequality

(1.9)
(∫

B

fp dx

)1/p

≤ γ

∫
2B

f dx+
(

µ(2B)
|2B|

)1/q

holds for all balls B with 2B�Ω. Then there is a constant δ=δ(n, p, γ)>0 such that
f∈Lq,∞

loc (Ω) whenever q−p<δ. Moreover,

(1.10) ‖f‖Lq,∞(B) ≤ c|B|1/q−1/p‖f‖Lp(2B)+c‖µ‖1/q
M(2B)

for any balls B with 2B⊂Ω; here c=c(n, p, q)>0.
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Gehring’s pioneering work [11] initiated intensive research on higher integra-
bility of functions satisfying reverse Hölder inequalities. We refer to the mono-
graphs [12] and [16] for detailed discussions of the Gehring lemma and its appli-
cations in analysis. The original Gehring lemma is in the setting of Lebesgue
spaces Lp. The paper [15] significantly extends Gehring’s lemma to the frame-
work of Orlicz spaces. Recently, a new higher integrability lemma of this type was
proven in [3] and can be considered as a limiting case of the Gehring lemma.

Lemmas 1.5 and 1.8 above are in the setting of Lorentz spaces. They are new
and, we believe, of independent interest and might have other applications. One of
our motivations to write this note is to publish those lemmas. The proof is based
on a modification of Gehring’s original idea.

The paper is organized as follows. In Section 2, we fix our notation and list the
assumptions on the operator. The proofs of the higher integrability Lemmas 1.5
and 1.8 are in Section 3. A proof for Theorem 1.2 is given in Section 4. There we also
comment on the proof of Theorem 1.2 under the assumption that the complement
of Ω is uniformly n-fat.

The p-Laplacian equations and systems with measure-valued right-hand side
have been intensively studied, see e.g. [2], [4], [5], [6], [10], [13], [17], [18], [20], [21]
and [22]. The existence of solutions is well known, but the problem of uniqueness
of solutions is largely open except for the case p=n ([8], [13] and [25]). In [8] the
uniqueness was reached through the regularity result Theorem 1.2; in [13] there is
another approach based on the nonlinear Hodge decomposition.

2. Notation and the assumptions on the operator

Let Ω⊂Rn be measurable and 1<p<∞. Let |E| denote the Lebesgue measure
of E. The integral average of a measurable function u over E is written as

uE =
∫

E

u dx=
1
|E|

∫
E

u dx.

We say that a measurable function u belongs to the weak Lebesgue space Lp,∞(Ω)
if

‖u‖Lp,∞(Ω) := sup
E

|E|−(p−1)/p

∫
E

|u| dx<∞,

where the supremum is taken over all measurable subsets E of Ω of positive and
finite measure. The space Lp,∞(Ω) is a Banach space under this norm. The above
defined norm is equivalent to the quasinorm

|||u|||Lp,∞(Ω) := sup
t>0

t|{x∈Ω : |u(x)|> t}|1/p.
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An integrable function u is said to be in BMO(Ω), the space of functions of
bounded mean oscillation, if

[u]BMO(Ω) := sup
∫

B(a,r)

|u−uB(a,r)| dx<∞,

where the supremum is taken over all balls B(a, r)⊂Ω. It follows from the Poincaré
inequality that

[u]BMO(Ω) ≤ c(n)‖∇u‖Ln,∞(Ω).

The p-capacity of a compact set E in an open set D is the number

capp(E, D)= inf
ϕ

∫
D

|∇ϕ|p dx,

where the infimum is taken over all ϕ∈W 1,p
0 (D) with ϕ=1 on an open neighborhood

of E. It is known that

capp(B(a, r), B(a, 2r))≈ rn−p for 1 < p≤n.

See [1] or [14] for more information on capacities.
We say that a (closed) set E⊂Rn is uniformly p-fat, if there is a constant K>0

such that

capp(B(x, r)∩E, B(x, 2r))≥Krn−p

for all x∈E and 0<r<diam(E). It follows from the well known capacity density
estimates (see [14]) that a set E is uniformly p-fat for all p>1 if it is geometrically
dense.

