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1. Introduction

We consider the initial-boundary problem for the Stokes equations

v—Av+Vg=0 in Qx(0,7), (1.1)
divo=0  in Qx(0,7), (1.2)

v=0  on INx(0,T), (1.3)
v(z,0)=v9 on Qx{0}, (1.4)

in a domain €2 in R™ with n>2. It is well known that the solution operator
S(t):vg—v(t)=v(-,1)

forms an analytic semigroup in the solenoidal L" space L% () for r€(1,00) for various
kind of domains € including smoothly bounded domains [27], [55]. However, it has been
a long-standing open problem whether or not the Stokes semigroup {S(t)}+>0 is analytic
in L*°-type space even if () is bounded. When (2 is a half space it is known that the
Stokes semigroup {S(t)}+>0 is analytic in L>-type space since explicit solution formulas
are available [14], [45], [58].

The goal of this paper is to give an affirmative answer to this open problem at least
when  is bounded as a typical case. For a precise statement let Cp ,(£2) denote the
L>-closure of Cg% (), the space of all smooth solenoidal vector fields with compact
support in 2. When € is bounded, Cy »(2) agrees with the space of all solenoidal vector
fields continuous in € and vanishing on the boundary 99 [43]. The following is one of

our main results.
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THEOREM 1.1. (Analyticity in Co,) Let Q be a bounded domain in R™ with C3
boundary. Then the solution operator (the Stokes semigroup) S(t):vor>v(t) (t=0) is a

Co-analytic semigroup in Co ,(£2).

A key observation is a gradient estimate of harmonic pressure of the form

sup dy () V()] < C [V 1= om) 1), (1.5)
xE

with C' depending only on , where dg is the distance function from 0€2. The estimate
(1.5) follows from a property of the Helmholtz decomposition or the inhomogeneous
Neumann problem for the Laplace equation. Such a property is not limited to a bounded
domain, so we call such a domain admissible; for a precise definition see Definition 2.3.

Based on (1.5), we are able to derive a necessary bound for
N (v, q)(z, t) = [v(a, )| +t2[Vo(z, )|+ V20 (2, 1) +1]0p0(x, 1)+t V(z, 1),

which is a key to prove analyticity results. We state such a-priori estimates in a general
domain (not necessarily bounded) for L"-solutions, introduced by R. Farwig, H. Kozono
and H. Sohr [16], [17], [18], with Ll =L/NL2 (r>2), where L, is the closure of C22, (1)
in L". (The L" theory is useful to handle the Navier-Stokes equations in a general domain
[21].) It is by now well known [24] that if a uniformly C3-domain admits the Helmholtz
decomposition in L", then there exists an L"-solution and the Stokes semigroup S(t) is
analytic in L] . However, in general, the Helmholtz decomposition in L" space may not
hold (see [11] and [46]). Fortunately, L" theory is available for a general domain so we

establish a-priori estimates for an L"-solution.

THEOREM 1.2. (A priori L>™-estimates) Let 0 be an admissible, uniformly C>-
domain in R™ and let r>n. Then there exist positive constants C and Ty depending
only on ) such that the bound

sup [N (v, q)lloo(t) < Cllvolloo (1.6)
0<t<To

holds for all L"-solutions (v,q) of (1.1)~(1.4) with 1o €CL ().

This estimate together with a density argument enables us to extend the solution
semigroup S(t) for (1.1)—(1.4) to Cp,+(£2) so that it becomes analytic. We thus obtain a

general result which includes Theorem 1.1 as a particular case.

THEOREM 1.3. (Analyticity for a general domain) Let Q be an admissible, uniformly
C3-domain in R™. Then the Stokes semigroup S(t) is uniquely extendable to a Co-
analytic semigroup in Cy »(2). Moreover, the estimate (1.6) holds with some C'>0 and
To>0 for v=5(t)vo, vo€Co,+(2), with a suitable choice of pressure q.
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It is natural to extend the Stokes semigroup to L3°, the solenoidal L> space.

THEOREM 1.4. (Analyticity in LS for a bounded domain) Let © be a bounded C3-

domain in R™. Then the Stokes semigroup S(t) is a (non-Cy-)analytic semigroup in
L (Q).

For the Laplace operator or general elliptic operators it is well known that the
corresponding semigroup is analytic in L°°-type spaces. The first pioneering work goes
back to K. Yosida [66] for second-order operators on R. Unfortunately, it seems difficult
to extend his method to multi-dimensional elliptic operators. K. Masuda [48], [47] (see
also [49]) first proved the analyticity of the semigroup generated by a general elliptic
operator (including higher-order operators) in Co(R"™), the space of continuous functions
vanishing at the space-infinity. A key idea is to derive a corresponding resolvent estimate
by a localization method together with LP-estimates and interpolation inequalities. It
was extended by H. B. Stewart to Dirichlet problems [61] and for more general boundary
conditions [62]. (A complete proof is given in [6, Appendix].) The reader is referred to
the book by A. Lunardi [42, Chapter 3] for this Masuda—Stewart method which applies to
many other situations. By now, analyticy results in L°° spaces are established in various
settings [6], [8], [37], [42], [63]. However, their localization argument does not directly
apply to the Stokes equations and this may be a reason why the analyticity in Cy , had
been left open for a long time. Very recently, M. Hieber and the authors [2] found a way
to prove Theorem 1.1 by the Masuda—Stewart type argument based on (1.5).

Although there are several results on analyticity of S(¢) in L] for various domains
such as a half space, a bounded domain [27], [55], an exterior domain [12], [35], an
aperture domain [20], a layer domain [3], a perturbed half space [19] (even with variable
viscosity coeflicients [4], [5]), the result corresponding to Theorem 1.3 is available only
for a half space [14], [45], [58] (and the whole space, where the Stokes semigroup agrees
with the heat semigroup).

We do not touch on the problem of the large time behavior of the Stokes semigroup
except in the case when € is bounded. In particular, we do not know in general whether
or not the Stokes semigroup is bounded in time. This is known for a half space [14], [45],
[58]. For a bounded domain it is not difficult to derive even exponential decay as t— co.
In fact, for a bounded domain we prove that S(¢) is a bounded analytic semigroup in
Co,o (Remark 5.4 (i)). Moreover, the operator norm ||S(t)| is bounded in ¢ when § is
bounded. Such a result is called a maximum modulus result and has been studied in the
literature [56], [57], [65] (Remark 5.4 (ii)). Very recently, P. Maremonti [44] proved the
boundedness of ||S(¢)|| when © is an exterior domain using our Theorem 1.1.

To extend analyticity in L to general admissible domains we have to construct
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S(t) in LS in a unique way, since L7 does not contain L3°. This attempt is so far carried
out for a half space in [14], where an explicit solution formula is available. Moreover,
it is also shown in [14] that S(t) is a Cp-analytic semigroup in BUC,(Q2) when 2 is a
half space; see also [58]. Here BUC,(2) denotes the space of all solenoidal, bounded,
uniformly continuous vector fields in {2 vanishing on the boundary 02. Recently, the
authors [1] extended Theorem 1.4 (and Theorem 1.1) to the case when {2 is an exterior
domain and proved that S(t) is a Cp-analytic semigroup in BUC,(€2). The analyticity,
as well as (1.6), is fundamental to study the Navier-Stokes equations. So far L*°-type
theory is only established when Q=R" [30], [32] and Q=R7 [9], [68]. We shall also
discuss the non-linear problem in forthcoming papers.

Our approach to establish (1.6) is completely different from conventional approaches.
We appeal to a blow-up argument which is often used in the study of non-linear elliptic
and parabolic equations.

We argue by contradiction. Suppose that (1.6) were false for any choice of Ty and C.
Then there would exist a sequence {(Vp, ¢m ) }oo_; of solutions of (1.1)—(1.4) with vo=vom,
and a sequence T7,,, L0 such that || N (vyn, ¢m)||oo (Tm) >m|Vom ||co- There is ,, €(0, 7, ) such
that || N (vm, ¢m)||oc (tm) =5 My with My =supgycr. [N (m, qm)|ls(t). We normalize
U and ¢, by dividing by M, to observe that

sup [N (Bm, Gm)loe () <1, (1.7)
0<t<tm
IN B o) oo () > 3, (1.8)
1
0 m || oo < ) 19
lom oo < - (19)

with ¥, =vp, /My, and G =qm /M, We rescale (0, G, ) around a point z,, €Q satisfying

N(ﬁmadm)(xmatm)> (1.10)

PN

to get a blow-up sequence of (v, ¢m) of the form
U (%, 1) = Oy (T HE 22 b t), P (,8) = 2 G (2 12 22, ).

(Such an z,, exists because of (1.8).) Because of the scaling invariance of the equations
(1.1) and (1.2), the rescaled function (t,,pm) solves (1.1)—(1.2) in a rescaled domain
0, x(0,1). Note that the time interval is normalized to a unit interval and €2, tends to
either a half space or the whole space R™ as m— oo.

The basic strategy is to prove that the blow-up sequence {(tm, pm)}55_; (after taking
a subsequence) converges to a solution (u,p) of (1.1)—(1.4) with zero initial deta. If the

convergence is strong enough, (1.10) implies that N (u,p)(0,0)>%. If the limit (u,p) is
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unique, it is natural to expect that u=0 and Vp=0. This evidently yields a contradiction
to N(u,p)(0,0)> i. The first part corresponds to “compactness” of a blow-up sequence
and the second part corresponds to “uniqueness” of a blow-up limit. (A similar rescaling
argument is explained in detail in the recent textbook [26].) When the problem is the
heat equation, this strategy is easy to realize. However, for the Stokes equations it turns

out that this procedure is highly non-trivial because of the presence of the pressure.

The situation is divided into two cases depending on whether the limit of ,, is a
half space or the whole space R™. Let us consider the case when the limit is the whole
space. To have necessary compactness for {(tm,, pm) 50—, it is enough to prove that a
local space-time Holder bound for t,,, Vi, V2u,, and Vp,, holds near (0,1) as m—soo.
We are tempted to derive such an interior regularity estimate from (1.7) by localizing the
problem. This idea works for the heat equation but for the Stokes equations it does not
work (Remark 3.3 (i)). We invoke admissibility of €2 to control the pressure term by (1.5)
and derive necessary a-priori estimates from the standard parabolic regularity theory
[41]. The uniqueness of the blow-up limit is easy, since the limit equation is the heat
equation. Note that the constant in (1.5) is independent of the rescaling procedure, so
our Holder estimate is uniform. The case when €2,,, tends to a half space is more involved.
We use Schauder estimates for the Stokes equations developed by V. A. Solonnikov [60]
instead of the usual parabolic theory [41]. To show that the blow-up limit (u, p) is trivial,
we invoke the uniqueness result for spatially non-decaying velocity in a half space due
to Solonnikov [58]. Note that to assert the uniqueness of solutions (u,p) of the Stokes
equations (1.1)—(1.4) in a half space with zero initial data and a bound for || N (u, p)||c(t),
we need to assume some decay for Vp far from the boundary, since otherwise there is a
counterexample (Remark 4.2). We invoke (1.5) to deduce necessary decay for Vp for the
limit.

A blow-up argument was first introduced by E. De Giorgi [13] to study regularity
of a minimal surface. B. Gidas and J. Spruck [25] adjusted the blow-up argument to
derive a-priori bounds for solutions of a semilinear elliptic problem. It seems that the
first application to (semilinear) parabolic problems to get an a-priori bound goes back
to [28] (see also [31]). The method has been further developed in recent years to obtain
several a-priori bounds; see e.g. [50] and [51]. However, it is quite recent to apply it to
the Navier—Stokes equations. For example, a blow-up argument was used to conclude
non-existence of type-I blow-up for axisymmetric solutions [38], [52] and solutions having
continuously varying vorticity directions [34].

In this paper we use a blow-up argument to prove that a bounded C3-domain is
admissible so that Theorem 1.3 yields Theorem 1.1. It is easy to prove that a half space

is admissible. It is possible to prove that an exterior domain (see the recent paper [1]) or



6 K. ABE AND Y. GIGA

a perturbed half space is admissible, but we do not discuss these problems in the present
paper. We conjecture that an unbounded domain is admissible if € is not quasicylindrical
(see [7, §6.32]), i.e. lim|y)ooda(z)=00.

This paper is organized as follows. In §2 we define an admissible domain and prove
that a bounded C®-domain is admissible by a blow-up argument. In §3 we derive local
Holder estimates, both interior and up to the boundary, which are key to derive necessary
compactness for our blow-up sequence. In §4 we review a uniqueness result for spatially
non-decaying solutions for the Stokes equations as well as the heat equation. In §5 we
prove key a-priori estimates (Theorem 1.2) by a blow-up argument. As an application we

prove Theorem 1.3 (and Theorem 1.1 as a particular case). In §6 we prove Theorem 1.4.

