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In 2005, Meeks and Rosenberg proved that the only complete, non-flat, properly
embedded minimal surface of genus zero with one end is the standard helicoid [21].
Subsequently, Bernstein–Breiner [5] and Meeks–Perez [19] proved that any complete,
non-flat, properly embedded minimal surface in R3 of finite genus g with one end must
be asymptotic to a helicoid at infinity. We call such a surface a genus-g helicoid. Until
1993, the only known example was the helicoid itself. In that year, Hoffman, Karcher
and Wei [17] discovered a genus-1 minimal surface asymptotic to a helicoid at infinity
(see Figure 1, left), and numerical computations gave compelling evidence that it was
embedded. Subsequently, Weber, Hoffman and Wolf proved existence of an embedded
example, i.e., of a genus-1 helicoid [28]. In [13] Hoffman and White gave a different proof
for the existence of a genus-1 helicoid.

A genus-2 helicoid was computed numerically by the second author of this paper
in 1993 while he was a postdoc in Amherst (see Figure 1, right). Helicoids of genus up
to 6 have been computed by Schmies [23] using the theoretical techniques developed by
Bobenko [6]. These surfaces were computed using the Weierstrass representation, and
the period problem was solved numerically. However, there was no proof that the period
problem could be solved for genus 2 or higher.

In this paper we prove the following result.

Theorem 1. For every g, there exist genus-g helicoids in R3.
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Figure 1. Left : A genus-1 helicoid, computed by David Hoffman, Hermann Karcher and
Fusheng Wei. Right : A genus-2 helicoid, computed by Martin Traizet. Both surfaces were
computed numerically using the Weierstrass representation, and the images were made to-
gether with Jim Hoffman using visualization software he helped to develop.

To construct higher-genus helicoids in R3, we first construct helicoid-like minimal
surfaces of prescribed genus in the Riemannian 3-manifold S2×R, where S2 stands for
a round sphere. This is achieved by a degree argument. Then we let the radius of the
sphere S2 go to infinity and we prove that in the limit we get helicoids of prescribed
genus in R3. The delicate part in this limiting process is to ensure that the limit has the
desired topology, in other words that the handles do not all drift away.

The paper is divided into two parts. In Part I, we construct helicoidal minimal
surfaces in S2×R, and we prove that they converge to helicoidal minimal surfaces in R3

as the radius goes to infinity. In Part II, we prove that the limit has the desired topology
by proving that, if we work with suitable helicoids of an even genus in S2×R and let the
radius go to infinity, then exactly half of the handles drift away.

Parts I and II are in some respects independent of each other, and the methods
used are very different. Of course, Part II uses some properties of the S2×R surfaces
obtained in Part I, but otherwise it does not depend on the way in which those surfaces
were obtained. We have stated those properties as they are needed in Part II, so that
Part II can be read independently of Part I.
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Part I. Genus-g helicoids in S2×R

The study of complete, properly embedded minimal surfaces in Σ×R, where Σ is a
complete Riemannian 2-manifold, was initiated by Rosenberg in [22]. The general theory
of such surfaces was further developed by Meeks and Rosenberg in [20]. In the case of
S2×R, if such a surface has finite topology, then either it is a union of horizontal spheres
S2×{t}, or else it is conformally a connected, twice-punctured, compact Riemann surface,
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with one end going up and the other end going down [22, Theorems 3.3, 4.2 and 5.2].
In the same paper, Rosenberg described a class of such surfaces in S2×R that are very
similar to helicoids in R3, and hence are also called helicoids. They may be characterized
as the complete, non-flat minimal surfaces in S2×R whose horizontal slices are all great
circles. (See §1 for a more explicit description of helicoids in S2×R and for a discussion
of their basic properties.)

In Part I of this paper, we prove the existence of properly embedded minimal surfaces
in S2×R of prescribed finite genus, with top and bottom ends asymptotic to an end of a
helicoid of any prescribed pitch. (The pitch of a helicoid in S2×R is defined in §1. The
absolute value of the pitch is twice the vertical distance between successive sheets of the
helicoid. The sign of the pitch depends on the sense in which the helicoid winds about
its axes.) Although the pitch of the helicoid to which the top end is asymptotic equals
the pitch of the helicoid to which the bottom is asymptotic, we do not know if these two
helicoids coincide; one might conceivably be a vertical translate of the other. Each of the
surfaces we produce contains a pair of antipodal vertical lines Z and Z∗ (called axes of
the surface) and a horizontal great circle X that intersects each of the axes. Indeed, for
each of our surfaces, there is a helicoid whose intersection with the surface is precisely
X∪Z∪Z∗.

For every genus, our method produces two examples that are not congruent to
each other by any orientation-preserving isometry of S2×R. The two examples are
distinguished by their behavior at the origin O: one is “positive” at O and the other is
“negative” at O. (The positive/negative terminology is explained in §3.) If the genus is
odd, the two examples are congruent to each other by the reflection µE in the totally
geodesic cylinder consisting of all points equidistant from the two axes. If the genus is
even, the two examples are not congruent to each other by any isometry of S2×R, but
each one is invariant under the reflection µE . The examples of even genus 2g are also
invariant under (p, z) 7!(p̃, z), where p and p̃ are antipodal points in S2, so their quotients
under this involution are genus-g minimal surfaces in RP2×R with helicoidal ends.

For each genus g and for each helicoidal pitch, we prove that, as the radius of S2

tends to infinity, our examples converge subsequentially to complete, properly embedded
minimal surfaces in R3 that are asymptotic to helicoids at infinity. The arguments in
Part II required to control the genus of the limit (by preventing too many handles from
drifting away) are rather delicate. It is much easier to control whether the limiting
surface has odd or even genus: a limit (as the radius of S2 tends to infinity) of “positive”
examples must have even genus and a limit of “negative” examples must have odd genus.
Such parity control is sufficient (without the delicate arguments of Part II) to give a new
proof of the existence of a genus-1 helicoid in R3. See the corollary to Theorem 3 in §2
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for details.
Returning to our discussion of examples in S2×R, we also prove the existence of

what we call periodic genus-g helicoids. They are properly embedded minimal surfaces
that are invariant under a screw motion of S2×R and have fundamental domains of
genus g. Indeed, our non-periodic examples in S2×R are obtained as limits of the
periodic examples as the period tends to infinity.

As mentioned above, all of our examples contain two vertical axes Z∪Z∗ and a
horizontal great circle X⊂S2×{0} at height zero. Let Y be the great circle at height
zero such that X, Y, and Z meet orthogonally at a pair of points O∈Z and O∗∈Z∗. All
of our examples are invariant under 180� rotation about X, Y, and Z (or, equivalently,
about Z∗, since rotations about Z are also rotations about Z∗). In addition, the non-
periodic examples (and suitable fundamental domains of the periodic examples) are what
we call “Y -surfaces”. Intuitively, this means that they are %Y -invariant (where %Y is a
180� rotation about Y ) and that the handles (if there are any) occur along Y . The
precise definition is that %Y acts by multiplication by −1 on the first homology group of
the surface. This property is very useful because it means that when we let the period of
the periodic examples tend to infinity, the handles cannot drift away: they are trapped
along Y, which is compact. In Part II, when we need to control handles drifting off to
infinity as we let the radius of S2 tend to infinity, the Y -surface property means that the
handles can only drift off in one direction (namely along Y ).

Part I is organized as follows. In §1, we present the basic facts about helicoids in
S2×R. In §2, we state the main results. In §3, we describe what it means for a surface to
be positive or negative at O with respect to H. In §4, we describe the general properties
of Y -surfaces. In §§5–11, we prove existence of periodic genus-g helicoids in S2×R. In
§12 and §13 we present general results we will use in order to establish the existence of
limits. In §14, we get non-periodic genus-g helicoids as limits of periodic examples by
letting the period tend to infinity. In §15 and §16, we prove that as the radius of S2 tends
to infinity, our non-periodic genus-g helicoids in S2×R converge to properly embedded
minimal surfaces in R3 with helicoidal ends.

1. Preliminaries

Symmetries of S2×R

Let R>0 and S2=S2(R) be the sphere of radius R. Let C be a horizontal great circle
in S2×R at height a, i.e., a great circle in the sphere S2×{a} for some a. The union
of all vertical lines through points in C is a totally geodesic cylinder. We let µC denote
reflection in that cylinder: it is the orientation-reversing isometry of S2×R that leaves
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points in the cylinder fixed and that interchanges the two components of the complement.
If we compose µC with reflection in the sphere S2×{a}, i.e., with the isometry

(p, z)∈S2×R 7−! (p, 2a−z),

we get an orientation-preserving involution %C of S2×R whose fixed-point set is pre-
cisely C. Intuitively, %C is a 180� rotation about C.

Let L be a vertical line {p}×R in S2×R and let L∗ be the antipodal line, i.e., the
line {p∗}×R where p and p∗ are antipodal points in S2. Rotation through any angle θ
about L is a well-defined isometry of S2×R. If θ is not a multiple of 2π, then the fixed
point set of the rotation is L∪L∗. Thus any rotation about L is also a rotation about L∗.
We let %L(=%L∗) denote the 180� rotation about L.

Helicoids in S2×R

Let O and O∗ be a pair of antipodal points in S2×{0}, and let Z and Z∗ be the vertical
lines in S2×R through those points. Let X and Y be a pair of great circles in S2×{0}
that intersect orthogonally at O and O∗. Let E be the equator in S2×{0} with poles O
and O∗, i.e., the set of points in S2×{0} equidistant from O and O∗.

Fix a non-zero number � and consider the surface

H =H� =
⋃
t∈R

σ2πt,�tX,

where σθ,v:S2×R!S2×R is the screw motion given by rotation by θ about Z (or,
equivalently, about Z∗) together with vertical translation by v. We say that H is the
helicoid of pitch � that has axes Z∪Z∗ and contains X.

To see that H is a minimal surface, note that it is fibered by horizontal great circles.
Let p be a point in H and let C be the horizontal great circle in H containing p. One
easily checks that the involution %C (180� rotation about C) maps H to H, reversing its
orientation. It follows immediately that the mean curvature of H at p is zero. For if it
were non-zero, it would point into one of the two components of (S2×R)\H. But then,
by the symmetry %C (which interchanges the two components), it would also point into
the other component, a contradiction.

Unlike helicoids in R3, the helicoid H has two axes, Z and Z∗. Indeed, the reflection
µE restricts to an orientation-reversing isometry of H that interchanges Z and Z∗.

The absolute value of the pitch � is twice the vertical distance between the sheets
of the helicoid H�. Without loss of generality we will always assume that �>0. As �
tends to ∞, the helicoid H� converges smoothly to the cylinder X×R, which thus could
be regarded as a helicoid of infinite pitch.
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2. The main theorems

We now state our first main result in a form that includes the periodic case (h<∞)
and the non-periodic case (h=∞). The reader may initially wish to ignore the periodic
case. Here X and Y are horizontal great circles at height z=0 that intersect each other
orthogonally at points O and O∗, E is the great circle of points at height z=0 equidistant
from O and O∗, and Z and Z∗ are the vertical lines passing through O and O∗.

Theorem 2. Let H be a helicoid in S2×R that has vertical axes Z∪Z∗ and that
contains the horizontal great circle X. For each genus g>1 and each height h∈(0,∞],
there exists a pair M+ and M− of embedded minimal surfaces in S2×R of genus g with
the following properties (where s is + or −):

(1) If h=∞, then Ms has no boundary, it is properly embedded in S2×R, and each
of its two ends is asymptotic to H or to a vertical translate of H.

(2) If h<∞, then Ms is a smooth, compact surface with boundary in S2×[−h, h].
Its boundary consists of the two great circles at heights h and −h that intersect H

orthogonally at points in Z and in Z∗.
(3) If h=∞, then

Ms∩H =Z∪Z∗∪X,

and if h<∞, then

interior(Ms)∩H =Zh∪Z∗
h∪X,

where Zh and Z∗
h are the portions of Z and Z∗ with |z|<h.

(4) Ms is a Y -surface.
(5) Ms∩Y contains exactly 2g+2 points.
(6) M+ and M− are positive and negative, respectively, with respect to H at O.
(7) If g is odd, then M+ and M− are congruent to each other by a reflection µE in

the cylinder E×R. They are not congruent to each other by any orientation-preserving
isometry of S2×R.

(8) If g is even, then M+ and M− are each invariant under a reflection µE in the
cylinder E×R. They are not congruent to each other by any isometry of S2×R.

The positive/negative terminology in assertion (6) is explained in §3, and Y -surfaces
are defined and discussed in §4.

Note that if h<∞, we can extend Ms by repeated Schwarz reflections to get a com-
plete, properly embedded minimal surfaceM̂s that is invariant under the screw motion σ
that takes H to H (preserving its orientation) and {z=0} to {z=2h}. The intersection
M̂s∩H consists of Z, Z∗, and the horizontal circles H∩{z=2nh}, n∈Z. The surfaces
M̂s are the periodic genus-g helicoids mentioned in the introduction.
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Remark 2.1. Assertion (2) states (for h<∞) that the boundary ∂Ms consists of
two great circles that meet H orthogonally. Actually, we could allow ∂Ms to be any
%Y -invariant pair of great circles at heights h and −h that intersect Z and Z∗. We have
chosen to state Theorem 2 for circles that meet the helicoid H orthogonally because when
we extend Ms by repeated Schwarz reflections to get a complete, properly embedded
surface M̂ , that choice makes the intersection set M̂∩H particularly simple. In §6, we
explain why the choice does not matter: if the theorem is true for one choice, it is also
true for any other choice. Indeed, in proving the h<∞ case of Theorem 2, it will be more
convenient to let ∂Ms be the horizontal great circles H∩{z=±h} that lie in H. (Later,
when we let h!∞ to get non-periodic genus-g helicoids in S2×R, the choice of great
circles ∂Ms plays no role in the proofs.)

Remark 2.2. Theorem 2 remains true if the round metric on S2 is replaced by any
metric that has positive curvature, that is rotationally symmetric about the poles O and
O∗, and that is symmetric with respect to reflection in the equator of points equidistant
from O and O∗. (In fact the last symmetry is required only for the assertions about the
µE symmetry.) No changes are required in any of the proofs.

In the non-periodic case (h=∞) of Theorem 2, we do not know whether the two ends
of Ms are asymptotic to opposite ends of the same helicoid. Indeed, it is possible that
the top end is asymptotic to H shifted vertically by some amount v 6=0; the bottom end
would then be asymptotic to H shifted vertically by −v. Also, we do not know whether
M+ and M− must be asymptotic to each other, or to what extent the pair {M+,M−} is
unique.

Except for the non-congruence assertions, the proof of Theorem 2 holds for all he-
licoids H including H=X×R, which may be regarded as a helicoid of infinite pitch.
(When H=X×R and h=∞, Theorem 2 was proved by Rosenberg in [22, §4] by com-
pletely different methods.) When H=X×R, the non-congruence assertions break down:
see §18. The periodic (i.e., h<∞) case of Theorem 2 is proved at the end of §5, assuming
Theorem 5.1, whose proof is a consequence of the material in subsequent sections. The
non-periodic (h=∞) case is proved in §14.

Our second main result lets us take limits as the radius of S2 tends to infinity. For
simplicity we only deal with the non-periodic case (h=∞) here.(1)

Theorem 3. Let {Rn}∞n=1 be a sequence of radii tending to infinity. For every
n>1, let M+(Rn) and M−(Rn) be genus-g surfaces in S2(Rn)×R satisfying the list of
properties in Theorem 2, where H is the helicoid of pitch 1 and h=∞. Then, after

(1) An analogous theorem is true for the periodic case (h<∞).
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passing to a subsequence, the M+(Rn) and M−(Rn) converge smoothly on compact sets
to limits M+ and M− with the following properties:

(1) M+ and M− are complete, properly embedded minimal surfaces in R3 that are
asymptotic to the standard helicoid H⊂R3.

(2) If Ms 6=H, then Ms∩H=X∪Z and Ms has sign s at O with respect to H.
(3) Ms is a Y -surface.
(4) ‖Ms∩Y ‖=2‖Ms∩Y +‖+1=2 genus(Ms)+1.
(5) If g is even, then M+ and M− each have genus at most 1

2g. If g is odd, then
genus(M+)+genus(M−) is at most g.

(6) The genus of M+ is even. The genus of M− is odd.

Here if A is a set, then ‖A‖ denotes the number of elements of A.
Theorem 3 is proved in §16. As mentioned earlier, this theorem gives a new proof

of the existence of genus-one helicoids in R3, as explained in the following corollary.

Corollary. If g=1 or 2, then M+ has genus zero and M− has genus 1.

The corollary follows immediately from statements (5) and (6) of Theorem 3.
In Part II, we prove existence of helicoidal surfaces of arbitrary genus in R3.

Theorem 4. Let M+ and M− be the limit minimal surfaces in R3 described in
Theorem 3, and suppose that g is even. If 1

2g is even, then M+ has genus 1
2g. If 1

2g is
odd, then M− has genus 1

2g.

The sign here is crucial: if 1
2g is even, then M− has genus strictly less than 1

2g,
and if 1

2g is odd, then M+ has genus strictly less than 1
2g. (These inequalities follow

immediately from statements (5) and (6) of Theorem 3.)

3. Positivity/negativity of surfaces at O

In this section, we explain the positive/negative terminology used in Theorems 2 and 3.
Let H be a helicoid that has axes Z∪Z∗ and that contains X. The set

H\(X∪Z∪Z∗)

consists of four components that we will call quadrants. The axes Z and Z∗ are naturally
oriented, and we choose an orientation of X allowing us to label the components of
X\{O,O∗} as X+ and X−. We will refer to the quadrant bounded by X+, Z+, and
(Z∗)+ and the quadrant bounded by X−, Z−, and (Z∗)− as the positive quadrants of H.
The other two quadrants are called the negative quadrants. We orient Y so that the
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triple (X,Y, Z) is positively oriented at O, and let H+ denote the the component of the
complement of H that contains Y +.

Consider an embedded minimal surface S in S2×R such that, in some open set U
containing O,

(∂S)∩U =(X∪Z)∩U. (3.1)

If S and the two positive quadrants of H\(X∪Z) are tangent to each other at O, we say
that S is positive at O. If S and the two negative quadrants of H\(X∪Z) are tangent
to each other at O, we say that S is negative at O. (Otherwise the sign of S at O with
respect to H is not defined.)

Now consider an embedded minimal surface M in S2×R such that

The origin O is an interior point of M , and M∩H
coincides with X∪Z in some neighborhood of O.

(3.2)

We say that M is positive or negative at O with respect to H according to whether
M∩H+ is positive or negative at O.

Positivity and negativity at O∗ is defined in exactly the same way.

Remark 3.1. A surface S satisfying (3.1) is positive (or negative) at O if and only if
µES is positive (or negative) at O∗, where µE denotes reflection in the totally geodesic
cylinder consisting of all points equidistant from Z and Z∗. Similarly, a surface M

satisfying (3.2) is positive (or negative) at O with respect toH if and only µEM is positive
(or negative) at O∗ with respect to H. (If this is not clear, note that µE(H+)=H+ and
that µE(Q)=Q for each quadrant Q of H.)

4. Y -surfaces

As discussed in the introduction, the surfaces we construct will be Y -surfaces. In this
section, we define “Y -surface” and prove basic properties of Y -surfaces.

Definition 4.1. Let N be a Riemannian 3-manifold that admits an order-2 rotation
%Y about a geodesic Y . An orientable surface S in N is called a Y -surface if %Y restricts
to an orientation-preserving isometry of S and if

%Y acts on H1(S,Z) by multiplication by −1. (4.1)

The following proposition shows that the definition of a Y -surface is equivalent to
two other topological conditions.
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Proposition 4.2. Suppose that S is an open, orientable Riemannian 2-manifold of
finite topology, that %:S!S is an orientation-preserving isometry of order 2, and that
S/% is connected. Then the following are equivalent :

(a) % acts by multiplication by −1 on the first homology group H1(S,Z);
(b) the quotient S/% is topologically a disk ;
(c) S has exactly 2−χ(S) fixed points of %, where χ(S) is the Euler characteristic

of S.

We remark that Proposition 4.2 is intrinsic in nature. It does not require that
the orientation-preserving automorphism % be a reflection in an ambient geodesic Y .
Proposition 4.2 is easily proved using a %-invariant triangulation of S whose vertices
include the fixed points of %; details may be found in [14].

Corollary 4.3. Let S be an open, orientable Y -surface such that S/%Y is con-
nected. Let k be the number of fixed points of %Y :S!S. Then, the following holds.

(i) The surface S has either one or two ends, according to whether k is odd or even.
(ii) If k=0, then S is the union of two disks.
(iii) If k>0, then S is connected, and the genus of S is{

1
2 (k−2), if k is even,
1
2 (k−1), if k is odd.

In particular, S is a single disk if and only if k=1.

Proof. Since S/%Y is a disk, it has one end, and thus S has either one or two
ends. The Euler characteristic of S is 2c−2g−e, where c is the number of connected
components, g is the genus, and e is the number of ends. Thus, by Proposition 4.2 (b),

2−k=2c−2g−e. (4.2)

Hence k and e are congruent modulo 2. Assertion (i) follows immediately. (Figure 2
shows two examples of assertion (i).)

Note that if S has more than one component, then since S/%Y is a disk, in fact
S must have exactly two components, each of which must be a disk. Furthermore, %Y

interchanges the two disks, so that %Y has no fixed points in S, i.e., k=0.
Conversely, suppose k=0. Then e=2 by assertion (i), so from (4.2) we see that

2c=2g+4.

Hence 2c>4 and therefore c>2, i.e., S has two or more components. But we have just
shown that in that case S has exactly two components, each of which is a disk. This
completes the proof of assertion (ii).
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Y

Figure 2. Right : A Y -surface of genus two. The number of fixed points of %Y (180� rotation
around Y ) is even (equal to six) and the number of boundary components is two. Center : A
Y -surface of genus one. The number of fixed points of %Y is odd (equal to three) and there is
a single boundary component. Left : This annular surface A is not a Y -surface. The rotation
%Y acts as the identity on H1(A,Z), not as multiplication by −1.

Now suppose that k>0. Then as we have just shown, S is connected, so (4.2)
becomes k=2g+e, or

g= 1
2 (k−e). (4.3)

This together with assertion (i) gives assertion (iii).

Remark 4.4. To apply Proposition 4.2 and Corollary 4.3 to a compact manifold M
with non-empty boundary, one lets S=M \∂M . The number of ends of S is equal to the
number of boundary components of M .

Proposition 4.5. If S is a Y -surface in N and if U is an open subset of S such
that U and %Y U are disjoint, then U has genus zero.

Proof. Note that we can identify U with a subset of S/%Y . Since S is a Y -surface,
S/%Y has genus zero (by Proposition 4.2) and therefore U has genus zero.

5. Periodic genus-g helicoids in S2×R: Theorem 2 for h<∞

Let 0<h<∞. Recall that we are trying to construct a minimal surface M in S2×[−h, h]
such that

interior(M)∩H =Zh∪Z∗
h∪X

(where Zh and Z∗
h are the portions of Z and Z∗ where |z|<h) and such that ∂M is a

certain pair of circles at heights h and −h. Since such an M contains Zh, Z∗
h, and X,

it must (by the Schwarz reflection principle) be invariant under %Z (which is the same
as %Z∗) and under %X , the 180� rotations about Z and about X. It follows that M is
invariant under %Y , the composition of %Z and %X . In particular, if we let

S= interior(M)∩H+
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be the portion of the interior(2) of M in H+, then

M =S∪%ZS=S∪%XS.

Thus to constructM , it suffices to construct S. Note that the boundary of S is Zh∪Z∗
h∪X

together with a great semicircle C in H+∩{z=h} and its image %Y C under %Y . Let us
call that boundary ΓC . (See Figure 3.) Thus we wish to construct an embedded minimal
surface S in H+ having specified topology and having boundary ∂S=ΓC . Note we need S
to be %Y -invariant; otherwise Schwarz reflection in Z and Schwarz reflection in X would
not produce the same surface.

We will prove existence by counting surfaces mod 2. Suppose for the moment that
the curve ΓC is non-degenerate in the following sense: if S is a smoothly embedded
minimal Y -surface in H+ with boundary ΓC , then S has no non-zero %Y -invariant Jacobi
fields that vanish on ΓC . For each g>0, the number of such surfaces S of genus g turns
out to be even. Of course, for the purposes of proving existence, this fact is not useful,
since zero is an even number. However, if instead of considering all Y -surfaces of genus
g, we consider only those that are positive (or those that are negative) at O, then the
number of such surfaces turns out to be odd, and therefore existence follows.

For the next few sections, we fix a helicoid H and we fix an h with 0<h<∞. Our
goal is to prove the following theorem:

Theorem 5.1. Let 0<h<∞, let C be a great semicircle in H+∩{z=h} joining Z

to Z∗, and let ΓC be the curve given by

ΓC =Zh∪Z∗
h∪C∪%Y C,

where Zh=Z∩{|z|6h} and Z∗=Z∗∩{|z|6h}.
For each sign s∈{+,−} and for each n>1, there exists an open, embedded minimal

Y -surface S=Ss in H+∩{|z|<h} such that ∂S=ΓC , such that Y +∩S contains exactly
n points, and such that S is positive(3) at O if s=+ and negative at O if s=−.

If n is even, there is such a surface that is invariant under reflection µE in the
totally geodesic cylinder E×R.

Before proving Theorem 5.1, let us show that it implies the periodic case of Theo-
rem 2 of §2.

Proposition 5.2. Theorem 5.1 implies Theorem 2 in the periodic case h<∞.

(2) It will be convenient for us to let S be an open manifold, because although S is a smooth
surface, its closure has corners.

(3) Positivity and negativity of S at O were defined in §3.
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Figure 3. The boundary curve ΓC . We depict S2×R in these illustrations as R3 with each
horizontal S2×{z} represented as a horizontal plane via stereographic projection, with one
point of the sphere at infinity. Here, that point is the antipodal point of the midpoint of
the semicircle Y +. Right : For ease of illustration, we have chosen the reference helicoid H
to be the vertical cylinder X×R, and the semicircle C=Ctop to meet H orthogonally. The
geodesics X, Z and Z∗ divide H into four components, two of which are shaded. The helicoid
H divides S2×R into two components. The component H+ is the interior of the solid cylinder
bounded by H. Left : The boundary curve Γ=ΓC consists of the great circle X, two vertical
line segments on the axes Z∪Z∗ of height 2h and two semicircles in (S2×{±h})∩H+. Note
that Γ has %Y symmetry. We seek a %Y -invariant minimal surface in H+ that has boundary
ΓC and has all of its topology concentrated along Y +. That is, we want a Y -surface as defined
in §4 with the properties established in Proposition 4.2. According to Theorem 5.1, there are
in fact two such surfaces for every positive genus.

Proof. Let C be the great semicircle in H+∩{z=h} that has endpoints on Z∪Z∗

and that meets H orthogonally at those endpoints. First suppose n is even, and let Ss

for s∈{+,−} be the surfaces given by Theorem 5.1. Let Ms be the surface obtained by
Schwarz reflection from Ss:

Ms =Ss∪%ZSs =Ss∪%XSs,

(The second equality holds because Ss is %Y -invariant and %Z �%Y =%X .)
By Lemma 5.3 below, Ms is a smoothly embedded minimal surface. Clearly it is

%Y -invariant, it lies in S2×[−h, h], its interior has the desired intersection with H, it
has the indicated sign at O, it has µE symmetry, and its boundary is the desired pair
of horizontal circles. We claim that Ms is a Y -surface. To see this, note that since
Ss is a Y -surface, the quotient Ss/%Y is topologically a disk by Proposition 4.2. The
interior of Ms/%Y is two copies of Ss/%Y glued along a common boundary segment. Thus
the interior of Ms/%Y is also topologically a disk, and therefore Ms is a Y -surface by
Proposition 4.2.
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Note that Ms∩Y has 2n+2 points: the n points in Ss∩Y +, an equal number of
points in %ZSs∩Y −, and the two points O and O∗. Thus by Corollary 4.3, Ms has
genus n. Since n is an arbitrary even number, this completes the proof for even genus,
except for assertion (8) of Theorem 2, the assertion that M+ and M− are not congruent.