It follows from Hölder’s inequality that a uniformly p-fat set is also uniformly
q-fat for all q>p. A fundamental property of uniformly p-fat sets is the following
deep result [23]: a closed uniformly p-fat set E with constant K is also uniformly
p0-fat for some 1≤p0=p0(n, p, K)<p.

We shall need the following form of the Sobolev–Poincaré inequality.

Lemma 2.1. Suppose that Rn\Ω is uniformly q-fat and p≥q. Let B=B(a, r)
be a ball such that B(a, r/2)\Ω 
=∅. If q≤p<n, then

(∫
B

|u|np/(n−p) dx

)(n−p)/np

≤ c

(∫
B

|∇u|p dx

)1/p

for every u∈W 1,p
0 (Ω); here c=c(n, K)>0.
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Proof. Using a capacitary version of the Sobolev–Poincaré inequality

(∫
B

|u|np/(n−p) dx

)(n−p)/np

≤ c

(
1

capp({x∈B : u(x)= 0}, 2B)

∫
B

|∇u|p dx

)1/p

(see [1] or [19, Lemma 3.1]), it suffices to estimate the capacity of the zero set of u

in B. That estimate is obtained by the uniform fatness condition, since u=0 in the
complement of Ω; hence by the Poincaré inequality

(
capp(B\Ω, 2B)

rn−p

)1/p

≥
(

capq(B\Ω, 2B)
rn−q

)1/q

≥ c

(
capq(B1\Ω, 2B1)

rn−q

)1/q

≥ c0 > 0,

where the constant c0 depends only on n and K, and B1 is a ball of radius r/2 with
center in B\Ω. For the equivalence of the capacities above see [14, Lemma 2.16]. �

Finally, we assume that the function σ satisfies the following hypotheses as
in [8]:

(H0) (Continuity) σ : Ω×Rm×Rm×n!Rm×n is a Carathéodory function, that
is, the mapping x �!σ(x, u, p) is measurable for every (u, p), and the mapping
(u, p) �!σ(x, u, p) is continuous for almost every x∈Ω.

(H1) (Monotonicity) For all x∈Ω, u∈Rm and all F, G∈Rm×n,

(σ(x, u, F )−σ(x, u, G)) : (F −G)≥ 0.

Here we used the notation F :G=
∑m

j=1

∑n
k=1 ajkbjk if F =(ajk) and G=(bjk).

(H2) (Coercivity and growth) There exist constants γ1>0 and γ2≥0, and func-
tions γ3∈L1(Ω) and γ4∈Ln/(n−1)(Ω) such that for all x∈Ω, u∈Rm and F ∈Rm×n,

σ(x, u, F ) : F ≥ γ1|F |n−γ3(x),

|σ(x, u, F )| ≤ γ2|F |n−1+γ4(x).

(H3) (Structure condition) There exist constants 1≤s<n and γ5≥0, and a func-
tion γ6∈L1(Ω) such that for all x∈Ω, u∈Rm and F ∈Rm×n the inequality

σ(x, u, F ) : MF ≥−γ5|F |s−γ6(x)

holds for all matrices M∈Rm×m of the form M =Id−a⊗a with |a|≤1.
Moreover, to prove the existence of solutions of system (1.1), we need one of

the following conditions on σ:
(i) F �!σ(x, u, F ) is a C1 function.
(ii) There exists W : Ω×Rm×Rm×n!R with σ(x, u, F )=∂W/∂F (x, u, F ) such

that F �!W (x, u, F ) is convex and C1.
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(iii) σ is strictly monotone, i.e., σ is monotone and

(σ(x, u, F )−σ(x, u, G)) : (F −G)= 0

if and only if F =G.

