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1. Introduction

Fractionalpowers of the Laplacian arise in a numerous variety of equations in mathe-
matical physics and related fields; see, e.g., [1], [9], [14], [17], [20], [24], [28], [34] and
the references therein. Here, a central role within these models is often played by so-
called ground state solutions, or simply ground states. By this, we mean non-trivial,
non-negative and radial functions @Q=Q(|z|) >0 that vanish at infinity and satisfy (in the

distributional sense) an equation of the form
(—AFQ+F(Q)=0 in R% (1.1)

As usual, the fractional Laplacian (—A)® with 0<s<1 is defined via its multiplier |¢|
in Fourier space, whereas F(Q) denotes some given non-linearity. In most examples of
interest, the existence of ground states @Q=Q(|x|) >0 follows from variational arguments,
applied to a suitable minimization problem whose Euler—Lagrange equation is given by
(1.1). Moreover, based on this variational approach, it is natural in these cases to require
that a ground state is also a minimizer for some related variational problem in addition
to just being a non-negative and radial solution of (1.1). Indeed, we will make use of
this (strengthened) notion of a ground state in this paper further below.

In striking contrast to the question of existence, it seems fair to say that extremely
little is known about uniqueness of ground states Q=Q(|x|)>0 for problems like (1.1),
except for the “classical” limiting case with s=1, where standard ordinary differential
equation (ODE) methods are applicable. Indeed, to the best of the authors’ knowledge,
the only examples for which uniqueness of ground states for (1.1) has been proven are:

e Ground state solitary waves for the Benjamin—-Ono equation in d=1 dimension;
see [5].

e Optimizers for fractional Sobolev inequalities in d>1 dimensions; see [13] and [23].
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In fact, in both cases the unique ground states are known in closed form. However,
the uniqueness proof of both results hinges on a very specific feature of each problem:
In the first case, the proof is intimately linked to complex analysis and special identities
exhibited by the (completely integrable) Benjamin—Ono equation; whereas, in the second
case, the conformal symmetry of Sobolev inequalities plays a key role in the uniqueness
proof. In particular, the specific arguments developed in [1], [5], [13] and [23] are appar-
ently of no use in a more general setting. Hence, we see that a satisfactory understanding
of uniqueness for ground states of problems like (1.1) is largely missing. Clearly, the main
analytical obstruction is that shooting arguments and other ODE techniques (which are
essential in the classical case s=1; see, e.g., [21], [30] and [31]) are not applicable to the
non-local operator (—A)* when 0<s<1.

In the present paper, we address the question of uniqueness for a general class of
the form (1.1) in d=1 space dimension. More precisely, we prove uniqueness of ground
states Q€ H*(R) for the non-linear model problem

(-A)°Q+Q—-Q*" =0 inR. (1.2)

Here we assume that 0<s<1 and 0<a<@max(s) holds, where the critical exponent

max($) is defined as

(1.3)

amax(s) =

{ 4s/(1-2s) for 0<s<1i,

00 for%<s<1.

Technically speaking, the condition that « be strictly less than cymax(s), which is vacuous
if s> %7 ensures that the non-linearity in equation (1.2) is H*-subcritical. In fact, it turns
out that this condition on « is necessary to have existence of ground states for (1.2),
since (by so-called Pohozaev identities) it is easy to see that (1.2) does not admit any
non-trivial solutions in H*(R)NL**?(R) when o> amax(s) holds.

Apart from being a natural model case for equation (1.1) in one space dimension,
we remark that equation (1.2) and its solutions provide solitary wave solutions of three
fundamental non-linear dispersive model equations in d=1 dimension. Namely, the gen-
eralized Benjamin—Ono equation and Benjamin—-Bona—Mahony equation, as well as the

fractional non-linear Schrodinger equation given by

w4 ((—A)°u), +uu, =0, (¢BO)
Utz + ((—A)u) +uu, =0, (gBBM)
iug— (—A) u+|u|“u=0. (fNLS)
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Note that in (gBO) and (gBBM) we assume that o €N is an integer and that u=u(t, x)
is real-valued.(!) Suppose now that @=Q(|z|) >0 solves (1.2). Then it is elementary to
see that the functions

welts ) = (cla+1) /7 Q(M2 (a— (14 o)1),
et ) = elot ) (1) - (),

Uw(t, x) _ eiwtwl/aQ(wl/%m)

provide solitary wave solutions of (gBO), (gBBM) and (fNLS), respectively. In the first
two (water wave) examples, the parameter ¢>0 corresponds to the traveling speed of the
wave to the right; whereas the parameter w>0 plays the role of an oscillation frequency
of the solitary wave for (fNLS). There is numerous literature on the evolutions problems
mentioned above; see, e.g., [3], [7], [20], [25] and [34] for results on solitary waves for
(¢gBO), (gBBM) and (INLS).