Acknowledgements. The authors are grateful to Professor Kazuaki Taira for inform-
ing them of early stages of L>°-theory for elliptic operators. The authors are also grateful
to the anonymous referee for his/her careful reading of the article. The work of the sec-
ond author was partly supported by Grant-in-Aid for Scientific Research No. 21224001
(Kiban S), No. 23244015 (Kiban A) and No. 25610025 (Houga) of the Japan Society for

the Promotion of Science.

2. Admissible domains

In this section we introduce the notion of an admissible domain and prove that a bounded
domain is admissible by a blow-up argument. We also give a short proof that a half space

is admissible. We first recall the Helmholtz decomposition.

2.1. Helmholtz decomposition

Let Q be an arbitrary domain in R™ (n>2). Let L7 () (1<r<oo) denote the L"-closure
of C25,(£2), the space of all smooth solenoidal vector fields with compact support in .

The Helmholtz decomposition is a topological direct sum decomposition of the form
L'(Q)=Lo(Q)aG"(Q), G"(Q)={Vpe L' (Q)|pe Li,.(2)}.

We do not distinguish between spaces of vector-valued and scalar functions.

Although this decomposition is known to hold (see e.g. [22, §III.1]) for various do-
mains like bounded or exterior domains with smooth boundary, in general there is a
domain with (uniformly) smooth boundary such that the L"-Helmholtz decomposition
does not hold (cf. [11] and [46]). Note that this decomposition is an orthogonal decom-

position if r=2 and that the case r=2 is valid for any domain 2.



ANALYTICITY OF THE STOKES SEMIGROUP IN SPACES OF BOUNDED FUNCTIONS 7

In [16] Farwig, Kozono and Sohr introduced the L" space and proved that the
Helmholtz decomposition for L” is valid for any uniformly C2-domain for n=3. Later,
it was generalized to arbitrary uniformly C'-domains for n>2 [17]. Let us recall their

results. We set
_ 2 r <
LT(Q):{L(Q)HL (Q), 2<r<oo,
L2(Q)+L7(Q), 1<r<2.

Note that L™ C L" for r1>r. We define i; and G" in a similar way. We then recall the
definition of uniformly C*-domains for k>1; see e.g. [54, §1.3.2].

Definition 2.1. (Uniformly C*-domain) Let 2 be a domain in R™ with n>>2. Assume
that there exist «, 3, K >0 such that for each 2o€9f there is a C*-function h of n—1

variables 3’ such that

sup |04, h(y")| <K, V'h(0)=0, h(0)=0,
1<k
lv'|<a

and denote a neighborhood of zy by

Uapn(xo) ={(',yn) €R" | h(y') =B <yn <h(y')+p and |y'| <a}.

Assume that, up to rotation and translation, we have

Ua,5.0(20) Q= {(¥, yn) | H(y') <yn <h(y')+6 and || <a}
and
Ua g.n(20)NOQ={(y",yn) | yn =h(y") and |y'| < a}.

Then we call Q a uniformly C*-domain of type «, 3, K. Here a;:ag 35;; with multi-
index I=(l1, ..., 1) and 8,,=0/0x; as usual and V' denotes the gradient in 3/ eR™ 1.

PROPOSITION 2.2. ([16], [17]) Let Q be a uniformly C'-domain of type «, 3, K>0

and let 1<r<oo. Then I?’“(Q) has a topological direct sum decomposition

L7(Q)=LL(Q)®G"(Q).

Let P(=P,) be the projection to L%(Q) associated with this decomposition. Then there
is a constant C=C(r,a, 3, K)>0 such that the operator norm of P is bounded by C.

The operator P is often called the Helmholtz projection. In this paper we shall use

the L” space for r>2, where the L" norm is given as

11|z = max{{[ fll - [[ ]| 2 }-
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2.2. Definition of an admissible domain

We give a rigorous definition of an admissible domain. Let dg(z) denote the distance

function from 0%, i.e.
do(z)=inf{|z—y||y € 00}

Let Q,.=1— P, be the projection to éT(Q) associated with the Helmholtz decomposition.
We shall suppress the subscript r of Q..

Definition 2.3. (Admissible domain) Let Q be a uniformly C'-domain in R™ (n>2),
with 0Q#@. We call Q admissible if there exist r>n and a constant C=Cg such that
the bound

sup do()|Q[V- fl()| < Call fll L= a0

holds for all matrix-valued functions f=(f;;)1<ij<n €C(Q) which satisfy

V-f(—éajfw) €L’ (@)

and
trf:O and alfij:ajfil (2.1)

for all 4,7,l€{1,...,n}, where 0;=0,,.

Remark 2.4. (i) We note that Vg=Q[V - f] is formally obtained by solving the Neu-
mann problem
Ag=div(V-f) in Q,
0
% =ng-(V-f) on 0Q,
where ng is the exterior unit normal of 9. In particular ¢ (and also Vq) is harmonic in
), since
i,j=1 i,j=1
(ii) The left-hand side of the inequality in Definition 2.3 is always finite. Indeed,

since V¢ is harmonic, the mean-value theorem (see e.g. [15, §2.2.2]) implies that

1
Vq(z) = m o Vq(y)dy for o <dq(z),

where B,(x) is the closed ball of radius ¢ centered at = and |B,(z)| denotes its volume.

Applying the Holder inequality yields

Va(@)| < |By(2)| "7 Vall, <Co™PIIV-fllz,  for 2<p<r,
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by Proposition 2.2. If do(z) <1, we take p=n. If do(z)>1, we take p=2. Since n>2, this
choice implies that |Vq(z)|dq(x) is bounded in Q. Although |Vq(z)|dq(x) is continuous
in €, this quantity may not be continuous up to the boundary.

(iii) Although the constant C=Cy in Definition 2.3 depends on the domain, it is
independent of dilation and translation. In other words, Cxq4s,=Cq for zo€R™ and
A>0.

(iv) It is easy to see that the half space R} ={(2', z,) |2, >0} is admissible. In this

case

QIV-f1=Va, (' 1m)= / T Plna- (V- )] ds.

where P, denotes the Poisson semigroup, i.e.

as

Ps[h]:Ps*h with Ps(l'/):m,

o’ eR",
where 2/a is the surface area of the (n—1)-dimensional unit sphere. Since
n n—1 n—1 n—1
—na- (V)= 0ifui =D 0ifni=Y_ Onfii=D_ 0i(fj—Ffin)
j=1 j=1 i=1 j=1
by (2.1), we end up with

n—1 0o
Vy(z)=—) Vo, / Ps[fnj = finl ds.
j=1 Tn

By the explicit form of the Poisson semigroup, it is easy to see that

cl|h||po @mn-1)

|05 PulAl o vy () < T

fors>0and 1<j<n—1,

with ¢>0 independent of s and h. Thus, with h;=f,; — fjn,

n—1 00
10k 4!l oe (1) (@) <D / 100 P[] e (rn-1) ds
j=1 Tn

52 1gi<n-1 T,

<1 o4 oo
<02(n—1)/ —ds max ||hj||Lm(Rn71)<ﬁ
T

n

for k<n—1. For k=n it is easier to obtain a similar estimate, so we observe that the

half space is admissible since x,=dg(z).

2.3. Blow-up arguments

Our goal in this subsection is to prove the following result.
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THEOREM 2.5. A bounded domain with C3 boundary is admissible.

We shall prove this theorem by an indirect method—a blow-up argument—although
it might be possible to prove directly. For this purpose we first derive a weak formulation

for VO=QIV-f].

LEMMA 2.6. Let Q2 be a C'-domain. Assume that f=(fi;)€CY(Q) satisfies (2.1)
with V- f€L?(Q) so that V®=Q[V- f]€G*(Q). Then

- x:n i-xnjxix—nix-x n—l .
/Qm@d Mz_l/mm( ) (1 () (x) — sy ()0 p(x)) A (2.2)

for all o€C?*(Q) satisfying Op/Ong=0 on 0N, where dH" ' is the surface element of
9Q, and ng(z)=(n{(z), ...,n%(x)).

Proof. The L2-Helmholtz decomposition says that for h=V-f there exist unique
ho€L2(Q2) and Q[h]€G?(Q) such that h=ho+Q[h] with Q[h]=V®. Multiply V¢ with
h and use the orthogonality to get

/h-Vg@dxz/Vg@V@dm. (2.3)
Q Q
Since dp/Ong=0 on 02, we have
/V@-V@dxz—/@A(pdx (2.4)
Q Q

by integration by parts. (Note that ®€ L2 (Q) by the Poincaré inequality, see e.g. [15].)

loc

We now calculate the left-hand side of (2.3). We observe that
(0, £15)(8ip) = 0;(fi30i0) — fi;0:0;¢,
3005 = 0i(f1;0;0) = (8ifi;)0;
for all 1<%, j<n. Since

Zaifij :Zajfii =0
=1 i—1

by (2.1), we now obtain the identity

/h-wdx: Z/ fii (NG 0o —nb050) dH™ L. (2.5)
Q o0

ij=1

The identities (2.3)—(2.5) yield (2.2). O
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Proof of Theorem 2.5. We argue by contradiction. Suppose that the condition were
false. Then there would exist a sequence {f,, }°°_, CC* () satisfying (2.1) such that

00 > My, =sup do ()| V®y, (2)] > m finl| L (002
TE
with V®,,=Q[V- f,u]. (Note that M,, is always finite by Remark 2.4 (ii).) We normal-

ize ®,, and f,, by <I>m:<i>m/Mm and fm:fm/Mm. There exists a sequence of points
{Zm}22_1 CQ such that

sup do(2)|V®,,(z)| =1, (2.6)
€N
o (xm) VO (2m)] > 3, (2.7)
1
1l =00 < - (2.8)

Since 2 is compact, a subsequence of {z,,}>°_; converges to some z, €} as m— 0.

Case 1. z,€€). We may assume that ®,,(x.)=0. Since V®,, is harmonic, (2.6)
implies that a subsequence of {®,,}2°_; converges to some function ®€C>(Q) locally
uniformly in  with all its derivatives. By (2.6) the sequence {®,,}5°_; is bounded
in L"(Q) for any r€[1,00) so a subsequence of {®,,}>_; converges to ¢ weakly in L"
(1<r<oo). We apply Lemma 2.6 with ®=®,,, and f=f,, and let m— oo to observe that
DL (Q)NC(N) satisfies

O(z)Ap(x)dr=0
Q

for all peC2(Q)(=C?(Q)) satisfying dp/Ing=0 on I since the right-hand side of (2.2)
converges to zero by (2.8). Thus ® formally solves the homogeneous Neumann problem
so that V®=0. (In fact, we apply Lemma 2.8 in the next subsection for a rigorous proof.)

Since a subsequence of {V®,,}5°_, converges to V@ locally uniformly in Q, (2.7)
implies that do(2e0)|V®(2)|>3. This contradicts the fact that V®=0 so we get a

contradiction for the case 1.

Case 2. x,,€0f). By taking a subsequence, we may assume that z,, —z,. We
rescale ®,, and f, around x,, so that the distance from the origin to the boundary

equals 1. More precisely, we set
U, (2) =P (2 +dma) and gy (x) = fo (T +dim ),
with d,, =dq(2,,). It follows from (2.6)—(2.8) that
sup dg,, (2)|VU,(2)] =1, (2.9)

z€EQ,
VT (0)] = 3,
1

L (2.10)

gl o< (002,,) < (2.11)
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Here Q,, is the rescaled domain of the form

xTr =

Qm{xGR"

Y=Im and yE Q}
dm

We apply (2.2) with ¥, g,, and €Q,,,, and let m—oo. Since the domain is moving, we
have to take ¢, satisfying 0y, /Ongq,, =0 so that it converges to some function . If 9Q
is C* (k>2), there exists ;>0 such that do(z)€C*(I'q ) with a tubular neighborhood
Io,={xeQ|do(x)<p} and that, for any z€l'q ,, there is a unique projection 2P €S
to 09, i.e. |z—2P|=dq(z); cf. Proposition 3.6 (i). Let a2, €9 be the projection of z,, to
0N for sufficiently large m. The sequence of unit vectors (2, —x2,)/d,, converges to a
unit vector e. By translation and rotation we may assume that e=(0,...,0,1). Then Q,,

converges to a half space R} _;, where
R” . ={(2',z,) eR" |z, > c}.

More precisely, for any R>0, there is mg such that for m>my there is h,, €C?(B}~(0))
converging to —1 up to third derivatives with the property that

QnN(BE1(0)x[-R, R)) ={(2',2,) ER™ | R>x,, > hyp, () and 2’ € B} (0)},

where Bgfl(O) denotes the closed ball in R"~! with radius R centered at the origin. Let
peC2(RY _,) satisfy 0p/0xn,=0 on {(z/, 2 )|2n=—1}. We may assume that o€CZ?(R")
by a suitable extension. Take R>0 so large that the support of ¢ is included in the interior
of B 1(0)x [~ R, R]. We take a normal coordinate associated with 2,,,. Let F,, be the
mapping defined by

r=(2',2,)— X =2+2,Vdq, (2), with z= (2, hy,(2)).