3. Proofs for Lemmas 1.5 and 1.8

Proof of Lemma 1.5. Taking the supremum over all balls B⊂Rn, we have
by (1.6),

M(fp)(x)1/p ≤ γM(f)(x)+Mµ(x)1/q

for every x∈Rn, where

M(h)(x)= sup
r>0

∫
B(x,r)

|h| dy and Mµ(x)= sup
r>0

µ(B(x, r))
|B(x, r)|

are the Hardy-Littlewood maximal functions of the integrable function h and the
measure µ, respectively. Hence

|{x∈Rn : M(fp)(x)1/p > λ}|≤ |{x∈Rn : γM(f)(x)> λ/2}|
+|{x∈Rn : Mµ(x)1/q > λ/2}|

for λ>0. By [9, Proposition 2.1] or [24, Chapter 1, Section 5.2(b) and Section 1.5],
we obtain that

c(n)
λp

∫
{f>λ}

fp dx≤ c(n)γ
λ

∫
{4γf>λ}

f dx+
c(n)
λq

‖µ‖M(Rn) for all λ> 0.

Let δ>0; we will specify the choice of δ=δ(n, p, γ)>0 later. Assume that q>p with
q−p<δ. Fixing t>0 for now, we multiply both sides of the inequality above by
λp−1+2δ , and integrate with respect to λ over (0, t). Changing the order of the
integration, we arrive at∫

Rn

fp

∫ min(f,t)

0

λ−1+2δ dλ dx≤ c(n)γ
∫
Rn

f

∫ min(4γf,t)

0

λp−2+2δ dλ dx

+c(n)‖µ‖M(Rn)

∫ t

0

λp−q−1+2δ dλ,

that is, for all t>0,

1
2δ

∫
Rn

fp min(f, t)2δ dx≤ c(n)γ
p−1+2δ

∫
Rn

f min(4γf, t)p−1+2δ dx(3.1)

+
c(n)

p−q+2δ
tp−q+2δ‖µ‖M(Rn).
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We will show that if δ is small enough, the first integral on the right-hand side can
be absorbed into the term on the left-hand side. Indeed, we assume, as we clearly
may, that 4γ≥1. Then

f min(4γf, t)p−1+2δ ≤ (4γ)p−1+2δf min(f, t)p−1+2δ ≤ (4γ)p−1+2δfp min(f, t)2δ,

and if 0<δ<1 is so small that

(3.2)
2c(n)δγ
p−1+2δ

(4γ)p−1+2δ ≤ 2c(n)δγ
p−1

(4γ)p+1 ≤ 1
2
,

(3.1) yields that∫
Rn

fp min(f, t)2δ dx≤ c(n)δ
p−q+2δ

‖µ‖M(Rn)t
p−q+2δ .

This implies that

tq|{x∈Rn : f(x)> t}|≤ c(n)δ
p−q+2δ

‖µ‖M(Rn) ≤ c(n)‖µ‖M(Rn),

and the lemma is proven. �

Proof of Lemma 1.8. We fix B0=B(x0, r0)�Ω. Let d(x)=dist(x,Rn\B0) and
χE be the characteristic function of the set E⊂Rn. We define an auxiliary function

f̃(x)= d(x)n/pf(x),

and a measure

(3.3) dµ̃(x)= c(n, p, q)d(x)nq/p dµ+c(n, p, q)
(∫

B0

f(y)p dy

)q/p

χB0(x) dx,

that is,

µ̃(E)= c(n, p, q)
∫

E

d(x)nq/p dµ+c(n, p, q)|E∩B0|
(∫

B0

f(y)p dy

)q/p

for all Borel sets E⊂Rn, where c(n, p, q)>0 is a constant to be suitably chosen. We
claim that

(3.4)
(∫

B

f̃p dx

)1/p

≤ 4n/pγ

∫
2B

f̃ dx+
(

µ̃(2B)
|2B|

)1/q

for all balls B⊂Rn. To this end, we may assume that B meets B0; otherwise (3.4)
is trivial. We treat two cases separately.
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Case 1. Assume that 3B⊂B0. Then an elementary geometric consideration
yields

max
x∈B

d(x)≤ 4 min
x∈2B

d(x).