In all these cases, the uniqueness and the so-called non-degeneracy (see below) of the
ground states Q=@ (|x|)>0 are of fundamental importance in the stability and blowup
analysis for the corresponding solitary waves u.(t,z) and u, (¢, z) above. So far, except
for the special case s=3 and a=1 in [5] and a perturbative result for s close to 1 in
[20], no rigorous results have been derived in this direction, and hence these properties
of @Q=Q(|z|) have been imposed in terms of assumptions, partly supported by numerical
evidence, and they have been left as main open problems; see, e.g., the recent paper
by Kenig-Martel-Robbiano [20]. In particular, the rigorous understanding of blowup
phenomena close to Q=Q(|z|) in the L2-critical setting, i.e., when a=4s holds in (gBO),
(gBBM) and (fNLS), has been hindered so far by the absence of any essential result for
the non-local equation (1.2) in this important case. Here, as a particularly intriguing
feature of the fractional Laplacian (—A)?®, the slow algebraic decay of Q=Q(|z|) (see
Proposition 1.1 below) is expected to lead to strong corrections to blowup rates that
follow from a scaling analysis.

In Theorems 2.3 and 2.4 below, we prove uniqueness and so-called non-degeneracy
of ground states for equation (1.2) in the full range 0<s<1 and 0<a<amax(s). In
particular, these main results can be viewed as the sine qua non for future work on
solitary waves and blowup for dispersive non-linear partial differential equations (PDEs)
with ground state solitary wave profiles Q=Q(x) that satisfy (1.2).

Before we formulate the main results of this paper, let us first recall some facts

about existence, regularity and spatial decay of ground state solutions of equation (1.2).

(!) We could extend to complex-valued u and non-integer «, by replacing u®u; with |u|®ug.
Indeed, such models are also of interest in the PDE literature; see, e.g., [20].
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Indeed, by following the seminal approach of M. Weinstein in [33] and [34], we notice
that problem (1.2) has indeed non-trivial solutions @€ H*(R), which are optimizers of
the Gagliardo—Nirenberg-type inequality

a/4s a(2s—1)/4s+1
[ oo ( [1areupa) ([ upa) L
R R R

in one space dimension. Here C, ;>0 denotes the optimal constant depending on «

and s. Equivalently, this claim follows from considering the ‘Weinstein’ functional

-1 a/ds a(2s—1)/4s+1
J5%(u) = </R u|a+2dx) (/R|(A)S/2u|2da:) </R |u|2dx) . (1.5)

defined for ue H*(R) with ©#£0. Clearly, every minimizer Q€ H*(R) for J*% optimizes
the interpolation estimate (1.4) and vice versa. In addition, any such non-negative
Qe H*(R) is found to satisfy equation (1.2) after some suitable rescaling Q(x)—aQ(bx)
with some positive constants a>0 and b>0.

In summary, we have the following existence result and fundamental properties of

solutions to (1.2), which we can infer from the literature.

PROPOSITION 1.1. Let 0<s<1 and 0<a<amax(s). Then the following holds:

(i) (Existence) There ewxists a solution Q€ H?®(R) of (1.2) such that Q=Q(|z|)>0
is even, positive and strictly decreasing in |x|. Moreover, the function Q€H?®(R) is a
minimizer for J5<.

(ii) (Symmetry and monotonicity) If Q€ H?*(R) with Q=0 and Q#0 solves (1.2),
then there exists xo€R such that Q(-—xo) is even, positive and strictly decreasing in
|x—x0].

(iii) (Regularity and decay) If Q€ H?®(R) solves (1.2), then Q€ H*T1(R). More-

over, we have the decay estimate

, C
1Q(@)|+|2Q" () < T2

for all x€R and some constant C'>0.

Remarks. (1) As for the proof of part (i), we can refer to Weinstein’s paper [34]
where concentration/compactness-type arguments are used to show existence of mini-
mizers for %§s<1. But the method can be applied to the range O<s<% as well; see also
[4]. Moreover, by strict rearrangement inequalities for [g|(—A)*/?u|? dz when 0<s<1
(see, e.g., [16]), we can deduce that any minimizer Q € H*(R) for J* must be equal (apart
from translation and phase) to its symmetric-decreasing rearrangement Q*=Q*(|x|). See
also §2 and §5 below.
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(2) To derive part (ii), we can directly adapt the moving plane method recently
developed in [26], combined with some properties of the integral kernel for ((—A)®+1)~!
on R. For more details, we refer to Appendix B.