Now let n be odd, and let S+ be the surface given by Theorem 5.1. By Lemma 5.4
below, S+ is negative at O∗, which implies that µE(S+) is negative at O. In this case,
we choose our S− to be µE(S+). Exactly as when n is even, we extend S± by Schwarz
reflection to get M±. As before, the M± are Y -surfaces of genus n. The proof that they
have the required properties is exactly as in the case of even n, except for the statement
that M+ and M− are not congruent by any orientation-preserving isometry of S2×R.

It remains only to prove the statements about non-congruence ofM+ andM−. Those
statements (which we never use) are proved in §18.

In the proof above we used the following two lemmas.

Lemma 5.3. If S is a %Y -invariant embedded minimal surface in H+ with boundary
Γ and with Y ∩S a finite set, then the Schwarz-extended surface

M =S∪%ZS=S∪%XS

is smoothly embedded everywhere.

Proof. One easily checks that if q is a corner of Γ other than O or O∗, then the
tangent cone to S at q is a multiplicity-1 quarter-plane. Thus the tangent cone to M at q
is a multiplicity-1 half-plane, which implies that M is smooth at q by Allard’s boundary
regularity theorem [2]. (In fact, the classical boundary regularity theory [12] suffices
here.)

Let B be an open ball centered at O small enough that B contains no points of
Y ∩S. Now S∩B is a Y -surface, so by Corollary 4.3(ii), it is topologically the union of
two disks. It follows that M∩B is a disk, so M is a branched minimal immersion at O
by [11]. But since M is embedded, in fact M is unbranched.

Lemma 5.4. Let S⊂H+ be a Y -surface with ∂S=Γ. Then the signs of S at O and
O∗ agree or disagree according to whether the number of points of Y ∩S is even or odd.

Proof. Let Ŝ be the geodesic completion of S. We can identify Ŝ with 	S=S∪∂S,
except that O∈	S corresponds to two points in Ŝ, and similarly for O∗. Note that the
number of ends of S is equal to the number of components of ∂Ŝ.

By symmetry, we may assume that the sign of S at O is +. Then, at O, Z+ is joined
in ∂Ŝ to X+ and Z− is joined to X−. If the sign of S at O∗ is also +, then the same
pairing occurs at O∗, from which it follows that ∂Ŝ has two components and therefore
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that S has two ends. If the sign of S at O∗ is −, then the pairings are crossed, so that
∂Ŝ has only one component and therefore S has only one end. Thus S has two ends or
one end according to whether the signs of S at O and O∗ are equal or not. The lemma
now follows from Corollary 4.3, according to which the number of ends of S is two or
one according to whether the number of points of Y ∩S is even or odd.

6. Adjusting the pitch of the helicoid

Theorem 5.1 of §5 asserts that the curve ΓC bounds various minimal surfaces in H+. In
that theorem, C=Γ∩{z=h} is allowed to be any semicircle inH+∩{z=h} with endpoints
in Z∪Z∗. In this section, we will show that in order to prove Theorem 5.1, it is sufficient
to prove it for the special case where C is a semicircle in the helicoid H.

Theorem 6.1. (Special case of Theorem 5.1) Let 0<h<∞ and let C be the semi-
circle in H∩{z=h} joining Z to Z∗ such that C and X+ lie in the same component of
H\(Z∪Z∗). For each sign s∈{+,−} and for each n>1, there exists an open embedded
minimal Y -surface S=Ss in H+∩{|z|<h} such that

∂S=ΓC :=Zh∪Z∗
h∪C∪%Y C,

such that Y +∩S contains exactly n points, and such that S is positive at O if s=+ and
negative at O if s=−.

If n is even, there is such a surface that is invariant under reflection µE in the
totally geodesic cylinder E×R.

We will prove that Theorem 6.1, a special case of Theorem 5.1, is in fact equivalent
to it.

Proposition 6.2. Theorem 6.1 implies Theorem 5.1.

Proof. Let H be a helicoid and let C be a great semicircle in H+∩{z=h}. We may
assume that C does not lie in H, as otherwise there is nothing to prove. Therefore the
interior of the semicircle C lies in H+. Now increase (or decrease) the pitch of H to get
a 1-parameter family of helicoids H(t) with 06t61 such that

(1) H(1)=H;
(2) C⊂H(t)+ for all t∈[0, 1];
(3) C⊂H(0).

Claim. Let S be an open, %Y -invariant, embedded minimal surface bounded by ΓC

with S∩Y + non-empty. If S is contained in H(0)+, then it is contained in H(t)+ for
all t∈[0, 1]. Furthermore, in that case the sign of S at O with respect to H(t) does not
depend on t.
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Proof. Let T be the set of all t∈[0, 1] for which S is contained in H+. Clearly T is
a closed set. We claim that T is also open relative to [0, 1]. For suppose that t∈T , and
thus that S⊂H+. Now S is not contained in H(t) since S∩Y + is non-empty. Thus by
the strong maximum principle and the strong boundary maximum principle, S cannot
touch H(t), nor is 	S tangent to H(t) at any points of ΓC other than its corners.

At the corners O and O∗, S and H(τ) are tangent. However, the curvatures of
H and M :=S∪%Y S differ from each other(4) at O, and also at O∗. It follows readily
that t is in the interior of T relative to [0, 1]. Since T is open and closed in [0, 1] and is
non-empty, T=[0, 1]. This proves the first assertion of the claim. The second follows by
continuity.

By the claim, if Theorem 6.1 is true for ΓC and H(0), then Theorem 5.1 is true for
H=H(1) and ΓC . This completes the proof of Proposition 6.2.

7. Eliminating Jacobi fields by perturbing the metric

Our proof involves counting minimal surfaces mod 2. Minimal surfaces with non-trivial
Jacobi fields tend to throw off such counts. (A non-trivial Jacobi field is a non-zero
normal Jacobi field that vanishes on the boundary.) Fortunately, if we fix a curve Γ
in a 3-manifold, then a generic Riemannian metric on the 3-manifold will be “bumpy”
(with respect to Γ) in the following sense: Γ will not bound any minimal surface with
non-trivial Jacobi fields. Thus instead of working with the standard product metric on
S2×R, we will use a slightly perturbed bumpy metric and prove Theorem 6.1 for that
perturbed metric. By taking a limit of surfaces as the perturbation goes to zero, we get
the surfaces whose existence is asserted in Theorem 6.1 for the standard metric. In this
section, we explain how to perturb the metric to make it bumpy, and how to take the
limit as the perturbation goes to zero.

In what class of metrics should we make our perturbations? The metrics should have
%X - and %Z-symmetry so that we can do Schwarz reflection, %Y -symmetry so that the
notion of Y -surface makes sense, and µE-symmetry so that the conclusion of Theorem 6.1
makes sense. It is convenient to use metrics for which the helicoid H and the spheres
{z=±h} are minimal, because we will need the region N=H+∩{|z|6h} to be weakly
mean-convex. We will also need to have an isoperimetric inequality hold for minimal
surfaces in N , which is equivalent (see Remark 7.3) to the non-existence of any smooth,

(4) Recall that if two minimal surfaces in a 3-manifold are tangent at a point, then the intersection
set near the point is like the zero set of a homogeneous harmonic polynomial. In particular, it consists
of (n+1) curves crossing through the point, where n is the degree of contact of the two surfaces at the
point. Near O, the intersection of M and H coincides with X∪Z, so their order of contact at O is
exactly one.
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closed minimal surfaces in N . Finally, at one point (see the last sentence in §11) we will
need the two bounded components of H\Γ to be strictly stable, so we restrict ourselves
to metrics for which they are strictly stable.

The following theorem (together with its corollary) is Theorem 6.1 with the standard
metric on S2×R replaced by a suitably bumpy metric in the class of metrics described
above, and with the conclusion strengthened to say that ΓC bounds an odd number of
surfaces with the desired properties.

Theorem 7.1. Let Γ=ΓC be the curve in Theorem 6.1:

Γ =Zh∪Z∗
h∪C∪%Y C,

where C is the semicircle in H∩{z=h} joining Z to Z∗ such that C and X+ lie in the
same component of H\(Z∪Z∗). Let G be the group of isometries of S2×R generated
by %X , %Y , %Z =%Z∗ , and µE. Let γ be a smooth, G-invariant Riemannian metric on
S2×R such that

(1) the helicoid H and the horizontal spheres {z=±h} are γ-minimal surfaces;
(2) the two bounded components of H\Γ are strictly stable (as γ-minimal surfaces);
(3) the region N :=H+∩{|z|6h} contains no smooth, closed, embedded γ-minimal

surface;
(4) the curve Γ does not bound any embedded γ-minimal Y -surfaces in H+∩{|z|6h}

with non-trivial %Y -invariant Jacobi fields.

For each non-negative integer n and each sign s∈{+,−}, let

Ms(Γ, n) =Ms
γ(Γ, n)

denote the set of embedded, γ-minimal Y -surfaces S in H+∩{|z|6h} bounded by Γ such
that S∩Y + has exactly n points and such that S has sign s at O. Then the number of
surfaces in Ms(Γ, n) is odd.

Corollary 7.2. Under the hypotheses of the theorem, if n is even, then the number
of µE-invariant surfaces in Ms(Γ, n) is odd.

Proof. Let n be even. By Lemma 5.4, if S∈Ms(Γ, n), then S also has sign s at
O∗, from which it follows that µE(S)∈Ms(Γ, n). Thus the number of non-µE-invariant
surfaces in Ms(Γ, n) is even because such surfaces come in pairs (S being paired with
µE(S)). By the theorem, the total number of surfaces in Ms(Γ, n) is odd, so therefore
the number of µE-invariant surfaces must also be odd.
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Remark 7.3. Hypothesis (1) of Theorem 7.1 implies that the compact region N :=
H+∩{|z|6h} is γ-mean-convex. It follows (see [32, §2.1 and §5]) that condition (3) is
equivalent to the following condition:

(3′) There is a finite constant c such that area(Σ)6c length(∂Σ) for every γ-minimal
surface Σ in N .

Furthermore, the proof of Theorem 2.3 in [32] shows that for any compact set N ,
the set of Riemannian metrics satisfying (3′) is open, with a constant c=cγ that depends
upper-semicontinuously on the metric.(5)

Proposition 7.4. Suppose Theorem 7.1 is true. Then Theorem 6.1 is true.

Proof. Let G1 be the space of all smooth, G-invariant Riemannian metrics γ on
S2×R that satisfy hypothesis (1) of Theorem 7.1. Let Ĝ be the subset consisting of
those metrics γ∈G1 that also satisfy hypotheses (2) and (3) of Theorem 7.1, and let G
be the set of metrics that satisfy all the hypotheses of the theorem.

We claim that the standard product metric γ belongs to Ĝ. Clearly it is G-invariant
and satisfies hypothesis (1). Note that each bounded component of H\Γ is strictly stable,
because it is contained in one of the half-helicoidal components of H\(Z∪Z∗) and those
half-helicoids are stable (vertical translation induces a positive Jacobi field). Thus γ
satisfies the strict stability hypothesis (2). It also satisfies hypothesis (3) because if Σ
were a closed minimal surface in N , then the height function z would attain a maximum
value, say a, on Σ, which implies by the strong maximum principle that the sphere
{z=a} would be contained in Σ, contradicting the fact that Σ⊂N⊂H+. This completes
the proof that the standard product metric γ belongs to Ĝ.

By Lemma 7.5 below, a generic metric in G1 satisfies the bumpiness hypothesis (4)
of Theorem 7.1. Since Ĝ is an open subset of G1 (see Remark 7.3), it follows that a
generic metric in Ĝ satisfies the bumpiness hypothesis. In particular, this means that G
is a dense subset of Ĝ.

Since the standard metric γ is in Ĝ, there is a sequence {γj}∞j=1 of metrics in G that

(5) As explained in [32], for any metric γ, we can let cγ be the supremum (possibly infinite) of
|V |/|δV | among all 2-dimensional varifolds V in N with |δV |<∞, where |V | is the mass of V and
|δV | is its total first variation measure. The supremum is attained by a varifold Vγ with mass |Vγ |=1.
Suppose that γ(j)!γ. By passing to a subsequence, we may assume that the Vγ(j) converge weakly
to a varifold V . Under weak convergence, mass is continuous and total first variation measure is lower
semicontinuous. Thus

cγ >
|V |
|δV |

> lim sup
j!∞

|Vγ(j)|
|δVγ(j)|

= lim sup
j!∞

cγ(j).

This proves that the map γ 7!cγ∈(0,∞] is upper semicontinuous, and therefore also that the set of
metrics γ for which cγ <∞ is an open set. (The compactness, continuity, and lower semicontinuity
results used here are easy and standard, and are explained in the appendix to [32]. See, in particular,
[32, §7,5].)
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converges smoothly to γ. Fix a non-negative integer n and a sign s. By Theorem 7.1,
Ms

γj
(Γ, n) contains at least one surface Sj . If n is even, we choose Sj to be µE-invariant,

which is possible by Corollary 7.2.
By Remark 7.3,

lim sup
j!∞

areaγj
(Sj)

lengthγj
(∂Sj)

6 cγ , (7.1)

where cγ is the constant in Remark 7.3 for the standard product metric γ. Since

lengthγj
(∂Sj) = lengthγj

(Γ)! lengthγ(Γ)<∞,

we see from (7.1) that the areas of the Sj are uniformly bounded.
Let

Mj =Sj∪%ZSj

be obtained from Sj by Schwarz reflection. Of course the areas of the Mj are also
uniformly bounded. Using the Gauss–Bonnet theorem, the minimality of the Mj , and
the fact that the sectional curvatures of S2×R are bounded, it follows that

sup
j>1

∫
Mj

β(Mj , ·) dA<∞, (7.2)

where β(Mj , p) is the square of the norm of the second fundamental form of Mj at the
point p.

The total curvature bound (7.2) implies (see [29, Theorem 3]) that after passing to
a further subsequence, the Mj converge smoothly to an embedded minimal surface M ,
which implies that the Sj converge uniformly smoothly to a surface S in N with ∂S=Γ
and with M=S∪%Y S. The smooth convergence Mj!M implies that S∈Ms

γ(Γ, n),
where γ is the standard product metric. Furthermore, if n is even, then S is µE-invariant.
This completes the proof of Theorem 6.1 (assuming Theorem 7.1).

Lemma 7.5. Let G1 be the set of smooth, G-invariant metrics γ on S2×R such
that the helicoid H and the spheres {z=±h} are γ-minimal. For a generic metric γ in
G1, the curve Γ bounds no embedded, %Y -invariant, γ-minimal surfaces with non-trivial
%Y -invariant Jacobi fields.

Proof. By the bumpy metrics theorem [34], a generic metric γ in G1 has the property

The pair of circles H∩{z=±h} bounds no embedded

γ-minimal surface in H∩{|z|6h} with a non-trivial Jacobi field.
(*)

Thus it suffices to prove that if γ has the property (*), and if S⊂N is an embedded,
%Y -invariant, γ-minimal surface with boundary Γ, then S has no non-trivial %Y -invariant
Jacobi field.
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Suppose on the contrary that S had such a non-trivial Jacobi field v. Then v would
extend by Schwarz reflection to a non-trivial Jacobi field on M :=S∪%Y S, contradict-
ing (*).

8. Rounding the curve Γ and the family of surfaces t 7!S(t)

Our goal for the next few sections is to prove Theorem 7.1. The proof is somewhat
involved. It will be completed in §11. From now until the end of §11, we fix a helicoid
H in S2×R and a height h with 0<h<∞. We let Γ=ΓC be the curve in Theorem 7.1.
We also fix a Riemannian metric on S2×R that satisfies the hypotheses of Theorem 7.1.
In particular, in §§8–11, every result is with respect to that Riemannian metric. In
reading those sections, it may be helpful to imagine that the metric is the standard
product metric. (In fact, for the purposes of proving Theorem 2, the metric may as
well be arbitrarily close to the standard product metric.) Of course, in carrying out the
proofs in §§8–11, we must take care to use no property of the metric other than those
enumerated in Theorem 7.1.

Note that Theorem 7.1 is about counting minimal surfaces mod 2. The mod-2
number of embedded minimal surfaces of a given topological type bounded by a smoothly
embedded, suitably bumpy curve is rather well understood. For example, if the curve
lies on the boundary of a strictly convex set in R3, the number is{

1, if the surface is a disk,
0, otherwise.

Of course the curve Γ in Theorem 7.1 is neither smooth nor embedded, so to take advan-
tage of such results, we will round the corners of Γ to make a smooth embedded curve,
and we will use information about the mod-2 number of various surfaces bounded by the
rounded curve to deduce information about mod-2 numbers of various surfaces bounded
by the original curve Γ.

In this section, we define the notion of rounding. A rounding of Γ is a 1-parameter
family t∈(0, τ ] 7!Γ(t) of smooth embedded curves (with certain properties) that converge
to Γ as t!0. Now if Γ were smooth and bumpy, then by the implicit function theorem,
any smooth minimal surface S(0) bounded by Γ would extend uniquely to a 1-parameter
family t∈[0, τ ′] 7!S(t) of minimal surfaces with ∂S(t)≡Γ(t) (for some possibly smaller
τ ′∈(0, τ ]).

It is natural to guess that this is also the case even in our situation, when Γ is neither
smooth nor embedded. In fact, we prove that the guess is correct.(6) The proof is still

(6) The correctness of the guess can be viewed as a kind of bridge theorem. Though it does not
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based on the implicit function theorem, but the corners make the proof significantly more
complicated. However, the idea of the proof is simple: we project the rounded curve Γ(t)
to a curve in the surface

M :=S∪%ZS

by the nearest point projection. We already have a minimal surface bounded by that
projected curve: it bounds a portion Ω(t) of M . Now we smoothly isotope the projected
curve back to Γ(t), and use the implicit function theorem to make a corresponding isotopy
through minimal surfaces of Ω(t) to the surface S(t) we want. Of course we have to be
careful to verify that we do not encounter non-trivial Jacobi fields on the way.

We also prove that, roughly speaking, the surfaces S(t) (for the various S’s bounded
by Γ) account for all the minimal Y -surfaces bounded by Γ(t) when t is sufficiently small.
The precise statement (Theorem 9.2) is slightly more complicated because the larger the
genus of the surfaces, the smaller one has to choose t.

Defining roundings, proving the existence of the associated 1-parameter families
t 7!S(t) of minimal surfaces as described above, and proving basic properties of such
families take up the rest of this section and the following section. Once we have those
tools, the proof of Theorem 7.1 is not so hard: it is carried out in §10.

To avoid losing track of the big picture, the reader may find it helpful initially to
skip §§8.10–8.14 (the proof of Theorem 8.8) as well as the proofs in §9, and then to
read §10, which contains the heart of the proof of Theorem 7.1 and therefore also (see
Remark 10.8) of the periodic case of Theorem 2.

Lemma 8.1. Suppose that S a minimal embedded Y -surface in N=H+∩{|z|6h}
with ∂S=Γ. Let

V (S, ε) = {p∈S2×R : dist(p, S)<ε}.

For all sufficiently small ε>0, the following statements hold :
(1) if p∈V (S, ε), then there is a unique point π(p) in S∪%ZS nearest to p;
(2) if S′ is a %Y -invariant minimal surface in V (S, ε) with ∂S′=Γ, and if S′ is

smooth except possibly at the corners of Γ, then S′=S.

Proof. Assertion (1) holds (for sufficiently small ε) because M :=S∪%ZS is a smooth
embedded manifold with boundary.

Suppose that assertion (2) fails. Then there is a sequence of minimal Y -surfaces
Sn⊂V (S, εn) with ∂Sn=Γ such that Sn 6=S and such that εn!0. Let Mn be the closure
of Sn∩%ZSn or, equivalently, of Sn∩%XSn. (Note that %ZSn=%XSn by the %Y -invariance

quite follow from the bridge theorems in [25] or in [30], [31], we believe the proofs there could be adapted
to our situation. However, the proof here is shorter and more elementary than those proofs. (It takes
advantage of special properties of our surfaces.)
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of Sn.) Then Mn is a minimal surface with boundary ∂Mn=∂M , Mn is smooth away
from Y and from the corners of Γ, and

max
p∈Mn

dist(p,M)! 0.

Since M is a smooth, embedded manifold with non-empty boundary, this implies that the
convergence Mn!M is smooth by the extension of Allard’s boundary regularity theorem
in [33, Theorem 6.1].

A normal graph of f :S!R over a hypersurface S in a Riemannian manifold is the
hypersurface {expp(f(p)n(p)):p∈S}, where n(p) is a unit normal vector field on S⊂N
and expp is the exponential mapping at p. From the previous paragraph, it follows that
for all sufficiently large n, Mn is the normal graph of a function fn:M!R with fn|Γ=0
such that fn!0 smoothly. But then

fn

‖fn‖0

converges (after passing to a subsequence) to a non-zero Jacobi field on S that van-
ishes on ∂S=Γ, contradicting the assumption (hypothesis (4) of Theorem 7.1) that the
Riemannian metric is bumpy with respect to Γ.

8.1. Roundings of Γ

Let t0>0 be less than half the distance between any two corners of Γ. For t satisfying
0<t6t0, we can form from Γ a smoothly embedded %Y -invariant curve Γ(t) in the portion
of H with |z|6h as follows:

(1) If q is a corner of Γ other than O or O∗, we replace Γ∩B(q, t) by a smooth curve
in H∩B(q, t) that has the same endpoints as Γ∩B(q, t) but that is otherwise disjoint
from Γ∩B(q, t).

(2) If q=O or q=O∗ we replace Γ∩B(q, t) by two smoothly embedded curves in H
that have the same endpoints as Γ∩B(q, t) but that are otherwise disjoint from Γ∩B(q, t).
See Figures 4 and 5.

Note that Γ(t) lies in the boundary of ∂N of the region N=H+∩{|z|6h}.

Definition 8.3. Let Γ(t)⊂H be a family of smoothly embedded %Y -invariant curves
created from Γ according to the recipe above. Suppose we do this in such a way that for
each corner q of Γ, the curve

Γ(t)−q
t

(8.1)

converges smoothly to a smooth, embedded planar curve Γ′ as t!0. Then we say that
the family Γ(t) is a rounding of Γ.
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Figure 4. Rounding the corners of Γ. Center : The boundary curve Γ as shown in Figure 3.
Left/right : Desingularizations of Γ. The corners at O and O∗ are removed, following the
conditions (1) and (2) of 8.1. In both cases we have desingularized near O by joining X+ to
Z+ and X− to Z−. In the language of Definition 10.1, both desingularizations are positive at
O. On the left, the rounding is also positive at O∗. On the right, the rounding is negative at
O∗. Note that when the signs of the rounding agree at O and O∗, as they do on the left, the
rounded curve has two components; when the signs are different, as on the right, the rounded
curve is connected.

Remark 8.4. Since we are working in S2×R with some Riemannian metric, it may
not be immediately obvious what we mean by translation and by scaling in Definition 8.3.
However, there are various ways to make sense of it. For example, by the Nash embed-
ding theorem, we can regard S2×R with the given Riemannian metric as embedded
isometrically in some Euclidean space. In that Euclidean space, the expression (8.1) is
well defined, and its limit as t!0 lies in the 3-dimensional tangent space (at q) to S2×R,
which is of course linearly isometric to R3.

Remark 8.5. In Definition 8.3, note that if the corner q is O or O∗, then Γ′ consists
of two components, and Γ′ coincides with a pair of perpendicular lines outside a disk of
radius 1 about the intersection of those lines. In this case, Γ′ is the boundary of two
regions in the plane: one region is connected, and the other region (the complement of
the connected region) consists of two connected components. We refer to each of these
regions as a rounded quadrant pair. If q is a corner other than O or O∗, then Γ′ consists of
a single curve. In this case, Γ′ bounds a planar region which, outside of a disk, coincides
with a quadrant of the plane. We call such a region a rounded quadrant.
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8.2. The existence of bridged approximations to S

We will assume until further notice that Γ⊂H bounds an embedded minimal Y -surface
S in N=H+∩{|z|6h}. As in the previous section we define M=S∪%ZS. For p∈S2×R,
let π(p)=πM (p) be the point in M closest to p, provided that point is unique. Thus the
domain of π is the set of all points in S2×R such that there is a unique nearest point
in M . Since M is a smooth embedded manifold-with-boundary, the domain of π contains
M in its interior.

Consider a rounding Γ(t) of Γ with t∈[0, t0]. By replacing t0 by a smaller value, we
may assume that for all t∈[0, t0], the curve Γ(t) is in the interior of the domain of π and
π(Γ(t)) is a smooth embedded curve in M . It follows that Γ(t) is the normal graph of a
function

φt:π(Γ(t))−!R.

(Here normal means normal to M .) We let Ω(t) be the domain in M bounded by π(Γ(t)).

Remark 8.7. Suppose that S is positive at O, i.e., that it is tangent to the positive
quadrants ofH (namely the quadrant bounded byX+ and Z+, and the quadrant bounded
by X− and Z−.) Note that O is in Ω(t) if and only if Γ(t)∩B(O, t) lies in the negative
quadrants of H, or, equivalently, if and only if Γ(t)∩B(O, t) connects Z+ to X− and Z−

to X+. See Figure 5.

Theorem 8.8. There exists a τ>0 and a smooth 1-parameter family t∈(0, τ ] 7!ft

of functions
ft: Ω(t)−!R

with the following properties:
(1) the normal graph S(t) of ft is a Y -non-degenerate, minimal embedded Y -surface

with boundary Γ(t);
(2) ‖ft‖0+‖Dft‖0!0 as t!0;
(3) S(t) converges smoothly to S as t!0 except possibly at the corners of S;
(4) S(t) lies in H+.

Later (see Theorem 9.1) we will prove that for small t, the surfaces S(t) have a
very strong uniqueness property. In particular, given S, the rounding t 7!Γ(t), and
any sufficiently small τ>0, there is a unique family t∈(0, τ ]!S(t) having the indicated
properties.

Remark 8.9. Assertion (4) of the theorem follows easily from the preceding asser-
tions, provided we replace τ by a suitable smaller number. To see this, note by the
smooth convergence S(t)!S away from corners, each point of S(t)∩H− must lie within
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O X+

X−

Z+

Z−

Figure 5. The sign of S and Γ(t) at O. The behavior near O of a surface S⊂H+ with
boundary Γ. First column: The surface S, here illustrated by the darker shading, is tangent
at O to either the positive quadrants of H (as illustrated on top) or the negative quadrants
(on the bottom). In the sense of §3, S is positive at O in the top illustration and negative
in the bottom illustration. Second column: A curve Γ(t) in a positive rounding t 7!Γ(t) of Γ.
The striped regions lie in the projections Ω(t) defined in Theorem 8.8. Note that on the top
O 6∈Ω(t). On the bottom, O∈Ω(t). Third column: A curve Γ(t) in a negative rounding of Γ.
The striped regions lie in Ω(t). Note that on top we have O∈Ω(t). On the bottom, O 6∈Ω(t).

distance εn from the corners of S, where εn!0. By the implicit function theorem, each
corner q of S has a neighborhood U⊂S2×[−h, h] that is foliated by minimal surfaces,
one of which is �M∩U . For t sufficiently small, the set of points of S(t)∩H− that are near
q will be contained entirely in U , which violates the maximum principle unless S(t)∩H−

is empty.