Thus it follows from the assumption (1.9) that(∫
B

f̃p dx

)1/p

≤max
x∈B

d(x)n/p

(∫
B

fp dx

)1/p

≤ 4n/p min
x∈2B

d(x)n/p

(
γ

∫
B

f dx+
(

µ(2B)
|2B|

)1/q)

≤ 4n/pγ

∫
2B

f̃ dx+
(

µ̃(2B)
|2B|

)1/q

,

provided we choose the constant c(n, p, q)≥4nq/p in (3.3).

Case 2. Suppose that 3B is not contained in B0; recall that B intersects B0.
Therefore

max
x∈B

d(x)≤ max
x∈2B

d(x)≤ c(n)|2B∩B0|1/n.

We conclude that(∫
B

f̃p dx

)1/p

≤max
x∈B

d(x)n/p

(
1
|B|

∫
B∩B0

fp dx

)1/p

≤ 2nc(n)n/p

( |2B∩B0|
|2B|

∫
B0

fp dx

)1/p

≤ 2nc(n)n/p

( |2B∩B0|
|2B|

)1/q(∫
B0

fp dx

)1/p

≤
(

µ̃(2B)
|2B|

)1/q

,

provided that c(n, p, q)≥2nqc(n)nq/p. Combining these two cases proves inequal-
ity (3.4), with the choice of c(n, p, q)=max(4nq/p, 2nqc(n)nq/p).

Now we may apply Lemma 1.5 and obtain

‖f̃‖q
Lq,∞(Rn) ≤ c(n, p, q)‖µ̃‖M(Rn),

if q−p<δ=δ(n, p, γ)>0. Using the definitions of f̃ and µ̃, we arrive at the desired
estimate

‖f‖Lq,∞((1/2)B0) ≤ c|B0|1/q−1/p‖f‖Lp(B0)+c‖µ‖1/q
M(B0)

.

The proof is now complete. �



86 Tero Kilpeläinen, Nageswari Shanmugalingam and Xiao Zhong

Remark 3.5. From (3.2) it is clear that we only need the constant δ>0 of
Lemmas 1.5 and 1.8 to satisfy

δ≤ p−1
c(n)(4γ)p+2

.

If 1<p1<p<p2, it follows that δ can be chosen to depend only on n, γ, p1 and p2;

δ≤ p1−1
c(n)(4γ)p2+2

;

in our application, we will have p1= 3
2 and p2=2.

4. Proof of Theorem 1.2

For the proof of Theorem 1.2, we need the following two lemmas.
The first one, a Caccioppoli type estimate, is Lemma 2.2 in [8]. Here we use

the following notation: D1,n(Ω;Rm) consists of functions in W 1,n
loc (Ω;Rm) that can

be approximated in the seminorm ‖Du‖Ln(Ω) by functions from C∞
0 (Ω;Rm). We

always tacitly assume that all functions in D1,n(Ω;Rm) are defined as zero in Rn\Ω;
the same assumption applies for f and g below. The proof of the lemma is standard;
see [8].

Lemma 4.1. Let u be a solution of (1.1) with f∈L1(Ω;Rm)∩C∞(Ω;Rm)
in place of µ. Let g=|γ3|+|γ4|n/(n−1)+γ5|Du|+|γ6|, and 0<ρ<r. There exists
a constant C1, depending only on γ1, γ2 and n, such that the following inequalities
hold :

(i) (Interior estimate) For all balls B(a, r)⊂Ω, β∈Rm and α>0,∫
{|u−β|<α}∩B(a,ρ)

|Du|n dx≤ C1

(r−ρ)n

∫
B(a,r)

|u−β|n dx+C1

∫
B(a,r)

(α|f |+g) dx.