(3) The regularity proof of part (iii) is worked out in Appendix B. Moreover, it is
easy to see that in fact Q€ H¥(R) for all k>1, if Q=Q(x) is positive or if the exponent
a>1 is a positive integer; see also [22] for an analyticity result in this case. See [20] and
the references given there for the spatial decay estimate stated above.

(4) For positive solutions @=Q(x) of (1.2), we also have the lower bound

Q(z) > c(1+[z]) =72

with some constant ¢>0.

2. Main results

We now formulate the main results of this paper about ground state solutions to (1.2)

that we define as follows.

Definition 2.1. Let Q€ H*(R) be an even and positive solution of (1.2). If

s, _ inf
T@) ueHsl?R)\{O}

JS7Ot (u)’

then we say that Q€ H*(R) is a ground state solution of equation (1.2).

Remark 2.2. In fact, there are several constrained variational problems that are
equivalent to the unconstrained problem of minimizing J** on H*(R)\{0}.
For example, in the so-called L2-subcritical case when 0<a<4s, the constrained

minimization problem, with parameter N >0,

1 1
E(N):inf{/(—A)s/2u|2dx—/|u|a+2dx:u€Hs(R) and /u|2daz:N}

is attained at u€ H*(R) if and only if u=e? \/*Q(A/25(- +-y)) with some JER, ycR
and A>0 chosen to ensure that [, |u[*dz=N holds. Here Q€ H*(R) is a ground state

solution of (1.2) in the sense of Definition 2.1 above.

Our first main result establishes the so-called non-degeneracy of the linearization
associated with positive solutions @ of (1.2) that are local minimizers for J*%; and thus
our result holds in particular when @ is a ground state solution. As already mentioned,
the non-degeneracy of the linearization around ground states plays a fundamental role for
the stability and blowup analysis for solitary waves for related time-dependent equations
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such as the generalized (gBO) and (gBBM) equations; see, e.g., [3], [7], [20], [25] and
[34], where the non-degeneracy of L, is imposed in terms of a spectral assumption, or
proven for s close to 1 by perturbation arguments.

We have the following general non-degeneracy result.

THEOREM 2.3. (Non-degeneracy) Let 0<s<1l and 0<a<amax(s). Suppose that

Qe H*(R) is a positive solution of (1.2) and consider the linearized operator
Ly =(—A)+1—(a+1)Q°

acting on L*(R). Then the following conclusion holds: If Q is a local minimizer for

J5 then L, is non-degenerate, i.e., its kernel satisfies
ker L, =span{Q’}.

In particular, any ground state solution Q=Q(|z|)>0 of equation (1.2) has a non-

degenerate linearized operator L. .

Remarks. (1) In fact, we will prove the non-degeneracy of L, under the (weaker)

second-order condition

d2
de?

e=

J**(Q4+en) =0 for all ne C(R),
0

which clearly holds true when Q€ H*(R) is a local minimizer for J*.

(2) A fundamental application of Theorem 2.3 arises in the stability and blowup
analysis of solitary waves for related time-dependent equations; notably in terms of a
coercivity estimate, which readily follows from the non-degeneracy of L. More precisely,

for suitable 2-dimensional subspaces M C L?(R), we can derive the lower bound
(. Ln) = 6|nll for n LM,

where §>0 is some positive constant independent of 7. For example, by using the result
of Theorem 2.3, it is to easy see that M =span{¢, Q’} is a suitable choice, where ¢p=¢(z)
denotes the first eigenfunction of L, acting on L*(R).

Let us briefly comment on the proof of Theorem 2.3. The essential idea of the proof
is to find a suitable substitute for Sturm—Liouville theory in order to estimate the number
of sign changes for the second eigenfunction(s) for “fractional” Schrodinger operators of
the form

H=(-A)?®+V
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in d=1 space dimension. In fact, it turns out that a key step in the proof of Theorem 2.3
follows from an argument in [11] developed for the classical ODE case when s=1 holds,
provided we know that any (even) second eigenfunction of L, can change its sign only
once on the positive real line {x>0}. Obviously, the crux of that matter is that (—A)®
is a non-local operator when 0<s<1; and hence estimating the number of zeros for
eigenfunctions of H=(—A)*+V requires new arguments and insights, which substitute
classical ODE techniques.