Idea of the proof of Theorem 8.8. (The details will take up the rest of §8.) The
rounding is a 1-parameter family of curves Γ(t). We extend the 1-parameter family to a
2-parameter family Γ(t, s) (with 06s61) in such a way that Γ(t, 1)=Γ(t) and Γ(t, 0)=
π(Γ(t)). Now Γ(t, 0) trivially bounds a minimal Y -surface that is a normal graph over
Ω(t), namely Ω(t) itself (which is the normal graph of the zero function). We then use
the implicit function theorem to get existence for all (t, s) with t sufficiently small of a
minimal embedded Y -surface S(t, s) with boundary Γ(t, s). Then t 7!S(t, 1) will be the
desired 1-parameter family of surfaces.

Definition 8.10. For 06t<t0, each Γ(t) is the normal graph over π(Γ(t)) of a function
φt:π(Γ(t))!R. For 06s61, define

Γ(t, s) := graph sφt. (8.2)
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Note that π(Γ(t, s))=Γ(t, 0).

Proposition 8.11. There are τ>0 and a smooth 2-parameter family

(t, s)∈ (0, τ ]×[0, 1] 7!S(t, s)

of Y -non-degenerate, minimal embedded Y -surfaces such that each S(t, s) has boundary
Γ(t, s) and is the normal graph of a function ft,s: Ω(t)!R such that

‖ft,s‖0+‖Dft,s‖0! 0

as t!0. The convergence ft,s!0 as t!0 is smooth away from the corners of S.

Theorem 8.8 is a consequence of Proposition 8.11 by setting S(t):=S(t, 1). (See
Remark 8.9.)

Proof. Fix η>0 and τ>0 and consider the following subsets of the domain D:=
(0, τ ]×[0, 1]:

(1) the relatively closed set A of all (t, s)∈D such that Γ(t, s) bounds a minimal
embedded Y -surface that is the normal graph of a function from Ω(t)!R with Lipschitz
constant 6η;

(2) the subset B of A consisting of all (t, s)∈D such that Γ(t, s) bounds a minimal
embedded Y -surface that is Y -non-degenerate and that is the normal graph of a function
from Ω(t) to R with Lipschitz constant <η;

(3) the subset C of A consisting of all (t, s)∈D such that there is exactly one function
whose Lipschitz constant is 6η and whose normal graph is a minimal embedded Y -surface
with boundary Γ(t, s).

By Proposition 8.12 below, we can choose η and τ so that these three sets are equal:
A=B=C. Clearly the set A is a relatively closed subset of (0, τ ]×[0, 1]. Also, A is
non-empty since it contains (0, τ ]×{0}. (This is because Γ(t, 0) is the boundary of the
minimal Y -surface Ω(t), which is the normal graph of the zero function on Ω(t).) By the
implicit function theorem, the set B is a relatively open subset of (0, τ ]×[0, 1].

Since A=B=C is non-empty and since it is both relatively closed and relatively
open in (0, τ ]×[0, 1], we must have

A=B=C =(0, τ ]×[0, 1].

For each (t, s)∈(0, τ ]×[0, 1]=C, let ft,s :Ω(t)!R be the unique function with Lipschitz
constant 6η whose normal graph is a minimal embedded Y -surface S(t, s) with bound-
ary Γ(t, s). Since B=C, in fact ft,s has Lipschitz constant <η and S(s, t) is Y -non-
degenerate. By the Y -nondegeneracy and the implicit function theorem, S(t, s) depends
smoothly on (t, s). Also,

‖ft,s‖0+‖Dft,s‖0! 0 (8.3)
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as t!0, by Proposition 8.12 below. Finally, the smooth convergence S(t, s)!S away
from corners follows from (8.3) by standard elliptic estimates.

Proposition 8.12. There is an η>0 with the following property. Suppose {Sn}∞n=1

is a sequence of minimal embedded Y -surfaces with ∂Sn=Γ(tn, sn), where tn!0 and
sn∈[0, 1]. Suppose also that each Sn is the normal graph of a function

fn: Ω(tn)−!R

with Lipschitz constant 6η. Then
(1) ‖fn‖0+‖Dfn‖0!0. (In particular, Lip(fn)<η for all sufficiently large n.)
(2) Sn is Y -non-degenerate for all sufficiently large n,
(3) If gn is a function with Lipschitz constant 6η and if the graph of gn is a

minimal embedded Y -surface, then gn=fn for all sufficiently large n.
(4) If {Σn}∞n=1 is a sequence of minimal embedded Y -surfaces such that ∂Σn=∂Sn

and Σn⊂V (S, εn) where εn!0, then Σn=Sn for all sufficiently large n.

Proof. By Lemma 8.1, there is an ε>0 such that S is the only embedded minimal
Y -surface in V (S, ε) with boundary Γ. Choose η>0 small enough that if f :S!R is
Lipschitz with Lipschitz constant 6η and if f |Γ=0, then the normal graph of f lies in
V (S, ε). In particular, if the graph of f is a minimal embedded Y -surface, then f=0.

Since the fn have a common Lipschitz bound η, they converge subsequentially to a
Lipschitz function f :S!R. By the Schauder estimates, the convergence is smooth away
from the corners of Γ, so the normal graph of f is minimal. Thus, by the choice of η,
f=0. This proves that

‖fn‖0! 0.

Let
L= lim sup

n!∞
‖Dfn‖0.

We must show that L=0. By passing to a subsequence, we may assume that the lim sup
is a limit, and we can choose a sequence of points pn∈Sn\∂Mn=Sn\Γ(tn, sn) such that

lim
n!∞

|Dfn(pn)|=L.

By passing to a further subsequence, we may assume that the pn converge to a point
q∈S. If q is not a corner of S, then fn!0 smoothly near q, which implies that L=0.

Thus suppose q is a corner point of S, that is, one of the corners of Γ. Let Rn=
dist(pn, q). Now translate Sn, Ωn, Y, and pn by −q and dilate by 1/Rn to get S(t)′,
Ω′

n, Y ′
n and p′n. Note that S(n′) is the normal graph over Ω′

n of a function f ′n where the
‖Df ′n‖0 are bounded (independently of n).



helicoidal minimal surfaces of prescribed genus 245

By passing to a subsequence, we may assume that the Ω′
n converge to a planar region

Ω′, which must be one of the following:
(1) a quadrant;
(2) a rounded quadrant;
(3) a quadrant pair;
(4) a rounded quadrant pair;
(5) an entire plane.

(If q is O or O∗, then (3), (4), or (5) occurs according to whether tn/Rn tends to zero,
to a finite non-zero limit, or to infinity, respectively. If q is one of the other corners,
then (1) or (2) occurs according to whether tn/Rn tends to zero or not.) We may also
assume that the f ′n converge to a Lipschitz function f : Ω′!R and that the convergence
is smooth away from the origin. Furthermore, there is a point p∈Ω′ with

|p|=1 and |Df(p)|=L. (8.4)

Suppose first that Ω′ is a plane, which means that q is O or O∗, and thus that Y ′

is the line that intersects the plane of Ω′ orthogonally. As S′ is a minimal graph over
Ω′, S′ must also be a plane (by Bernstein’s theorem). Since Y interesects each S(t)
perpendicularly, Y ′ must intersect S′ perpendicularly. Thus S′ is a plane parallel to Ω′,
so Df ′≡0. In particular, L=0 as asserted.

Thus we may suppose that ∂Ω′ (which is also ∂S′) is non-empty.
By Schwartz reflection, we can extend S′ to a surface S† such that ∂S† is a compact

subset of the plane P containing ∂S′ and such that S† has only one end, which is a
Lipschitz graph over that plane. Thus the end is either planar or catenoidal. It cannot
be catenoidal since it contains rays. Hence the end is planar, which implies that

lim
x!∞

f(x) = 0.

But then f≡0 by the maximum principle, so Df≡0, and therefore L=0 by (8.4). This
completes the proof that ‖Dfn‖0!0 and thus the proof of assertion (1).

For the proofs of assertions (2)–(4), it is convenient to make the following observa-
tion.

Claim 8.13. Suppose that pn∈Sn\∂Sn and that dist(pn, ∂Sn)!0. Translate Sn by
−pn and dilate by 1/dist(pn, ∂Sn) to get a surface S′n. Then a subsequence of {S′n}∞n=1

converges to one of the following planar regions:
• a quadrant ;
• a rounded quadrant ;
• a quadrant pair ;
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• a rounded quadrant pair ; or
• a half-plane.

The claim follows immediately from the definitions (and the fact that ‖Dfn‖!0) so
we omit the proof.

Next we prove assertion (2) of Proposition 8.12: that Sn is Y -non-degenerate for all
sufficiently large n. In fact, we prove somewhat more.

Claim 8.14. Suppose that un is an eigenfunction of the Jacobi operator on Sn with
eigenvalue λn, normalized so that

‖un‖0 =max |un( ·)|=maxun( ·) = 1.

Suppose also that the λn are bounded. Then (after passing to a subsequence) the Sn

converge smoothly on compact sets to an eigenfunction u on S with eigenvalue

λ= lim
n!∞

λn.

(With slightly more work, one could prove that for every k, the kth eigenvalue of
the Jacobi operator on Sn converges to the kth eigenvalue of the Jacobi operator on S.
However, we do not need that result.)

Proof. By passing to a subsequence, we may assume that the λn converge to a limit
λ, and that the un converge smoothly away from the corners of S to a solution of

Ju=−λu

where J is the Jacobi operator on S. To prove the claim, it suffices to show that u does
not vanish everywhere, and that u extends continuously to the corners of S.

Since u is bounded, that u extends continuously to the corners is a standard removal-
of-singularities result. (One way to see it is as follows. Extend u by reflection to the
the smooth manifold-with-boundary M=S∪%ZS. Now u solves ∆u=φu for a certain
smooth function φ on M . Let v be the solution of ∆v=φu on M with v|∂M=0 given by
the Poisson formula. Then v is continuous on M and smooth away from a finite set (the
corners of Γ). Away from the corners of M , u−v is a bounded harmonic function that
vanishes on ∂M . But isolated singularities of bounded harmonic functions are removable,
so u−v≡0.)

To prove that u does not vanish everywhere, let pn be a point at which un attains
its maximum:

un(pn) = 1 =max
Sn

|un( ·)|.
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By passing to a subsequence, we may assume that the pn converge to a point p∈	S. We
assert that p /∈∂S. For suppose p∈∂S. Translate(7) Sn by −pn and dilate by

cn :=
1

dist(pn, ∂Sn)
=

1
dist(pn,Γ(tn, sn))

to get S′n. Let u′n be the eigenfunction on S′n corresponding to un. Note that u′n has
eigenvalue λn/c

2
n.

We may assume (after passing to a subsequence) that the S′n converge to one of
the planar regions S′ listed in Lemma 8.13. The convergence S′n!Sn is smooth except
possibly at the corner (if there is one) of S′.

By the smooth convergence of S′n to S′, the u′n converge subsequentially to a Jacobi
field u′ on S′ that is smooth except possibly at the corner (if there is one) of S′. Since
S′ is flat, u′ is a harmonic function. Note that u′( ·) attains its maximum value of 1 at
O. By the strong maximum principle for harmonic functions, u′≡1 on the connected
component of S′\∂S′ containing O. But u′≡0 on ∂S′, a contradiction. Thus p is in the
interior of S, where the smooth convergence un!u implies that

u(p) = lim
n!∞

u(pn) = 1.

This completes the proof of Claim 8.14 (and therefore also the proof of assertion (2)
in Proposition 8.12.)

To prove assertion (3) of Proposition 8.12, note that by assertion (1) of the propo-
sition applied to the gn,

‖gn‖0+‖Dgn‖! 0.

Thus if Σn is the normal graph of gn, then Σn⊂V (S, εn) for εn!0. Hence assertion (3)
of the proposition is a special case of assertion (4).

Thus it remain only to prove assertion (4). Suppose it is false. Then (after passing
to a subsequence) there exist embedded minimal Y -surfaces Σn 6=Sn such that ∂Σn=∂Sn

and such that
Σn ⊂V (S, εn) with εn! 0. (*)

Now (*) implies, by the extension of Allard’s boundary regularity theorem in [33], that
the Σn converge smoothly to S away from the corners of S. (We apply Theorem 6.1 of
[33] in the ambient space obtained by removing the corners of S from S2×R.)

Choose a point qn∈Σn that maximizes dist( · , Sn). Let pn be the point in Sn closest
to qn. Since ∂Sn=∂Σn,

dist(pn, qn) 6dist(pn, ∂Σn) =dist(pn, ∂Sn). (8.5)

(7) See Remark 8.4.
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By passing to a subsequence, we may assume that the pn converge to a limit p∈	S.

If p is not a corner of S, then the smooth convergence Σn!S away from the corners
implies that there is a bounded Y -invariant Jacobi field u on S\C such that u vanishes
on ∂S\C=Γ\C and such that

max |u( ·)|=u(p) = 1.

By standard removal of singularities (see the second paragraph of the proof of Claim 8.14),
the function u extends continuously to the corners. By hypothesis, there is no such u.
Thus p must be one of the corners of S (i.e., one of the corners of Γ). Translate Sn, Σn,
and qn by −pn and dilate by 1/dist(pn, ∂Sn) to get S′n, Σ′

n, and q′n.

By passing to a subsequence, we may assume that the S′n converge to one of the
planar regions S′ listed in the statement of Lemma 8.13. We can also assume that the
Σ′

n converge as sets to a limit set Σ′, and that the points q′n converge to a limit point q′.
Note that, by (8.5), we have

sup
Σ′

dist( · , S′) =dist(q′, S′) 6dist(O,S′) = 1. (8.6)

We claim that Σ′⊂S′. We prove this using catenoid barriers as follows. Let P be the
plane containing S′ and consider a connected component C of the set of catenoids whose
waists are circles in P \S′. (There are either one or two such components according to
whether P \S′ has one or two components.) Note that the ends of each such catenoid are
disjoint from Σ′ since Σ′ lies within a bounded distance of S′. By the strong maximum
principle, the catenoids in C either all intersect S′ or else are all disjoint from S′. Now C
contains catenoids whose waists are unit circles that are arbitrarily far from S′. Such a
catenoid (if its waist is sufficiently far from S′) is disjoint from Σ′. Thus all the catenoids
in C are disjoint from Σ′. We have shown that if the waist of a catenoid is a circle in
P \S′, then the catenoid is disjoint from Σ′. The union of all such catenoids is R3\S′,
so Σ′⊂S′ as claimed.

Again, by the extension of Allard’s boundary regularity theorem in [33, Theorem 6.1],
the Σ′

n must converge smoothly to S′ except at the corner (if there is one) of S′.

The smooth convergence of Σ′
n and S′n to S′ implies existence of a bounded Jacobi

field u′ on S′ that is smooth except at the corner, that takes its maximum value of 1
at O, and that vanishes on ∂S′. Since S′ is flat, u′ is a harmonic function. By the
maximum principle, u′≡1 on the connected component of S′\∂S′ containing O. But
that is a contradiction since u′ vanishes on ∂S′.
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9. Additional properties of the family t 7!S(t)

We now prove that the surfaces S(t) of Theorem 8.8 have a strong uniqueness property
for small t.

Theorem 9.1. Let t∈(0, τ ] 7!S(t) be the 1-parameter family of minimal Y -surfaces
given by Theorem 8.8. For every sufficiently small ε>0, there is a τ ′>0 with the following
property. For every t∈(0, τ ′], the surface S(t) lies in V (S, ε) (the small neighborhood of
S defined in §8) and is the unique minimal embedded Y -surface in V (S, ε) with boundary
Γ(t).

Proof. Suppose the theorem is false. Then there is a sequence of εn!0 such that,
for each n, either

(1) there are arbitrarily small t for which S(t) is not contained in V (S, εn), or
(2) there is a tn for which S(tn) is contained in V (S, εn) but such that V (S, εn)

contains a second embedded minimal Y -surface Σn with boundary Γ(tn).
The first is impossible since S(t)!S as t!0. Thus the second holds for each n. But

(2) contradicts assertion (4) of Proposition 8.12.

According to Theorem 8.8, for each embedded minimal Y -surface S bounded by Γ,
we get a family of minimal surfaces t 7!S(t) with ∂S(t)=Γ(t). The following theorem
says, roughly speaking, that as t!0, those surfaces account for all minimal embedded
Y -surfaces bounded by Γ(t).

Theorem 9.2. Let t 7!Γ(t) be a rounding of Γ. Let {Sn}∞n=1 be a sequence of em-
bedded minimal Y -surfaces in H+∩{|z|6h} such that ∂Sn=Γ(tn) where tn!0. Suppose
the number of points in Sn∩Y + is bounded independent of n. Then, after passing to a
subsequence, the Sn converge to a smooth minimal embedded Y -surface S bounded by Γ,
and Sn=S(tn) for all sufficiently large n, where t 7!S(t) is the 1-parameter family given
by Theorem 8.8.

Proof. The areas of the Sn are uniformly bounded by hypothesis on the Riemann-
ian metric on S2×R: see (3′′) in Remark 7.3. Using the Gauss–Bonnet theorem, the
minimality of the Sn, and the fact that the sectional curvatures of S2×R are bounded,
it follows that ∫

Sn

β(Sn, ·) dA

is uniformly bounded, where β(Sn, x) is the square of the norm of the second fundamental
form of Sn at x. It follows (see [29, Theorem 3]) that after passing to a subsequence, the
Sn converge smoothly (away from the corners of Γ) to a minimal embedded Y -surface S
with boundary Γ. By the uniqueness theorem (Theorem 9.1), Sn=S(tn) for all sufficiently
large n.
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10. Counting the number of points in Y ∩S(t)

Consider a rounding t!Γ(t) of a boundary curve Γ, as specified in Definition 8.3. There
are two qualitatively different ways to do the rounding at the crossings O and O∗. We
describe what can happen at O (the same description holds at O∗):

(1) Near O, each Γ(t) connects points of Z+ to points of X+ (and therefore points
of Z− to points of X−), or

(2) the curve Γ(t) connects points of Z+ to points of X− (and therefore points of
Z− to points of X+).

Definition 10.1. In case (1), the rounding t!Γ(t) is positive at O. In case (2), the
rounding t!Γ(t) is negative at O. Similar statements hold at O∗.

In what follows, we will use the notation ‖A‖ to denote the number of elements in
a finite set A.

Proposition 10.2. Let S be an open minimal embedded Y -surface in

N :=H+∩{|z|6h}

bounded by Γ. Let t 7!S(t) be the family given by Theorem 8.8, and suppose that S∩Y
has exactly n points. Then

‖S(t)∩Y ‖= ‖S∩Y ‖+δ(S,Γ(t)),

where δ(S,Γ(t)) is zero, 1, or 2 according to whether the signs of S and Γ(t) agree at
both O and O∗, at one but not both of O and O∗, or at neither O nor O∗. (In other
words, δ(S,Γ(t)) is the number of sign disagreements of S and Γ(t). See Figure 5.)

Proof. Recall that S(t) is a normal graph over Ω(t), the region in M=S∪%ZS

bounded by the image of Γ(t) under the nearest point projection from a neighborhood
of M to M . It immediately follows that

‖Y ∩S(t)‖= ‖Y ∩Ω(t)‖.

Note that Y ∩Ω(t) consists of Y ∩S together with one or both of the points O and
O∗. (The points O and O∗ in ∂S=Γ do not belong to S because S is open.) Recall
also (see Remark 8.7) that O∈Ω(t) if and only if S and Γ(t) have the same sign at O.
Likewise, O∗∈Ω(t) if and only if S and Γ(t) have the same sign at O∗. The result follows
immediately.
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Definition 10.3. Let M(Γ) be the set of all open, minimal embedded Y -surfaces
S⊂N such that ∂S=Γ. (Here Γ=ΓC is the curve in the statement of Theorem 7.1.)

Let Ms(Γ, n) be the set of surfaces S in M(Γ) such that S∩Y =n and such that S
has sign s at O.

If Γ′ is a smooth, %Y -invariant curve (e.g., one of the rounded curves Γ(t)) in H+

such that Γ′/%Y has exactly one component, we let M(Γ′, n) be the set of embedded
minimal Y -surfaces S in H+ such that ∂S=Γ′ and such that S∩Y has exactly n points.

Proposition 10.4. Suppose that the rounding t 7!Γ(t) is positive at O and at O∗.
(i) If n is even and S∈M+(Γ, n), then S(t)∈M(Γ(t), n).
(ii) If n is odd and S∈Ms(Γ, n), then S(t)∈M(Γ(t), n+1).
(iii) If n is even and S∈M−(Γ, n), then S(t)∈M(Γ(t), n+2).

Remark 10.5. Of course, the statement remains true if we switch all the signs.

Proof. If n is odd and S∈Ms(Γ, n), then S has different signs at O and O∗ by
Lemma 5.4, and thus δ(S,Γ(t))=1.

Now suppose that n is even and that S∈Ms(Γ, n). Then by Lemma 5.4, the surface
S has the same sign at O∗ as at O, namely s. Thus δ(S,Γ) is zero if s=+ and is 2 if
s=−. Proposition 10.4 now follows immediately from Proposition 10.2.

Proposition 10.6. Suppose the rounding t 7!Γ(t) has sign s at O and −s at O∗.
(1) If n is odd and S∈Ms(Γ, n), then S(t)∈M(Γ(t), n).
(2) If n is even and S is in M+(Γ, n) or M−(Γ, n), then S(t)∈M(Γ(t), n+1).
(3) If n is odd and S∈M−s(Γ, n), then S(t)∈M(Γ(t), n+2).

The proof is almost identical to the proof of Proposition 10.4.

Theorem 10.7. For every non-negative integer n and for each sign s, the set
Ms(Γ, n) has an odd number of surfaces.

Remark 10.8. Note that Theorem 10.7 is the same as Theorem 7.1, because ever
since §7, we have been working with an arbitrary Riemannian metric on S2×R that
satisfies the hypotheses of Theorem 7.1. By Proposition 7.4, Theorem 7.1 implies Theo-
rem 6.1, which by Proposition 6.2 implies Theorem 5.1, which by Proposition 5.2 implies
Theorem 2 for h<∞. Thus in proving Theorem 10.7, we complete the proof of the
periodic case of Theorem 2.

Proof. Let fs(n) denote the mod-2 number of surfaces in Ms(Γ, n). Note that
fs(n)=0 for n<0 since Y ∩S cannot have a negative number of points. The theorem
asserts that fs(n)=1 for every n>0.
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We prove the theorem by induction. Thus we let n be a non-negative integer,
we assume that fs(k)=1 for all non-negative k<n and s=±, and we must prove that
fs(n)=1.

Case 1: n is even and s is +.
To prove that f+(n)=1, we choose a rounding t 7!Γ(t) that is positive at both O

and O∗.
We choose τ sufficiently small that for every S∈M(Γ) with ‖Y ∩S‖6n, the family

t 7!S(t) is defined for all t∈(0, τ ]. We may also choose τ small enough that if S and S′

are two distinct such surfaces, then S(t) 6=S′(t) for t6τ . (This is possible since S(t)!S
and S′(t)!S′ as t!0.)

By Theorem 9.2, we can fix a t sufficiently small that for each surface Σ∈M(Γ(t), n),
there is a surface S=SΣ∈M(Γ) such that Σ=SΣ(t). Since all such S(t) are %Y -non-
degenerate, this implies the following statement:

The surfaces in M(Γ(t), n) are all %Y -non-degenerate. (10.1)

By Proposition 10.4, SΣ belongs to the union U of

M+(Γ, n), M+(Γ, (n−1)), M−(Γ, (n−1)), and M−(Γ, (n−2)). (10.2)

By the same proposition, if S belongs to the union U , then S(t)∈M(Γ(t), n). Thus
Σ 7!SΣ gives a bijection from M(Γ(t), n) to U , so the number of surfaces in M(Γ(t), n)
is equal to the sum of the numbers of surfaces in the four sets in (10.2). Reducing mod
2 gives

‖M(Γ(t), n)‖mod 2 = f+(n)+f+(n−1)+f−(n−1)+f−(n−2). (10.3)

By induction, f+(n−1)=f−(n−1) (it is zero for n=0 and 1 if n>2), so

‖M(Γ(t), n)‖mod 2 = f+(n)+f−(n−2). (10.4)

As mentioned earlier, we have good knowledge about the mod-2 number of minimal
surfaces bounded by suitably bumpy smooth embedded curves. In particular, Γ(t) is
smooth and embedded and has the bumpiness property (10.1), which implies that (see
Theorem 11.2)

‖M(Γ(t), n)‖mod 2 =


1, if n=1 and Γ(t) is connected,
1, if n=0 and Γ(t) is not connected,
0, in all other cases.

(10.5)

Combining (10.4) and (10.5) gives f+(n)=1.
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Case 2: n is even and s is −. The proof is exactly like the proof of Case 1, except
that we use a rounding that is negative at O and at O∗. (See Remark 10.5.)

Cases 3 and 4: n is odd and s is + or −.
The proof is almost identical to the proof in the even case, except that we use a

rounding t 7!Γ(t) that has sign s at O and −s at O∗. In this case we still get a bijection
Σ 7!SΣ, but it is a bijection from M(Γ(t), n) to the union U of the sets

Ms(Γ, n), M+(Γ, n−1), M−(Γ, n−1), and M−s(Γ, n−2). (10.6)

Thus M(Γ(t), n) and U have the same number of elements mod 2:

‖M(Γ(t), n)‖mod 2 = fs(n)+f+(n−1)+f−(n−1)+f−s(n−2).

As in Case 1, f+(n−1)=f−(n−1) by induction, so their sum is zero:

‖M(Γ(t), n)‖mod 2 = fs(n)+f−s(n−2).

Combining this with (10.5) gives fs(n)=1.

11. Counting minimal surfaces bounded by smooth curves

In the previous section, we used certain facts about the mod-2 numbers of minimal
surfaces bounded by smooth curves. In this section we state those facts, and show that
they apply in our situation. The actual result we need is Theorem 11.2 below, and the
reader may go directly to that result. However, we believe it may be helpful to first state
a simpler result that has the main idea of Theorem 11.2:

Theorem 11.1. Let N be a compact, smooth, strictly mean-convex Riemannian 3-
manifold diffeomorphic to the a ball. Suppose that N contains no smooth, closed minimal
surfaces. Let Σ be any compact 2-manifoldy with boundary. Let Γ be a smooth embedded
curve in ∂N , and let M(Γ,Σ) be the set of embedded minimal surfaces in N that have
boundary Γ and that are diffeomorphic to Σ. Suppose that all the surfaces in M(Γ,Σ)
are non-degenerate. Then the number of those surfaces is odd if Σ is a disk or union of
disks, and is even otherwise.

See [14, Theorem 2.1] for the proof.
If we replace the assumption of strict mean convexity by mean convexity, then Γ may

bound a minimal surface in ∂N . In that case, Theorem 11.1 remains true provided (i) we
assume that no two adjacent components of (∂N)\Γ are both minimal surfaces, and (ii)
we count minimal surfaces in ∂N only if they are stable. Theorem 11.1 also generalizes
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to the case of curves and surfaces invariant under a finite group G of symmetries of N .
If one of those symmetries is 180� rotation about a geodesic Y, then the theorem also
generalizes to Y -surfaces.

Theorem 11.2. Let N be a compact region in a smooth Riemannian 3-manifold
such that N is homeomorphic to the 3-ball. Suppose that N has piecewise smooth, weakly
mean-convex boundary, and that N contains no closed minimal surfaces. Suppose also
that N admits a 180� rotational symmetry %Y about a geodesic Y .