(ii) (Boundary estimate) For all balls B(a, r)⊂Rn and α>0,∫
{|u|<α}∩B(a,ρ)

|Du|n dx≤ C1

(r−ρ)n

∫
B(a,r)

|u|n dx+C1

∫
B(a,r)

(α|f |+g) dx.

The second lemma gives a quantitative estimate for the Lp-norm of Du for all
p<n. While it is similar to Lemma 3.3 of [8], the novelty here is that in contrast
to [8], the BMO-norm of u is not involved in the proof of the following lemma.
As mentioned in the introduction, we will directly obtain an estimate for the weak
Ln-norm of Du, and as a consequence via the Poincaré inequality, an estimate for
the BMO-norm of u.
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Lemma 4.2. Assume that u∈D1,n(Ω;Rm) satisfies the Caccioppoli inequal-
ities (i) and (ii) of Lemma 4.1 with f∈L1(Ω;Rm) and g∈L1(Ω). If p∈[n/2, n) and
r>0, then

(∫
B(a,r)

|Du|p dx

)1/p

≤C2

(∫
B(a,8r)

|Du|n/2 dx

)2/n

+C2

(∫
B(a,8r)

|g| dx

)1/n

(4.3)

+
C3

r

(∫
B(a,8r)

|f | dx

)1/(n−1)

;

here C2=C2(n, K, C1)>0 and C3=C3(n, K, C1, p)>0.

Remark 4.4. For the proof of Theorem 1.2 it is important to observe that the
constant C2 is independent of p.

Proof. Case 1. Assume that B(a, 2r)⊂Ω. We fix a nonnegative constant T , to
be chosen soon. Define

S0 = {x∈B(a, r) : |u(x)−uB(a,r)| ≤T },

and for k=1, 2, ...,

Sk = {x∈B(a, r) : 2k−1T < |u(x)−uB(a,r)| ≤ 2kT }.

By the Sobolev–Poincaré inequality, we have for each k=1, 2, ...,

∫
B(a,r)

|Du|p dx≥Ap

(∫
B(a,r)

|u−uB(a,r)|np/(n−p) dx

)(n−p)/n

(4.5)

≥Ap2p(k−1)T p|Sk|(n−p)/n.

Here Ap>0 is a constant, depending solely on n and p. Now we choose T . Let

(4.6) T =
(

1
Aprn−p

∫
B(a,r)

|∇u|p dx

)1/p

.

Hence, (4.5) yields
|Sk|(n−p)/n ≤ 2−p(k−1)rn−p,

and we have by the Hölder inequality for k=1, 2, ...,

∫
Sk

|Du|p dx≤ |Sk|(n−p)/n

(∫
Sk

|Du|n dx

)p/n

≤ 2−p(k−1)rn−p

(∫
Sk

|Du|n dx

)p/n

.



88 Tero Kilpeläinen, Nageswari Shanmugalingam and Xiao Zhong

Now we combine this with the estimate (given by Lemma 4.1)∫
Sk

|Du|n dx≤ C1

rn

∫
B(a,2r)

|u−uB(a,r)|n dx+C1

∫
B(a,2r)

(2kT |f |+|g|) dx

to obtain for k=1, 2, ...,∫
Sk

|Du|p dx≤ 2−p(k−1)rn−p

(
C1

rn

∫
B(a,2r)

|u−uB(a,r)|n dx(4.7)

+ C1

∫
B(a,2r)

(2kT |f |+|g|) dx

)p/n

.

For k=0 we employ Hölder’s inequality and (i) of Lemma 4.1 together with
the fact that |S0|≤|B(a, r)|=c(n)rn to obtain the estimate

∫
S0

|Du|p dx≤ |S0|n−p/n

(∫
S0

|Du|n dx

)p/n

≤ c(n)rn−p

(
C1

rn

∫
B(r,2r)

|u−uB(a,r)|n dx+C1

∫
B(a,2r)

(T |f |+|g|) dx

)p/n

.