Let us briefly explain how we tackle this difficulty. First, we recall the known fact
that (—A)® can be regarded as a Dirichlet-Neumann operator for a suitable elliptic
problem on the upper half-plane R? ={(x,y)€R?*:y>0}; see, e.g., the recent work by
Caffarelli-Silvestre in [9] and also Graham—Zworski in [19] and Maz'ya in [29, Theo-
rem 7.1.1.1] for this observation in the context of geometry and the theory of function
spaces, respectively. Using now this extension to the upper half-plane R?, we derive—as
a technical key result—a variational characterization of the eigenfunctions (and eigen-
values) for fractional Schrodinger operators H=(—A)®*+V in terms of the Dirichlet-type

functional

A = [[ | Va2 dedy [ Violute0)? do.

which is defined for a suitable class of functions u=u(x,y) on the upper half-plane R?,
where u(z,0) denotes the trace of u(z,y) on the boundary dR? =Rx{0}. Moreover,
for the variational problem based on the functional A(u), we establish a nodal domain
bound a la Courant. From such estimates we can finally deduce a sharp upper bound
on the number of sign changes for any second eigenfunction of the non-local operator
H=(—A)*+V acting on L*(R), as needed in the proof of Theorem 2.3. Furthermore,

S and

this estimate for the second eigenfunctions of H involving general powers of (—A)
a broad (Kato-type) class of potentials V' on R can be viewed as a generalization and
extension of the inspiring work by Banuelos—Kulczycki in [6], which studies eigenfunctions
for v/—A on the unit interval in R. We believe that our techniques allow one to extend
the results of [6] from v/—A to the case of (—A)® with arbitrary 0<s<1, which was left
as an open problem in [6].

We now turn to the second main result of this paper, which proves global uniqueness
of ground state solutions. As a consequence, we also obtain uniqueness of optimizers for

the interpolation inequality (1.4) up to scaling and translations.

THEOREM 2.4. (Uniqueness) Let 0<s<1 and 0<a<omax(s). Then the ground state
solution Q=Q(|x|)>0 of equation (1.2) is unique.

Furthermore, every optimizer v€ H*(R) for the Gagliardo—Nirenberg inequality (1.4)
is of the form v=0Q(v(-+y)) with some F€C, f#0, v>0 and yeR.
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Remarks. (1) Under the assumption that @Q=Q(]z|)>0 minimizes J*%, we remark
that Theorem 2.4 generalizes the striking result by Amick and Toland in [5] about unique-

ness of positive solutions Q=Q(|x|)>0 that satisfy
(~A)2Q+Q-Q*=0 R (2.1)

In fact, it was proven in [5] that (apart from translations) the function

2

Q(x):m

is the only positive solution of (2.1) in H'/2(R). However, the remarkably elegant ap-
proach taken in [5] makes essential use of complex analysis (e.g., harmonic conjugates
and Cauchy—Riemann equations) in combination with very specific identities derived
from (2.1). In particular, it appears to be a hopeless enterprise to try to generalize the
arguments in [5] to different powers of the fractional Laplacians (—A)* with s#1 or
non-quadratic non-linearities f(Q)=Q“"! with a#1.

(2) The uniqueness result of Theorem 2.4 gives an affirmative answer to an open
question recently posed by Kenig—Martel-Robbiano in [20].

(3) The uniqueness of optimizers for the interpolation inequality (1.4) follows di-
rectly from the ground state uniqueness and the strict rearrangement inequalities in [16];

see also §5 below.

Let us briefly explain the strategy behind the proof of the ground state uniqueness
result of Theorem 2.4. First, we fix 0<sp<1 and 0<a<amax(So) and suppose that Qo=
Qo(|x])>0 is a ground state solution to (1.2) with s=so. By the non-degeneracy result
of Theorem 2.3, the associated linearized operator L, is invertible on L2, (R) Lker L,.

Hence, by using an implicit function argument, we can construct around (Qo, 1) a locally

unique branch of solutions (Qs, As) (in some suitable Banach space) which satisfy

(7A)SQ5+>\5Q57|QS|QQ5:O7 (22)

where s€[sp, s9+0) and §>0 being sufficiently small. Here the function Ay is introduced

to ensure that the conservation law(?)