Let C be a %Y -invariant smooth closed curve in (∂N)\Y such that C/%Y is con-
nected, and such that no two adjacent components of (∂N)\C are both smooth minimal
surfaces. Let M∗(C, n) be the collection of G-invariant, minimal embedded Y -surfaces
S in N with boundary C such that (i) S∩Y has exactly n points, and (ii) if S⊂∂N , then
S is stable. Suppose that C is (Y, n)-bumpy in the following sense: all the Y -surfaces in
M∗(C, n) are %Y -non-degenerate (i.e., have no non-trivial %Y -invariant Jacobi fields).
Then, the following statements hold :

(1) if C has two components and n=0, the number of surfaces in M∗(C, n) is odd ;
(2) if C has one component and n=1, the number of surfaces in M∗(C, n) is odd ;
(3) in all other cases, the number of surfaces in M∗(C, n) is even.

We remark (see Corollary 4.3) that in case (2), each surface in M∗(C, n) is a disk, in
case (1), each surface in M∗(C, n) is the union of two disks, and in case (3), each surface
is M∗(C, n) has more complicated topology (it is connected but not simply connected).

Theorem 11.2 is proved in [14, §4.7].

In the proof of Theorem 10.7, we invoked the conclusion of Theorem 11.2. We now
justify that. Let Γ(t) be the one of the curves formed by rounding Γ in §8.1. Note that
Γ(t) bounds a unique minimal surface Ω(t) that lies in the helicoidal portion of ∂N ,
i.e, that lies in H∩{|z|6h}. (The surface Ω(t) is topologically a disk, an annulus, or
a pair of disks, depending on the signs of the rounding at O and O∗.) Note also that
the complementary region (∂N)\Ω(t) is piecewise smooth, but not smooth. To apply
Theorem 11.2 as we did, we must check that

(i) N contains no closed minimal surfaces;
(ii) no two adjacent components of (∂N)\Γ(t) are smooth minimal surfaces;
(iii) the surface Ω(t) is strictly stable (we need this because in the proof of Theo-

rem 10.7, we counted Ω(t), whereas Theorem 11.2 tells us to count it only if it is stable).

Now (i) is true by hypothesis on the Riemannian metric on N : see hypotesis (3) in
Theorem 7.1. Also, (ii) is true because (as mentioned above) the surface (∂N)\Ω(t) is
piecewise-smooth but not smooth.

On the other hand, (iii) need not be true in general. However, in the proof of
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Theorem 10.7, we were allowed to choose t>0 as small as we like, and (iii) is true if t is
sufficiently small.

Lemma 11.3. Let t 7!Γ(t)⊂H be a rounding as in Theorem 8.8. Then the region
Ω(t) in ∂N bounded by Γ(t) is strictly stable provided t is sufficiently small.

(We remark that this is a special case of a more general principle: if two strictly
stable minimal surfaces are connected by suitable thin bridges, the resulting surface is
also strictly stable.)

Proof. Let λ(t) be the lowest eigenvalue of the Jacobi operator on Ω(t). Note that
λ(t) is bounded. (It is bounded below by the lowest eigenvalue of a domain in H that
contains all the Ω(t) and above by the lowest eigenvalue of a domain that is contained in
all the Ω(t).) It follows that any subsequential limit λ as t!0 of the λ(t) is an eigenvalue
of the Jacobi operator on Ω, where Ω is the region in H bounded by Γ. (This is a special
case of Claim 8.14.)

By hypothesis (2) of Theorem 7.1,(8) Ω is strictly stable, so λ>0 and therefore
λ(t)>0 for all sufficiently small t>0.

12. General results on existence of limits

At this point, we have completed the proof of Theorem 2 in the case h<∞. That is,
we have established the existence of periodic genus-g helicoids in S2(R)×R. During
that proof (in §§7–11), we considered rather general Riemannian metrics on S2(R)×R.
However, from now on we will always use the standard product metric. In the remainder
of Part I of the paper,

(1) we prove existence of non-periodic genus-g helicoids in S2(R)×R by taking
limits of periodic examples as the period tends to ∞;

(2) we prove existence of helicoid-like surfaces in R3 by taking suitable limits of
non-periodic examples in S2(R)×R as R!∞.

(We remark that one can also get periodic genus g-helicoids in R3 as limits of periodic
examples in S2(R)×R as R!∞ with the period kept fixed.)

Of course one could take the limit as sets in the Gromov-Hausdorff sense. But to get
smooth limits, one needs curvature estimates and local area bounds: without curvature
estimates, the limit need not be smooth, whereas with curvature estimates but without
local area bounds, limits might be minimal laminations rather than smooth, properly
embedded surfaces.

(8) This is the only place where this hypothesis is used.
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In fact, local area bounds are the key, because such bounds allow one to use the
following compactness theorem (which extends similar results in [7], [3], and [29]).

Theorem 12.1. (General compactness theorem) Let Ω be an open subset of a Rie-
mannian 3-manifold. Let {gn}∞n=1 be a sequence of smooth Riemannian metrics on Ω
converging smoothly to a Riemannian metric g. Let {Mn}∞n=1, Mn⊂Ω, be a sequence of
properly embedded surfaces such that Mn is minimal with respect to gn. Suppose also
that the area and the genus of Mn are bounded independently of n. Then (after passing
to a subsequence) the Mn converge to a smooth, properly embedded g-minimal surface
M ′. For each connected component Σ of M ′, either

(1) the convergence to Σ is smooth with multiplicity one, or
(2) the convergence is smooth (with some multiplicity >1) away from a discrete

set S.

In the second case, if Σ is 2-sided, then it must be stable.

Now suppose Ω is an open subset of R3. (The metric g need not be flat.) If pn∈Mn

converges to p∈M , then (after passing to a further subsequence) either

Tan(Mn, pn)!Tan(M,p)

or there exists constants cn>0 tending to zero such that the surfaces

Mn−pn

cn

converge to a non-flat complete embedded minimal surface M ′⊂R3 of finite total curva-
ture with ends parallel to Tan(M,p).

See [35] for the proof.

When we apply Theorem 12.1, in order to get smooth convergence everywhere (and
not just away from a discrete set), we will prove that the limit surface has no stable
components. For that, we will use the following theorem of Fischer–Colbrie and Schoen.
(See [9, Theorem 3 on p. 206 and paragraph 1 on p. 210].)

Theorem. Let M be an orientable, complete, stable minimal surface in a complete,
orientable Riemannian 3-manifold of non-negative Ricci curvature. Then M is totally
geodesic, and its normal bundle is Ricci flat. (In other words, if ν is a vector normal
to M , then Ricci(ν, ν)=0.)

Corollary 12.2. If M is a connected, stable, properly embedded minimal surface
in S2×R, then M is a horizontal sphere.
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To prove the corollary, note that since S2×R is orientable and simply connected and
since M is properly embedded, M is orientable. Note also that if Ricci(ν, ν)=0, then ν

is a vertical vector.
In §13, we prove the area bounds we need to get non-periodic examples in S2×R.

In §14, we prove area and curvature bounds in S2(R)×R as R!∞. In §15, we get
examples in R3 by letting R!∞.

13. Uniform local area bounds in S2×R

Let θ:H+\(Z∪Z∗)!R be the natural angle function which, if we identify S2\{O∗} with
R2 by stereographic projection, is given by θ(x, y, z)=arg(x+iy). Note that since H+ is
simply connected, we can let θ take values in R rather than in R mod 2π.

Proposition 13.1. Suppose H is a helicoid in S2×R with axes Z and Z∗. Let M
be a minimal surface in H+ with compact, piecewise-smooth boundary, and let

S=M∩{a6 z6 b}∩{α6 θ6β}.

Then

area(S) 6 (b−a)
∫

(∂M)∩{z>a}
|vz ·ν∂M | ds+(β−α)

∫
(∂M)∩{θ>α}

|vθ ·ν∂M | ds,

where vz=∂/∂z, vθ=∂/∂θ, and where ν∂M is the unit normal to ∂M that points out
of M .

Proof. Let u:S2×R!R be the function z( ·) or the function θ( ·). In the second
case, u is well defined as a single-valued function only onH+. In both cases, v=vu :=∂/∂u
is a well-defined Killing field on all of S2×R. (Note that vθ≡0 on Z∪Z∗.)

Now consider the vector field w(u)v, where w:R!R is given by

w(u) =


0, if u<a,
u−a, if a6u6 b,
b−a, if b<u.

Then(9)∫
M

divM (wv) dA=
∫

M

(∇M (w(u))·v+w(u) divM v) dA

=
∫

M

(w′(u)∇Mu·v+0) dA=
∫

M∩(u−1[a,b])

∇Mu·v dA,

(9) The reader may find it helpful to note that in the proof, we are expressing d area(Mt)/dt in
two different ways (as a surface integral and as a boundary integral), where Mt is a 1-parameter family
of surfaces with M0=M and with initial velocity vector field w(u)v.
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since divM v≡0 (because v is a Killing vector field).
Let e=eu be a unit vector field in the direction of ∇u. Then

∇u= |∇u| e and v = ∂/∂u= |∇u|−1e,

so
∇Mu·v =(∇u)M ·(v)M =(|∇u| e)M ·(|∇u|−1e)M = |(e)M |2 =1−(e·νM )2,

where ( ·)M denotes the component tangent to M and where νM is the unit normal to M .
Hence we have shown∫

M

divM (wv) dA=
∫

M∩{a6u6b}
(1−(eu ·νM )2) dA. (13.1)

Since M is a minimal surface,

divM (V ) =divM (V tan)

for any vector field V (where V tan is the component of V tangent to M), so∫
M

divM (wv) dA=
∫

M

divM (wv)tan dA

=
∫

∂M

(wv)·ν∂M ds6 (b−a)
∫

(∂M)∩{u>a}
|vu ·ν∂M | ds.

(13.2)

Combining (13.1) and (13.2) gives∫
M∩{a6u6b}

(1−(eu ·νM )2) dA6 (b−a)
∫

(∂M)∩{u>a}
|vu ·ν∂M | ds.

Adding this inequality for u=z to the same inequality for u=θ (but with α and β in
place of a and b) gives∫

S

(2−(ez ·νM )2−(eθ ·νM )2) dA6 (b−a)
∫

(∂M)∩{z>a}
|vz ·ν∂M | ds

+(β−α)
∫

(∂M)∩{θ>α}
|vθ ·ν∂M | ds

(13.3)

Let e% be a unit vector orthogonal to ez and eθ. Then for any unit vector ν,

1 = (ez ·ν)2+(eθ ·ν)2+(e% ·ν)2,

so the integrand in the left side of (13.3) is >1+(e% ·νM )2>1.

Corollary 13.2. Let M be a compact minimal surface in H+ and let L be the the
length of (∂M)\(Z∪Z∗). Then

area(M∩K) 6 cHLdiam(K)

for every compact set K, where diam(K) is the diameter of K and where cH is a constant
depending on the helicoid H.

The corollary follows immediately from Proposition 13.1 because vz ·νM =0 and
vθ=0 on (∂M)∩(Z∪Z∗).
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14. Non-periodic genus-g helicoids in S2×R: Theorem 2 for h=∞

Fix a helicoid H in S2×R with axes Z and Z∗ and fix a genus g. For each h∈(0,∞],
consider the class C(h)=Cg(h) of embedded, genus-g minimal surfaces M in S2×[−h, h]
such that the following conditions are satisfied:

(1) if h<∞, then M is bounded by two great circles at heights h and −h; if h=∞,
then M is properly embedded with no boundary;

(2) M∩H∩{|z|<h}=(X∪Z∪Z∗)∩{|z|<h};
(3) M is a Y -surface.
By the h<∞ case of Theorem 2 (see §5), the collection C(h) is non-empty for every

h<∞. Here we prove the same is true for h=∞.

Theorem 14.1. Let {hn}∞n=1 be a sequence of positive numbers tending to infinity.
Let Mn∈C(hn). Then a subsequence of {Mn}∞n=1 converges smoothly and with multiplic-
ity 1 to a minimal surface M∈C(∞). The surface M has bounded curvature, and each
of its two ends is asymptotic to a helicoid having the same pitch as H.

Proof. Note thatMn∩H+ is bounded by two vertical line segments, by the horizontal
great circle X, and by a pair of great semicircles at heights hn and −hn. It follows that
the vertical flux is uniformly bounded. Thus by Corollary 13.2, for any ball B, the area
of

Mn∩H+∩B

is bounded by a constant depending only on the radius of the ball. Therefore the areas of
the Mn (which are obtained from the Mn∩H+ by Schwarz reflection) are also uniformly
bounded on compact sets. By the compactness Theorem 12.1, we can (by passing to
a subsequence) assume that the Mn converge as sets to a smooth, properly embedded
limit minimal surface M . According to [22, Theorem 4.3], every properly embedded
minimal surface in S2×R is connected unless it is a union of horizontal spheres. Since
M contains Z∪Z∗, it is not a union of horizontal spheres, and thus it is connected. By
Corollary 12.2, M is unstable. Hence by the general compactness Theorem 12.1, the
convergence Mn!M is smooth with multiplicity 1.

Since Mn is a Y -surface, we have
(1) %Y is an orientation-preserving involution of Mn;
(2) Mn/%Y is connected;
(3) each 1-cycle Γ in Mn is homologous (in Mn) to −%Y Γ.
The smooth convergence implies that %Y is also an orientation-preserving involution

of M . Since M is connected, so is M/%Y . Also, if Γ is a cycle in M , then the smooth,
multiplicity one convergence implies that Γ is a limit of cycles Γn in Mn. Thus Γn

together with %Y Γn bound a region, call it An, in Mn. Note that the Γn∪%Y Γn lie in
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a bounded region in S2×R. Therefore so do the An (by, for example, the maximum
principle applied to the minimal surfaces An). Thus the An converge to a region A in
M with boundary Γ∪%Y Γ. This completes the proof that M is a Y -surface.

Recall that Y intersects any Y -surface transversely, and the number of intersection
points is equal to twice the genus plus two. It follows immediately from the smooth
convergence (and the compactness of Y ) that M has genus g.

The fact that M∩H=X∪Z∪Z∗ follows immediately from smooth convergence to-
gether with the corresponding property of the Mn.

Next we show that M has bounded curvature. Let {pk}∞k=1, pk∈M , be a sequence
of points such that the curvature of M at pk tends to the supremum. Let fk be a
screw motion such that fk(H)=H and such that z(f(pk))=0. The surfaces fk(M) have
areas that are uniformly bounded on compact sets. (They inherit those bounds from
the surfaces Mn.) Thus exactly as above, by passing to a subsequence, we get smooth
convergence to a limit surface. It follows immediately that M has bounded curvature.

Since M is a minimal embedded surface of finite topology containing Z∪Z∗, each
of its two ends is asymptotic to a helicoid by [16]. Since M∩H=Z∪Z∗, those limiting
helicoids must have the same pitch asH. (If this is not clear, observe that the intersection
of two helicoids with the same axes but different pitch contains an infinite collection of
equally spaced great circles.)

14.1. Proof of Theorem 2 for h=∞

The non-periodic case of Theorem 2 follows immediately from the periodic case together
with Theorem 14.1. The various asserted properties of the non-periodic examples follow
from the corresponding properties of the periodic examples together with the smooth
convergence in Theorem 14.1, except for the non-congruence properties, which are proved
in §18.

15. Convergence to helicoidal surfaces in R3

In this section, we study the behavior of genus-g helicoidal surfaces in S2(R)×R as
R!∞. The results in this section will be used in §16 to prove Theorem 3 of §2.

We will identify S2(R) with R2∪{∞} by stereographic projection, and therefore
S2(R)×R with

(R2∪{∞})×R=R3∪({∞}×R) =R3∪Z∗.
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Thus we are working with R3 together with a vertical axis Z∗ at infinity. The
Riemannian metric is (

4R2

4R2+x2+y2

)2

(dx2+dy2)+dz2. (15.1)

In particular, the metric coincides with the Euclidean metric along the Z axis. Inversion
in the cylinder

C2R = {(x, y, z) :x2+y2 =(2R)2} (15.2)

is an isometry of (15.1). Indeed, C2R corresponds to E×R, where E is the equator of
S2×{0} with respect to the antipodal points O and O∗. We also note for further use
that

distR(C2R, Z) = 1
2πR, (15.3)

where distR( · , ·) is the distance function associated with the metric (15.1).
We fix a genus g and choose a helicoid H⊂R3 with axis Z and containing X. (Note

that it is a helicoid for all choices of R.) As usual, let H+ be the component of R3\H
containing Y +, the positive part of the y-axis. Let M be one of the non-periodic, genus-g
examples described in Theorem 2. Let

S= interior(M∩H+).

According to Theorem 2, M and S have the following properties:
(1) S is a smooth, embedded Y -surface in H+ that intersects Y + in exactly g points;
(2) the boundary(10) of S is X∪Z;
(3) M=	S∪%Z

	S∪Z∗ is a smooth surface that is minimal with respect to the met-
ric (15.1).

Definition 15.1. An example is a triple (S, η,R) with η>0 and 0<R<∞ such that
S satisfies (1)–(3), where H is the helicoid in R3 that has axis Z, that contains X, and
that has vertical distance between successive sheets equal to η. In the terminology of the
previous sections, H is the helicoid of pitch 2η.

15.2. Convergence away from the axes

Until §15.16, it will be convenient to work not in R3 but rather in the universal cover
of R3\Z, still with the Riemannian metric (15.1). Thus the angle function θ( ·) will be
well defined and single valued. However, we normalize the angle function so that θ( ·)=0

(10) Here we are regarding M and S as subsets of R3 with the metric (15.1), so ∂S is X∪Z and
not X∪Z∪Z∗.
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on Y +. (In the usual convention for cylindrical coordinates, θ( ·) would be 1
2π on Y +.)

Thus θ=− 1
2π on X+ and θ= 1

2π on X−.
Of course Z and Z∗ are not in the universal cover, but dist( · , Z) and dist( · , Z∗) still

make sense.
Since we are working in the universal cover, each vertical line intersects H+ in a

single segment of length η.

Theorem 15.3. (First compactness theorem) Consider a sequence {(Sn, ηn, Rn)}∞n=1

of examples with Rn bounded away from zero and with ηn!0. Suppose that
(*) each Sn is graphical in some non-empty, open cylindrical region U×R such that

θ( ·)> 1
2π on U×R. In other words, every vertical line in U×R intersects Mn exactly

once.
Then after passing to a subsequence, the Sn converge smoothly away from a discrete

set K to the surface z=0. The convergence is with multiplicity 1 where |θ( ·)|> 1
2π and

with multiplicity 2 where |θ( ·)|< 1
2π.

Furthermore, the singular set K lies in the region |θ( ·)|6 1
2π.

Remark 15.4. Later (Corollaries 15.7 and 15.10) we will show the hypothesis (*) is
not needed and that the singular set K lies in Y +.

Proof. By passing to a subsequence and scaling, we may assume that theRn converge
to a limit R∈[1,∞]. Note that the H+

n converge as sets to the surface {z=0} in the
universal cover of R3\Z. Thus, after passing to a subsequence, the Sn converge as sets
to a closed subset of the surface {z=0}. By standard estimates for minimal graphs, the
convergence is smooth (and multiplicity one) in U×R. Thus the area-blowup set

Q := {q : lim supn!∞ area(Sn∩B(q, r))=∞ for all r > 0}

is contained in {z=0}\U and is therefore a proper subset of {z=0}. The constancy
theorem for area-blowup sets [33, Theorem 4.1] states that the area-blowup set of a
sequence of minimal surfaces cannot be a non-empty proper subset of a smooth, connected
2-manifold, provided the lengths of the boundaries are uniformly bounded on compact
sets. Hence Q is empty. That is, the areas of the Sn are uniformly bounded on compact
sets.

Thus by the general compactness Theorem 12.1, after passing to a subsequence, the
Sn converge smoothly away from a discrete set K to a limit surface S′ lying in {z=0}.
The surface S′ has some constant multiplicity in the region where θ( ·)> 1

2π. Since the
Sn∩(U×R) are graphs, that multiplicity must be 1. By %Y -symmetry, the multiplicity
is also 1 where θ<− 1

2π. As each Sn has boundary X, the multiplicity of S′ where
|θ( ·)|< 1

2π must be 0 or 2.
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Note that S̃n :=Sn∩
{
|θ( ·)|< 1

2π
}

is non-empty and lies in the solid cylindrical region{
|θ( ·)|6 1

2π
}
∩{|z|6 2ηn} (15.4)

and that ∂S̃n lies on the cylindrical, vertical edge of that region. It follows (by Theo-
rem 17.1 in §17) that for ηn/Rn sufficiently small, every vertical line that intersects the
region (15.4) is at distance at most 4ηn from Sn. Thus the limit of the S̃n as sets is all
of {z=0}∩

{
|θ( ·)|6 1

2π
}
, and so the multiplicity there is 2, not 0.

Since the convergence Sn!S′ is smooth wherever S′ has multiplicity 1, either by
the general compactness theorem (Theorem 12.1) or by the Allard regularity theorem
[1], |θ( ·)| must be 6 1

2π at each point of K.

Theorem 15.5. Let {(Sn, ηn, Rn)}∞n=1 be a sequence of examples with Rn>1 and
with ηn!0. Let fn be the screw motion through angle αn that maps H+

n to itself, and
assume that |αn|!∞. Let S′n=fn(Sn). Suppose each S′n is graphical in some non-empty
open cylinder U×R (as in (*) in Theorem 15.3). Then the S′n converge smoothly (on
compact sets) with multiplicity one to the surface {z=0}.

The proof is almost identical to the proof of Theorem 15.3, so we omit it.

Theorem 15.6. For every genus g and angle α> 1
2π, there is a λ<∞ with the

following property. If (S, η,R) is a genus-g example (in the sense of Definition 15.1)
with

dist(Z,Z∗) =πR> 4λη,

then S is graphical in the region

Q(λη, α) := {|θ( ·)|>α}∩{dist( · , Z∪Z∗) >λη}.

Proof. Suppose the result is false for some 1
2α>π, and let λn!∞. Then, for each

n, there is an example (Sn, ηn, rn) such that

distn(Z,Z∗)> 4λnηn (15.5)

and such that Sn is not a graphical in Q(λnηn, α). Here distn( · , ·) denotes distance with
respect to the metric that comes from S2(Rn)×R. However, henceforth we will write
dist( · , ·) instead of distn( · , ·) to reduce notational clutter.

Since the ends of Mn=Sn∪%ZSn are asymptotic to helicoids as z!±∞, note that
Sn is graphical in Q(λnηn, β) for all sufficiently large β. Let αn>α be the largest angle
such that Sn is not graphical in Q(λnηn, αn). Note that there must be a point pn∈Sn

such that

θ(pn) =αn, (15.6)

dist(pn, Z∪Z∗)>λnηn, (15.7)
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and such that Tan(Sn, pn) is vertical. Without loss of generality, we may assume (by
scaling) that dist(pn, Z∪Z∗)=1. In fact, by symmetry of Z and Z∗, we may assume that

1 =dist(pn, Z) 6dist(pn, Z
∗),

which of course implies that πRn=dist(Z,Z∗)>2, and therefore that

λnηn 6 1
2 .

By passing to a further subsequence, we may assume that

λnηn!µ∈
[
0, 1

2

]
.

Since λn!∞, this forces

ηn! 0.

We may also assume that

αn! α̃∈ [α,∞].

Case 1: α̃<∞. Then the pn converge to a point p with θ(p)=α̃ and with

dist(p, Z) =dist(p, Z∪Z∗) = 1.

Note that Mn is graphical in the region Q(λnηn, αn), and that those regions converge
to Q(µ, α). Thus by the compactness theorem (Theorem 15.3), the Sn converge smoothly
and with multiplicity one to {z=0} in the region |θ( ·)|> 1

2π. But this is a contradiction
since pn!p, which is in that region, and since Tan(Sn, pn) is vertical.

Case 2: Exactly as in Case 1, except that we apply a screw motion fn to Mn such
that θ(fn(pn))=0. (We then use Theorem 15.5 rather than Theorem 15.3.)

Corollary 15.7. Hypothesis (*) in Theorems 15.3 and 15.5 is always satisfied
provided n is sufficiently large.

15.8. Catenoidal necks

The next theorem shows that, in the compactness Theorem 15.3, any point away from
Z∪Z∗ where the convergence is not smooth must lie on Y, and that near such a point,
the Sn have small catenoidal necks.
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Theorem 15.9. Let {(Sn, ηn, Rn)}∞n=1 be a sequence of examples and {pn}∞n=1, with
pn∈Sn, be a sequence of points such that

slope(Sn, pn) > δ > 0, (15.8)

(where slope(Sn, pn) is the slope of the tangent plane to Sn at pn) and such that

dist(pn, Z∪Z∗)
ηn

!∞. (15.9)

Then there exist positive numbers cn such that (after passing to a subsequence) the sur-
faces

Sn−pn

cn
(15.10)

converge to a catenoid in R3. The waist of the catenoid is a horizontal circle, and the line
(Y +−pn)/cn converges to a line that intersects the waist in two diametrically opposite
points.

Furthermore,
ηn

cn
!∞ (15.11)

and
dist(pn, Sn∩Y +)

ηn
! 0. (15.12)

Proof. By scaling and passing to a subsequence, we may assume that

1 =dist(pn, Z) 6dist(pn, Z
∗), (15.13)

and that θ(pn) converges to a limit α∈[−∞,∞]. By (15.9) (a statement that is scale
invariant) and by (15.13), ηn!0. Thus, by Theorem 15.6 (and standard estimates for
minimal graphs), |α|6 1

2π.
First we prove that there exist cn!0 such that the surfaces (Sn−pn)/cn converge

subsequentially to a catenoid with horizontal ends.

Case 1: |α|= 1
2π. By symmetry, it suffices to consider the case α= 1

2π. Let S̃n be
obtained from Sn by Schwartz reflection about X−.

By the last sentence of the general compactness Theorem 12.1, there exist numbers
cn!0 such that (after passing to a subsequence) the surfaces

S̃n−pn

cn

converge smoothly to a complete, non-flat, properly embedded minimal surface S̃⊂R3

of finite total curvature whose ends are horizontal. By Proposition 4.5, S̃ has genus
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zero. By a theorem of Lopez and Ros[18], the only non-flat, properly embedded minimal
surfaces in R3 with genus zero and finite total curvature are the catenoids. Thus S̃ is a
catenoid. Note that

Sn−pn

cn

converges to a portion S of S̃. Furthermore, S is either all of S̃, or it is a portion of S̃
bounded by a horizontal line X̃=limn!∞(X−−pn)/cn in S̃. Since catenoids contain no
lines, in fact S=S̃ is a catenoid.

Case 2: |α|< 1
2π. By the last statement of the general compactness theorem (Theo-

rem 12.1), there are cn>0 tending to zero such that (after passing to a subsequence) the
surfaces

Sn−pn

cn

converge smoothly to a complete, non-flat, embedded minimal surface S⊂R3 of finite
total curvature with ends parallel to horizontal planes. By monotonicity,

lim sup
n!∞

1
π%2

area
(
Sn−pn

cn
∩B(0, %)

)
6 2 (15.14)

for all %>0. Thus S′ has density at infinity 62, so it has at most two ends. If it had just
one end, it would be a plane. But it is not flat, so that is impossible. Hence it has two
ends. By a theorem of Schoen [24], a properly embedded minimal surface in R3 with
finite total curvature and two ends must be a catenoid.

This completes the proof that (after possibly passing to a subsequence) the surfaces
(Sn−pn)/cn converge to a catenoid S with horizontal ends.

Note that for large n, there is a simple closed geodesic γn in Sn such that (γn−pn)/cn
converges to the waist of the catenoid S. Furthermore, γn is unique in the following sense:
if γ′n is a simple closed geodesic in Sn that converges to the waist of the catenoid S, then
γ′n=γn for all sufficiently large n. (This follows from the implicit function theorem and
the fact that the waist γ of the catenoid is non-degenerate as a critical point of the length
function.)

Claim. %Y γn=γn for all sufficiently large n.