We set ¢, (X)=@(F,,1(X)). This is well defined for sufficiently large m. We further
observe that O, /Ong,, =0 on OQ,,,, as ng,, =—Vdg,, . If 9Q is C3, then F,1 is still C2.
Thus ¢, €C%(Q,,,) for sufficiently large m. Here we invoke C? regularity.

Since we may assume that ¥,,(0)=0, by (2.9) the sequence {¥,,}>_; is bounded
in L™ (2, N (B ' (0)x[~R, R])), r€(1,00), for any R>1. As VV,, is harmonic in Q,,,
a subsequence of {W,, }7°_; converges to some function W€ C* (R _;) locally uniformly
with all its derivatives and weakly in Lj, (R _;) (1<r<oo). Since (2.11) implies that

gm—0 uniformly, we apply (2.2) with ¥,,, ., and g,,, and let m— o0 to get

/ VApdr=0, (2.12)
R L

n
+,-1
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as F-1 converges to the identity in C? so that ¢, —¢ in C? in a neighborhood of the
support spt . We thus observe that (2.12) is valid for all o€ CZ(RY _,) with d¢/dx, =0
on {(2/,z,)|z,=—1}. We apply a uniqueness result for the Neumann problem with the
estimate sup z,|VU|(2’, z,)<1 obtained from (2.9) to get V¥=0. (One should apply
Lemma 2.9 below for a rigorous proof.)

Since a subsequence of {VW,,}00_; converges to V¥ locally uniformly in R} _,
(2.10) implies that [V¥(0)|>3. This contradicts the fact that V®=0, so the proof is

now complete. O

Remark 2.7. (i) Even in case 1 the estimate (2.6) does not imply that {V¥,,}%°_;

is uniformly bounded in any Lebesgue spaces on 2. Thus it is not clear that
/ Vq)m-Vgodx—>/ Vo -Vpdr,
Qm Q

though we know that

—/ @mAgadx%f/@Acpdz,
Qo Q

since ®,,, converges weakly in all L" spaces (1<r<o0o) as m— oo by taking a subsequence.
This is the reason we need to assume that ¢ is at least C2 and that d¢/Ong=0 on the
boundary.

(ii) The proof of Theorem 2.5 actually yields the estimate
sup do(2)|Q[V- f](2)| < Callng-(f ="f)llL=(a9).

which is stronger than (1.5). Here,

no-f=Y nhfy and 'fi;=fi.

Jj=1

If f;;=0;v" with divv=0, the quantity ng-(f—"'f) is nothing but the tangential trace
of the vorticity, i.e. wXng when n=3. Moreover, the right-hand side of (2.2) equals

/ (wxng)-VodH™ .
o0

Since d¢/0ng=0 so that Vo=V, and since wXxng is a tangent vector field on 09,

the above quantity equals

- / (divoa(wxng))e dH™ .
o
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This implies formally that ® with f=08;v" solves

—AdP=0 in Q,
0P

v divgo(wxng) on 99,

where divgg denotes the surface divergence; see e.g. [29] and [53]. In general, since the

quantity ng-(f —'f) is tangential, we have
0P

877,9 =— diVagz(TLg-(fftf)) on 89
2.4. Uniqueness of the Neumann problem
We shall state and prove uniqueness results which are used in the proof of Theorem 2.5.

LEMMA 2.8. (Uniqueness for bounded domains) Let §2 be a bounded domain with
C3 boundary. Assume that €LY (Q)NC(Q) satisfies

/QCID(JU)Ago(x) drz=0 (2.13)

for all p€C?(Q) satisfying Op/Onag=0 on Q. Then ® is constant.
Proof. We consider the dual problem

—Ap=divy in Q,
I

%:O on 0f).

For arbitrary ¢ €C°(Q), there exists a solution @€ W37 (Q2) for all 7>1 (see e.g. [35,
Lemma 2.3]), where W™"(§2) denotes the L"-Sobolev space of order m. By the Sobolev
embedding we conclude that p€C?(Q). From (2.13) it follows that

/(I)divwdx:O
Q

for all € C2°(£2). This implies that V®=0, so ¢ is constant. O
LEMMA 2.9. (Uniqueness for the half space) Let @€ Ly (R?) satisfy
/ O(2)Ap(x)dr=0
R}
for all peCZ(R?) satisfying Op/0x,=0 on {(a',2,)|r,=0}. Assume that ® satisfies

sup z,|Ve(z)| < oco. (2.14)
zeRY

Then ® is constant.
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Proof. The problem can be reduced to the whole space. Let ® be an even extension
of ® to the whole space, i.e. ®(z’, z,)=®(a’, —x,) for ,, <0. For arbitrary peC>®(R")
let Yeven and woqq be the even and odd parts of ¢, i.e.

7 xn)+o(r, —x,
Peven (.’L‘) = (p( ) ;0( ) and Podd (-’I;) =

(', ) _410(37/’ _wn)
5 .

Integration by parts yields

| w@acta) o= [ 6@)AGumm(@) o) de

®(
/ B () Apeven () dz =2 / D(2) Apeyen () da.
R" R™

Since Yeven satisfies Opeyen/d2, =0 on {(z’, z,)|x, =0}, we conclude that

/ § ®(x)Ap(x) dz =0. (2.15)

By (2.14) we know that @ is locally integrable in R"™. As (2.15) says that ® is weakly
harmonic, ®=n.%® by the mean-value theorem if 7. is a symmetric mollifier, i.e. 7. is
radially symmetric (see e.g. [15, §2.2.3]). Moreover, by integrating ® from zo=(0, (z¢),)€
R, with (z¢),#0, to =, we observe that (2.14) yields

()| < C(1+]|log [a| | +]x][log |z,])
for '€ R™ and |x,| <% with some constant C' independent of x. This implies that
Vo=V +d

satisfies the estimate
IV (z)| < Co(1+]z]) (2.16)

for 2/€R™ ! and |z,|<2¢ with C. independent of z. By (2.14) we conclude that V&
satisfies (2.16) for all zeR™. As ® is weakly harmonic, (2.16) implies that V& is harmonic
in R™. By (2.16), the classical Liouville theorem implies that Vo is a polynomial of
degree 1. However, by the decay estimate (2.14) for |z,|— o0, this polynomial must be
zero. Thus V<i>:0, i.e. ® is constant. O

Remark 2.10. We actually need only C2-regularity of the boundary 9 in case 1 of
the proof of Theorem 2.5. Note that identity (2.2) (which is independent of the uniqueness
results in this subsection) is still valid for ¢ €W?22(2) having compact support in Q.
When 02 is C2, a slightly modified version of Lemma 2.8 is valid. In fact, for @€ L?(Q)
we still assert that V®=0 if (2.13) is satisfied for all € W22(Q) with dp/Ing=0 on 9.
(The constructed ¢ in the proof is now in W?22(£), but not necessarily in W37 (Q).)

Based on these assertions the proof of case 1 goes through with trivial modifications.



16 K. ABE AND Y. GIGA

3. Uniform Hoélder estimates for pressure gradients

The goal of this section is to establish local Holder estimates for second spatial derivatives
and the time derivative of the velocity solving the Stokes equations, both interior and up
to boundary. This procedure is a key to derive the necessary compactness for blow-up
sequences. Unlike the heat equation the result is not completely local even in the interior
case, since we need a uniform Holder estimate in time for pressure gradients. For this

purpose we invoke admissibility of domains.

3.1. Interior Holder estimates for pressure gradients

We use conventional notation [41] for Holder (semi)norms for space-time functions. Let

f=f(z,t) be a real-valued or an R™-valued function defined in Q= x (0, 7], where  is
a domain in R™. For ;€ (0, 1) we set several Holder seminorms

(n) _ |f(x,t)—f(x7s)|

[f](o,T} ()= SUP{ T s

|[f (@, 1) = f(y, D)l

|z —y|~

t,s€(0,7] and t;«és},

[f]gl”)(t)sup{ ‘x,yEQ and m%y}

and
g =suplligm() and (710 =suplfIg ()

In the parabolic scale for y€(0,1) we set

71877 = 1117+

For later convenience we also define the case y=1 so that

152 =1V £l e ) + 111152

If [=[l]4~, where [[] is a non-negative integer and v€(0,1), we set

1,1/2 /2
"= > [rarng
lee|+26=[1]
and the parabolic Holder norm
1 « Ll
A" = D0 1020 flli=(@+ 115"

la|+26<(]

When f is time-independent, we simply write | f];“?Q by | f]éz“ ).
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Let Q be a uniformly C?-domain in R™. For a given vo€L%(Q), 1<r<oo, it is
proved in [16] and [18] that there exists a unique solution (v, q) of the Stokes equations
(1.1)—(1.4) satisfying v;, Vq, Vv, Vo, v€ L™ () at each t€ (0, T') such that the solution op-
erator S(t): vgr>v(-,t) is an analytic semigroup in L7 (2). Here T>0 is taken arbitrarily
large. In this paper we simply say that (v,q) is an L"-solution of (1.1)~(1.4). Note that
Vg=Q[Awv] for an L"-solution.

LEMMA 3.1. Let Q be an admissible, uniformly C?-domain in R™ (with r>n). Then

there exists a constant M(£2)>0 such that

M
[da(@)Val(7) < = sup{([[oelloo (1) + | V?ulloc (1)t | 6 < £ < T

holds for all L"-solutions (v,q) of (1.1)~(1.4) and all §&€(0,T), where Qs=Qx (8, T).

The constant M can be taken uniformly with respect to translation and dilation, i.e.
M(AQ+x0) =M(Q)
for all A>0 and xo€).

Proof. By an interpolation inequality (see e.g. [64] and [40, §3.2]) there is a dilation-

invariant constant C' such that for any €>0 the estimate
[Volloe (t) <€||V2v||oo(t)+g||vlloo(t)
holds. Since our solution is an L"-solution, we have
Va=QIV-fl, f=(fi;)=0p",

and moreover

Vq(z,t)—Vq(z, s) = Q[Av(x,t)— Av(z, s)].
As  is admissible, we have
(@) Va(z.1) - Va(z. )
<O@ITO(- ) -u(-, 5
<) ({120l (0 170} + (-1 1) =00, ) )
Since
lo(-,t)=v(-, 8)]|oo < |t—s| sup{||ve]leo (7) | T is between ¢t and s},

1
Slt=sl5 supirvelloo(T) [0 <7< T}

for t,5>4, the desired inequality follows by taking e=|t—s|'/2. As Cq is also dilation
and translation invariant by Remark 2.4 (iii), so is M (). O
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PROPOSITION 3.2. (Interior Holder estimates) Let Q be an admissible, uniformly
C?-domain in R™ (with r>n). Take v€(0,1), §>0, T>0, R>0. Then there exists a
constant C=C(M(),6, R,d,~,T) such that the estimate

[v2v]8,ﬁ/2)_i_[vt]gﬁ/?)_i_[vq]gﬂ/?) <CNy (3.1)

holds for all L -solutions (v,q) of (1.1)~(1.4) provided that Br(z0) CQ and x¢€S, where
Q'=int Br(xo) X (6, T] and d denotes the distance of Bgr(xg) and 0Q. Here

Nr= sup |IN(v,q)|leo(t) <o (3.2)
0<t<T

and M(Q) is the constant in Lemma 3.1.

Proof. Since Vq is harmonic in 2, the Cauchy-type estimate implies that

C
sup \V2‘1(’I7t)|<XOHVQHLM(Q)(U and  Bpryq/2(z0) C8,
2EBRya/2(xo0)

where C( depends only on n. This together with Lemma 3.1 implies

(1/2) _ (Co  AMN L

for any o€, R>0 and §>0, where Q" =int Br q/2(x0) X (%6, T] . By the standard local

Holder estimate for the heat equation
vu—Av=-Vq inQ",

this pressure gradient estimate implies estimates for V2v and v; in Q' [41, Chapter IV,
Theorem 10.1]. O

Remark 3.3. (i) We are tempted to claim that if (v,q) solves the Stokes system
(1.1)—(1.2) without boundary and initial condition, then the desired interior Holder es-
timate would be valid. Such a type of estimate is in fact true for the heat equation [41,
Chapter IV, Theorem 10.1]. However, for the Stokes equations this is no longer true.
In fact, if we take v(x,t)=g(t) and p(z,t)=—g'(t)-z with geC*[0,00), this is always a
solution of (1.1)—(1.2) satisfying Ny, <oo for any 77 >0. However, evidently v; may not
be Holder continuous in time unless Vp is Holder continuous in time. This is why we use
a global setting with admissibility of the domain.

(ii) In the constant C the dependence of € is through M () so it is invariant under
dilation provided that d and R are taken independent of the dilation.
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3.2. Local Holder estimates up to the boundary

The regularity up to the boundary is more involved. We begin with the statement and

give a proof in subsequent sections.