We used the fact that c(n)1−p/n≤c(n). Now by taking the sum over k=0, 1, 2, ...,
we obtain∫

B(a,r)

|Du|p dx≤
[
c(n)+

∞∑
k=1

2−p(k−1)

]
rn−p

(
C1

rn

∫
B(a,2r)

|u−uB(a,r)|n dx

)p/n

+
[
c(n)+

∞∑
k=1

2−p(k−1)

]
rn−p

(
C1

∫
B(a,2r)

|g| dx

)p/n

+
[
c(n)+

∞∑
k=1

2−p(k−1)+pk/n

]
rn−p

(
C1T

∫
B(a,2r)

|f | dx

)p/n

.

The sums in the above estimate are bounded by a constant depending only on n

since 1<p<n. Thus,(∫
B(a,r)

|Du|p dx

)1/p

≤ c(n)C1/n
1

r2

(∫
B(a,r)

|u−uB(a,r)|n dx

)1/n

(4.8)

+c(n)C1/n
1

(∫
B(a,2r)

|g| dx

)1/n

+
c(n)C1/n

1 T 1/n

r

(∫
B(a,2r)

|f | dx

)1/n

.
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We estimate the first integral in the right-hand side with the help of the Sobolev–
Poincaré inequality

(4.9)
(∫

B(a,2r)

|u−uB(a,r)|n dx

)1/n

≤ c(n)
(∫

B(a,2r)

|Du|n/2 dx

)2/n

,

and the third integral is estimated with the aid of Young’s inequality:

1
r

[
(A1/np

p T 1/n)
(

A−1/npc(n)C1/n
1

(∫
B(a,2r)

|f | dx

)1/n)]

≤ δA
1/p
p

r
T +c(δ)

C
1/(n−1)
1

rA
1/p(n−1)
p

(∫
B(a,2r)

|f | dx

)1/(n−1)

≤ 1
2

(∫
B(a,r)

|Du|p dx

)1/p

+
C3

r

(∫
B(a,2r)

|f | dx

)1/(n−1)

;

here the last inequality holds if δ is small enough. Recall that T was defined in (4.6).
Thus we arrive at the inequality

(∫
B(a,r)

|Du|p dx

)1/p

≤C2

(∫
B(a,2r)

|Du|n/2 dx

)2/n

+C2

(∫
B(a,2r)

|g| dx

)1/n

+
C3

r

(∫
B(a,2r)

|f | dx

)1/(n−1)

,(4.10)

and the lemma is proved in this case.

Case 2. Assume that B(a, 2r)\Ω 
=∅. We proceed as in Case 1; we list only
the necessary modifications here. Define

S0 = {x∈B(a, 4r) : |u(x)| ≤T },

and
Sk = {x∈B(a, 4r) : 2k−1T < |u(x)| ≤ 2kT }, k = 1, 2, ... .

Recall that u=0 in Rn\Ω. As Rn\Ω is geometrically dense and hence is uniformly
p-fat for every p>1, we can apply the Sobolev–Poincaré inequality (2.1) to obtain
for each k=1, 2, ...,

∫
B(a,4r)

|Du|p dx≥Ap

(∫
B(a,4r)

|u|np/(n−p) dx

)(n−p)/n

(4.11)

≥Ap2p(k−1)T p|Sk|(n−p)/n.
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Here Ap>0 is a constant that depends only on n, p, and K. Again we proceed as
in Case 1. In this case we use part (ii) of Lemma 4.1 instead of part (i). Also, we
need to replace the Sobolev–Poincaré inequality (4.9) with the inequality

(4.12)
(∫

B(a,8r)

|u|n dx

)1/n

≤ c(n, K)
(∫

B(a,8r)

|Du|n/2 dx

)2/n

,

which follows from Lemma 2.1 with p=n/2. Eventually, we arrive at the following
estimate similar to (4.10)(∫

B(a,4r)

|Du|p dx

)1/p

≤C2

(∫
B(a,8r)

|Du|n/2 dx

)2/n

+C2

(∫
B(a,8r)

|g| dx

)1/n

+
C3

r

(∫
B(a,8r)

|f | dx

)1/(n−1)