/|Qs\“+2 dx:/ 1Qol+? de
R R

holds along the branch (Qs, As). Furthermore, we show that positivity is preserved along
the branch, i.e., we have Q;=Q;(|x|)>0 for all s€[sp,s0+0) due to Qu=Qo(|z|)>0

(?) Equivalently, we could keep As=1 at the expense of varying fR |Qs|*T2 dx. However, we
realized that using As is more convenient when we derive a-priori bounds for Q.
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initially. Note that, although we start from a ground state solution for s=sq, it cannot
be inferred that Qs (up to a rescaling) is also a ground state solution; i.e., a global
minimizer for J*¢. Therefore, the global continuation of the branch (Qs, \s) to s=1,
say, is far from obvious.

However, as an essential step in the uniqueness proof, we show that the branch
(Qs, As) can be indeed continued for all s€[sg,1). This global continuation will be based

on the non-degeneracy result of Theorem 2.3 in combination with the a-priori bounds
/ (—A)*2Q, [ da ~ 1, / Qs|?dr~1 and A;~1.
R R

Here it turns out that establishing the upper bound fR |Qs|? dz <1 is the most delicate
step and thus it requires a careful analysis of the problem. In addition to a-priori reg-
ularity bounds, the strict positivity and monotonicity of Qs=Qs(|z|)>0 also enters in
a significant way, since it allows us to derive the uniform decay estimate Qs (|z|)<|z| ™t
for |z|21. The latter fact then guarantees relative compactness of {Qs}s in certain
LP-norms.

Once we have established that (Qs, As) can be extended to s=1, we conclude that
Qs— Q. (in some suitable sense) and As— A, as s—1, where Q.=Q.(]z|)>0 and \.>0
satisfy

For this limiting equation, it is well known (by standard ODE techniques) that uniqueness
of even and positive solutions Q.=Q.(|z|)>0 holds true. Furthermore, by Pohozaev
identities and the conservation law for fR |Qs|*F2 dx and the fact that Qo is a ground
state, we deduce that the limit A=\, (s, «) only depends on sy and «. Hence, we can
conclude that two different branches (Qs, As) and (Qs, As) (both starting from a ground
state with s=sp) must converge to the same limit (Q., A+). By using the known non-
degeneracy for the linearization around (Q«, A«), we can infer that the branches (Qs, As)
and (@S, 5\3) must intersect for some s€[sp, 1) in contradiction to the local uniqueness
of branches. This fact establishes uniqueness of ground states for all 0<sg<1 and all
0<a<amax(s0), as stated in Theorem 2.4.

Finally, we mention that the second part of Theorem 2.4 follows from the fact that
every optimizer for (1.4) must be equal to its symmetric-decreasing rearrangement mod-
ulo scaling and translation. The proof of this will be mainly based on strict rearrangement

inequalities for (—A)®.



270 R.L. FRANK AND E. LENZMANN

Extension of the main results to higher dimensions

With regard to possible extensions to higher dimensions, we remark that most of the
arguments presented here can be easily generalized to d>2 dimensions. However, as the
only notable exception, the proof of the oscillation estimate for the second eigenfunction
of L, (see Theorem 3.4 below) hinges on the fact that L, acts on functions in d=1
dimension. How to obtain a similar oscillation estimate for radial eigenfunctions of L,
in d>2 dimensions remains the chief open problem. If this could be solved, the anal-
ogous non-degeneracy result of Theorem 2.3 would readily follow for d>2 dimensions.
Moreover, the uniqueness proof of Theorem 2.4 would allow for a straightforward adapta-
tion to d>2 dimensions, since we have uniqueness and non-degeneracy of positive radial
solutions Q=Q(|z|)>0 in H*(R?) for the limiting equation

—AQ+Q-Q"' =0 inR?
where 0<a<oo for d=2, and 0<a<4/(d—2) for d>3; see, e.g., [21].

Plan of the paper

We organize this paper as follows. In §3 we establish (as a technical key fact) a variational
principle for fractional Schrodinger operators H=(—A)*+V in terms of a local energy
functional. As a main consequence, we obtain a sharp bound on the number of sign
changes for any second eigenfunction of H. Then, in §4, we prove Theorem 2.3. Here
we will make essential use of the main result from §3. Finally, in §5, we establish the
uniqueness of ground states as stated in Theorem 2.4. The proof will be based on the
non-degeneracy result of Theorem 2.3, combined with an elaborate global continuation

argument. The appendices contain several technical results and proofs needed in this

paper.