THEOREM 3.4. (Estimates near the boundary) Let Q be an admissible, uniformly
C3-domain of type (o, 3, K) in R™ (with r>n). Then there exists Ro=Ro(ca, 3, K)>0
such that for any v€(0,1), §€(0,T) and R<iRy there exists a constant

C = C(M(Q)’ 6’ ’y’ T7 R7 a’ ﬂ’ K)
such that (3.1) is valid for all L"-solutions (v,q) of (1.1)~(1.4) with
Q/:Q;O,R,BZQQCOVRX((S’T]’ Q;Co,R:intBR(xo)ﬁQ,

provided that xq€0f).

The proof is more involved. We first localize the Stokes equations near the bound-
ary by using the cut-off technique and the Bogovskil operator [22, §II1.3] to recover the
divergence-free property. Then we apply a global Schauder estimate for the Stokes equa-
tions in a localized domain. As in the interior case we use the admissibility of the domain
to obtain the Holder estimate for the pressure in time.

We begin with Hélder estimates for ¢ in time since we are not able to control the

Hoélder norm of Vq up to the boundary.

LEMMA 3.5. Assume the same hypotheses as in Lemma 3.1. Then there exists Ro=
Ro(a, B, K)>0 such that for v€(0,1) and Re(0, Ry there exists a constant

CO :OO(M(Q)a V7O‘7Ra Ba K)

such that

v CoNN-
e <=5+ (3.3)

is valid for all L"-solutions (v,q) of (1.1)~(1.4) and Q'= "o.R.5 Jor w0 €O
For this purpose we prepare a basic fact for the distance function.

PROPOSITION 3.6. Let Q2 be a uniformly C?-domain of type (o, 3, K).
(i) There is a constant R.=R.(«, 3, K)>0 such that every

z€lqgr, ={rcQ|da(z) < R.}
has a unique projection x,€9Q (i.e. |v—xp|=da(x)) and x is represented as

r=xp,—dng(z,)
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with d=dg(z). The mapping x+(z,,d) is C1 in T g, .

(ii) There is a positive constant R1=Ri (o, B, K)< Ry such that Qz, r, CUq g,n(20)
and the projection x, of x€8Q;, r, is on xo+graph(h).

(iii) For each Re(0,Ry) and ve€[0,1) there is a constant C=C(«, 8, K, R,v) such
that

i(0) ~20)] < Cll Vil =y (1)~ e~ Bt )

for x,y€Qy, r and for all GeC1 () and x¢€0N.

Proof. (i) This is non-trivial but well known. See e.g. [36] or [39, §4.4].

(ii) This is easy by taking R small. The smallness depends on a bound for the second
fundamental form of 0.

(iii) For 2€Qy,.r (R<R1) we consider its normal coordinate (zp,d). Since Qg rC
Ua,p,n(0), there is a unique x7, e R"~! such that z,=(z},, h(z},)). Moreover, we are able
to use (zy,,d) as a coodinate system. For z,y€€Q,, r with x=(z,,da(z)), y=(y,, da(y))
and dq(y)>da(z), we estimate

(=) —q(y)| < lq(x)—q(2)|+]q(z) —a(y)]

with z=(z},,dq(y)). Thus we connect z and z by a straight line which is parallel to
nq(zp) and observe that, with z,=z(1—7)+72z (0<7<1),

~ da(y) 1 ~
@)~ < | / T avielar< [ ds 59l
da(z)
da(2) dﬂ() Vo
< T, HdQV(I||L°°(Q)-

It remains to estimate |§(z)—¢(y)|. We connect z and y by a curve C , of the form
y={2(7)[0<7 <1, 2, (7) =2,(1-7) + 7y, and do(z(7)) =da(y)}

so that the projection in R"~! is a straight line connecting x; and y;. We now estimate

(-l < [ Vil ) =

Since H'(C, ) <C|z,—1y,|, the proof is now complete. O

Hl(cz,y) HdEV@Hmey

Proof of Lemma 3.5. We take R;>0 as in Proposition 3.6. For xy€0) we take
Zo=r0— 5 Ring(zo). We may assume that q(Zo,t)=0 for all t€(0,T). Since

[da(2)"Val\"s? < ([da(2) YVl 5) (21 Vall L @)
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Lemma 3.1 implies that

MY Np217Y

5 it—s|"/? for t,se(5,T),

lda ()" V(z, - )| et s) <
with ¢(x,t,s)=q(x,t)—q(x,s). We now apply Proposition 3.6 (iii) with y== to get

MY Np217v

5 |t75|u/2

la(z, t)—aq(z, 5)| < C(da(Z0)' ™" +|ap—zolda(T0) ™)
for t,s€(6,T) and all z€Q,, r, R<Ry=1R;. Since do(Zo)=2Ro and |z, —z¢|<R, the
above inequality implies that

v CoN- —v —v vol—v
@57 < 2oL, Co=C((2R0)' ™"+ R(2Ro) )M 21",

For the Holder estimate in space we simply apply Proposition 3.6 (iii) with v=0 to
get

lq(z, 1) =q(y, )| < ClIVq| L (o) (D) (|da(y) = da ()| +|2p = yp|) < ClIV| L o) (D)2 Y]

for z,y€Qy, r, R< Ry, and t€(0,T). This implies that

so the proof is now complete. O

3.3. Helmholtz decomposition and the Stokes equations in Holder spaces

To prove local Holder estimates up to the boundary (Theorem 3.4) we recall several known
Holder estimates for the Helmholtz decomposition and the Stokes equations established
in [55] and [60] via a potential-theoretic approach; see also [59]. We recall notions for the
spaces of Hélder continuous functions. By C7(£2) with v€(0,1) we mean the space of all

continuous functions in Q with [ f}g’ ) < 0. Similarly, we use C77/2(Q) for the space of

(v/2)
Q

all continuous functions in @ with [f] <o0.

PROPOSITION 3.7. (Helmholtz decomposition) Let Q be a bounded C*7-domain in
R™ with v€(0,1).
(i) For feC7(Q) there is a (unique) decomposition f=fo+V® with fo, VE€C(Q)
such that
/ fo-Vodr=0 for all € C>(Q). (3.4)
Q
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(i) There is a constant Cg>0 depending only on v and Q only through its C?7
regularity such that

fol S +VD|S <Culf1S) for all feCT(R), (3.5)

where \f|§;) denotes the Holder norm of f, i.e. |f|g)=[f]g)+||f|\Loo(Q).
(iii) For each e€(0,1—7) there is a constant C'; >0 depending only on vy, € and Q
only through its C**t7 regularity such that

1folG 7P +V 0| 5P <Oy FISTEOFD for all f e CrHE0HI/2(Q). (3.6)

Proof. The parts (i) and (ii) are established in [55] and [60]; the dependence of the
constant is not explicit but can be seen from the proof.
In [60, Corollary on p. 175] it is proved that the left-hand side of (3.6) is dominated

by a (similar type) constant multiple of

(v:7/2) |(f (2, ) = f 2, 8) = (f(y, ) = (4, 5))]
+ su 3.7
|f|Q a:,yepﬁ |x_y|H|t—5|'Y/2 ( )
t,s€(0,T]
for arbitrary p€(0,1). By the Young inequality we get
1 < € 1 n ¥ 1 '
Y e A ey L e T (G
Thus we take pi=¢ to see that the second term of (3.7) is dominated by
2e (r+9) () 4. 2V ((v+2)/2)
— sup [f t)4+——sup|f x).
Tt te(O,T][ lo O+ swlflpr ()
Hence the estimate (3.6) follows and (iii) is proved. O

Remark 3.8. The operator f+ fy is essentially the Helmholtz projection P for
Holder vector fields, since (3.4) implies that div f=0 in Q and f-ng=0 on 9. The
estimate (3.5) shows the continuity of P in the Hélder space C7(€2). However, it is men-
tioned in [60] (without a proof) that P is not continuous in C7?/2(Q). In other words,

one cannot take =0 in the estimate (3.6).

We next recall the Schauder-type estimates for the Stokes system

vi—Av+Vg=fo in Qx(0,T), (3.8)
dive=0  in Qx(0,7), (3.9)

v=0  ondQx(0,T), (3.10)

v=0  on Qx{0}. (3.11)
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PROPOSITION 3.9. Let Q be a bounded C**7-domain in R"™ with v€(0,1) and T>0.
Then, for each foc€CVV/2(Q) satisfying (3.4), there is a unique solution

(v, Vg) € CHHIR(Q)x C72(Q)

(up to an additive constant for q) of (3.8)—(3.11). Moreover, there is a constant Cg
dependeng only on v, T and Q only through its C*17 regularity such that

‘U‘8+v,1+v/2)+|vq|8ﬁ/2) < Cs|f0|877/2)- (3.12)

Remark 3.10. (i) This result is a special case of a very general result [60, Theo-
rem 1.1], where the viscosity constant in front of A in (3.8) depends on space and time
and the boundary and initial data are inhomogeneous. Note that the divergence-free
condition (3.4) for fy is assumed in order to establish (3.12).

(ii) If the domain is a bounded C3-domain, clearly it is a uniformly C3-domain of
type (a, 3, K) for some (o, 3,K). The constants Cy, C and Cg in Propositions 3.7
and 3.9 depend on 2 only through (o, 8, K) when € is a bounded C3-domain (which is
of course a C**7-domain for all v&(0,1)).

3.4. Localization procedure

We shall prove Theorem 3.4 using Lemma 3.5 and a localization procedure with necessary
Holder estimates (Propositions 3.7 and 3.9). We first recall the Bogovskil operator By
n [10]. Let E be a bounded subdomain in  with Lipschitz boundary. The Bogovskil
operator Bg is a rather explicit operator but here we only need a few properties. This
linear operator Bg is well defined for average-zero functions, i.e. such that [  9dr=0.
Moreover, div Bg(g)=g in E and if the support spt gC F, then spt Bg(g) CE.

The operator Bg satisfies the estimates

| Be(9)llwree) < CallgllLe(r) for g € LP(E) satisfying [ gdz =0, (3.13)
1Bo(@)l 2o < Collgllygrogs,  for g € Wg " P(B) =W (B, (3.14)

with some constant Cg independent of g, where 1/p’4+1/p=1 and 1<p<oo. In particular
Bp is bounded from L2 ={ge L?(E)| [}, g dz=0} to the Sobolev space W' »(E). The es-
timate (3.14) is a special case of [23, Theorem 2.5] which asserts that B is bounded from
W§P(2) to WSTHP(Q) for s>—241/p. The bound Cp depends on p but its dependence
on F is through the Lipschitz regularity constant of OF.
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Proof of Theorem 3.4. We take Ry as in Lemma 3.5 and take Rg%RO. For xq€09)
we take a bounded C3-domain € such that Qu0,37/2CY CQypy 2r. Evidently 0Q,,, rNON
is strictly included in 9Q’'NON. Moreover, one can arrange that Q' is of type (o/, 5, K'),
where (o, 3, K') depends on (a, 8, K) and R. Such an €’ is constructed for example by
considering Q"= 7r/4 and mollifying near the set dBrr/4(70)NON in a suitable way
to get .

Let 0 be a smooth cut-off function of [0,1] supported in [0, %), i.e. #€C[0, 00) such
that 6=1 on [0,1] and 0<H<1 with sptC[0,2). We set Or(2z)=0(|z—z0|/R) which is
a cut-off function of Qg r supported in €'. By construction, its derivatives depend only
on R. We also take a cut-off function g5 in the time variable. Let o€C®[0, c0) satisfy
0=1 on [1,00) and ¢=0 on [0, 3) with 0<o<1. For 6>0 we set os(t)=0(t/5). We set
&=0gros and observe that u=v¢ and p=qg¢ solves

{ut—AquVp:f,
divu=g,
in U=’ x(0,T) with

f=0v&—2Vu-VE—vAE+¢VE and g=v-VE(=div(vE)).