.(4.13)

This completes the proof of case 2, and hence, that of Lemma 4.2. �

Proof of Theorem 1.2. As shown in [8], under the assumptions (H0)–(H3) and
one of the conditions (i)–(iii) on the operator (see Section 2), we can construct
approximating solutions ui∈W 1,n

0 (Ω) of the regularized system

− div σ(x, ui, Dui)= fi

for smooth functions fi, bounded in L1(Ω), with fi!µ weakly in M(Ω). It was
shown in [7] (see also [8]) that we may pass to the limit i!∞ to prove the existence
of a solution u of system (1.1). By Lemma 4.1, the approximating solutions ui,
together with gi and fi, satisfy the hypotheses of Lemma 4.2, and hence satisfy the
inequality (4.3) for all balls B(a, r)⊂Rn. An easy covering argument shows that
for all balls B(a, r)⊂Rn,(∫

B(a,r)

|Dui|p dx

)1/p

≤C2

(∫
B(a,2r)

|Dui|n/2 dx

)2/n

+C2

(∫
B(a,2r)

|gi| dx

)1/n

+
C3

r

(∫
B(a,2r)

|fi| dx

)1/(n−1)

.(4.14)

Now we fix a ball B(y, 2r0)⊂Rn. Then for each ball B(a, r) with B(a, 2r)⊂
B(y, 2r0), we rewrite (4.14) as(∫

B(a,r)

|Dui|p dx

)1/p

≤C2

(∫
B(a,2r)

|Dui|n/2 dx

)2/n

(4.15)

+
(∫

B(a,2r)

(C′
2|gi|+C′

3νi|fi|) dx

)1/n

,
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where

νi =
(∫

B(y,2r0)

|fi| dx

)1/(n−1)

.

Hence with Fi=|Dui|n/2,
(4.16)(∫

B(a,r)

F
2p/n
i dx

)n/2p

≤C4

∫
B(a,2r)

Fi dx+
(∫

B(a,2r)

(C5|gi|+C6νi|fi|) dx

)1/2

,

and we are now in a position to apply Lemma 1.8 with q=2 and with 2p/n instead
of p, provided n>p≥3n/4 and 2(1−p/n)<δ. By Remark 3.5, we see that it is
possible to choose such a p. We conclude that

|Dui|Ln,∞(B(y,r0)) ≤C‖fi‖1/(n−1)
M(B(y,2r0))

+C‖gi‖1/n
L1(B(y,2r0))

+Cr0

(∫
B(y,2r0)

|Dui|p dx

)1/p

.

Again we use Lemma 4.2 to estimate the last term in the above inequality to obtain
the inequality (1.4) for the approximating solutions ui. In view of the weak lower
semicontinuity of the Ln,∞-norm, we conclude the validity of (1.4) for u as well.

The proof of (1.3) is similarly obtained by applying Lemma 1.5; we leave the
details to the reader. �

In Theorem 1.2 if we only assume that the complement of Ω is uniformly
n-fat, we can prove the theorem as follows. By the result in [23] mentioned in
Section 2, the complement of Ω is uniformly n0-fat for some n0=n0(n, K)<n. We
may assume that n0>n/2. In this case, the inequality (4.3) is true if we replace the
Ln/2-norm of Du in the right-hand side with the Ln0-norm. The proof is the same
as that of (4.3), except that in the Sobolev–Poincaré inequality (4.12), we replace
the Ln/2-norm by the Ln0-norm. The rest of the proof of the theorem in this case
requires only minor changes. We omit the details.

References

1. Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Grundlehren
Math. Wiss. 314, Springer, Berlin–Heidelberg, 1996.

2. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and
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6. Boccardo, L., Gallouët, T. and Orsina, L., Existence and uniqueness of entropy
solutions for nonlinear elliptic equations with measure data, Ann. Inst.
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