Proof. Suppose that the claim is not true. Then (by passing to a subsequence) we
can assume that γn 6=%Y γn for all n. Thus (passing to a further subsequence) the curves
(%Y γn−pn)/cn do one of the following: (i) they converge to γ, (ii) they converge to
another simple closed geodesic in S having the same length as γ, or (iii) they diverge
to infinity. Now (i) is impossible by the uniqueness of the γn. Also, (ii) is impossible
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because the waist γ is the only simple closed geodesic in the catenoid S. Thus (iii) must
hold: the curves (%Y γn−pn)/cn diverge to infinity.

Since Sn is a Y -surface, γn together with %Y γn bound a region An in Sn. By the
maximum principle, θ( ·) restricted to An has its maximum on one of the two boundary
curves γn and %Y γn and (by symmetry) its minimum on the other. (Note that the level
sets of θ are totally geodesic and therefore minimal.)

By passing to a subsequence, we may assume that the regions (An−pn)/cn converge
to a subset Â of the catenoid S. Note that Â is the closure of one of the compo-
nents of S\Γ. (This is because one of the two boundary components of (An−pn)/cn,
namely (γn−pn)/cn, converges to the waist of the catenoid, whereas the other boundary
component, namely (%Y γn−pn)/cn, diverges to infinity.) The fact that θ|Ān

attains its
maximum on γn implies that there is a linear function L on R3 with horizontal gradient
such that L|Â attains its maximum on the waist γ=∂Â. But that is impossible since the
catenoid S has a horizontal waist. This proves the claim.

Since each γn is %Y -invariant (by the claim), it follows that the waist γ is invariant
under 180� rotation about the line Y ′, where Y ′ is a subsequential limit of the curves
(Yn−pn)/cn. Since γ is a horizontal circle, Y ′ must be a line that bisects the circle. Thus

dist(pn, Sn∩Y )
cn

!dist(O,S∩Y ′)<∞. (15.15)

Now note that ηn/cn!∞, since if it converged to a finite limit, then the regions
(H+

n −pn)/cn would converge to a horizontal slab of finite thickness and the catenoid S

would be contained in that slab, a contradiction. This completes the proof of (15.11).

Finally, (15.12) follows immediately from (15.11) and (15.15).

Corollary 15.10. The singular set K in Theorem 15.3 is a finite subset of Y +.
In fact (after passing to a subsequence), p∈K if and only if there is a sequence {pn}∞n=1,
pn∈Y +∩Sn, such that pn!p.

The following definition is suggested by Theorem 15.9.

Definition 15.11. Let (S, η,R) be an example (as in Definition 15.1). Consider the
set of points of S at which the tangent plane is vertical. A neck of S is a connected
component of that set consisting of a simple closed curve that intersects Y + in exactly
two points. The radius of the neck is half the distance between those two points, and the
axis of the neck is the vertical line that passes through the midpoint of those two points.
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Theorem 15.12. Suppose that (S, η,R) is an example (as in Definition 15.1) and
that V is a vertical line. If V is not too close to Z∪Z∗ and also not too close to any
neck axis, then V intersects M in at most two points, and the tangent planes to M at
those points are nearly horizontal. Specifically, for every ε>0, there is a λ (depending
only on genus and ε) with the following properties. Suppose that

dist(V,Z∪Z∗)
η

>λ,

and that , for every neck axis A, either

dist(V,A)
r(A)

>λ

(where r(A) is the neck radius) or

dist(V,A)
η

> 1.

Then
(i) the slope of the tangent plane at each point in V ∩M is <ε, and
(ii) V intersects 	S in exactly one point if θ(V )> 1

2π and in exactly two points if
θ(V )6 1

2π.

Proof. Let us first prove that there is a value Λ<∞ of λ such that assertion (i)
holds. Suppose not. Then there exist examples (Sn, ηn, Rn) and vertical lines Vn such
that

dist(Vn, Z∪Z∗)
ηn

>λn!∞, (15.16)

and such that
dist(Vn, A)

r(A)
>λn or

dist(Vn, A)
ηn

> 1 (15.17)

for every neck axis A of Sn, but such that Vn∩Sn contains a point pn at which the slope
of Mn is >ε.

Note that (15.16) and (15.17) are scale invariant. We can choose coordinates so
that pn is at the origin and, by Theorem 15.9, we can choose scalings so that the Sn

converge smoothly to a catenoid in R3. Let A′ be the axis of the catenoid, r(A′) be the
radius of the waist of the catenoid, and V ′ be the vertical line through the origin. Then
dist(A′, V ′) is finite, r(A′) is finite and non-zero, and ηn!∞ by (15.11). Thus if An is
the neck axis of Sn that converges to A′, then

lim
n!∞

dist(Vn, An)
r(An)

<∞ and lim
n!∞

dist(Vn, An)
ηn

=0,
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contradicting (15.17). This proves that there is a value of λ, call it Λ, that makes
assertion (i) of the theorem true.

Now suppose that there is no λ that makes assertion (ii) true. Then there is a se-
quence {λn}∞n=1, with λn!∞, a sequence {(Sn, ηn, Rn)}∞n=1 of examples, and a sequence
{Vn}∞n=1 of vertical lines such that (15.16) and (15.17) hold, but such that Vn does not
intersect Mn in the indicated number of points. By scaling, we may assume that

1 =dist(Vn, Z) 6dist(Vn, Z
∗),

which implies that Rn is bounded below and (by (15.16)) that ηn!0. We may also
assume that θ(Vn)>0, and that each λn is greater than Λ. Thus Vn intersects Sn trans-
versely. For each fixed n, if we move Vn in such a way that dist(Vn, Z)=1 stays constant
and that θ(Vn) increases, then (15.16) and (15.17) remain true, so Vn continues to be
transverse to Mn. Thus, as we move Vn in that way, the number of points in Vn∩	Sn

does not change unless Vn crosses X, so we may assume that θ(Vn)> 1
4π. But now Theo-

rem 15.3 and Remark 15.4 imply that Vn∩	Sn has the indicated number of intersections,
contrary to our assumption that it did not.

Corollary 15.13. Let ε>0 and λ>1 be as in Theorem 15.12, and let (S, η,R) be
an example. Consider the following cylinders: vertical solid cylinders of radius λη about
Z and Z∗, and for each neck axis(11) A of S with dist(A,Z∪Z∗)>(λ−1)η, a vertical
solid cylinder with axis A and radius λr(A). Let J be the union of those cylinders. Then
S\J consists of two components, one of which can be parameterized as{

(r cos θ, r sin θ, f(r, θ)) : r > 0 and θ>− 1
2π

}
\J,

where f
(
r,− 1

2π
)
≡0 and where

η

(
θ

π
− 1

2

)
6 f(r, θ) 6 η

(
θ

π
+

1
2

)
. (15.18)

Of course, by %Y -symmetry, the other component of S\J can be written{
(r cos θ, r sin θ,−f(r,−θ)) : r > 0 and θ6 1

2π
}
\J.

The inequality (15.18) expresses the fact that S lies in H+. Note that in Corol-
lary 15.13, because we are working in the universal cover of R3\Z, each vertical cylinder
about a neck axis in the collection J intersects H+ in a single connected component. (If
we were working in R3, it would intersect H+ in infinitely many components.) Thus
the portion of S that lies in such a cylinder is a single catenoid-like annulus. If we were
working in R3, the portion of S in such a cylinder would be that annulus together with
countably many disks above and below it.

(11) See 15.11 for the definition of “neck axis”.
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Remark 15.14. In Corollary 15.13, the function f(r, θ) is only defined for θ>− 1
2π.

It is positive for θ>− 1
2π and it vanishes where θ= 1

2π. Note that we can extend f by
Schwarz reflection to get a function f(r, θ) defined for all θ:

f(r, θ) =
{
f(r, θ), for θ>− 1

2π,
−f(r,−π−θ), for θ <− 1

2π.

Corollary 15.13 states that, after removing the indicated cylinders, we can express S
(the portion of M in H+) as the union of two multigraphs: the graph of the original,
unextended f together with the image of that graph under %Y . Suppose we remove from
M those cylinders together with their images under %Z . Then the remaining portion
of M can be expressed as the the union of two multigraphs: the graph of the extended
function f (with −∞<θ<∞) together with the image of that graph under %Y .

Remark 15.15. Note that H\(Z∪X) consists of four quarter-helicoids, two of which
are described in the universal cover of R3\Z by

z=
η

π

(
θ+

π

2

)
, θ>−π

2
,

and

z=
η

π

(
θ− π

2

)
, θ6

π

2
.

(As in the rest of this section, we are measuring θ from Y + rather than from X+.) These
two quarter-helicoids overlap only in the region − 1

2π<θ<
1
2π: a vertical line in that

region intersects both quarter-helicoids in points that are distance η apart, whereas any
other vertical line intersects only one of the two quarter-helicoids. Roughly speaking,
Theorem 15.12 and Corollary 15.13 say that if (S, η,R) is an example with R/η large,
then S must be obtained from these two quarter-helicoids by joining them by catenoidal
necks away from Z and in some possibly more complicated way near Z. The catenoidal
necks lie along the Y -axis.

Figure 6 illustrates the intersection of M=S∪%ZS with a vertical cylinder with
axis Z. The shaded region is the intersection of the cylinder with H+. The intersections
of the cylinder with the quarter-helicoids are represented by half-lines on the boundary
of the shaded region: θ>− 1

2π on top of the shaded region, and θ6 1
2π on the bottom.

The radius of the cylinder is chosen so that the cylinder passes though a catenoidal
neck of S that can be thought of as joining the quarter-helicoids, allowing S to make
a transition from approximating one quarter-helicoid to approximating the other. The
transition takes place in the region − 1

2π6θ6 1
2π.
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Z

O

θ

Z

− 3
2
π − 1

2
π

1
2
π

H+

Figure 6. Left : the shaded region is the intersection of H+ with the vertical cylinder of axis
Z and radius r. Right : intersection of M with the same cylinder, unrolled in the plane.
We use cylindrical coordinates (r, θ, z), with θ=0 being the positive Y -axis. The radius r is
chosen so that the cylinder intersects a catenoidal neck. The positive X-axis intersects the
cylinder at the point (θ, z)=

(
− 1

2
π, 0

)
. The negative X-axis intersects the cylinder at the

point (θ, z)=
(
1
2
π, 0

)
, which is the same as the point

(
− 3

2
π, 0

)
on the cylinder.

15.16. Behavior near Z

In this section, we consider examples (see Definition 15.1) (Sn, 1, Rn) with η=1 fixed and
with Rn!∞. We will work in R3 (identified with (S2(Rn)×R)\Z∗ by stereographic
projection as described in the beginning of §15), rather than in the universal cover of
R3\Z.

Theorem 15.17. Let {(Sn, 1, Rn)}∞n=1 be a sequence of examples with Rn!∞. Let
{σn}∞n=1 be a sequence of screw motions of R3 that map H to itself. Let

Mn =σn(Sn∪%ZSn).

In other words, Mn is the full genus-g example (of which Sn is the subset in the interior
of H+) followed by the screw motion σn. Then (after passing to a subsequence), the
Mn converge smoothly on compact sets to a properly embedded, multiplicity-1 minimal
surface M in R3. Furthermore, there is a solid cylinder C about Z such that M \C is
the union of two multigraphs.

Thus the family F of all such subsequential limits M (corresponding to arbitrary
sequences of Mn and σn) is compact with respect to smooth convergence. It is also
closed under screw motions that leave H invariant. Those two facts immediately imply
the following corollary.

Corollary 15.18. Let F be the family of all such subsequential limits. For each
solid cylinder C around Z, each M∈F , and each p∈C∩M , the curvature of M at p is
bounded by a constant k(C)<∞ depending only on C (and on the genus).
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Proof of Theorem 15.17. Let 0<dn
1<d

n
2<...<d

n
g be the distances of the points in

Sn∩Y + to the origin. By passing to a subsequence, we may assume that the limit

dk := lim
n!∞

dn
k ∈ [0,∞]

exists for each k. Let d be the largest finite element of {dk}g
k=1. By passing to a further

subsequence, we may assume that the σnMn converge as sets to a limit set M .
Let C be a solid cylinder of radius >(λ+1)(1+d) around Z where λ is as in Corol-

lary 15.13 for ε=1. Let Ĉ be any larger solid cylinder around Z. By Corollary 15.13 (see
also Remark 15.14), for all sufficiently large n, Mn∩(Ĉ\C) is the union of two smooth
multigraphs, and for each vertical line V in Ĉ\C, each connected component of V \H
intersects M̃n at most twice. In fact, all but one such component must intersect Mn

exactly once.
By standard estimates for minimal graphs, the convergence Mn!M is smooth and

has multiplicity 1 in the region R3\C. It follows immediately that M \C is the union of
two multigraphs, and that the area blowup set

Q :=
{
p : lim sup

n!∞
area(σnMn∩B(p, r))=∞ for every r > 0

}
is contained in C.

The half-space theorem for area blowup sets [33, Corollary 7.4] says that if an area
blowup set is contained in a half-space of R3, then that blowup set must contain a
plane. Since Q is contained in the cylinder C, it is contained in a half-space but does
not contain a plane. Thus Q must be empty. Consequently, the areas of the Mn are
uniformly bounded locally. Since the genus is also bounded, we have, by the General
Compactness Theorem 12.1, that M is a smooth embedded minimal hypersurface, and
that either

(1) the convergence Mn!M is smooth and multiplicity 1, or
(2) the convergence Mn!M is smooth with some multiplicity m>1 away from a

discrete set. In this case, M must be stable.
Since the multiplicity is 1 outside of the solid cylinder C, it follows that the conver-

gence Mn!M is everywhere smooth with multiplicity 1.

Theorem 15.19. Suppose that in Theorem 15.17, the screw motions σn are all the
identity map. Let M be a subsequential limit of {Mn}∞n=1, and suppose that M 6=H.
Then M∩H=X∪Z and M is asymptotic to H at infinity.

Proof. Since Mn∩H=X∪Z for each n, the smooth convergence implies that M
cannot intersect H transversely at any point not in X∪Z. It follows from the strong
maximum principle that M cannot touch H\(X∪Z).
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Since M is embedded, has finite topology, and has infinite total curvature, it follows
from work by Bernstein–Breiner [5] or by Meeks–Perez [19] that M is asymptotic to some
helicoid H ′ at infinity. The fact that M∩H=X∪Z implies that H ′ must be H.

The works of Bernstein–Breiner and Meeks–Perez quoted in the previous paragraph
rely on many deep results of Colding and Minicozzi. We now give a more elementary
proof that M is asymptotic to a helicoid at infinity.

According to [15, Theorem 4.1], a properly immersed non-planar minimal surface in
R3 with finite genus, one end, and bounded curvature must be asymptotic to a helicoid
and must be conformally a once-punctured Riemann surface provided it contains X∪Z
and provided it intersects some horizontal plane {x3=c} in a set that, outside of a
compact region in that plane, consists of two disjoint smooth embedded curves tending
to ∞. Now M contains X∪Z and has bounded curvature (by Corollary 15.18). Thus to
prove Theorem 15.19, it suffices to prove Lemmas 15.20 and 15.21 below.

Lemma 15.20. Let M be as in Theorem 15.19. Then M has exactly one end.

Proof. Let Z(R) denote the solid cylinder with axis Z and radius R. By Theo-
rem 15.17, for all sufficiently large R, the set

M \Z(R)

is the union of two connected components (namely multigraphs) that are related to each
other by %Z . We claim that for any such R, the set

M \(Z(R)∩{|z|6R}) (*)

contains exactly one connected component. To see that it has exactly one component,
let E be the component of (*) containing Z+∩{z>R}. Note that E is invariant under %Z .
Now E cannot be contained in Z(R) by the maximum principle (consider catenoidal
barriers). Thus E contains one of the two connected components of M \Z(R). By %Z-
symmetry, it must then contain both components of M \Z(R). It follows that if the set
in (*) had a connected component other than E , that component would have to lie in
Z(R)∩{z<−R}. But such a component would violate the maximum principle.

Lemma 15.21. Let M be as in Theorem 15.19. Then M∩{z=0} is the union of X
and a compact set.

Proof. In the following argument, it is convenient to choose the angle function θ on
H+ so that θ=0 on X+, θ= 1

2π on Y +, and θ=π on X−.
By Theorem 15.17, for all sufficiently large R, the set

M \Z(R)
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is the union of two multigraphs that are related to each other by %Z .
The smooth convergence Mn!M , together with Corollary 15.13 and Remark 15.14,

implies that one of the components of M \Z(R) can be parameterized as

(r cos θ, r sin θ, f(r, θ)), r>R and θ∈R,

where
f(r, 0)≡ 0 (15.19)

and
θ−π <f(r, θ)<θ+π. (15.20)

(The bound (15.20) looks different from the bound (15.18) in Corollary 15.13 because
there we were measuring θ from Y + whereas here we are measuring it from X+.)

Of course f solves the minimal surface equation in polar coordinates.
For 0<s<∞, define a function fs by

fs(r, θ) =
f(sr, θ)

s
.

Going from f to fs corresponds to dilating S by 1/s. (To be more precise, the map
(r, θ) 7!(r cos θ, r sin θ, fs(r, θ)) parameterizes the dilated surface.) Thus the function fs

will also solve the polar-coordinate minimal surface equation. By (15.20),

θ−π6 sfs(r, θ) 6 θ+π. (15.21)

By the Schauder estimates for fs and by the bounds (15.21), the functions sfs converge
smoothly (after passing to a subsequence) as s!0 to a harmonic function g(r, θ) defined
for all r>0 and satisfying

θ−π6 g6 θ+π. (15.22)

Here “harmonic” is with respect to the standard conformal structure on S2 (or equiva-
lently on R2), so g satisfies the equation

grr+
gr

r
+
gθθ

r2
=0.

Now define G:R2!R by
G(t, θ) = g(et, θ).

Then G is harmonic in the usual sense: Gtt+Gθθ=0.
By (15.22), G(t, θ)−θ is a bounded, entire harmonic function, and therefore is con-

stant. Also, G−θ vanishes where θ=0, so it vanishes everywhere. Thus

g(r, θ)≡ θ,
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and therefore ∂g/∂θ≡1.
The smooth convergence of sfs to g implies that

lim
r!∞

r
∂f(r, θ)
∂θ

=1,

where the convergence is uniform given bounds on θ. Thus there is a %<∞ such that for
each r>%, the function

θ∈ [−2π, 2π] 7−! f(r, θ)

is strictly increasing. Thus it has exactly one zero in this interval, namely θ=0. But by
the bounds (15.20), f(r, θ) never vanishes outside this interval. Hence for r>%, f(r, θ)
vanishes if and only if θ=0.

So far we have only accounted for one component of M \Z(R). But the behavior of
the other component follows by %Z-symmetry.

16. The proof of Theorem 3

We now prove Theorem 3 in §2.

Proof. Smooth convergence to a surface asymptotic to H was proved in Theo-
rems 15.17 and 15.19. The other geometric properties of the surfacesMs in statements (1)
and (2) follow from the smooth convergence and the corresponding properties of the sur-
faces Ms(Rn) in Theorem 3.

Next we prove statement (3), i.e., that Ms is a Y -surface. The %Y -invariance of Ms

follows immediately from the smooth convergence and the %Y -invariance of the Ms(Rn).
We must also show that %Y acts on the first homology group of Ms by multiplication
by −1. Let γ be a closed curve in Ms. We must show that γ∪%Y γ bounds a region
of M∞

s . The curve γ is approximated by curves γn⊂Ms(Rn). Since each Ms(Rn) is a
Y -surface, γn∪%Y γn bounds a compact region in Wn⊂Ms(Rn). These regions converge
uniformly on compact sets to a region W⊂Ms with boundary γ∪%Y γ, but a priori that
region might not be compact. By the maximum principle, each Wn is contained in the
smallest slab of the form {|z|6a} containing γn∪%Y γn. Thus W is also contained in such
a slab. Hence W is compact, since Ms contains only one end and that end is helicoidal
(and therefore is not contained in a slab). This completes the proof of statement (3).

Next we prove statement (4): ‖Ms∩Y ‖=2‖Ms∩Y +‖+1=2 genus(Ms)+1, where
‖ · ‖ denotes the number of points in a set. Because Ms is a Y -surface,

‖Ms∩Y ‖=2−χ(Ms),



276 d. hoffman, m. traizet and b. white

by Proposition 4.2 (c). Also,

χ(Ms) = 2−2 genus(Ms)−1,

since Ms has exactly one end. Combining the last two identities gives statement (4).
(Note that Ms∩Y consists of the points of Ms∩Y +, the corresponding points in Ms∩Y −,
and the origin.)

Statement (5) gives bounds on the genus of M+ and of M− depending on the parity
of g. To prove these bounds, note that M+(Rn)∩Y + contains exactly g points. By
passing to a subsequence, we may assume (as n!∞) that a of those points stay a
bounded distance from Z, that b of those points stay a bounded distance from Z∗, and
that for each of the remaining g−a−b points, the distance from the point to Z∪Z∗ tends
to infinity.

By smooth convergence,

‖M+∩Y +‖= a,

so the genus of M+ is a by statement (4).
If g is even, then M+(Rn) is symmetric by reflection µE in the totally geodesic

cylinder E×R of points equidistant from Z and Z∗. It follows that a=b, so

genus(M+) 6 a6 1
2g.

The proof for M− and g even is identical.
If g is odd, then M−(Rn) is obtained from M+(Rn) by the reflection µE . Hence

exactly b of the points of M−(Rn)∩Y + stay a bounded distance from Z. It follows that
M−∩Y + has exactly b points, and therefore that M− has genus b. Hence

genus(M+)+genus(M−) = a+b6 g,

which completes the proof of statement (5).
It remains only to prove statement (6): the genus of M+ is even and the genus of

M− is odd. By statement (4), this is equivalent to showing that ‖Ms∩Y +‖ is even or
odd according to whether s is + or −. Let

S=Ss =Ms∩H+.

Then Ms∩Y +=S∩Y , so it suffices to show that ‖S∩Y ‖ is even or odd according to
whether s is + or −. By Proposition 4.2, this is equivalent to showing that S has two
ends if s is + and one end if s is −.
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Let Z(R) be the solid cylinder of radius R about Z. By Corollary 15.13 (see also
the first three paragraphs of the proof of Lemma 15.21), we can choose R sufficiently
large so that S\Z(R) has two components. One component is a multigraph on which θ

goes from θ(X+) to ∞, and on which z is unbounded above. The other component is a
multigraph on which θ goes from θ(X−) to −∞ and on which z is unbounded below. In
particular, if we remove a sufficiently large finite solid cylinder

C :=Z(R)∩{|z|6A}

from S, then the resulting surface S\C has two components. (We choose A large enough
so that C contains all points of H\Z at which the tangent plane is vertical.) One
component has in its closure X+\C and Z+\C, and the other component has in its
closure X−\C and Z−\C. Consequently Z+ and X+ belong to an end of S, and X− and
Z− also belong to an end of S.

Thus S has one or two ends according to whether Z+ and X− belong to the same
end of S or different ends of S. Note that they belong to the same end of S if and only
if every neighborhood of O contains a path in S with one endpoint in Z+ and the other
endpoint in X−, i.e., if and only if Ms is negative at O. By the smooth convergence, Ms

is negative at O if and only if the Ms(Rn) are negative at O, i.e., if and only if s=−.

17. Minimal surfaces in a thin hemispherical shell

IfD is a hemisphere of radius R and J is an interval with |J |/R sufficiently small, we show
that the projection of a minimal surface M⊂D×J with ∂M⊂∂D×J onto D covers most
of D. This result is used in the proof of Theorem 15.3 to show that a certain multiplicity
is 2, not zero.

Theorem 17.1. Let D=DR be an open hemisphere in the sphere S2(R) and let J
be an interval with length |J |. If |J |/R is sufficiently small, the following holds. Suppose
that M is a non-empty minimal surface in D×J with ∂M in (∂D)×J . Then every point
p∈D is within distance 4|J | from Π(M), where Π:D×J!D is the projection map.

Proof. By scaling, it suffices to prove that if J=[0, 1] is an interval of length 1, then
every point p of DR is within distance 4 from Π(M) provided R is sufficiently large.

For the Euclidean cylinder B2(0, 2)×[0, 1], the ratio of the area of the cylindrical side
(namely 4π) to the sum of the areas of top and bottom (namely 8π) is less than 1. Thus
the same is true for all such cylinders of radius 2 and height 1 in S2(R)×R, provided
R is sufficiently large. It follows that there is a catenoid in S2(R)×R whose boundary
consists of the two circular edges of the cylinder.
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Let ∆⊂DR be a disk of radius 2 containing the point p. By the previous paragraph,
we may suppose that R is sufficiently large so that there is a catenoid C in ∆×[0, 1]
whose boundary consists of the two circular edges of ∆×[0, 1]. In other words,

∂C =(∂∆)×∂[0, 1].

Now suppose that dist(p,Π(M))>4. Since ∆ has diameter 4, it follows that Π(M)
is disjoint from ∆ and therefore that M is disjoint from C. If we slide C around in
DR×[0, 1], it can never bump into M by the maximum principle. That is, M is disjoint
from the union K of all the catenoids in DR×[0, 1] that are congruent to C. Consider all
surfaces of rotation with boundary (∂DR)×∂[0, 1] that are disjoint from M and from K.
The surface S of least area in that collection is a catenoid, and (because it is disjoint
from K) it lies within distance 2 from (∂DR)×[0, 1].

We have shown: if R is sufficiently large and if the theorem is false for DR and
J=[0, 1], then there is a catenoid S such that S and Σ:=(∂DR)×[0, 1] have the same
boundary and such that S lies within distance 2 from Σ.

Thus if the theorem were false, there would be a sequence of radii Rn!∞ and a
sequence of catenoids Sn in DRn×[0, 1] such that

∂Sn = ∂Σn

and such that Sn lies within distance 2 from Σn, where

Σn =(∂DRn)×[0, 1].

We may use coordinates in which the origin is in (∂DRn)×{0}. As n!∞, the Σn

converge smoothly to an infinite flat strip Σ=L×[0, 1] in R3 (where L is a straight line
in R2), and the Sn converge smoothly to a minimal surface S such that (i) ∂S=∂Σ,
(ii) S has the translational invariance that Σ does, and (iii) S lies within a bounded
distance from Σ. It follows that S=Σ.

Now both Σn and Sn are minimal surfaces. (Note that Σn is minimal, and indeed
totally geodesic, since ∂D is a great circle.) Because Σn and Sn have the same boundary
and converge smoothly to the same limit S, it follows that there is a non-zero Jacobi
field f on S that vanishes at the boundary. Since S is flat, f is in fact a harmonic
function. The common rotational symmetry of Σ′

n and S′n implies that the Jacobi field
is translationally invariant along S, and thus that it achieves its maximum somewhere.
(Indeed, it attains its maximum on the entire line L×

{
1
2

}
.) But then f must be constant,

which is impossible since f is non-zero and vanishes on ∂S.
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18. Non-congruence results

In this section, we prove the non-congruence results in Theorem 2: that M+ and M− are
not congruent by any orientation-preserving isometry of S2×R, and that, if the genus
is even, they are not congruent by any isometry of S2×R. For these results, we have
to assume that H does not have infinite pitch, i.e., that H 6=X×R. For simplicity, we
consider only the non-periodic case (h=∞). The periodic case is similar.

Let s∈{+,−}. Since
Ms∩H =Z∪Z∗∪X

and since every vertical line intersects H infinitely many times, we see that Z and Z∗

are the only vertical lines contained in Ms.
Let C be a horizontal great circle in Ms that intersects Z, and therefore also Z∗.

We claim that
C =X.

To see this, first note that C must lie in S2×{0}, since otherwise Ms would be invariant
under the screw motion %X �%C and would therefore have infinite genus, a contradiction.
It follows that C contains O and O∗. But then C must be X, since otherwise the tangents
to C, X, and Z at O would be three linearly independent vectors all tangent to Ms at O.