We next use the Bogovskil operator By to make the vector field solenoidal. We set
u*=Bgq(g) and a=u—u*. Then (a,p) solve
{ﬂt—Aa—FVp:f,
diva =0,
in U with f=f4uf—Au*. We shall fix Q' so that C%, in (3.6) and Cg in (3.12) depends on
Q' only through (o, 8, K) and R. If we know that feC7te0+)/2(T) with e€(0,1—7)

then by the Helmholtz decomposition in Holder spaces (Proposition 3.7), one obtains
f=fo+V® with foeC?7/2(U) satisfying (3.4) and

| foln) +1V®l ) < Carl flyes (3.15)
where we use the shorthand notation |f|.y= |f|(7’7/2). If we set p=p—®, then (,p)
solves (3.8)—(3.11) with Q= where f satisfies the solenoidal condition (3.4). Applying
the Schauder estimate (3.12) yields

(@24 +IVDl(5) < Cslfol)- (3.16)
By the definition of f we observe that

|Flivre) < Uflevte) F1ug (o) 1AW | (41)

+ +e)/2) + +e)/2 + +€)/2
<CO(|”|(Py 65(72 ;])/ +[Vv |8:><E(6/72 ;]/ )+| \g/xs(a]z;/ M) | | @+~+e)s
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where ¢y depends only on R, T, § and y+e&. Since Ny in (3.2) is finite, by an interpolation
inequality as in the proof of Lemma 3.1, we have [Vv]g}éi)gCNT/é with C depending
only on (a,3,K). We now apply this estimate together with estimate (3.3) for ¢ in
Lemma 3.5 to get

|Fler+e) SCNp+ U (24414 (3.17)
with a constant C=C(M(Q2),v+¢,a, 3, K, R,§). Since
(2+47,14+7/2) _ . 2) .
[0lGr 7D S Juliga) <l gan + el and [Vl < |Vhl) +VE| (),
the desired estimates follow from (3.15)—(3.17) once we have established that

|u)k |(2+’y+s) < CNT

with C=C(M(Q),v+e¢,a, 3, K, R, 9).
We shall present a proof for

il <CNr (3.18)

for ;1€(0,1) since the other quantities can be estimated in a similar way and are even
easier. By (3.13) and (3.14) we have

HUIHL”(Q’) gCBHdiVUtHWO*LP(Q/), (319)

H’U,:;le,p(g/) <CB||diV’LLt||Lp(Q/). (320)

To estimate ||div ut||W071,p(Q,) we use the equations v;—Av+V¢=0 and divv=0. For an
arbitrary e W (/) we have

//<pdivutdx:/Q/(govt-Vé—l—ngEt-v) dx
— [ (oVEBo-Va) +oVE0) do

Z//(—Z%(LPV«E)-avarqdiV(¢V€)+wV€t-v> dzx

i=1

v ¢ ) L
+ VE¢- dH"~
/89/ (Lp ¢ ongr 3712

This implies that

/ pdivus dr| <

Ce(IVolloo +ll9llco + v lloo ) (llellwrr @+l L1 (92)) (3.21)
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with C¢ depending only on R and ¢ (independent of t), where the L*°-norm is taken on
Q. By a trace theorem (e.g. [15, §5.5, Theorem 1]) there is a constant C' (depending
only on the Lipschitz regularity of the domain) such that

el ooy < Cllellwey-

By the Hélder inequality, [|¢[lw1.1a)<C’|l¢llwir @) with C* depending on the volume
of . Thus (3.21) yields

v ey gy < CollPollow+ llloe + 10]o0)
with Cy depending only on §, R and Q' through («, 3, K). By (3.19) this yields
l[uz lLe @) < CCo([[VUlloo +llqlloc +Iv]loc)- (3.22)
We next estimate ||u}||y1.». By (3.20) a direct computation shows that
l[ug lwr ) < CoCr([[0]loo+[velloo) (3.23)

since divu,=div 9;(&v)=08,(VE&-v) as divv=0.
We now apply the Gagliardo—Nirenberg inequality (see e.g. [26])
n

S P
to (3.22) and (3.23) to get
14z lloe < C1CB(10]lso +[[vtlloo)” 1V lloo + 0]l oo +llallc) 7
with C; depending only on §, R and Q' through («, 3, K). We replace u* by
u (-, t)—u*(-,s)
and observe that
lui (. 8)=ui (-, 8)lloo < C1CB (VU (-, 1) = V(- 8) oo+ lla(+, 1) —a (-, 5) |
+w«m—mwwuf“( -z f, .

min{t, s}
for t, s>0. As observed at the end of the proof of Lemma 3.1, we have

1/2) _ CNr
vl < 0T
By (3.3) we now conclude that
() () CNp M
zsélg/[vv]t,ﬂ’x(é/Z,T]+jg£,[q]t,ﬂ’x(6/2,T] S—5 0 K= 2(i—0)’

provided that y/<2% (i.e. p>n/(1—p)). Dividing both sides of (3.24) by [t—s|*/2 and
taking the supremum for s, t}%é we get (3.18) since u*=0 for tg%d. O
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4. Uniqueness for the Stokes equations in a half space

The goal of this section is to establish a uniqueness theorem for the Stokes equations in a
half space R?={(2’, z,,)|z,, >0} to be able to characterize the limit of rescaled limits in

our blow-up argument. The result presented below is by no means optimal but convenient
to apply.

THEOREM 4.1. (Uniqueness) Assume that (v,q) satisfies
ve C(R" % (0,T))NC*(R" % (0,T)), VqgeC(R"x(0,T)) (4.1)

and

/0 /n(v'(@t—I—Aap)—(p-Vq) dedt=0 (4.2)

for all peCP(RY x[0,T)) with (1.2)-(1.3) for Q=R". Also assume that

sup [N (v, q)l|ee(t) <00 (4.3)
0<t<T
and
sup tY/22,|Vq(xz,t)| < oc. (4.4)
z€RY
0<t<T

Then v=0 and Vq=0.

Remark 4.2. Without decay condition (4.4) for the pressure gradient there is a non-

trivial solution. In fact, let v*=v%(x,,t) be the solution of the heat equation

vi—02 v'=a" in {x, |z, >0}x(0,T),

v'=0  on {0} x(0,T),
v =0 on {x, |z, >0} x{0},

for i=1,...,n—1 with a*€C*[0,T] (independent of z). We set v=(v!,...,o" "1 0) and

n—1
q(z,t)=— Z ai(t)xi.
i=1

Then (v, q) solves the Stokes equations (1.1)—(1.4) with Q=R" and vo=0. It satisfies
(4.3) but it does not satify (4.4). This is a non-trivial solution unless a‘=0 for all
i=1,...,n—1. Note that (4.2) is satisfied for this (v, q), since (v, q) satisfies (1.1)—(1.4)
with vg=0. So this example shows that the uniqueness of Theorem 4.1 is no longer true
without (4.4).
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This result is easily reduced to a uniqueness theorem which is essentially due to
Solonnikov [58]. Although it is stated in a different way [58, Theorem 1.1], his proof,
based on the duality argument (proving the solvability of the dual problem), yields the
following uniqueness result (Lemma 4.3). Note that for a half space the Stokes semigroup
is not bounded in L' (for each ¢>0) [14] although the derivative satisfies the usual
regularizing effect

IV S(t)voll L rny < Ct 2 |lvoll La ma)
as proved in [33].

LEMMA 4.3. Assume that (v,q) satisfies (4.1)—(4.2) and (1.2)—(1.3) with Q=R".

Also assume that
sup ||N(v,q)|leo(t) < o0 (4.5)
§<t<T

for any 6€(0,T). Also assume that |Vq(z,t)|—0 as x,—o0 for t€(0,T). If v(-,t)
converges x-weakly to 0 in L= (R7) as t10, then v=0 and V¢=0.

Proof of Theorem 4.1. To apply this uniqueness result it suffices to prove that
v(-,t) =0 (*-weakly in L) as t 0.
Since (v, ) solves (1.1), multiplying by o€ C° (R x [0, 7)) and integration by parts yield
T
/ / (v-(pr+Ap)—¢-Vq) dxdt—i—/ v(x,0)-p(x,d)de=0.
§ JRY R7
By (4.2) we easily observe that

/ i v(z,d)-p(x,d)de—0

+

as 0—0. In particular,

/ v(x,8)pdr—0
R

n
for all y€C°(R7). Since v is bounded by (4.3) and C°(R?) is dense in L'(R7), this
implies that v(-,t)—0 (x-weakly in L). O

Remark 4.4. (i) The continuity assumption (in Theorem 4.1 and Lemma 4.3)
ve C(RTx(0,T))

in (4.1) is redundant if one assumes (4.3) or (4.5).



ANALYTICITY OF THE STOKES SEMIGROUP IN SPACES OF BOUNDED FUNCTIONS 29

(ii) Without the decay condition on the pressure gradient Vq as x, — o0, one still
concludes that v depends only on z,, and ¢; see [58, proof of Theorem 1.1]. Since divv=0
and v vanishes on the boundary, this implies that the normal component v™ (of v)
vanishes identically so that dq/0z,=0. Thus v® (1<i<n—1) solves the heat equation
with a spatially constant external source term a® which agrees with the counterexample
for uniqueness without decay of Vq as xz,, —0co. This observation shows that to establish

uniqueness it suffices to assume the decay of d¢/0z; (j=1,...,n—1) as x,,—o0.

We conclude this section by giving a uniqueness result for the heat equation which

is very easy to prove.

LEMMA 4.5. Assume that u€Li (R"x[0,T)) satisfies

T
/ / u(z,t)(pr(x, t)+Ap(x,t)) dedt =0 (4.6)
0 n
for all peCP(R"x[0,T)). Also assume that

sup ||ul|oo (t) < 00. (4.7)
te(0,T)

Then u=0.

Proof. We prove this statement by a duality argument. We first observe that (4.6)
holds for

Y e C®(R"%[0,T)) with ¢, Vip, V2,9, € L' (R"x[0,T)) (4.8)

and sptyyCR™x[0,T). This is easily proved by setting ¢=0ry in (4.6) and by let-
ting R—o00, where 0 is the cut-off function defined in the proof of Theorem 3.4. The
procedure is justified by (4.7).

For an arbitrary feC®(R™x[0,T)), we solve

{ P+ AY=f in R"x[0,7T),
Y(x, T)=0 for z€R"

It is not difficult to see that Y€ C>®(R™x[0,T)) satisfies (4.8), so we conclude that

T
// ufdrdt=0
O n

for all feC®(R™x[0,T)). This implies that u=0. O
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5. Blow-up arguments—a-priori L°° estimates

In this section we shall prove Theorem 1.2 by a blow-up argument. We then derive Theo-

rem 1.3 which implies Theorem 1.1 since a bounded domain is admissible (Theorem 2.5).

5.1. A-priori estimates under stronger regularity assumption

PROPOSITION 5.1. The assertion of Theorem 1.2 holds under the extra restrictions
that v(-,t)€C%(Q) for t€(0,1) and || N(v,q)|loo(t) is bounded in (0,1) as a function of t.

Proof. We argue by contradiction. Suppose that (1.6) were false for any choice of
Ty and C. Then there would exist an L"-solution (Ui, @m) of (1.1)=(1.4) with vo=vo,, €
C2%(Q) and a sequence 7,0 (as m—r00) such that [[N(vm,@m)lloo(Tm)>m{[vom ||oo-
There is ¢, €(0, 7,,) such that

HN('Uma Qn)”oo(tm) = %va M, :O<Stu<P HN(Una Qm)”oo(t)-

Note that, due to our extra assumption, M, is finite. We normalize v,, and g, by
defining 0y, =0 /My, and G =¢m /M. Then (0, Gn) satisfies estimates (1.7)—(1.9).
Since (U, Gm) is an L™-solution, we have Vim=Q[A¥,]. As Q is admissible so that
(1.5) holds, (1.7) implies that there is a dilation- and translation-invariant constant Cg

independent of m such that
sup{t'/2do (x)|Vm (2, t)| | 2 €y and t € (0,t,,)} < Cq. (5.1)

Here we have invoked the assumption v(-,t)€C?(£2) to be able to apply the estimate for
Q. We rescale (0, ¢m) around a point x,, €2 satisfying (1.10) to get a blow-up sequence
(W, pm) of the form

Um, (‘ra t) = ﬁm(xm +t}7{2$7 tmt)a Pm (xa t) = tr}n/2q”z(xm +t7lr{2$a tmt)-

By the scaling invariance of the Stokes equations (1.1)—(1.2), this (t,, pm) solves the

Stokes equations in the rescaled domain €, x (0, 1], where

Qm:{xER"

Y—Tm
r="—"7-— and yeQ}.
/2

m

It follows from (1.7), (5.1) and (1.10) that

sup || N (tm, pm)llL>(0,,) <1, (5.2)
0<t<1
sup{t*/2dq, (2)|Vpm(z,t)| |2 € Qyp and 0 <t <1} < Cq, (5.3)

Nty pm)(0,1) > 1. (5.4)



ANALYTICITY OF THE STOKES SEMIGROUP IN SPACES OF BOUNDED FUNCTIONS 31

Moreover, for initial data wvo,, the condition (1.9) implies that ||ugm||ze~(q,.)—0 (as
m—00). The situation is divided into two cases depending on whether or not

- dQ (xm)

m 1/2
m

tends to infinity as m—o0. This ¢, is the distance from zero to 9Q,,, i.e. ¢;,=dq,, (0).