Now let φ be an isometry of S2×R that maps M+ to M−. We must show that the
genus is odd and that φ is orientation reversing on S2×R. By composing with %Y , if
necessary, we may assume that φ does not switch the two ends of S2×R. Also, by the
discussion above, φ must map Z∪Z∗∪X to itself.

The symmetries of Z∪Z∗∪X that do not switch up and down are:

I, µE , µY (reflection in Y ×R), and µE �µY .

The ends of M+ and M− are asymptotic to helicoids of positive pitch with axes Z
and Z∗, which implies that the ends of µY (M+) and (µE �µY )(M+) are asymptotic to
helicoids of negative pitch. Therefore φ cannot be µY or µE �µY . As M+ and M− have
different signs at O, we have that φ cannot be the identity. Thus φ must be µE , which is
orientation reversing on S2×R. Since M−=φ(M+) and M+ have different signs at O, we
see that φ(M+) and M+ are not equal, which implies (by statement (8) in Theorem 2)
that the genus is odd. �
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Part II. Genus-g helicoids in R3

By Theorem 2 (Part I, §2), for every radius R>0 and positive integer g, there exist
two distinct helicoidal minimal surfaces of genus 2g in S2(R)×R, with certain addi-
tional properties described below (see Theorem 6). We denote those surfaces M+(R) and
M−(R). In Part I, the genus of Ms(R) was denoted by g and could be even or odd. In
Part II, we only use the examples of even genus, and it is more convenient to denote that
genus by 2g.

Let {Rn}∞n=1 be a sequence of radii diverging to infinity. By Theorem 3 (Part I, §2),
for each s∈{+,−}, a subsequence of {Ms(Rn)}∞n=1 converges to a helicoidal minimal
surface Ms in R3. The main result of Part II is the following.

Theorem 5. If g is even, M+ has genus g. If g is odd, M− has genus g.

Thus R3 contains genus-g helicoids for every g.

19. Preliminaries

In this section, we recall the notation and results that we need from Part I. Some notations
are slightly different and better suited to the arguments of Part II.

Our model for S2(R) is C∪{∞} with the conformal metric obtained by stereographic
projection:

λ2|dz|2 with λ=
2R2

R2+|z|2
. (19.1)

In this model, the equator is the circle |z|=R. Our model for S2(R)×R is (C∪{∞})×R
with the metric

λ2|dz|2+dt2, (z, t)∈ (C∪{∞})×R. (19.2)

When R!∞, this metric converges to the Euclidean metric 4|dz|2+dt2 on C×R=R3.
(This metric is isometric to the standard Euclidean metric by the map (z, t) 7!(2z, t).)

The real and imaginary axes in C are denoted X and Y . The circle |z|=R is denoted
E (the letter E stands for “equator”). Note that X, Y , and E are geodesics for the metric
in (19.1). We identify S2 with S2×{0}, soX, Y , and E are horizontal geodesics in S2×R.
The antipodal points (0, 0) and (∞, 0) are denoted O and O∗, respectively. The vertical
axes through O and O∗ in S2×R are denoted Z and Z∗, respectively. If γ is a horizontal
or vertical geodesic in S2×R, the 180� rotation around γ is denoted %γ . This is an
isometry of S2×R. The reflection in the vertical cylinder E×R is denoted µE . This is
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an isometry of S2×R. In our model,

µE(z, t) =
(
R2

z̄
, t

)
.

Let H be the standard helicoid in R3, defined by the equation

x2 cosx3 =x1 sinx3.

It turns out that H is minimal for the metric (19.2) for any value of R, although not
complete anymore (see §1 in Part I). We complete it by adding the vertical line Z∗=
{∞}×R, and still denote it H. This is a complete, genus zero, minimal surface in S2×R.
It contains the geodesic X, the axes Z and Z∗, and meets the geodesic Y orthogonally at
the points O and O∗. It is invariant by %X , %Z , %Z∗ , µE (which reverse its orientation),
and %Y (which preserves it).

In the following two theorems, we summarize what we need to know about the
genus-2g minimal surfaces M+(R) and M−(R) in S2(R)×R (see Theorems 2 and 3 in
§2).

Theorem 6. Let s∈{+,−}. Then, the following statements hold :
(1) Ms(R) is a complete, properly embedded minimal surface with genus 2g, and it

has a top end and a bottom end, each asymptotic to H or a vertical translate of H.
(2) Ms(R)∩H=X∪Z∪Z∗. In particular, Ms(R) is invariant by %X , %Z and %Z∗ ,

each of which reverses its orientation.
(3) Ms(R) is invariant by the reflection µE , which reverses its orientation.
(4) Ms(R) meets the geodesic Y orthogonally at 4g+2 points and is invariant under

%Y , which preserves its orientation. Moreover, (%Y )∗ acts on H1(Ms(R),Z) by multipli-
cation by −1.

Theorem 7. Let s∈{+,−}. Let {Rn}∞n=1 be a sequence of radii diverging to in-
finity. Let Ms(Rn) be a surface having the properties listed in Theorem 6. Then a
subsequence of {Ms(Rn)}∞n=1 converges to a minimal surface Ms in R3 asymptotic to
the helicoid H. The convergence is smooth convergence on compact sets. Moreover,

• the genus of Ms is at most g,
• the genus of M+ is even,
• the genus of M− is odd,
• the number of points in Ms∩Y is 2 genus(Ms)+1.
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20. The setup

Let {Rn}∞n=1, with Rn!∞, be a sequence such that {Ms(Rn)}∞n=1 converges smoothly to
a limit Ms as in Theorem 7. Let g′ be the genus of Ms. By the last point of Theorem 7,
Ms∩Y has exactly 2g′+1 points. It follows that 2g′+1 points of Ms(Rn)∩Y stay at
bounded distance from the origin O. By µE-symmetry, 2g′+1 points of Ms(Rn)∩Y stay
at bounded distance from the antipodal point O∗. There remains 4(g−g′) points in
Ms(Rn)∩Y whose distance to O and O∗ is unbounded. Let

N = g−g′.

We shall prove the following result.

Theorem 20.1. In the above setup, N61.

Theorem 5 is a straightforward consequence of this result. Indeed, if g is even and
s=+, we know by Theorem 7 that g′ is even so N=0 and g=g′. If g is odd and s=−,
then g′ is odd so again N=0.

To prove Theorem 20.1, assume that N>1. We want to prove that N=1 by studying
the 4N points whose distance to O and O∗ is unbounded. To do this, it is necessary to
work on a different scale. Fix a sign s∈{+,−} and define

Mn =
1
Rn

Ms(Rn)⊂S2(1)×R.

This is a minimal surface in S2(1)×R. Each end of Mn is asymptotic to a vertical
translate of a helicoid of pitch

tn =
2π
Rn

.

(The pitch of a helicoid with counterclockwise rotation is twice the distance between
consecutive sheets. The standard helicoid has pitch 2π.) Observe that tn!0. By the
definition of N , the intersection Mn∩Y has 4N points whose distance to O and O∗ is
�tn. Because Mn is symmetric with respect to 180� rotation %X around X, there are
2N points on the positive Y -axis. We order these by increasing imaginary part:

p′1,n, p′′1,n, p′2,n, p′′2,n, ..., p′N,n, p′′N,n.

Because of the %X -symmetry, the 2N points on the negative Y -axis are the conjugates
of these points. Define pj,n to be the midpoint of the interval [p′j,n, p

′′
j,n] and rj,n to be

half the distance from p′j,n to p′′j,n, both with respect to the spherical metric. We have

0< Im p1,n< Im p2,n< ...< Im pN,n.
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Z∗ Z

Y

Figure 7. Here is a schematic illustration of what Ms(R) could look like for large values of
R (g=4 and s=+ in this picture). The distance between the two vertical axes Z and Z∗

is πR and should be thought of as being very large. Inside a vertical cylinder of large but
fixed radius around the Z-axis, the surface is very close to the limit helicoidal surface Ms (a
genus-2 helicoid in this picture). By µE-symmetry, the same happens around the Z∗-axis.
Inside these two cylinders, we see the handles that stay at bounded distance from the axes as
R!∞. Outside the cylinders, the surface is close to the helicoid (represented schematically
by horizontal lines) whose two sheets are connected by 2N small necks placed along the Y -axis
(N=2 in this picture). The distance of each neck to the axes Z and Z∗ is diverging as R!∞.
These are the handles that are escaping from both Z and Z∗. These necks are getting smaller
and smaller as R!∞ and have asymptotically catenoidal shape. Note that the handles that
stay at bounded distance from the axes do not converge to catenoids as R!∞. (They do
look like catenoids in this picture.)

By µE-symmetry, which corresponds to inversion in the unit circle,

pN+1−j,n =
1
p̄j,n

. (20.1)

In particular, in case N is odd, p(N+1)/2,n=i.

For λ>1 sufficiently large, let Zn(λ) be the part of Mn lying inside of the vertical
cylinders of radius λtn around Z and Z∗:

Zn(λ) = {q=(z, t)∈Mn : d(Z∪Z∗, q)<λtn}. (20.2)

Also define Dj,n(λ)={z :d(z, pj,n)<λrj,n}. Consider the intersection of Mn with the
vertical cylinder over Dj,n(λ), and let Cj,n(λ) denote the component of this intersection
that contains the points {p′j,n, p′′j,n}. Define

Cn(λ) =
N⋃

j=1

Cj,n(λ)∪Cj,n(λ). (20.3)

The following proposition is key in showing that at most one handle is lost in taking the
limit as Rn!∞. In broad terms, it says that near the points pj,n, catenoidal necks are
forming on a small scale, and after removing these necks and a neighborhood of the axes,
what is left is a pair of symmetric surfaces which are vertical graphs over a half-helicoid.
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Proposition 20.2. Let N=g−g′, tn, and Mn⊂S2(1)×R be as above. Then, the
following statements hold.

(i) For each j, 16j6N , the surface (Mn−pj,n)/rj,n converges to the standard
catenoid C with vertical axis and waist circle of radius 1 in R3. In particular, the
distance (in the spherical metric) d(pj,n, pj+1,n) is �rj,n. Moreover, tn�rj,n, and the
Cj,n(λ) are close to catenoidal necks with collapsing radii.

(ii) Given ε>0, there exists a λ>0 such that

M ′
n =Mn\(Zn(λ)∪Cn(λ))

has the following properties:
(a) The slope of the tangent plane at any point of M ′

n is less than ε.
(b) M ′

n consists of two components related by the symmetry %Y , rotation by 180�

around Y .
(c) M ′

n intersects tnH in a subset of the axis X and nowhere else, with one of
its components intersecting in a ray of the positive X-axis, the other in a ray of X−.
Each component is graphical over its projection onto the half-helicoid (a component of
tnH\(Z∪Z∗)) that it intersects.

This proposition is proved in Theorem 15.9 and Corollary 15.13 of Part I (with
slightly different notation).

Passing to a subsequence, pj =limn!∞ pj,n∈iR+∪{∞} exists for all j∈[1, N ]. We
have p1∈[0, i], and we will consider the following three cases:

• Case 1: p1 ∈ (0, i),
• Case 2: p1 =0,
• Case 3: p1 = i.

(20.4)

We will see that Cases 1 and 2 are impossible, and that N=1 in Case 3.

20.3. The physics behind the proof of Theorem 20.1

Theorem 20.1 is proved by evaluating the surface tension in the Y -direction on each
catenoidal neck. Mathematically speaking, this means the flux of the horizontal Killing
field tangent to the Y -circle in S2×R. On one hand, this flux vanishes at each neck by
%Y -symmetry (see Lemma 21.3). On the other hand, we can compute the limit Fj of the
surface tension on the jth catenoidal neck (corresponding to pj =limn!∞ pj,n) as n!∞,
after suitable scaling.
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Assume for simplicity that the points O, p1, ..., pN and O∗ are distinct. Recall that
the points p1, ..., pN are on the positive imaginary Y -axis. For 16j6N , let pj =iyj , with
0<yj<∞. Then we will compute that

Fj = c2j
1−y2

j

1+y2
j

+
∑
k 6=j

cjckf(yj , yk)

where the numbers cj are positive and proportional to the size of the catenoidal necks
and

f(x, y) =
−2π2

(log x−log y)|log x−log y+iπ|2
.

Observe that f is antisymmetric, and f(x, y)>0 when 0<x<y. We can think of the
point pj as a particle with mass cj and interpret Fj as a force of gravitation type. The
particles p1, ..., pN are attracted to each other and we can interpret the first term by
saying that each particle pj is repelled from the fixed antipodal points O and O∗. All
forces Fj must vanish. It is physically clear that no equilibrium is possible unless N=1
and p1=i. Indeed, in any other case, F1>0.

This strategy is similar to the one followed in [26] and [27]. The main technical
difficulty is that we cannot guarantee that the points O, p1, ..., pN and O∗ are distinct.
The distinction between Cases 1–3 in (20.4) stems from this problem.

20.4. The space C̃∗

To compute forces we need to express Mn as a graph. For this, we need to express the
helicoid itself as a graph, away from its axes Z and Z∗. Let C̃∗ be the universal cover
of C∗. Of course, one can identify C̃∗ with C by mean of the exponential function. It will
be more convenient to see C̃∗ as the covering space obtained by analytical continuation of
log z, so each point of C̃∗ is a point of C∗ together with a determination of its argument:
points are couples (z, arg(z)), although in general we just write z. The following two
involutions of C̃∗ will be of interest:

• (z, arg(z)) 7!(z̄,− arg(z)), which we write simply as z 7!z̄. The fixed points are
arg z=0.

• (z, arg(z)) 7!(1/z̄, arg(z)), which we write simply as z 7!1/z̄. The fixed points are
|z|=1.

The graph of the function (t/2π) arg z on C̃∗ is one half of a helicoid of pitch t.
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20.5. The domain Ωn and the functions fn and un

By Proposition 20.2, away from the axes Z∪Z∗ and the points pj,n, we may consider
Mn to be the union of two multigraphs. We wish to express this part of Mn as a pair
of graphs over a subdomain of C̃∗. We will allow ourselves the freedom to write z for a
point (z, arg z)∈C̃∗ when its argument is clear from the context. Thus we will write pj,n

for the point
(
pj,n,

1
2π

)
in C̃∗ corresponding to the points on Mn∩Y in Proposition 20.2.

Define

Dn(λ) =
{

(z, arg z) : |z|<λtn or |z|> 1
λtn

}
, (20.5)

Dj,n(λ) = {(z, arg z) : d(pj,n, z)<λrj,n and 0< arg z <π}, (20.6)

Ωn =Ωn(λ) = C̃∗\
(
Dn(λ)∪

N⋃
j=1

Dj,n(λ)∪Dj,n(λ)
)
. (20.7)

According to Proposition 20.2 (ii), there exists a λ>0 such that, for sufficiently large n,

M ′
n =Mn∩(Ωn(λ)×R)

is the union of two graphs related by %Y -symmetry, and each graph intersects the helicoid
of pitch tn in a subset of the X-axis. Only one of these graphs can contain points on the
positive X-axis. We choose this component and write it as the graph of a function fn on
the domain Ωn. We may write

fn(z) =
tn
2π

arg z−un(z). (20.8)

The function un has the following properties:

• un(z̄) =−un(z). In particular, un =0 on arg z=0.
• un(1/z̄) =un(z). In particular, ∂un/∂ν=0 on |z|=1.
• 0<un<

1
2 tn when arg z > 0.

(20.9)

The first two assertions follow from the symmetries of Mn. See Theorem 6 (statements
(2) and (3)), and the discussion preceding it. The third assertion follows from Proposi-
tion 20.2, statement (ii.c), which implies that

0< |un|< 1
2 tn,

when arg z>0, since the vertical distance between the sheets of tnH is equal to 1
2 tn. Now

choose a point z0 in the domain of fn that is near a point pj,n. Then |fn(z0)| is small,
and arg z0 is near 1

2π. Hence fn(z0)∼ 1
4 tn−un(z0), which implies that un(z0)>0. We

conclude that 0<un<
1
2 tn when arg z>0, as claimed.
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r

θ

0
1

1
2
π

− 1
2
π

Figure 8. The domain Ωn in polar coordinates, z=reiθ. The function un is positive for θ>0.
The line r=1 corresponds to the unit circle |z|=1. The white strip on the left corresponds to
the projection of the vertical cylinder of radius λtn about the Z-axis, and the region to the
right of the shaded domain is its image by the inversion through the unit circle. The small
disks correspond to the vertical cylinders of radius λrj,n (in the spherical metric).

Organization of Part II

We deal with Cases 1–3, as listed in (20.4), separately. In each case, we first state,
without proof, a proposition which describes the asymptotic behavior of the function un

defined by (20.8) as n!∞. We use this result to compute forces and obtain the required
result (namely, N=1 or a contradiction). Then, we prove the proposition. Finally, an
appendix contains analytic and geometric results that are relevant to minimal surfaces
in S2×R and that are used in Part II.

21. Case 1: p1∈(0, i)

For p∈C̃∗, let hp be the harmonic function defined on C̃∗\{p, p} by

hp(z) =− log
∣∣∣∣ log z−log p
log z−log p

∣∣∣∣ .
Note that since p and z are in C̃∗, both come with a determination of their logarithm,
so the function hp is well defined. This function has the same symmetries as un:

• hp(z̄) =−hp(z);
• hp(1/z̄) =h1/p̄(z);
• moreover, if arg p and arg z are positive, then hp(z)> 0.

(21.1)
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Remark. The function

(z, p) 7−!−hp(z)

is the Green’s function for the domain arg z>0 of C̃∗.

Recall that

pj = lim
n!∞

pj,n. (21.2)

It might happen that several points pk are equal to pj . In this case, we say that we have
a cluster at pj . Let m be the number of distinct points amongst p1, ..., pN . For each n,
relabel the points pj,n (by permuting the indices) so that the points p1, ..., pm defined
by (21.2) are distinct and so that

Im p1< Im p2< ...< Im pm.

(Consequently, for each k with 16k6N , there is exactly one j with 16j6m such that
pk=pj .)

We define

ũn =
|log tn|
tn

un. (21.3)

Proposition 21.1. Assume that p1 6=0. Then, after passing to a subsequence, there
exist non-negative real numbers c0, ..., cm such that

ũ(z) := lim
n!∞

ũn(z) = c0 arg z+
m∑

j=1

cjhpj
(z). (21.4)

The convergence is the usual smooth uniform convergence on compact subsets of C̃∗

minus the points pj and −pj for 16j6m. Moreover, for 16j6m,

cj = lim
n!∞

|log tn|
tn

φj,n

2π
, (21.5)

where φj,n is the vertical flux of Mn on the graph of fn restricted to the circle C(pj , ε)
for a fixed, small enough ε.

We allow p1=i as this proposition will be used in Case 3, in §23.
Note that, for large n, φj,n is the sum of the vertical fluxes on the catenoidal necks

corresponding to the points pk,n such that pk=pj .
This proposition is proved in §21.10 by estimating the Laplacian of un and con-

structing an explicit barrier, from which we deduce that a subsequence converges to a
limit harmonic function on C̃∗ with logarithmic singularities at ±p1, ...,±pm.
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Remark. In Proposition 21.1, it is easy to show using Harnack’s inequality that we
can choose numbers λn>0 so that λnun converges subsequentially to a non-zero limit
of the form (21.4). (One fixes a point z0 and lets λn=1/un(z0).) However, for us it is
crucial that we can choose λn to be |log tn|/tn; it means that in later calculations, we
will be able to ignore terms that are o(|log tn|/tn).

For all we know at this point, the limit ũ might be zero. We will prove this is not
the case.

Proposition 21.2. For each j∈[1,m], cj>0.

This proposition is proved in §21.13 using a height estimate (Proposition A.5) to
estimate the vertical flux of the catenoidal necks.

From now on assume that p1∈(0, i). Fix some small number ε. Let Cn be the graph
of the restriction of fn to the circle C(p1, ε). Let Fn be the flux of the Killing field χY

on Cn. The field χY is the Killing field associated with rotations with respect to poles
whose equator is the Y -circle (see Proposition A.3 in the appendix). On one hand, we
have the following result.

Lemma 21.3. Fn=0.

Proof. By Theorem 6 (4), Cn together with its image %Y (Cn) bound a compact
region in Mn. Thus the flux of the Killing field χY on Cn∪%Y (Cn) is zero. By %Y -
symmetry, this flux is twice the flux Fn of χY on Cn. Thus Fn=0.

On the other hand, Fn can be computed using Proposition A.4 from the appendix:

Fn =− Im
∫

C(p1,ε)

2
(
∂

∂z

(
tn
2π

arg z−un

))2
i

2
(1−z2) dz+O(t4n)

=−Re
∫

C(p1,ε)

(
tn

4πiz
−un,z

)2

(1−z2) dz+O(t4n)

=−Re
∫

C(p1,ε)

(
− t2n

16π2z2
− 2tn

4πiz
un,z+u2

n,z

)
(1−z2) dz+O(t4n)

=Re
∫

C(p1,ε)

(
2tn
4πiz

un,z−u2
n,z

)
(1−z2) dz+O(t4n).

(21.6)

The second equation comes from

∂

∂z
arg z=

1
2iz

.

The fourth equation is a consequence of the fact that (1−z2)/z2 has no residue at p1 6=0.
The first term in (21.6) (the cross-product) is a priori the leading term. However we can
prove that this term can be neglected.
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Proposition 21.4.

lim
n!∞

(
log tn
tn

)2

Fn =−Re
∫

C(p1,ε)

ũ2
z(1−z2) dz (21.7)

where ũ is defined in (21.4) as the limit of

|log tn|
tn

un.

This proposition is proved in §21.14 using a Laurent series expansion to estimate
the first term in (21.6).

Assuming these results, we now prove the following result.

Proposition 21.5. Case 1 is impossible.

Proof. According to Lemma 21.3, the flux Fn is zero. Hence the limit in (21.7) is
zero. We compute that limit and show that it is non-zero.

Differentiating equation (21.4), we get

ũz =
c0
2iz

−
m∑

j=1

cj
2z

(
1

log z−log pj
− 1

log z−log p̄j

)
.

Therefore,

Resp1 ũ
2
z(1−z2) =Resp1

1−z2

4z2

[
c21

(log z−log p1)2
+2

c1
log z−log p1

×
(
−c0
i
− c1

log z−log p̄1
+

m∑
j=2

cj
log z−log pj

− cj
log z−log p̄j

)]

=−c
2
1(1+p2

1)
4p1

+
c1(1−p2

1)
2p1

(
−c0
i
− c1

log p1−log p̄1

+
m∑

j=2

cj
log p1−log pj

− cj
log p1−log p̄j

)
.

(See Proposition A.9 in the appendix for the residue computations.) Write pj =iyj for
16j6m so that all yj are positive numbers. By Lemma 21.3, equation (21.7) and the
residue theorem, we have

0 =−Re
∫

C(p1,ε)

ũ2
z(1−z2) dz

=−Re
[
2πi

y2
1+1
4iy1

(
c21
y2
1−1
y2
1+1

+2c1

(
−c0
i
− c1
iπ

+
m∑

j=2

cj
log y1−log yj

− cj
log y1−log yj +iπ

))]

=
π(y2

1+1)
2y1

[
c21

1−y2
1

y2
1+1

+
m∑

j=2

−2π2 c1cj
(log y1−log yj)|log y1−log yj +iπ|2

]
.

(21.8)
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Now y1<1 and y1<yj for all j>2, so all terms in (21.8) are positive. This contradiction
proves Proposition 21.5.

We remark that the bracketed term in (21.8) is precisely the expression for the force
F1 in §20.3.

Barriers

We now introduce various barriers that will be used to prove Proposition 21.1. Fix some
α∈(0, 1).

Definition 21.6. An is the set of points (z, arg z) in C̃∗ which satisfy tαn<|z|<1 and
arg z>0, minus the disks D(pj,n, t

α
n) for 16j6N .

By the disk D(p, r) in C̃∗ (for small r), we mean the points (z, arg z) such that
|z−p|<r and arg z is close to arg p. It is clear that An⊂Ωn for large n, since tαn�tn.
Moreover, if z∈An then d(z, ∂Ωn)> 1

2 t
α
n.

We work in the hemisphere |z|61 where the conformal factor of the spherical metric
in (19.1) satisfies 16λ62. Hence Euclidean and spherical distances are comparable.
We will use the Euclidean distance. Also the Euclidean and spherical Laplacians are
comparable. The symbol ∆ will mean Euclidean Laplacian.

Let δ be the function on An defined by

δ(z) =
{

min{|z|, |z−p1,n|, ..., |z−pN,n|}, if 0< arg z <π,
|z|, if arg(z) >π.

Lemma 21.7. There exists a constant C1 such that in the domain An, the function
un satisfies

|∆un|6C1
t3n
δ4
.

Proof. The function

fn(z) =
tn
2π

arg z−un(z)

satisfies the minimal surface equation, and |∆fn|=|∆un|. The proposition then follows
from Proposition A.1 in the appendix, a straightforward application of the Schauder
estimates. More precisely, we have the following.

• If 0<arg z<π, we apply Proposition A.1 on the domain

A′
n =

{
w∈Ωn :− 1

2π < argw< 3
2π, |w|< 2

}
.

The distance d(z, ∂A′
n) is comparable to δ(z). The function fn is bounded by 3

4 tn.
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• If kπ6arg z<kπ+π for some k>1, we apply Proposition A.1 to the function
fn− 1

2ktn and the domain

A′
n =

{
w∈Ωn : kπ− 1

2π < argw<kπ+ 3
2π and |w|< 2

}
.

The distance d(z, ∂A′
n) is comparable to |z|. The function fn− 1

2ktn is again bounded
by 3

4 tn.

Next, we need to construct a function whose Laplacian is greater than 1/δ4, in order
to compensate for the fact that un is not quite harmonic. Let χ:R+![0, 1] be a fixed,
smooth function such that χ≡1 on [0, π] and χ≡0 on [2π,∞).

Lemma 21.8. There exists a constant C2>1 such that the function gn defined on
An by

gn(z) =
C2

|z|2
+χ(arg z)

N∑
j=1

1
|z−pj,n|2

satisfies

∆gn >
4
δ4
. (21.9)

Moreover ∂gn/∂ν60 on |z|=1 and

gn 6
C2+N
t2α
n

in An. (21.10)

Proof. The inequality (21.10) follows immediately from the definitions of gn and An.
The function f defined in polar coordinate by f(r, θ)=1/r2 satisfies

|∇f |= 2
r3

and ∆f =
4
r4
.

Hence for arg z>2π, (21.9) is satisfied for any C2>1. Suppose 0<arg z<π. Then

∆gn =
4C2

|z|4
+

N∑
j=1

4
|z−pj,n|4

>
4
δ4

so again, (21.9) is satisfied for any C2>1. If θ=arg z∈[π, 2π], we have |z−pj,n|>|z|=r
and

|∇χ(arg z)|6 C

r
and |∆χ(arg z)|6 C

r2
.

Hence, ∣∣∣∣∆ χ(arg z)
|z−pj,n|2

∣∣∣∣ 6
C

r2
1
r2

+2
C

r

2
r3

+
4
r4
.

Therefore, ∆gn>4/r4 provided C2 is large enough. (The constant C2 only depends on
N and a bound on χ′ and χ′′.) This completes the proof of (21.9).
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We need a harmonic function on C̃∗ that is greater than |log t| on |z|=t. A good
candidate would be − log |z|. However this function has the wrong Neumann data on the
unit circle. We propose the following lemma.

Lemma 21.9. For 0<t<1, the harmonic function Ht(z) defined for z∈C̃∗, arg z>0
by

Ht(z) = Im
(

log t log z
log t+i log z

)
has the following properties:

(1) Ht(z)>0 if arg z>0;
(2) Ht(1/z̄)=Ht(z), hence ∂Ht/∂ν=0 on |z|=1;
(3) Ht(z)> 1

2 |log t| if |z|=t;
(4) for fixed t, one has Ht(z)> 1

2 |log t| when arg z!∞, uniformly with respect to
|z| in t6|z|61;

(5) for fixed z, one has Ht(z)!arg z when t!0;
(6) Ht(z)6|log z| if arg z>0.

Proof. It suffices to compute Ht(z) in polar coordinates z=reiθ:

Ht(z) =
(log t)2θ+|log t|((log r)2+θ2)

(log t−θ)2+(log r)2
.

The first two points follow. If r=t then

Ht(z) =
|log t|

2

(
1+

θ2

2(log t)2+2|log t|θ+θ2

)
>
|log t|

2
,

which proves point (3). If t6r61 then

Ht(z) >
(log t)2θ+|log t|θ2

(log t−θ)2+(log t)2

which gives point (4). Point (5) is elementary. For the last point, write∣∣∣∣ log t log z
log t+i log z

∣∣∣∣ 6

∣∣∣∣ log t log z
log t

∣∣∣∣ = |log z|.

21.10. Proof of Proposition 21.1

The function ũn defined in (21.3) has the following properties in An:

• |∆ũn|6C1t
2
n|log tn|/δ4 by Lemma 21.7;

• ũn 6 1
2 |log tn|;

• ũn =0 on arg z=0;
• ∂ũn/∂ν=0 on |z|=1.

(21.11)
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The last three properties follow from (20.9) and the fact that An⊂Ωn. Consider the
barrier vn=v1,n+v2,n+v3,n, where

v1,n(z) =−C1t
2
n|log tn|gn(z)+C1(C2+N)t2−2α

n |log tn|,

v2,n(z) =
1
α

N∑
j=1

hpj,n
(z) =− 1

α

N∑
j=1

log
∣∣∣∣ log z−log pj,n

log z−log p̄j,n

∣∣∣∣,
v3,n(z) =

1
α
Htα

n
(z).

The function v1,n is positive in An by the estimate (21.10) of Lemma 21.8. Observe
that the second term in the expression for v1,n tends to zero as n!∞ since α<1. The
functions v2,n and v3,n are harmonic and positive in An (see point (1) of Lemma 21.9 for
v3,n).

By (21.1) and the symmetry of the set {p1,n, ..., pN,n} (see (20.1)), the function
v2,n satisfies v2,n(1/z̄)=v2,n(z). Hence ∂v2,n/∂ν=0 on the unit circle. By point (2) of
Lemma 21.9, ∂v3,n/∂ν=0 on the unit circle. Therefore, by Lemma 21.8,

∂vn

∂ν
=
∂v1,n

∂ν
> 0 on |z|=1.

Because pj,n!pj 6=0, we have on the circle C(pj,n, t
α
n)

log |log z−log pj,n| ' log |z−pj,n|.

Hence for large n and for 16j6N

v2,n >
1
2α

|log tαn|> ũn on C(pj,n, t
α
n).

Using point (3) of Lemma 21.9 and the second statement of (21.11), we have v3,n>ũn

on the boundary component |z|=tαn. So we have

• ∆ũn >∆vn in An;
• ũn 6 vn on the boundaries arg z=0, |z|= tαn, and C(pj,n, t

α
n);

• ∂ũn/∂ν6 ∂vn/∂ν on the boundary |z|=1;
• ũn 6 vn when arg z!∞.

(21.12)

(The first statement follows from (21.9) and the first statement of (21.11).)
By the maximum principle, we have ũn6vn in An.
For any compact subset K of the set

{z ∈ C̃∗ : |z|6 1, arg z> 0}\{p1, ..., pm},
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the function vn is bounded by C(K) on K. (For v3,n, use the last point of Lemma 21.9.)
Then by symmetry, un is bounded by C(K) on K∪�K∪σ(K)∪σ(�K), where σ denotes
the inversion z 7!1/z̄. Let

Ω∞ = lim
n!∞

Ωn = C̃∗\{±p1, ...,±pm}.

Then ũn is bounded on compact subsets of Ω∞. By standard partial differential equation
theory, passing to a subsequence, ũn has a limit ũ. The convergence is the uniform smooth
convergence on compact subsets of Ω∞. The limit has the following properties:

• ũ is harmonic in Ω∞, which follows from the first point of (21.11);
• ũ(z̄)=−ũ(z) and ũ(1/z̄)=ũ(z);
• ũ(z)>0 if arg z>0.
Note that either ũ≡0 or ũ is positive in arg z>0. Using the fact that log: C̃∗!C is

biholomorphic, the following lemma tells us that ũ has the form given by equation (21.4).

Lemma 21.11. Let H be the upper half plane Im z>0 in C. Let u be a positive
harmonic function in H\{q1, ..., qm} with boundary value u=0 on R, where each qj∈H.
Then there exists non-negative constants c0, ..., cm such that

u(z) = c0 Im z−
m∑

j=1

cj log
∣∣∣∣z−qjz−q̄j

∣∣∣∣.
Proof. By Bôcher’s Theorem ([4, Theorem 3.9]), a positive harmonic function in a

punctured disk has a logarithmic singularity at the puncture. Hence for each 16j6m,
there exists a non-negative constant cj such that u(z)+cj log |z−qj | extends analytically
at qj . Consider the harmonic function

h(z) =−
m∑

j=1

cj log
∣∣∣∣z−qjz−q̄j

∣∣∣∣.
Observe that h=0 on R. Then u−h extends to a harmonic function in H with boundary
value zero on R. For every ε>0, there exists an r>0 such that |h(z)|6ε for |z|>r.
Consequently, u−h>−ε for z∈H, |z|>r. By the maximum principle, u−h>−ε in H.
Since this is true for arbitrary positive ε, we conclude that u−h is non-negative in H.
Now a non-negative harmonic function in H with boundary value zero on R is equal to
c0 Im z for some non-negative constant c0 ([4, Theorem 7.22]).

To conclude the proof of Proposition 21.1, it remains to compute the numbers cj for
16j6m. Recall that φj,n is the vertical flux of Mn on the graph of fn restricted to the
circle C(pj , ε). By Proposition A.4,

φj,n =Im
∫

C(pj ,ε)

(2fn,z+O(t2n)) dz=Im
∫

C(pj ,ε)

(−2un,z+O(t2n)) dz.
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Now

lim
n!∞

|log tn|
tn

un =−cj log |z−pj |+harmonic near pj ,

lim
n!∞

|log tn|
tn

2un,z =− cj
z−pj

+holomorphic near pj .

Hence by the residue theorem,

lim
n!∞

|log tn|
tn

φj,n =2πcj .

This finishes the proof of Proposition 21.1.
As a corollary of the proof of Proposition 21.1, we have an estimate of un that we

will need in §23.10. For convenience, we state it here as a lemma.
Fix some β∈(0, α) and let A′

n⊂An be the domain defined as An in Definition 21.6,
replacing α by β, namely: A′

n is the set of points (z, arg z) in C̃∗ which satisfy tβn<|z|<1
and arg z>0, minus the disks D(pj,n, t

β
n) for 16j6N .

Lemma 21.12. Assume that p1 6=0. Then for n large enough (depending only on β

and a lower bound on |p1|), we have

un 6 (N+2)
β

α
tn in A′

n.

Recalling that un<
1
2 tn, this lemma is useful when β is small. We will use it to get

information about the level sets of un.

Proof. As we have seen in the proof of Proposition 21.1, we have, in An,

un 6
tn

|log tn|
vn =

tn
|log tn|

(v1,n+v2,n+v3,n). (21.13)

We need to estimate the functions v1,n, v2,n and v3,n in A′
n. We have, in An,

v1,n 6C1(C2+N)t2−2α
n |log tn|= o(|log tn|).

By point (6) of Lemma 21.9, we have, in A′
n,

v3,n 6
1
α
|log z|6 1

α
|log tβn|=

β

α
|log tn|.

Regarding the function v2,n, we need to estimate each function hpj,n in the domain A′
n.

The function hpj,n is harmonic in the domain

{z ∈ C̃∗ : arg z > 0 and tβn< |z|< 1}\D(pj,n, t
β
n)
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and goes to zero as arg z!∞, so its maximum is on the boundary. Since

hpj,n

(
1
z̄

)
=hpj,n(z),

the maximum is not on the circle |z|=1 (because it would be an interior maximum of
hpj,n

). Also hpj,n
=0 on arg z=0. Therefore, the maximum is either on |z|=tβn or on the

circle C(pj,n, t
β
n). On |z|=tβn, we have hpj,n!0 because pj,n is bounded away from zero.

On the circle C(pj,n, t
β
n), we have, for n large,

log z−log pj,n '
1
pj,n

(z−pj,n),

|log z−log pj,n|>
tβn

2|pj,n|
.

Hence,
− log |log z−log pj,n|6 log(2|pj,n|)+β|log tn|.

Also,
log |log z−log p̄j,n|6 log(|log z|+|log pj,n|)' log(2|log pj,n|).

Since |pj,n| is bounded away from zero, this gives, for n large enough,

hpj,n 6C+β|log tn| in A′
n.

Hence,

v2,n 6C+N
β

α
|log tn|.

Collecting all terms, we get, for n large enough,

vn 6C+(N+1)
β

α
|log tn|6 (N+2)

β

α
|log tn| in A′

n.

Using (21.13), the lemma follows.

21.13. Proof of Proposition 21.2

We use the notation introduced at the end of the proof of Proposition 21.1. Fix some
index j6m and let J={k∈[1, N ]:pk=pj}. By permuting the indices of the pk,n within
the cluster J , we may assume that

rj,n =max{rk,n : k∈J}.
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(Recall from §20 that rj,n is the distance (with respect to the spherical metric) from pj,n

to the two nearest points in Mn∩Y , namely the points p′j,n and p′′j,n.) Fix some positive
ε such that |pk−pj |>2ε for k /∈J .

From statement (i) of Proposition 20.2, we know that near pj,n the surface Mn is
close to a vertical catenoid with waist circle of radius rj,n. More precisely, (Mn−pj,n)/rj,n
converges to the standard catenoid

x3 =cosh−1
√
x2

1+x2
2.

Since the vertical flux of the standard catenoid is 2π, we have

φj,n ' 2π
∑
k∈J

rk,n 6 2π|J |rj,n. (21.14)

Let
hk,n = rk,n cosh−1(2λ).

Observe that hk,n�tn. Consider the intersection of Mn with the plane at height hk,n

and project it on the horizontal plane. There is one component which is close to the
circle C(pk,n, 2λrk,n). We call this component γk,n. Observe that γk,n⊂Ωn and fn=hk,n

on γk,n. Let Dk,n be the disk bounded by γk,n.
We now estimate fn on the circle C(pj,n, ε). By Proposition 21.1, we know that

|un|=O(tn/|log tn|). Hence

fn =
(
tn
2π

)
arg z−un(z)∼ tn

2π
arg z on C(pj,n, ε).

As pj,n is on the positive imaginary axis, arg z= 1
2π+O(ε) on C(pj,n, ε). Hencefn(z)∼ 1

4 tn

on C(pj,n, ε). Consequently, the level set fn= 1
8 tn inside Ωn∩D(pj,n, ε) is a closed curve,

possibly with several components. We select the component which encloses the point pj,n

and call it Γn. (Note that by choosing a very slightly different height, we may assume
that Γn is a regular curve.) Let Dn be the disk bounded by Γn. Let

Ω′
n =Dn\

⋃
j∈J

Dj,n.

Then Ω′
n⊂Ωn.

We are now able to apply the height estimate Proposition A.5 in the appendix
with r1=λrj,n, r2=ε, h= 1

8 tn−hj,n' 1
8 tn, and f equal to the function fn(z−pj,n)− 1

8 tn.
(Observe that, by Proposition 20.2 (ii), we may assume that |∇fn|61. Also the fact that
∂fn/∂ν<0 on γj,n follows from the convergence to a catenoid.) We obtain

tn
8
−hj,n 6

√
2
π
φj,n log

ε

λrj,n
.
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Using (21.14), this gives for n large enough

tn
9

6

√
2
π
φj,n log

2π|J |ε
λφj,n

. (21.15)

We claim that, for n large enough,

λφj,n

2π |J | ε
> t2n. (21.16)

Indeed, suppose on the contrary that

wn :=
λφj,n

2π|J |ε
< t2n,

for infinitely many values of n. Since the function x log 1
x is increasing for x>0 small

enough, we have

wn log
1
wn

<t2n log
1
t2n

for all sufficiently large n. But (21.15) gives

Ctn 6wn log
1
wn

for some positive constant C independent of n. Combining these last two inequalities
gives

C 6 tn log
1
t2n

=2tn|log tn|.

Hence tn|log tn| is bounded below by a positive constant. This is a contradiction since
tn|log tn|!0. Thus inequality (21.16) is proved.

Inequality (21.16) implies (using that |log tn|=− log tn, since tn<1 for n large)

log
2π|J |ε
λφj,n

6 |log t2n|.

Then, by (21.15),
tn
9

6
2
√

2
π

φj,n|log tn|,

which implies that
|log tn|
tn

φj,n

is bounded below by a positive constant independent of n. Therefore, the coefficient cj
defined in (21.5) is positive, as desired. This concludes the proof of Proposition 21.2.
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Remark. Together with (21.14), this gives

rj,n >
1

36|J |
√

2
tn

|log tn|
(21.17)

for large n. This is a lower bound on the size of the largest catenoidal neck in the cluster
corresponding to pj . We have no lower bound for rk,n if k∈J , k 6=j. Conceptually, we
could have rk,n=o(tn/|log tn|), although this seems unlikely.

21.14. Proof of Proposition 21.4

Let gn=un,z. We have to prove that

lim
n!∞

(
log tn
tn

)2

Re
∫

C(p1,ε)

2tn
4πiz

un,z(1−z)2 dz=0,

i.e., that

Re
∫

C(p1,ε)

1
2iz

gn(z)(1−z2) dz= o

(
tn

(log tn)2

)
. (21.18)

Fix some α such that 0<α< 1
2 and some small ε>0. Let J be the set of indices j such

that pj =p1. Consider the domain

An =D(p1, ε)−
⋃
j∈J

D(pj,n, t
α
n)⊂Ωn.

By Proposition A.1 in the appendix, we have in An

|gn,z̄|= 1
4 |∆un|= 1

4 |∆fn|6Ct3−4α
n ,

|∇fn|6Ct1−α
n .

As the gradient of tn arg z is O(tn) in An, this gives

|∇un|6Ct1−α
n ,

and hence
|gn|6Ct1−α

n . (21.19)

Proposition A.7 gives us the formula

gn(z) = g+(z)+
∑
j∈J

g−j (z)+
1

2πi

∫
An

gn,z̄(w)
w−z

dw∧�dw,
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where of course the functions g+ and g−j depend on n.
• The function g+ is holomorphic in D(p1, ε), so does not contribute to the inte-

gral (21.18).
• The last term is bounded by Ct3−4α

n . (The integral of (dw∧�dw)/(w−z) is uni-
formly convergent.) Therefore we need 3−4α>1, namely α< 1

2 so that the contribution
of this term to the integral is o(tn/(log tn)2).

• Each function g−j can be expanded as

∞∑
k=1

aj,k

(z−pj)k
,

by Proposition A.7. By Proposition A.8, each residue aj,1 is real. Hence

Re
∫

C(p1,ε)

1
2iz

aj,1

(z−pj,n)
(1−z2) dz= aj,1 Re

(
2πi

2ipj,n
(1−p2

j,n)
)

=0, (21.20)

because pj,n is imaginary. Thus aj,1 does not contribute to the integral (21.18).
• It remains to estimate the coefficients aj,k for k>2. Using (21.19),

|aj,k|=
∣∣∣∣ 1
2πi

∫
C(pj,n,tα

n)

gn(z)(z−pj,n)k−1 dz

∣∣∣∣ 6Ct1+(k−1)α
n .

If z∈C(p1, ε), then |z−pj,n|> 1
2ε, so

∣∣∣∣ ∞∑
k=2

aj,k(z−pj,k)−k

∣∣∣∣ 6C
∑
k>2

t1+(k−1)α
n

(
2
ε

)k

6
4C
ε2
t1+α
n

∞∑
k=2

(
2tαn
ε

)k−2

.

The last sum converges because α>0. Hence the contribution of this term to the integral
is o(tn/(log tn)2) as desired.

22. Case 2: p1=0

In this case we make a blow up at the origin. Let

Rn =
1

|p1,n|
.

(Here we assume again that the points pj,n are ordered by increasing imaginary part as
in §20.) Let M̂n=RnMn. This is a helicoidal minimal surface in S2(Rn)×R with pitch

t̂n =Rntn.
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By choice of p1,n, we have |p1,n|�tn, so limn!∞ t̂n=0. Let Ω̂n=RnΩn. M̂n is the graph
on Ω̂n of the function

f̂n(z) =
t̂n
2π

arg z−ûn(z),

where

ûn(z) =Rnun

(
z

Rn

)
.

Let p̂j,n=Rnpj,n. After passing to a subsequence,

p̂j = lim
n!∞

p̂j,n ∈ [i,∞] (22.1)

exists for j∈[1, N ] and we have p̂1=i. Let m be the number of distinct, finite points
amongst p̂1, ..., p̂N . For each n, relabel the points p̂j,n (by permuting the indices) so that
the points p̂1, ..., p̂m defined by (22.1) are distinct and so that

1 = Im p̂1< Im p̂2< ...< Im p̂m.

Proposition 22.1. After passing to a subsequence,

lim
n!∞

|log t̂n|
t̂n

ûn(z) = ĉ0 arg z+
m∑

j=1

ĉjhp̂j (z).

The convergence is the smooth uniform convergence on compact subsets of C̃∗ minus the
points ±p̂j , for 16j6m. The numbers ĉj , 16j6m, are given by

ĉj = lim
n!∞

|log t̂n|
t̂n

φ̂j,n

2π
,

where φ̂j,n is the vertical flux of M̂n on the graph of f̂n restricted to the circle C(p̂j , ε),
for some fixed, sufficiently small ε. Moreover, ĉj>0 for 16j6m.

This proposition is proved in §22.4. The proof is very similar to the proofs of
Proposition 21.1 and (for the last statement) Proposition 21.2.

Fix some small ε>0. Let Fn be the flux of the Killing field χY on the circle C(p̂1, ε)
on M̂n. Since we are in S2(Rn)×R,

χY =
i

2

(
1− z2

R2
n

)
and

Fn =− Im
∫

C(p̂1,ε)

2
(
∂

∂z

(
t̂n
2π

arg z−ûn

))2
i

2

(
1− z2

R2
n

)
dz+O(t̂4n).

Expand the square. As in Case 1, the cross product term can be neglected and, since
Rn!∞, we have the following result.
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Proposition 22.2.

lim
n!∞

(
log t̂n
t̂n

)2

Fn =− lim
n!∞

(
log t̂n
t̂n

)2

Re
∫

C(p̂1,ε)

(ûn,z)2 dz.

(Same proof as Proposition 21.4).
Assuming these results, we now prove the following proposition.

Proposition 22.3. Case 2 is impossible.

Proof. Write p̂j =iyj . By the same computation as in §21, we get (the only difference
is that there is no (1−z2) factor)

−Re
∫

C(p̂1,ε)

ũ2
z dz=

π

2y1

(
ĉ1

2+
m∑

j=2

−2π2 ĉ1ĉj
(log y1−log yj)|log y1−log yj +iπ|2

)
.

Again, since yj>y1 for j>2, all terms are positive, yielding a contradiction.

22.4. Proof of Proposition 22.1

The setup of Proposition 22.1 is the same as Proposition 21.1 except that we are in
S2(Rn)×R with Rn!∞ instead of S2(1)×R, and the pitch is t̂n. Remember that
limn!∞ t̂n=0.

We will apply the arguments in §21 to the current situation, with t̂n instead of tn,
ûn instead of un, p̂j,n instead of pj,n, etc.

The proof of Proposition 22.1 is substantially the same as the proofs of Proposi-
tions 21.1 and 21.2. The main difference is that the equatorial circle |z|=1 becomes
|z|=Rn.

• The definition of the domain An is the same with |z|<1 replaced by |z|<Rn.
• Lemma 21.7 is the same (with p̂j,n in place of pj,n).
• Lemma 21.8 is the same. The last statement must be replaced by ∂gn/∂ν60 on

|z|=R for R>1.
• Lemma 21.9 is the same, we do not change the definition of the function Ht.

Instead of point (3), we need ∂Ht/∂ν>0 on |z|=R for R>1. This is true by the following
computation:

∂Ht

∂r
=

2 log r(log t)2(|log t|+θ)
((log t−θ)2+(log r)2)2

.

• The definition of the function ũn is the same, and it has the same properties,
except that the last point must be replaced by ∂ũn/∂ν=0 on |z|=Rn.
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• The definition of the function v2,n is the same (with p̂j,n in place of pj,n), now it
is symmetric with respect to the circle |z|=Rn.

• At the end, K is a compact subset of the set {z∈C̃∗ :arg z>0}\{p̂1, ..., p̂m}. The
fact that v2,n is uniformly bounded on K requires some care, maybe, because some points
p̂j,n are not bounded: it is true by the fact that if arg z and arg p are positive, then

|log z−log p|6 |log z−log p̄|.

• The proof of the last point is exactly the proof of Proposition 21.2, working in
S2(Rn)×R instead of S2(1)×R.

23. Case 3: p1=i

Note that in this case, all points pj,n converge to i, for j∈[1, N ]. Passing to a subsequence,
we distinguish two subcases:

• Case 3a: there exists β>0 such that |p1,n−i|6tβn for n large enough,
• Case 3b: for all β>0, |p1,n−i|>tβn for n large enough.
(Here we assume again that the points pj,n are ordered by increasing imaginary part

as in §20.) Roughly speaking, in Case 3a, all points pj,n converge to i quickly, whereas
in Case 3b, at least two (p1,n and pN,n by symmetry) converge to i very slowly. We will
see (Proposition 23.3) that N=1 and p1,n=i in Case 3a, and (Proposition 23.7) that
Case 3b is impossible.

In both cases, we make a blowup at i as follows: Let ϕ:S2!S2 be the rotation of
angle 1

2π which fixes the Y circle and maps i to zero. Explicitly, in our model of S2(1)

ϕ(z) =
z−i
1−iz

and ϕ−1(z) =
z+i
1+iz

.

It exchanges the equator E and the great circle X. The rotation ϕ lifts in a natural way
to an isometry ϕ̂ of S2×R. We first apply the isometry ϕ̂ and then we scale by 1/µn,
where the ratio µn goes to zero and will be chosen later, depending on the case. Let

M̂n =
1
µn
ϕ̂(Mn)⊂S2(1/µn)×R, Ω̂n =

1
µn
ϕ(Ω), p̂j,n =

1
µn
ϕ(pj,n), t̂n =

tn
µn
.

The minimal surface M̂n is the graph over Ω̂n of the function

f̂n(z) =
1
µn
fn(ϕ−1(µnz))= t̂nwn(z)−ûn(z),

where

wn(z) =
1
2π

arg
(
µnz+i
1+iµnz

)
, (23.1)

ûn(z) =
1
µn
un(ϕ−1(µnz)).
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23.1. Case 3a

In this case, fix some positive number α such that α<min
{
β, 1

8

}
, and take µn=tαn. Then,

for all j∈[1, N ], |pj,n−i|=o(µn), so limn!∞ p̂j,n=0.

Proposition 23.2. In Case 3a, after passing to a subsequence,

lim
n!∞

|log tn|
t̂n

(ûn(z)−ûn(z0))=−c(log |z|−log |z0|). (23.2)

The convergence is the uniform smooth convergence on compact subsets of C\{0}. (Here
z0 is an arbitrary fixed non-zero complex number.) The constant c is positive.

The proof is in §23.9.

Remark. In fact

lim
n!∞

|log tn|
t̂n

ûn(z) =∞

for all z, so it is necessary to substract something to get a finite limit. Because of this,
we believe it is not possible to prove this proposition by a barrier argument as in the
proof of Proposition 21.1. Instead, we will prove the convergence of the derivative ûn,z

using the Cauchy–Pompeiu integral formula for C1 functions.

We now prove the following result.

Proposition 23.3. In Case 3a, N=1.

Proof. From (23.1),

wn(z) =
1
2π

(
π

2
+O(µn)

)
=

1
4
(1+O(tαn)).

Since α>0, tαn!0 so using equation (23.2) in Proposition 23.2,

f̂n(z)− t̂n
4

+ûn(z0)' c
t̂n

|log tn|
(log |z|−log |z0|).

From this we conclude that for n large enough, the level curves of f̂n are convex. Going
back to the original scale, we have found a horizontal convex curve γn which encloses
N catenoidal necks and is invariant under reflection in the vertical cylinder E×R. In
particular, this curve γn is a graph on each side of E×R. Consider the domain on
Mn which is bounded by γn and its symmetric image with respect to the Y -circle. By
Alexandrov reflection (see the proof of Proposition A.2 in the appendix), this domain
must be symmetric with respect to the vertical cylinder E×R (which we already know)
and must be a graph on each side of E×R. This implies that the centers of all necks
must be on the circle E. But E∩Y + is a single point. Hence there is only one neck, i.e.,
N=1.
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23.4. Case 3b

In this case we take µn=|p1,n−i|. After passing to a subsequence, the limits

p̂j = lim
n!∞

p̂j,n ∈
[
− 1

2 i,
1
2 i

]
(23.3)

exist for all j∈[1, N ]. Moreover, we have

p̂1 =− 1
2 i and p̂N = 1

2 i.

(The 1
2 comes from the fact that the rotation ϕ distorts Euclidean lengths by the factor

1
2 at i.) Let m be the number of distinct points amongst p̂1, ..., p̂N . Observe that m>2
because we know that p̂1 and p̂N are distinct. For each n, relabel the points p̂j,n (by
permuting the indices) so that the points p̂1, ..., p̂m defined by (23.3) are distinct and so
that

Im p̂1< Im p̂2< ...< Im p̂m.

Proposition 23.5. In Case 3b, after passing to a subsequence,

ũ(z) := lim
n!∞

|log tn|
t̂n

(ûn(z)−ûn(z0))=
m∑

j=1

−ĉj(log |z−p̂j |−log |z0−p̂j |).

The convergence is the uniform smooth convergence on compact subsets of C minus the
points p̂1, ..., p̂m. (Here z0 is an arbitrary fixed complex number different from these
points.) The constants ĉj are positive.

The proof of this proposition is in §23.10.
Fix some small number ε>0. Let Fn be the flux of the Killing field χY on the circle

C(p̂1, ε) on M̂n. Because of the scaling we are in S2(1/µn)×R so

χY (z) = 1
2 i(1−µ

2
nz

2).

Hence using Proposition A.4 in the appendix,

Fn =− Im
∫

C(p̂1,ε)

2(t̂nwn,z−ûn,z)2
i

2
(1−µ2

nz
2) dz+O(t̂4n). (23.4)

Expand the square. Then, as in Case 1, the cross-product term can be neglected, so the
leading term is the one involving û2

n,z and, since µn!0, we have the following result.

Proposition 23.6.

lim
n!∞

(
log tn
t̂n

)2

Fn =− lim
n!∞

(
log tn
t̂n

)2

Re
∫

C(p̂1,ε)

û2
n,z dz. (23.5)
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This proposition is proved in §23.11. The proof is similar to the proof of Proposi-
tion 21.4.

We now prove the following result.

Proposition 23.7. Case 3b is impossible.

Proof. According to Lemma 21.3, the flux Fn is equal to zero. Hence the left-hand
side of (23.5) is zero. By Propositions 23.5 and 23.6,

0 =−Re
∫

C(p̂1,ε)

ũ2
z dz. (23.6)

On the other hand,

ũz =−
m∑

j=1

ĉj
2(z−p̂j)

, so Resp̂1 ũ
2
z =

1
2

m∑
j=2

ĉ1ĉj
p̂1−p̂j

.