Case 1. lim,, o ¢;p=00. We may assume that lim,, .. ¢,, =00 by taking a sub-
sequence. In this case the rescaled domain €2, expands to R™. Therefore, for any
peC(R"x[0,1)), the blow-up sequence (U, Py ) satisfies

/01/ n(um~(§0t+A@)_VPm'<p) dmdt:—/n U (2, 0)-p(x, 0) d

for sufficiently large m>0. By (5.2) and Proposition 3.2 we have a necessary compactness
to conclude that there exists a subsequence of solutions still denoted by (wm,, pm) such
that (um,, pm) converges to some (u, p) locally uniformly in R™ x (0, 1] together with Vu,,,
V2, Ut and Vp,,. (Note that the constant C' in (3.1) is invariant under dilation and
translation of Q so (3.1) for (u,, pm) gives equicontinuity of V2tu,,, Uy, and Vp,,.) As,
for each R>0,

inf{dq,, () ||z| <R} — o0 as m— oo,

the estimate (5.3) implies that Vp=0. Thus the limit ue C(R" x (0, 1]) solves

1
// u-(pr+Ap)drdt=0
O "

for all peC°(R" x[0,1)) since ||uomlr=(q,,)—0 as m—o0. Since u is bounded by
(5.2), applying the uniqueness of the heat equation (Lemma 4.5) we conclude that ©=0.
However, (5.4) implies that N (u,p)(0,1)>1 which is a contradiction, so case 1 does not

occur.

Case 2. 1lim,,_ o0 Cm < 00. By taking a subsequence, we may assume that c,, con-
verges to some c¢g>0. We may also assume that x,, converges to a boundary point &€ 9f2.
By rotation and translation of coordinates, we may assume that £=0 and that the ex-
terior normal ng(2)=(0,...,0,—1). Since Q is a uniformly C3-domain of type (a, 3, K),
the domain €2 is represented locally near & on the form

Qo ={(2', z,) ER™ | W(2") <z, < h(x')+ and |2'| < a}

with a C3-function h such that V'h(0)=0 and h(0)=0, where derivatives up to third

order of h are bounded by K. If one rescales with respect to x,,, Q¢ is expanded as

(Qm)loc
={(y,yn) ER™ | W(tL2y +a),) <t 2yn+(2m)n < h(th *y+al,)+ 5 and |t/ %y'| < a}.
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Since do(@m)/(Tm)n—1 as m—o0 and !, —0, the domain ()10 converges to

R? . ={(@ z,) eR" |z, >—co}.

»—Co

In fact, if one expresses

(Q)ioc ={(¥, yn) ER" | hin (') <¥n < B +han(y') and |y| < am}

with amza/tf,lf, m:ﬂ/t},{Q, hm(y’):h(t}fy’—i—xin)/t},{?—(xm)n/t}n/{ then h,, ——co
locally uniformly up to third derivatives and au,, 3, —00. Note that |0¥h,,| for u,
1< || <3, is uniformly bounded by K.

Thus, (Um,Pm) solves (1.1)=(1.4) in (m)10c X (0,1]. By (5.2) and Theorem 3.4 we
have the necessary compactness to conclude that there exists a subsequence (wy,, Pm )
converging to some (u, p) locally uniformly in ﬁﬁﬁco x (0, 1] together with Vu,,, V2,
Umt and Vp,, as in the interior case. (Note that €, is still of type (a, 3, K) which is
uniform in m.)

Now we observe that the limit (u, p) solves the Stokes equations (1.1)—(1.4) in a half

space with zero initial data in a weak sense. In fact, as (u,,, pm) satisfies

1
// (um (Pt +A¢)—¢-Vpp,) dxdt:_/ U (7,0)¢(,0) dr
0 1 —co Rivfco
for all peC*(RY _, x[0,1)), we note that (5.2) and (5.3) are inherited by (u,p), and

in particular
sup{t'/?(z,+co)|Vp(z,t) |2’ € R" 1 2, > —¢ and t € (0,1)} < Cq.

Since the convergence of wu,, is up to the boundary, the boundary condition is also
preserved. The limit (u,p)€C(RY _. %[0, 1]) solves a weak form of the Stokes equations

with zero initial data:
1
/ / (u-(pr+Ap)—p-Vp)dzdt=0 for all pe C°(R] _, x[0,1)).
oJmry

We thus apply the uniqueness to the Stokes equations in a half space (Theorem 4.1) to
conclude that u=0 and Vp=0.

However, (5.4) implies that N (u, p)(0,0)>1 which is a contradiction, so case 2 does
not occur either.

We have thus proved (1.6). O
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5.2. Regularity for L7-solutions

We shall prove that the extra conditions for v in Proposition 5.1 can be removed. For

example we have the following result.

PROPOSITION 5.2. Let Q be a uniformly C®-domain in R™. Let (v,q) be an Lr-
solution of (1.1)~(1.4) for r>n. Assume that vo€ D(A,), where A, is the Stokes operator
in L7(Q), i.e. —A, is the generator of the Stokes semigroup in L7 (). Then v(-,t)€
C?(Q2) for all t>0. Moreover, for each T>0, we have

sup || N (v, g)]|oo (t) < c0. (5.5)
o<t<T

Proof. We shall claim a stronger statement

D (Il ()42 90l ()20 gy () 100y ()+ 1Vl ()

<Cllvollpea,)
(5.6)

with C=C(T,,r). Here WI}I’T is a uniformly local W™ space defined by

W (@) ={f e LGV €L}, Ifllwrr =1y +IVFllzg,,
and

1/r
n(Q) = {fGLTOC(Q) \ 1fllzz = sup ( / If(y)l’dy) }
€N Q. R

where Q, p=int Br(z)NQ and R is a fixed positive number. The norm depends on R
but the topology defined by the norm is independent of the choice of R. The norm of

the domain D(A,) is defined by

lull o,y = el 2oy F 1Al iys Nl gy = max{ull ey, l[ull 2y},

when r>2. As proved in [16] and [18], this norm is equivelent to the norm

r—

<2

L)

Note that once we have proved (5.6), the inequality and v(-,t)€C?(Q) follows from
the Sobolev embedding. (One can even claim that V2uv(-,t) is Hélder continuous with
exponent y=1—-n/r.)

We shall prove (5.6). We first observe that by the analyticity of the semigroup

S(t)= e tAr,
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we have

sup_t||vellp 4, () < Cillvollpa,
0<t<T
since flrvt:—ﬁre_t&flrvo. It is easy to see that

sup [lol i, (1) < Callvoll pa (5.7)
o<t<T

with C; depending only on 7', € and r. Thus we have proved that

OgggT(I|v|IV~V1,T(Q)(t)+||W||W1,Tm)(t)+tuvt||v~vz,r(m(t>) < Cslvoll pa, - (5.8)

as the D(A,)-norm and the W2 -norm are equivalent. The estimate (5.8) controls the
terms

lollwgs 22090l and ol
in (5.6).
To show (5.6) it remains to prove that

sup ([ V20llyp1r (8)+ [Vl () < Callvoll p 4. (5.9)
0<t<T v "

We take R sufficiently small so that Q; 3 CUq g,1(x0) for any xo€9Q. We normalize ¢

by taking
1

4(z) =q(x)— @ o g(x)dz, Q"=Q,, 35

It follows from the Poincaré inequality [15, §5.8.1] that
4l zr @ <ellVallLr@r (5.10)
with ¢ independent of zg. Since Q is C? and (v, q) solves
—Av+Vqg=—v; and dive=0 in Q"

with
v=0 on 9Q'NIQ,

the local higher regularity theory for elliptic systems (see [22, Chapter V]) shows that

V2]

()t V34|

L7'(Q/) < C(Hvt||W1=7'(Q”) + ||’U||W1,7-(Q//) =+ ||(j| er-(Q//))

with Q'=Q,, or. Here the dependence with respect to ¢ is suppressed. The last term is
estimated by (5.10), so we observe that

HVBUHLT(Q’)JFHVQQHLT(Q’) <O([lvellwrr ) Hvllwrr @)+ IVl r @) (5.11)
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with C' depending only on 2, R and r, but independent of xo€dQ. If xq€Q is taken so
that Bop(z0)CQ, then interior higher regularity theory yields (5.11) with Q'=Bpg(z0)
(by taking Q"=Bsg(z9)). As Q is covered by Q0 or, 20€0, and Bg(xo), with zo€Q
such that Bap(xo)C), the estimate (5.11) implies that

V%0l Lr (@) + IVl Lr () < Cllvellwrr )+ v llwrr )+ 1 Vall e ) - (5.12)
Since Vg=Q[Av] implies that
IVallzrq) < C' 1AV £ ()

with C'=C"(Q,r), the estimate (5.12) together with (5.8) now yields (5.9). O

Proof of Theorem 1.2. Combining Propositions 5.1 and 5.2 yields Theorem 1.2, as

C25, () is included in D(A,.). O

5.3. Analyticity of the Stokes semigroup in Cy

We shall prove Theorem 1.3. To show the Cy-property of the semigroup, we start with

the following result.

PROPOSITION 5.3. Let Q be a uniformly C?-domain in R™. Also let (v,q) be an
L7 -solution of (1.1)~(1.4) with r>n and vo€D(A,). Then

li 1) —=0]|oo =0. 1
itn [0(-,£) ~vo | oc =0 (513)

In other words,

lim |[e "7 v — =0.
tl%lHe V9 —Up|leo =0
Proof. By the Gagliardo—Nirenberg inequality, we have
ot = voll o= () < Cllo(®) =voll - [0(E) —voll ey (5.14)
with 6=1—n/r, where v(t)=v(-,t). Since
I lwrr @) < fllwer @) < I llgam @) SC N fllpa, )

we have by (5.7) that

lo)=vollwse @) <C U@l pea, +lvoll o) <Cllvoll sy (5:15)

As e~*4" is strongly continuous in L, (5.14) with (5.15) yields (5.13). O
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Proof of Theorem 1.3. By the a-priori estimate (1.6), the operator S(¢) is uniquely
extended to a bounded operator S(t) in Co,» at least for small ¢, say t€[0,T). Since
S(t) is a semigroup in L", we have

S(tl)S(tg) :S(tl +t2) as 10Hg as t1+ty <Tp. (516)

We extend §(t) to t>Ty by g(t)zg(tl)...g(tm) so that ¢;€(0,Tp) and t1+...+t,=t.
This is well-defined in the sense that §(t) is independent of the division of ¢ by the
semigroup property (5.16). Thus we are able to define the Stokes semigroup §(t) for all
>0 which we simply write by S(t) (since it agrees with S(t) on Cy ,NL"). Our estimate
(1.6) is inherited by S(t). Moreover, by the semigroup property, the estimate (1.6) yields
IS (t)vollco SCrl|volloe With Cp independent of vo€Cy () and t€(0,T) for arbitrary
T>0. As dS(t)/dt=S(t—s)dS(s)/ds for s€(0,t), the estimate (1.6) together with an
L*> bound for S(t) yields

d
‘dtS(t)vo

sup t < Ch)|vo]| oo,

0<t<T oo

with a constant C% independent of vo€Cy (). This implies that S(¢) is an analytic
semigroup in Cp ,(£2).

It remains to prove that S(t) is a Co-semigroup in Cp (£2). Since C25, () is dense in
Co,0(92), for each vo€Cp (12) there is vy, €CZ%(Q) such that vo, —ve in L>(Q2). Since
1S ()vo|loo <CT||v0||0o for 0<t<T, we have

15 (#)vo —volloo <15 (#)vo =S () vom [loo 1S () vom —vom [l +[vom —voll o
< (Cr+1)lvom =volloo (15 () vom —vom||co-

By Proposition 5.3, letting ¢|0 yields
%Hs(t)vo—vd\oo < (Cr+1)lvom —volloc-

Letting m— o0, we conclude that S(¢) is a Cy-semigroup in Cp (12). O
As a bounded domain is admissible, Theorem 1.3 yields Theorem 1.1.

Remark 5.4. (i) In general, we do not know whether or not S(t) is a bounded
analytic semigroup in the sense that

C

d
|5est0m] <ol (5.17)
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for some C independent of £>0. When €2 is bounded, one can claim such boundedness.

In fact, multiplying v with (1.1) and integrating by parts we obtain the energy equality
1d
52l )+ 90l () =0,
Since € is bounded, the Poincaré inequality implies that
IVo||72 > vlvl|7

with some v>0. Thus

IS(t)vollZ> < e flvoll7-.

If Q is sufficiently smooth, by the Sobolev inequality and the property of the Stokes
semigroup in L? (see [54, §II1.2.1]), we have

1S (t)voll Lo < Chl|S(t)vollwrar.2 < C2l|A5S (t)vo | 2

for an integer k> 1n with C; (j=1,2,...) independent of ¢ and vy € L2(Q2). As S(t) is an

analytic semigroup in L2, this yields
HS(t)’UO”Loo <03|‘S(t—1)1)0||L2 for t}l

‘We have thus proved that

||S(t)’l)0HLoc <C467VtH’UQ||L2 <C567VtH’Uo||Loc>, t}]. (518)
Similarly,
d d k41 —ut
fS(t)"UO <01 *S(t)vo <02||A2 S(t)UOHLQ gCGG ||’l)0HLoc for t>1
dt dt W2k,2
Since

C
t7 [lvolleo  for <1,

this yields (5.17). Thus S(¢) is a bounded analytic semigroup in Cy ,(€2) and L°(Q) (see
the next section) when  is a smoothly bounded domain. If one uses L"-theory (r>n)

instead of L2-theory, the result is still valid for a bounded domain with C® boundary.
(ii) Since we have (5.18) for t =Ty >0, our a-priori estimate (1.6) in particular implies
that
[IS(t)vollco < Clluglloe  for all >0 and v € Cp (L),

with C' depending only on 2 when € is bounded. This type of result is often called a

maximum modulus result in the literature.
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The maximum modulus theorem was first stated in [65] when 2 is a bounded, convex
domain with smooth boundary for vo€C2%, (2). Later a full proof was given in [56]. It was
extended by [57] to a general bounded domain with C? boundary. It was also extended
by [43] to vo€Co »(£2), but with 9Q assumed to be C?T7 with v€(0,1).

By our extension to the L° space in the next section, we conclude that
1S(t)volloe < Cllvolloc,  vo € L7 (£2),

for all t>0, with C' depending only on € when € is bounded and of C® boundary.

(iii) It is interesting to discuss whether or not our semigroup S(t) is a %ﬂ—type
analytic semigroup (i.e. it is extendable to a holomorphic semigroup in Ret>0). Our
results say that S(t) is an e-type analytic semigroup for some £>0. If we are able to
prove (1.6) for Ret€ (0, Tp) with |argt| <o for a€ (0, $7) where analyticity is valid, then
we conclude that S(t) is a %W—analytic semigroup. This idea would work provided that
the Schauder-type estimate for complex ¢ with |argt|<e would be available. It is of
course likely but there seems to be no explicit reference. Very recently, M. Hieber and
the authors [2] proved a necessary resolvent estimate to conclude that S(t) is a 3m-type
analytic semigroup (without proving (1.6) for complex ¢).

(iv) A closer examination of the proof of Proposition 5.1 shows that it suffices to

apply the estimate

8161?2 do()[Q[V- fl(@)| < C| f | L~ ()

which is weaker than (1.5) in the sense that the norm in the right-hand side is over €2,

not only over 0f).

6. Results for L°

In this section we shall prove that the Stokes semigroup is a (non-Cj-)analytic semigroup
in L2°(€2) when Q is bounded, as stated in Theorem 1.4. The space L°(f2) is defined by

LZO(Q):{feL‘X’(Q) ‘/QfV@dx:O for all gDGWLl(Q)},

where /V[71’1(Q) is the homogeneous Sobolev space of the form

W) ={pe LL,.(Q) | Vo e L1 (Q)}.

6.1. Approximation

We begin with an approximation result when Q is star-shaped (with respect to some

point a€R™, i.e. A(Q—a)CQ—a for all Ae(0,1)).
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LEMMA 6.1. (Approximation) Let  be a bounded, star-shaped domain in R™. There

exists a constant C=Cgq such that for any ve L3°(QY) there exists a sequence
{vm}m=1 CCZ(Q)

such that
[vmlloo < Clv]loo (6.1)

and
U — U a.e. in € (6.2)

as m—o0. If in addition vEC(Q), then the convergence is locally uniform in Q. And if

furthermore v=0 on 05, then the convergence is uniform in €.

Proof. Since ) is star-shaped, we may assume that
A2CQ forall A€ 0,1)

after a translation. We extend ve LS°(€2) by zero outside 2 and observe that the extension
(still denoted by v) is in L°(R™) with spt vC Q. We set vy (x)=v(z/\) and observe that
spt ux CAQCQ. Since vy—wv a.e. as AT1, it is easy to find the desired sequence by
mollifying vy i.e. considering vy*n.. Here C in (6.1) can be taken to be 1. O

To establish the above approximation result for a general bounded domain we need

a localization lemma.

LEMMA 6.2. (Localization) Let Q be a bounded domain with Lipschitz boundary in
R™. Also let {Gi}Y_, be an open covering of @ in R™ and let Qr,=GpNQ. Then there
exists a family of bounded linear operators {mi}i_, from L°(Q) into itself satisfying
u:Zszl mru and, for each k=1,..., N,

(i) mrulo, €LF (%) and mrulo\g, =0 for ue Ly (Q);

(i) mpueC(Qr) and Trulso,\00=0 for ueC(Q)NLF(Q);

(iii) mru|aq, =0 if u|an=0, for ueC(Q)NLF(Q).

Proof. We proceed by induction on N. If N=1, the result is trivial by taking 7 as
the identity.

Assume that the result is valid for N. We shall prove the assertion when the number
of operators is N+1. We set

N+1 N+1
D= U Qr and U= U Gy,
k=2 k=2

and observe that Q=0;UD and {G;,U} is a covering of ().
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Let {£1,62} be a partition of unity of Q associated with {G1,U}, i.e. {€C®(R™)
with 0<&;<1, spt&; CGy, spt&CU and & +&=1 in Q. For E=Q,ND let Bg denote
the Bogovskil operator. We set

ufl—BE(u-Vfl) in E,
m™TMUu= ufl in Ql\D,
0 in Q\Ql

Since u€ L (), £,=0 in N\Q; and V& =0 in Q;\D, we see that

/ u-V& dx:/ u-Vé& dz=0. (6.3)
E Q
By the Sobolev inequality and (3.13), we observe that, with p>n,

| Bo(u- V&) o () < Cl B (- Ve lwrn() < CCpl[u- Vi | Loy
< CCBIIVE& | Lr(m)llullLe= (),

with a constant C independent of v and &;. We thus observe that
||7T1uHLoc(Ql)<C1||u||Loo(Q) for all ’LLGLgO(Q),

with C; independent of w.
By (6.3), we see that div Bg(u-V&)=u-V& in E. Moreover, Bg(u-VE& )=0 on
(1 ND). Thus, for each peLi (1) with Ve L1(€;), we have

loc

/ ﬂ'lu-Vgodx:/ u£1~V<pda:—/ Be(u-V&)-Veodr
ol toh) E

:/ u€1~V<pdx—|—/ (u~V§1)<pdx:/ u-V (&) dz=0.
o)) E Q

By the Poincaré inequality, if ¢€W1(€) then peLl (1) (not only weLl (1)),
Thus the above identity implies that mu|q, € L (£21). By definition, mu=0 in Q\Q. If
u€C(Q), it is easy to see that the term Bp(u-V&;) is always Holder continuous by the
Sobolev embeddings.

For ue L () we set

ubo—Bg(u-V&) in E,
Tpu=1q ufs in D\ Qy,
0 in Q\D.



ANALYTICITY OF THE STOKES SEMIGROUP IN SPACES OF BOUNDED FUNCTIONS 41

By definition,

U="mTU+Tpu

and as for 7 this mp satisfies all properties of 7y in (1)—(iil) with Qj replaced by D. Since
D is covered by {G} }5 ', by our induction assumption there is a family of bounded linear
operators {73 }n 'y in LS°(D) satisfying Uzzg:_; #pv and (i)—(iii) with u replaced by v
and with 7 replaced by 7ty for k=2,..., N+1. If we set

m=m and wp=dgemp (k=2,..,N+1),

then it is rather clear that this 7 satisfies all desired properties. O

LEMMA 6.3. (Approximation) The assertion of Lemma 6.1 is still valid when ) is

a bounded domain with Lipschitz boundary in R”™.

Proof. If  is a bounded domain with Lipschitz boundary, then it is known that
there is an open covering {Gj}i_; of Q such that Q=GN is bounded, star-shaped
with respect to an open ball By, with By C$ (i.e. star-shaped with respect to any point
of By) and G}, has a Lipschitz boundary; see [22, §I11.3, Lemma 4.3]. In the sequel we
only need the property that Gy is bounded and star-shaped with respect to a point.

We apply Lemma 6.2 and set up=mru to observe that uy|q, € L3° () and that
ug|o\a, =0. Since € is star-shaped, by Lemma 6.1 there is {uy ;}32; CCZ, (k) such
that

Hu;w' |L00(Qk) < HUkHLoo(Qk) and Ug,j — Uj a.€. in Q.

(The constant C' in (6.1) can be taken to be 1.) We still denote the zero extension of
Uf,5 OI Q\Qk by U, j-
If we set umzzgzl Uk,m, then by construction u;€C25, (),

N
Uy, — g up=u a.e.in
k=1

and

N N N
itz < 3 Ntk Lz < 3 il s < (Z ||m||) .
k=1

k=1 k=1

where ||| denotes the operator norm of 7 in L (£2). We thus conclude that there is
a desired approximating sequence {u,, }5°_; for ue L ().

If ueC(Q)(NLF (), then ureC(Q) and uglsn,\00=0. Thus for any compact set
K}, CQy, such that d(K)=inf,ck, do(z)>0, we see that u ,, converges to uj uniformly
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in Kj by Lemma 6.1 as m—o0. Let K be a compact set in Q. Then d(Kj)>d(K)>0
for K;,=Q,NK. Hence

N N
Hu—umHLoo(K) < Z ||uk—uk7m||Loc(K) = Z ||uk—uk)m||Loo(Kk) —0 as m—oo.
k=1 k=1
Thus we have proved that u,, converges to u locally uniformly in Q. If u|sn=0 so that
uk|on, =0, then ug ., converges to uy uniformly in Q by Lemma 6.1. Arguing in the

same way by replacing K by €, we conclude that u,, converges to u uniformly in Q. [

Remark 6.4. This lemma in particular implies that
Coo(Q)={veC(Q)NL®(Q)|dive=0in Q and v=0 on 9Q}

when  is bounded. This gives an alternative and direct proof of a result of [43], where

the maximum modulus result for the stationary problem is invoked.

Proof of Theorem 1.4. Since ) is bounded so that LS C L], for any r>1, S(t) is well
defined from LS° to L[. It suffices to transfer the estimate for v=S5(¢t)vy in (1.6) to the
case vo€L (). By Lemma 6.3, there is a sequence v, €C2%(€2) approximating vg.

Our estimate (1.6) implies that

sup (HUmHOO(t)"'t(”UthOO"'||V2UmH<><>)(t)) < Cllvom oo
0<t<Ty
is valid for such wvg,,, by Theorem 1.2. Here Ty and C are independent of m. Since
Vom —>vo in L", by (6.2) and the Lebesgue dominated convergence theorem, we see that

U —v in L" uniformly in t€[0, T]; note that S(t) is a semigroup in L. Thus we obtain

sup (|[vloo (8) +t([[velloo + 1 V0]l 00) (£)) < Tim_[[vom | co-
0<t<Tp m—eo
By (6.2), one is able to replace the right-hand side by a constant multiple of ||vg||oc, SO
we obtain the desired estimate for claiming the analyticity of S(¢) in L3°(€2).

This semigroup S(¢) is a non-Cyp-semigroup. Indeed, suppose the contrary to get
S(t)vg— vy in L>® astl]0

for all vg€ L (2). Our estimate for Vv implies that S(¢)vg (for t>0) is at least continu-
ous in 2. However, if S(t)vg converges uniformly, then vy must be (uniformly) continuous,

which is a contradiction. O



[10]

ANALYTICITY OF THE STOKES SEMIGROUP IN SPACES OF BOUNDED FUNCTIONS 43

References

ABE, K. & Gica, Y., The L°°-Stokes semigroup in exterior domains. Hokkaido University
Preprint Series in Mathematics, 1011. Sapporo, 2012. To appear in J. Evol. Equ.

ABE, K., GicA, Y. & HIEBER, M., Stokes resolvent estimates in spaces of bounded func-
tions. Hokkaido University Preprint Series in Mathematics, 1022. Sapporo, 2012.

ABE, T. & SHIBATA, Y., On a resolvent estimate of the Stokes equation on an infinite
layer. J. Math. Soc. Japan, 55 (2003), 469-497.

ABELS, H., Nonstationary Stokes system with variable viscosity in bounded and unbounded
domains. Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 141-157.

ABELS, H. & TERASAWA, Y., On Stokes operators with variable viscosity in bounded and
unbounded domains. Math. Ann., 344 (2009), 381-429.

ACQUISTAPACE, P. & TERRENI, B., Holder classes with boundary conditions as interpola-
tion spaces. Math. Z., 195 (1987), 451-471.

ApaMS, R. A. & FOURNIER, J. J. F., Sobolev Spaces. Pure and Applied Mathematics (Am-
sterdam), 140. Elsevier, Amsterdam, 2003.

AReENDT, W. & ScHATZLE, R., Semigroups generated by elliptic operators in non-
divergence on Cy(£2). Preprint, 2010.

Bag, H.-O. & JiN, B. J., Existence of strong mild solution of the Navier-Stokes equations
in the half space with nondecaying initial data. J. Korean Math. Soc., 49 (2012), 113-
138.