Write p̂j =iyj , then

−
∫

C(p̂1,ε)

ũ2
z dz=−π

m∑
j=2

ĉ1ĉj
y1−yj

.

Since m>2, y1<yj for all j>2, and ĉj>0 for all j by Proposition 23.5, this is positive,
contradicting (23.6).

This completes the proof of the main theorem, modulo the proof of Propositions 23.2,
23.5 and 23.6, which were used in the analysis of Cases 3a and 3b. We prove these
propositions in §23.9, §23.10 and §23.11, respectively, using an estimate that we prove in
the next section.

23.8. An estimate of
∫

|∇un|

By Proposition 21.1, we have, since all points pj,n converge to i,

lim
n!∞

|log tn|
tn

un = c0 arg z−c1 log
∣∣∣∣ log z−log i
log z+log i

∣∣∣∣.
Moreover, c1 is positive by Proposition 21.2. The convergence is the smooth convergence
on compact subsets of C̃∗\{i,−i}. From this we get, for fixed ε>0,∫

C(i,ε)

|∇un| ds6C
tn

|log tn|
. (23.7)

Let k∈[1, n] be the index such that rk,n=max{rj,n :16j6N}. Let φn=φk,n be the ver-
tical flux of Mn on the graph of fn restricted to C(pk,n, ε). By the last point of Propo-
sition 21.1, we have

φn 6C
tn

|log tn|
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for some constant C. We use Proposition A.6 with r1=λrk,n and r2=ε as in the proof
of Proposition 21.2, and

r′1 = t1/4
n and r′2 = t1/8

n .

The proposition tells us that for each j∈[1, N ], there exists a number r, which we call
r′j,n, such that

t1/4
n 6 r′j,n 6 t1/8

n (23.8)

and ∫
C(pj,n,r′j,n)∩Ωn

|∇fn| ds6
√

8φn

(
log

ε

λrk,n

)1/2(
log

t
1/8
n

t
1/4
n

)−1/2

.

Using (21.17) and remembering that rk,n is the size of the largest neck, we have

log
ε

λrk,n
6 log

ε|log tn|
λC1tn

6C2|log tn|

for some positive constants C1 and C2. This gives∫
C(pj,n,r′j,n)∩Ωn

|∇fn| ds6Cφn 6C
tn

|log tn|
.

Now, since |∇ arg z|'1 near i,∫
C(pj,n,r′j,n)

tn|∇ arg z| ds6Ct1+1/8
n = o

(
tn

|log tn|

)
.

Hence, ∫
C(pj,n,r′j,n)∩Ωn

|∇un| ds6C
tn

|log tn|
.

Consider the domain

Un =D(i, ε)\
N⋃

j=1


D(pj,n, r
′
j,n). (23.9)

Since r′j,n�tn�rj,n, we have 
Un⊂Ωn and

d(Un, ∂Ωn) > 1
2 t

1/4
n . (23.10)

Also, since ∂Un⊂Ωn,

∂Un ⊂C(i, ε)∪
N⋃

j=1

(C(pj,n, r
′
j,n)∩Ωn).

This implies ∫
∂Un

|∇un| ds6C
tn

|log tn|
. (23.11)

This is the estimate we will use in the next sections.
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23.9. Proof of Proposition 23.2 (Case 3a)

Let β>0 be the number given by the hypothesis of Case 3a. Recall that we have fixed
some positive number α such that 0<α<min

{
β, 1

8

}
, and recall that

µn = tαn, t̂n =
tn
µn
, and ϕn =

1
µn
ϕ.

Let Un be the domain defined in (23.9) and Ûn=ϕn(Un). Since µn�t
1/8
n >r′j,n by (23.8),

we have
lim

n!∞
Ûn =C∗.

Since ϕn is conformal, we have, using (23.11) (recall the definition of ûn in (23.1)),∫
∂Ûn

|∇ûn| ds=
∫

∂Ûn

1
µn

|∇(un�ϕ
−1
n )| ds=

1
µn

∫
∂Un

|∇un| ds6C
tn

µn|log tn|
=C

t̂n
|log tn|

.

Using (23.10), we have

d(Ûn, ∂Ω̂n) >
t
1/4
n

4µn
.

By standard interior estimates for the minimal surface equation (see Proposition A.1
in the appendix),

|∆ûn|= |∆f̂n|6C
(t̂n)3

(t1/4
n /4µn)4

=Cµnt
2
n in Ûn.

Let

ũn =
|log tn|
t̂n

(ûn−ûn(z0)).

Proposition 23.2 asserts that a subsequence of the ũn converges to −c(log |z|−log |z0|),
where c is a real positive constant. By the above estimates,∫

∂Ûn

|∇ũn| ds6C (23.12)

and
|∆ũn|6Cµ2

ntn|log tn| in Ûn. (23.13)

Let K be a compact set of C∗. For n large enough, K is included in Ûn. The Cauchy–
Pompeiu integral formula (see (A.4) in the appendix) gives, for ζ∈K,

ũn,z(ζ) =
1

2πi

∫
∂Ûn

ũn,z(z)
z−ζ

dz+
1

8πi

∫
Ûn

∆ũn(z)
z−ζ

dz∧�dz.
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We estimate each integral in the obvious way, using (23.12) in the first line and (23.13)
in the third line:∣∣∣∣∫

∂Ûn

ũn,z

z−ζ
dz

∣∣∣∣ 6
1

d(ζ, ∂Ûn)

∫
∂Ûn

|∇ũn| ds6
C

d(ζ, ∂Ûn)
! C

|ζ|
,∫

Ûn

dx dy

|z−ζ|
6

∫
D(0,ε/µn)

dx dy

|z−ζ|
6 2π

∫ 2ε/µn

0

r dr

r
=4π

ε

µn
,∣∣∣∣∫

Ûn

∆ũn

z−ζ
dx dy

∣∣∣∣ 6Cµntn|log tn|! 0.

Hence for n large enough, we have in K,

|ũn,z(ζ)|6
C

|ζ|

for a constant C independent of K. Passing to a subsequence, ũn,z converges smoothly
on compact sets of C∗ to a holomorphic function with a zero at ∞ and at most a simple
pole at zero. (The fact that the limit is holomorphic follows from (23.13).) Hence

lim
n!∞

ũn,z =
c

2z

for some constant c. Recalling that (log |z|)z=1/2z, this gives (23.2) in Proposition 23.2.
It remains to prove that c>0. Let φ̂n be the vertical flux on the closed curve ofM̂n that
is the graph of f̂n over the circle C(0, 1)⊂C∗. Then by the computation at the end of
the proof of Proposition 21.1 in §21.10 (after Lemma 21.11),

lim
n!∞

|log tn|
t̂n

φ̂n =2πc.

Now, by scaling and homology invariance of the flux, φ̂n=φ1,n/µn, where φ1,n is the
vertical flux on the closed curve of Mn that is the graph of fn over the circle C(i, ε).
Hence c=c1 and c1 is positive by Proposition 21.1.

23.10. Proof of Proposition 23.5 (Case 3b)

Recall that in Case 3b, µn=|p1,n−i| and for all β>0, µn>tβn for n large enough. Let Un

be the domain defined in (23.9). Since µn�t
1/8
n >r′j,n by (23.8), we have

lim
n!∞

Ûn =C\{p̂1, ..., p̂m}.

(Compare with Case 3a, where the limit is C∗.) Define again

ũn =
|log tn|
t̂n

(ûn−ûn(z0)).
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By the same argument as in §23.9 we obtain that ũn,z converges on compact subsets of
C\{p̂1, ..., p̂m} to a meromorpic function with at most simple poles at p̂1, ..., p̂m and a
zero at ∞, so

lim
n!∞

ũn,z =
m∑

j=1

ĉj
2(z−p̂j)

.

It remains to prove that the numbers ĉ1, ..., ĉm are positive. For 16j6m, let φ̂j,n be
the vertical flux of M̂n on the graph of f̂n restricted to the circle C(p̂j , ε). Then, by the
computation at the end of the proof of Proposition 21.1, we have

lim
n!∞

|log tn|
t̂n

φ̂j,n =2πĉj .

We will prove that ĉj is positive by estimating the vertical flux using the height estimate
as in §21.14. Take β=1/(18(N+2)) and let

Bn =
N⋃

j=1

D(pj,n, t
β
n).

By Lemma 21.12 with α= 1
2 , we have, for n large enough,

un 6 (N+2)
β

α
=
tn
9

in D(i, ε)\Bn.

(Lemma 21.12 gives us this estimate for |z|61. The result follows because un is symmetric
with respect to the unit circle.) Consequently, the level set un= 1

8 tn is contained in Bn.
By the hypothesis of Case 3b, for n large enough, µn�tβn so the disks D(pj,n, t

β
n) for

16j6m are disjoint. Hence Bn has at least m components. Let Γj,n be the component
of the level set un= 1

8 tn which encloses the point pj,n, and Dj,n be the disk bounded
by Γj,n. Then Dj,n contains no other point pk,n with 16k6m, k 6=j. (It might contain
points pk,n with k>m). The proof of Proposition 21.2 in §21.13 gives us a point pk,n∈Dj,n

(with either k=j or k>m and p̂k=p̂j) such that

rk,n >C
tn

|log tn|

for some positive constant C. Scaling by 1/µn, this implies that

φ̂j,n > 2π
C

2
t̂n

|log tn|
.

Hence ĉj>0.
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23.11. Proof of Proposition 23.6 (Case 3b)

Let gn=ûn,z. We have to prove that the cross-product term in (23.4) can be neglected,
namely

Re
∫

C(p̂1,ε)

wn,z(z)gn(z)(1−µ2
nz

2) dz= o

(
t̂n

(log tn)2

)
.

The proof of this fact is the same as the proof of Proposition 21.4 in §21.14, with the
following modifications:

• arg z is replaced by the function wn defined in (23.1), so its derivative 1/(2iz) is
replaced by wn,z;

• 1−z2 is replaced by 1−µ2
nz

2;
• tn, un, etc., now have hats: t̂n, ûn, etc.;
• from

wn,z =
1

4πi

(
1

µnz+i
− i

1+iµnz

)
,

we deduce that |wn,z| is bounded in D(p̂1, ε) and, since p̂j,n∈iR, that wn,z(p̂j,n) is real,
which is what we need to ensure that the term aj,1 does not contribute to the integral
(see (21.20)).

Appendix A. Auxiliary results

This appendix contains several results about minimal surfaces in S2×R that have been
used in the proof of Theorem 20.1. Some of these results are true for minimal surfaces in
the Riemannian product M×R where (M, g) is a 2-dimensional Riemannian manifold.
These results are local, so we may assume without loss of generality that M is a domain
Ω⊂C equipped with a conformal metric g=λ2|dz|2, where λ is a smooth positive function
on 	Ω. Given a function f on Ω, the graph of f is a minimal surface in M×R if it satisfies
the minimal surface equation

divg
∇gf

W
=0 with W =

√
1+‖∇gf‖2

g, (A.1)

where the subscript g means that the quantity is computed with respect to the metric g,
so for instance

∇gf =λ−2∇f and divg X =λ−2 div(λ2X).

In coordinates, (A.1) gives the equation

(1+λ−2f2
y )fxx+(1+λ−2f2

x)fyy−2λ−2fxfyfxy+(f2
x +f2

y )
(
λx

λ
fx+

λy

λ
fy

)
=0. (A.2)

Propositions A.1, A.4, A.5, and A.6 will be formulated in this setup.
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Interior gradient and Laplacian estimate

Proposition A.1. Let Ω be a domain in C equipped with a smooth conformal metric
g=λ2|dz|2. Let f : Ω!R be a solution of the minimal surface equation (A.1). Assume
that |f |6t in Ω and ‖∇f‖61. Then

‖∇f(z)‖6
Ct

d(z)
and |∆f(z)|6 Ct3

d(z)4

for all z∈Ω such that d(z)>t. Here, d(z) denotes the Euclidean distance to the boundary
of Ω. The gradient and Laplacian are for the Euclidean metric. The constant C only
depends on the diameter of Ω and on a bound on λ and λ−1 and its partial derivatives
of first and second order.

Proof. Let us write the minimal surface equation (A.2) as L(f)=0, where L is a
second-order linear elliptic operator whose coefficients depend on fx and fy. Theo-
rem 12.4 in Gilbarg–Trudinger [10] gives us a uniform constant C and α>0 such that
(with the Gilbarg–Trudinger notation)

[Df ](1)α 6C ‖f‖0 6Ct.

If d(z, ∂Ω)>t, this implies that

[Df ](0)α 6
Ct

t
=C.

Then we have the required Cα-estimates of the coefficients of L to apply the interior
Schauder estimate [10, Theorem 6.2]:

|Dkf(z)|6 C

d(z)k
‖f‖0 6C

t

d(z)k
, k=0, 1, 2.

The minimal surface equation (A.2) implies that

|∆f |6C(|Df |2|D2f |+|Df |3) 6C
t3

d4
.

Alexandrov moving planes

We may use the Alexandrov reflection technique in S2×R with the role of horizontal
planes played by the level spheres S2×{t}, and the role of vertical planes played by a
family of totally geodesic cylinders. Specifically, let E⊂S2×{0} be the closed geodesic
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that is the equator with respect to the antipodal points O and O∗, let X⊂S2×{0} be a
geodesic passing through O and O∗, and define Eθ to be the rotation of E=E0 through
an angle θ around the poles E∩X. The family of geodesic cylinders

Eθ×R, − 1
2π6 θ < 1

2π,

when restricted to the complement of (E∩X)×R is a foliation.

Proposition A.2. Let Γ=γ1∪γ2, where each γj is a C2 Jordan curve in S2×{tj}
that is invariant under reflection in Π=E×R, with t1 6=t2. Suppose further that each
component of γj\Π is a graph over Π with locally bounded slope. Then any minimal
surface Σ with ∂Σ=Γ that is disjoint from at least one of the vertical cylinders Eθ×R,
must be symmetric with respect to reflection in Π, and each component of Σ\Π is a
graph of locally bounded slope over a domain in Π.

(Given a domain O⊂Π and a function f :O!
[
− 1

2π,
1
2π

)
, the graph of f is the set of

points {rotf(p) p:p∈O}, where rotθ is the rotational symmetry that takes Π to Eθ×R.)
The proof is the same as the classical proof for minimal surfaces in R3 using Alexan-

drov reflection as described above. (See, for example, [24, Corollary 2].)

Flux

Let N be a Riemannian manifold, M⊂N be a minimal surface and χ be a Killing field
on N . Let γ be a closed curve on M and µ be the conormal along γ. Define

Fluxχ(γ) =
∫

γ

〈µ, χ〉 ds.

It is well know that this only depends on the homology class of γ.

Proposition A.3. In the case where N=S2(R)×R, the space of Killing fields is 4-
dimensional. It is generated by the vertical unit vector ξ and the following three horizontal
vector fields:

χX(z) =
1
2

(
1+

z2

R2

)
, χY (z) =

i

2

(
1− z2

R2

)
and χE(z) =

iz

R
.

These vector fields are respectively unitary tangent to the great circles X, Y , and E. They
are generated by the 1-parameter families of rotations about the poles whose equators are
these great circles.
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Proof. The isometry group of S2(R)×R is well known to be 4-dimensional. Recall
that our model of S2(R) is C∪{∞} with the conformal metric

2R2

R2+|z|2
|dz|.

By differentiating the 1-parameter group z 7!eitz of isometries of S2, we obtain the
horizontal Killing field χ(z)=iz, which suitably normalized gives χE . Let

ϕ(z) =
Rz+iR2

iz+R
.

This corresponds, in our model of S2(R), to the rotation about the x-axis of angle 1
2π.

It maps the great circle E to the great circle X. We transport χE by this isometry to
get the Killing field χX . A short computation gives

χX(z) =ϕ∗χE(z) =ϕ′(ϕ−1(z))χE(ϕ−1(z))=
z2+R2

2R2
.

Then we transport χX by the rotation ψ(z)=iz to get the Killing field χY :

χY (z) =ψ∗χX(z) = i
(−iz)2+R2

2R2
.

Proposition A.4. Let Ω⊂C be a domain equipped with a conformal metric g=
λ2|dz|2. Let f : Ω!R be a solution of the minimal surface equation (A.1). Let γ be
a closed, oriented curve in Ω and ν be the Euclidean exterior normal vector along γ

(meaning that (γ′, ν) is a negative orthonormal basis). Let M be the graph of f and let
γ̃ be the closed curve in M that is the graph of f over γ.

(1) For the vertical unit vector ξ,

Fluxξ(γ̃) =
∫

γ

〈∇f, ν〉
W

ds,

where W is defined in equation (A.1). (Here the gradient, scalar product and line element
are Euclidean.) If ‖∇f‖ is small, this gives

Fluxξ(γ̃) = Im
∫

γ

(2fz+O(|fz|2)) dz

(2) If χ is a horizontal Killing field,

Fluxχ(γ̃) =− Im
∫

γ

(2(fz)2χ(z)+O(|fz|4)) dz.
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Proof. Let (N, g) be the Riemannian manifold Ω×R equipped with the product
metric g=λ2|dz|2+dt2. Let M be the graph of f , parameterized by

ψ(x, y) = (x, y, f(x, y)).

The unit normal vector to M is

n=
1
W

(−λ−2fx,−λ−2fy, 1).

Assume that γ is given by some parametrization t 7!γ(t), fix some time t, and let (X,Y )=
γ′(t). Then

dψ(γ′) = (X,Y,Xfx+Y fy)

is tangent to ψ(γ) and its norm is ds, the line element on M . We need to compute the
conormal vector in N . The linear map ϕ: (TpN, g)!(R3,Euclidean) defined by

ϕ(u1, u2, u3) = (λu1, λu2, u3)

is an isometry. Let u=(u1, u2, u3) and v=(v1, v2, v3) be two orthogonal vectors in TpN .
Let

w=ϕ−1(ϕ(u)∧ϕ(v))=

 u2v3−u3v2

u3v1−u1v3

λ2(u1v2−u2v1)

 .

Then (u, v, w) is a direct orthogonal basis of TpN and ‖w‖=‖u‖ ‖v‖. We use this with
u=dψ(γ′), v=n. Then w=µds, where µ is the conormal to ψ(γ′). This gives

µds=
1
W

 Y +λ−2fy(Xfx+Y fy)
−X−λ−2fx(Xfx+Y fy)

−fyX+fxY

 .

For the vertical unit vector ξ=(0, 0, 1), this gives

Fluxξ(γ̃) =
∫

γ

−fy dx+fx dy

W
=

∫
γ

〈∇f, ν〉
W

ds.

The second formula of point (1) follows from W=1+O(‖∇f‖2) and

Im(2fz dz) = Im((fx−ify)(dx+i dy))= fx dy−fy dx.

To prove point (2), let χ be a horizontal Killing field, seen as a complex number. Then

〈χ, µ ds〉g =λ2 Re
(
χ

W
(Y +iX+λ−2(fy+ifx)(Xfx+Y fy))

)
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Hence,

Fluxχ(γ̃) =Re
∫

γ

λ2χ

W
(dy+i dx)+

χ

W
(fy+ifx)(fx dx+fy dy).

We then expand 1/W as a series:

1
W

=1− 1
2
λ−2(f2

x +f2
y )+O(|∇f |4).

This gives, after some simplifications,

Fluxχ(γ̃) =Re
∫

γ

λ2χ(dy+i dx)+Re
∫

γ

i

2
χ(fx−ify)2(dx+i dy)+O(|∇f |4).

The second term is what we want. The first term, which does not depend on f , vanishes.
Indeed, if f≡0 then M is Ω×{0} and the flux we are computing is zero (by homology
invariance of the flux, say).

Height estimate

The following proposition tells us that a minimal graph with small vertical flux cannot
climb very high. It is the key to estimate from below the size of the catenoidal necks.

Proposition A.5. Let Ω⊂C be a domain that consists of a (topological) disk D

minus n>1 topological disks D1, ..., Dn contained in D. We denote by Γ the boundary of
D and by γj the boundary of Dj. Assume that D1 contains D(0, r1) and D is contained
in D(0, r2), for some numbers 0<r1<r2. (Here r1 and r2 are Euclidean lengths.) (See
Figure 9.)

Assume that Ω is equipped with a conformal metric g=λ2|dz|2. Let f : Ω!R be a
solution of the minimal surface equation (A.1). Assume that

(1) f≡0 on Γ;
(2) f≡−h<0 is constant on γ1;
(3) f is constant on γj for 26j6n, with −2h6f60;
(4) ∂f/∂ν60 on γj for 16j6n;
(5) ‖∇gf‖g61 in Ω.
Let φ be the vertical flux on Γ, i.e.,

φ=
∫

Γ

〈∇f, ν〉
W

ds> 0.

Then

h6

√
2
π
φ log

r2
r1
.
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D(0, r2)

D(0, r1)

Ω

Figure 9.

(Note that hypothesis (4) is always satisfied if f≡−h on all γj , by the maximum
principle.)

Proof. Let A be the annulus D(0, r2)\D(0, r1). Write |df | for the norm of the
Euclidean gradient of f . Let % be the function equal to |df | on Ω and to zero on C\Ω.
Then∫∫

A

%2 dx dy=
∫∫

Ω

‖∇gf‖2
g dµg (by conformal invariance of the energy)

6
√

2
∫∫

Ω

〈
∇gf

W
,∇gf

〉
g

dµg (because W 6
√

2 by hypothesis (5))

=
√

2
∫∫

Ω

divg

(
f
∇gf

W

)
dµg (by the minimal surface equation (A.1))

=
√

2
∫

∂Ω

f

W
〈∇gf, νg〉g dsg (by the divergence theorem)

=
√

2
∫

∂Ω

f

W
〈∇f, ν〉 ds (where now all quantities are Euclidean)

=
√

2
n∑

j=1

∫
γj

f

W
〈∇f, ν〉 ds (by hypothesis (1))

6−2
√

2h
n∑

j=1

∫
γj

〈∇f, ν〉
W

ds (by hypotheses (3) and (4)).

Hence, by homology invariance of the flux,∫∫
A

%2 dx dy6 2
√

2hφ. (A.3)

Consider the ray from r1e
iθ to r2eiθ. The integral of df along this ray, intersected with Ω,

is equal to h. (If the ray happens to enter one of the disks Dj , then this is true because
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f is constant on ∂Dj .) Integrating over θ∈[0, 2π], we get

2πh6
∫ r2

r1

∫ 2π

0

% dθ dr

=
∫

A

%

r
dx dy

6

(∫∫
A

%2 dx dy

)1/2(∫∫
A

1
r2
dx dy

)1/2

(by Cauchy–Schwarz)

6 (2
√

2hφ)1/2

(
2π log

r2
r1

)1/2

(using (A.3)).

The proposition follows.

The next proposition is useful to find circles on which we have a good estimate of∫
|df |.

Proposition A.6. Under the same hypotheses as Proposition A.5, consider some
point p∈Ω. Given 0<r′1<r

′
2, there exists r∈[r′1, r

′
2] such that

∫
C(p,r)∩Ω

|df |6
√

8φ
(

log
r2
r1

)1/2(
log

r′2
r′1

)−1/2

.

Proof. Consider the function

F (r) =
∫

C(p,r)∩Ω

|df |=
∫ 2π

0

%(p+reiθ)r dθ.

Then

min
r′16r6r′2

F (r) log
r′2
r′1

6
∫ r′2

r′1

F (r)
r

dr

=
∫ r′2

r′1

∫ 2π

0

%(p+reiθ)
r

r dθ dr

6

(∫ r′2

r′1

∫ 2π

0

%(p+reiθ)2r dθ dr
)1/2(∫ r′2

r′1

∫ 2π

0

1
r2
r dθ dr

)1/2

6

(∫
A

%2 dx dy

)1/2(
2π log

r′2
r′1

)1/2

6

(
8φ2 log

r2
r1

log
r′2
r′1

)1/2

,

where, in the last inequality, we used (A.3) and Proposition A.5. The result follows.
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A Laurent-type formula for C1 functions

Proposition A.7. Let Ω⊂C be a domain of the form

Ω =D(0, R)\
n⋃

j=1


D(pj , rj).

Here we assume that the closed disks 
D(pj , rj) are disjoint and are included in D(0, R).
Let g be a C1 function on 	Ω. Then, in Ω,

g(z) = g+(z)+
n∑

j=1

g−j (z)+
1

2πi

∫
Ω

gz̄(w)
w−z

dw∧�dw,

where g+ is holomorphic in D(0, R) and each g−j is holomorphic in C\
D(pj , rj). More-
over, these functions have the following series expansions:

g+(z) =
∞∑

k=0

akz
k, with ak =

1
2πi

∫
C(0,R)

g(z)
zk+1

dz,

g−j (z) =
∞∑

k=1

aj,k

(z−pj)k
, with aj,k =

1
2πi

∫
C(pj ,rj)

g(z)(z−pj)k−1 dz.

The series converge uniformly in compact subsets of Ω.

Remark. This is the same as the Laurent series theorem except that there is a
correction term which vanishes when g is holomorphic. The integration circles in the
formula for an and aj,n cannot be changed (as in the classical Laurent series theorem)
since g is not assumed to be holomorphic.

Proof. By the Cauchy–Pompeiu integral formula for C1 functions:

g(z) =
1

2πi

∫
∂Ω

g(w)
w−z

dw+
1

2πi

∫
Ω

gz̄(w)
w−z

dw∧�dw. (A.4)

Define

g+(z) =
1

2πi

∫
C(0,R)

g(w)
w−z

dw and g−j (z) =− 1
2πi

∫
C(pj ,rj)

g(w)
w−z

dw.

Note that g+ is holomorphic in D(0, R), while g−j is holomorphic in C\D(pj , rj) and
extends at ∞ with g−j (∞)=0. These two functions are expanded in power series exactly
as in the proof of the classical theorem on Laurent series (see e.g. [8, p. 107]).
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Proposition A.8. Let Ω⊂C be a domain as in Proposition A.7. Let u: Ω!R be a
real-valued function of class C2. Take g=∂u/∂z. Then the coefficients aj,1 which appear
in the conclusion of Proposition A.7 are real.

Proof. We have

Im aj,1 =− 1
2π

Re
∫

C(pj ,rj)

uz dz

=− 1
4π

∫
C(pj ,rj)

(uz dz+uz̄ dz̄) (because u is real valued)

=− 1
4π

∫
C(pj ,rj)

du=0 (because u is well defined in Ω).

Residue computation

Proposition A.9. We have

Resp(log z−log p)−1 = p and Resp

(
1−z2

4z2

)
(log z−log p)−2 =−1+p2

4p
.

Proof. We have

log z−log p= log
(

1+
z−p
p

)
=
z−p
p

− 1
2

(
z−p
p

)2

+O((z−p)3).

The first residue follows. By the binomial theorem,

(log z−log p)−2 =
p2

(z−p)2
+

p

z−p
+O(1).

Let

f(z) =
1−z2

4z2
=

1
4z2

− 1
4
.

Then

Resp

(
1−z2

4z2
(log z−log p)−2

)
=Resp

(
f(z)p2

(z−p)2

)
+Resp

(
f(z)p
(z−p)

)
= f ′(p)p2+f(p)p=− 1

2p3
p2+

1−p2

4p
=−1+p2

4p
,

where the second equality follows from the Taylor expansion for f at p.
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207–224.

[15] — The geometry of genus-one helicoids. Comment. Math. Helv., 84 (2009), 547–569.
[16] — Axial minimal surfaces in S2×R are helicoidal. J. Differential Geom., 87 (2011), 515–

523.
[17] Karcher, H., Wei, F. S. & Hoffman, D., The genus one helicoid and the minimal

surfaces that led to its discovery, in Global Analysis in Modern Mathematics (Orono,
ME, 1991; Waltham, MA, 1992), pp. 119–170. Publish or Perish, Houston, TX, 1993.
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