Bocovskii, M. E., Solution of the first boundary value problem for an equation of con-
tinuity of an incompressible medium. Dokl. Akad. Nauk SSSR, 248 (1979), 1037-1040
(Russian); English translation in Soviet Math. Dokl., 20 (1979), 1094-1098.

[11] — Decomposition of L,(22;R"™) into a direct sum of subspaces of solenoidal and potential

[12]
[13]
[14]
[15]

[16]

vector fields. Dokl. Akad. Nauk SSSR, 286 (1986), 781-786 (Russian); English transla-
tion in Soviet Math. Dokl., 33 (1986), 161-165.

BORCHERS, W. & SOHR, H., On the semigroup of the Stokes operator for exterior domains
in Li-spaces. Math. Z., 196 (1987), 415-425.
DE Gioral, E., Frontiere Orientate di Misura Minima. Seminario di Matematica della
Scuola Normale Superiore di Pisa, 1960-61. Editrice Tecnico Scientifica, Pisa, 1961.
DescH, W., HIEBER, M. & PRUss, J., LP-theory of the Stokes equation in a half space.
J. Bvol. Equ., 1 (2001), 115-142.

Evans, L. C., Partial Differential Equations. Graduate Studies in Mathematics, 19. Amer.
Math. Soc., Providence, RI, 2010.

Farwic, R., Kozono, H. & SoHR, H., An L?-approach to Stokes and Navier—Stokes
equations in general domains. Acta Math., 195 (2005), 21-53.

[17] — On the Helmholtz decomposition in general unbounded domains. Arch. Math. (Basel),

88 (2007), 239-248.

[18] — On the Stokes operator in general unbounded domains. Hokkaido Math. J., 38 (2009),

[19]

111-136.
FArwIG, R. & SOHR, H., Generalized resolvent estimates for the Stokes system in bounded
and unbounded domains. J. Math. Soc. Japan, 46 (1994), 607-643.

[20] — Helmholtz decomposition and Stokes resolvent system for aperture domains in L9-

21]

[22]

spaces. Analysis (Munich), 16 (1996), 1-26.

Farwic, R. & TANIUCHI, Y., On the energy equality of Navier—Stokes equations in general
unbounded domains. Arch. Math. (Basel), 95 (2010), 447-456.

GALDI, G. P., An Introduction to the Mathematical Theory of the Navier—Stokes Equations.
Vol. I. Springer Tracts in Natural Philosophy, 38. Springer, New York, 1994.



44

[23]

[24]
[25]

[26]

[42]
[43]

[44]

K. ABE AND Y. GIGA

GEISSERT, M., HECK, H. & HIEBER, M., On the equation divu=g and Bogovskii’s opera-
tor in Sobolev spaces of negative order, in Partial Differential Equations and Functional
Analysis, Operator Theory: Advances and Applications, 168, pp. 113-121. Birkhé&user,
Basel, 2006.

GEISSERT, M., HECK, H., HIEBER, M. & SAwWADA, O., Weak Neumann implies Stokes. J.
Reine Angew. Math., 669 (2012), 75-100.

GipAs, B. & SPRUCK, J., A priori bounds for positive solutions of nonlinear elliptic equa-
tions. Comm. Partial Differential Equations, 6 (1981), 883-901.

Gi1cA, M.-H., GIGA, Y. & SAAL, J., Nonlinear Partial Differential Equations. Progress in
Nonlinear Differential Equations and their Applications, 79. Birkh&user, Boston, MA,
2010.

GI1GA, Y., Analyticity of the semigroup generated by the Stokes operator in L, spaces.
Math. Z., 178 (1981), 297-329.

— A bound for global solutions of semilinear heat equations. Comm. Math. Phys., 103
(1986), 415-421.

— Surface Evolution Equations. Monographs in Mathematics, 99. Birkh&user, Basel, 2006.

GIGA, Y., Inul, K. & MaTsul, S., On the Cauchy problem for the Navier—Stokes equations
with nondecaying initial data, in Advances in Fluid Dynamics, Quaderni di Matematica,
4, pp. 27-68. Dept. Math., Seconda Univ. Napoli, Caserta, 1999.

GIGA, Y. & KonN, R. V., Characterizing blowup using similarity variables. Indiana Univ.
Math. J., 36 (1987), 1-40.

GIcA, Y., MATsul, S. & SAWADA, O., Global existence of two-dimensional Navier—Stokes
flow with nondecaying initial velocity. J. Math. Fluid Mech., 3 (2001), 302-315.

GIGA, Y., MATsul, S. & SHIMIZU, Y., On estimates in Hardy spaces for the Stokes flow
in a half space. Math. Z., 231 (1999), 383-396.

GIGA, Y. & MIurA, H., On vorticity directions near singularities for the Navier—Stokes
flows with infinite energy. Comm. Math. Phys., 303 (2011), 289-300.

GI1GA, Y. & SOHR, H., On the Stokes operator in exterior domains. J. Fac. Sci. Univ.
Tokyo Sect. IA Math., 36 (1989), 103-130.

GILBARG, D. & TRUDINGER, N.S., Elliptic Partial Differential Equations of Second Order.
Grundlehren der Mathematischen Wissenschaften, 224. Springer, Berlin—Heidelberg,
1983.

Heck, H., HIEBER, M. & STAVvRAKIDIS, K., L*-estimates for parabolic systems with
VMO-coefficients. Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 299-309.

KocH, G., NADIRASHVILI, N., SEREGIN, G. A. & SVERAK, V., Liouville theorems for the
Navier—Stokes equations and applications. Acta Math., 203 (2009), 83-105.

KraNTZ, S.G. & PaRrks, H.R., The Implicit Function Theorem: History, Theory, and
Applications. Birkh&user, Boston, MA, 2002.

Kryrov, N. V., Lectures on Elliptic and Parabolic Equations in Hélder Spaces. Graduate
Studies in Mathematics, 12. Amer. Math. Soc., Providence, RI, 1996.

LADYZHENSKAYA, O. A.,; SOLONNIKOV, V. A. & URALTSEVA, N.N., Linear and Quasilin-
ear Equations of Parabolic Type. Translations of Mathematical Monographs, 23. Amer.
Math. Soc., Providence, RI, 1968.

LUNARDI, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress
in Nonlinear Differential Equations and their Applications, 16. Birkh&user, Basel, 1995.

MAREMONTI, P., Pointwise asymptotic stability of steady fluid motions. J. Math. Fluid
Mech., 11 (2009), 348-382.

— On the Stokes problem: the maximum modulus theorem. To appear in Discrete Contin.
Dyn. Syst.



[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]
[62]

[63]

ANALYTICITY OF THE STOKES SEMIGROUP IN SPACES OF BOUNDED FUNCTIONS 45

MAREMONTI, P. & STARITA, G., On the nonstationary Stokes equations in half-space with
continuous initial data. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI), 295 (2003), 118-167, 246 (Russian); English translation in J. Math. Sci.
(N.Y.), 127 (2005), 1886-1914.

MASLENNIKOVA, V.N. & Bogcovskil, M. E., Elliptic boundary value problems in un-
bounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis.
Milano, 56 (1986), 125-138.

Masupa, K., On the generation of analytic semigroups by elliptic differential operators
with unbounded coefficients. Unpublished note, 1972.

— On the generation of analytic semigroups of higher-order elliptic operators in spaces
of continuous functions, in Proc. Katata Symposium on Partial Differential Equations
(Katata, 1972), pp. 144-149. Sugaku Shinkokai, Tokyo, 1973 (Japanese).

— Ewvolution Equations. Kinokuniya Shoten, Tokyo, 1975 (Japanese).

POLACIK, P., QUITTNER, P. & SOUPLET, P., Singularity and decay estimates in superlin-
ear problems via Liouville-type theorems. II. Parabolic equations. Indiana Univ. Math.
J., 56 (2007), 879-908.

QUITTNER, P. & SOUPLET, P., Superlinear Parabolic Problems: Blow-up, Global Existence
and Steady States. Birkh&duser Advanced Texts: Basler Lehrbiicher. Birkhduser, Basel,
2007.

SEREGIN, G. & SVERAK, V., On type I singularities of the local axi-symmetric solutions of
the Navier—Stokes equations. Comm. Partial Differential Equations, 34 (2009), 171-201.

SIMON, L., Lectures on Geometric Measure Theory. Proceedings of the Centre for Math-
ematical Analysis, Australian National University, 3. Australian National University
Centre for Mathematical Analysis, Canberra, 1983.

SOHR, H., The Navier—Stokes Equations: An Elementary Functional Analytic Approach.
Birkhduser Advanced Texts: Basler Lehrbiicher. Birkhauser, Basel, 2001.

SOLONNIKOV, V. A., Estimates of the solution of a certain initial-boundary value prob-
lem for a linear nonstationary system of Navier—Stokes equations. Zap. Nauchn. Sem.
Leningrad. Otdel Mat. Inst. Steklov. (LOMI), 59 (1976), 178-254,257 (Russian); English
translation in J. Soviet. Math., 8 (1977), 467-529.

— On the theory of nonstationary hydrodynamic potentials, in The Navier—Stokes Equa-
tions: Theory and Numerical Methods (Varenna, 2000), Lecture Notes in Pure and
Applied Mathematics, 223, pp. 113-129. Marcel Dekker, New York, 2002.

— Potential theory for the nonstationary Stokes problem in nonconvex domains, in Non-
linear Problems in Mathematical Physics and Related Topics, 1, International Mathe-
matical Series (New York), 1, pp. 349-372. Kluwer/Plenum, New York, 2002.

— On nonstationary Stokes problem and Navier—Stokes problem in a half-space with initial
data nondecreasing at infinity. J. Math. Sci. (N.Y.), 114 (2003), 1726-1740.

— Weighted Schauder estimates for evolution Stokes problem. Ann. Univ. Ferrara Sez.
VII Sci. Mat., 52 (2006), 137-172.

— Schauder estimates for the evolutionary generalized Stokes problem, in Nonlinear Equa-
tions and Spectral Theory, American Mathematical Society Translations, Series 2, 220,
pp- 165—200. Amer. Math. Soc., Providence, RI, 2007.

STEWART, H. B., Generation of analytic semigroups by strongly elliptic operators. Trans.
Amer. Math. Soc., 199 (1974), 141-162.

— Generation of analytic semigroups by strongly elliptic operators under general boundary
conditions. Trans. Amer. Math. Soc., 259 (1980), 299-310.

TAIrRA, K., Semigroups, Boundary Value Problems and Markov Processes. Springer Mono-
graphs in Mathematics. Springer, Berlin—Heidelberg, 2004.



46 K. ABE AND Y. GIGA

[64] TANABE, H., Functional Analytic Methods for Partial Differential Equations. Monographs
and Textbooks in Pure and Applied Mathematics, 204. Marcel Dekker, New York, 1997.

[65] VASIL'EV, V.N. & SOLONNIKOV, V.A., Bounds for the maximum modulus of the solu-
tion of a linear nonstationary system of Navier—Stokes equations. Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 69 (1977), 34-44 (Russian); English
translation in J. Soviet Math., 10 (1978), 22—-29.

[66] YosipA, K., On holomorphic Markov processes. Proc. Japan Acad., 42 (1966), 313-317.

KEN ABE

Graduate School of Mathematical Sciences
University of Tokyo

Komaba 3-8-1, Meguro-ku

Tokyo, 153-8914

Japan

kabe@ms.u-tokyo.ac. jp

Received July 6, 2011
Received in revised form October 24, 2012

YOSHIKAZU GIGA

Graduate School of Mathematical Sciences
University of Tokyo

Komaba 3-8-1, Meguro-ku

Tokyo, 153-8914

Japan

labgiga@ms.u-tokyo.ac. jp


mailto:Ken Abe <kabe@ms.u-tokyo.ac.jp>
mailto:Yoshikazu Giga <labgiga@ms.u-tokyo.ac.jp>

	Analyticity of the Stokes semigroup
in spaces of bounded functions
	1 Introduction
	2 Admissible domains
	2.1 Helmholtz decomposition
	2.2 Definition of an admissible domain
	2.3 Blow-up arguments
	2.4 Uniqueness of the Neumann problem

	3 Uniform Hölder estimates for pressure gradients
	3.1 Interior Hölder estimates for pressure gradients
	3.2 Local Hölder estimates up to the boundary
	3.3 Helmholtz decomposition and the Stokes equations in Hölder spaces
	3.4 Localization procedure

	4 Uniqueness for the Stokes equations in a half space
	5 Blow-up arguments---a-priori L^\infty estimates
	5.1 A-priori estimates under stronger regularity assumption
	5.2 Regularity for \tilde{L}^r-solutions
	5.3 Analyticity of the Stokes semigroup in C_{0,\sigma}

	6 Results for L^\infty_\sigma
	6.1 Approximation

	References