Notation

Throughout this paper, we employ standard notation for LP-spaces and Sobolev spaces
H*(R) of order s€R. We use (f, g)= [ fgdz to denote the inner product on L?(R). (In
fact, we will mostly deal with real-valued functions and hence complex conjugation is
redundant.) Furthermore, we make the usual abuse of notation by writing both f=f(x)
and f=f(|x|) whenever f:R—R is an even function. The (open) positive real axis will
be denoted by R, =(0,00). Also, we use the standard notation X <Y to denote X <CY
for some constant C'>0 that only depends on some fixed quantities. We also write X ~Y
if XY SX. Sometimes we write X Sqp.. Y to underline that C' depends on the fixed

quantities a, b, ... .
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3. An oscillation estimate for H=(—A)*4+V

This section serves as a preliminary discussion for §4 below, where we prove the non-
degeneracy result of Theorem 2.3. More precisely, the present section deals with “frac-
tional” Schrodinger operators

H=(-A)’+V

acting on L?(R). As our key technical result in this section, we prove a sharp bound
on the number of sign changes for the second eigenfunction(s) of the non-local operator
H, which we formulate in Theorem 3.4 below. The proof will be based on a variational
characterization of the eigenvalues for H in terms of a local energy functional and asso-
ciated nodal domain bound a la Courant; see Corollary 3.8 and Theorem 3.9 below. As
mentioned in §2 above, the result derived below can be regarded as a generalization of
[6], where properties of eigenfunctions of v/—A on the unit interval in R are studied.
Let us first introduce a suitable class of potentials V' for the fractional Schrodinger
operators discussed here. In many respects (e.g., perturbation theory and properties of
eigenfunctions), the following “Kato class” (denoted by K,) is a natural choice.

Definition 3.1. Let 0<s<1. We say that the potential V € K if and only if V:R—R
is measurable and satisfies, where F>0 is a positive number,

lim [|(=2)"+E) V|| o, o =O-

E—oco

Remarks. (1) If V€K, then H=(—A)*+V defines a unique self-adjoint operator
on L?(R) with form domain H*(R), and the corresponding heat kernel e*# maps L?(R)
into L (R)NC°(R) for any ¢>0. In particular, any L?-eigenfunction of H is continuous
and bounded. See also [10] for equivalent definitions of K, and further background
material.

(2) If VeKs, then V is relatively form-bounded (with relative bound less than 1)
with respect to (—A)®. That is, for every 0<e<1, there is a constant C.>0 such that

(0, V1Y) <e(@h, (=A) ) +Ce (4, )

for all p€ H*(R). In fact, the latter condition is also sufficient for V to be in K, provided
that C. depends on € in some explicit way.
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(3) In terms of LP-spaces, we can derive the following useful criterion for real-valued
V to be in Kj:

e if 0<s<1 and V€ELP(R) for some p>1/2s, then VEK,;

e if 1<s<1 and VELP(R) for some p>1, then VEK,.

See Lemma C.1 for further details on this sufficient condition.

Let us now assume that V€K, holds. Suppose that ¢ is an L?-eigenfunction of
H=(—A)*+V. Then, by the previous remark, we have that ¢ is a continuous and
bounded function on R. Note also that we can always assume that ¢ is real-valued,
since H=(—A)*+4V is a real operator (i.e., it preserves real and imaginary parts). In

particular, we can define what it means that ¢ (z) changes its sign N times.

Definition 3.2. Let 1€C°(R) be real-valued and let N>1 be an integer. We say
that ¢ () changes its sign N times if there exist points 21 <...<xz 41 such that ¢ (z;)#0
for j=1,..., N+1 and sign(¢(z;))=—sign(¢(z;4+1)) for j=1,...,N.

Remark 3.3. For € C°(R) we can define the nodal domains of 1(x) as the connected
components of the open set {z€R:)(x)#0}. If ¥(z) cannot vanish to second order, then
clearly the maximal number of sign changes of ¥(x) equals K —1, where K is the number
of nodal domains of . But, in what follows, we prefer to work with the weaker notion

of sign changes of ¥(x).
We are now ready to state the following main result of this section.

THEOREM 3.4. (An oscillation estimate for H) Let 0<s<1, V€K, and consider
H=(—=A)*+V acting on L*(R). Suppose that Ao <inf oess(H) is the second eigenvalue
of H and let o€ H*(R)NC°(R) be a corresponding real-valued eigenfunction. Then
o=19(x) changes its sign at most twice on R.

In particular, if ¥a=102(|x|) is an even eigenfunction, then o(|z|) changes its sign

exactly once on the positive axis {x>0}.

Remarks. (1) The reader who is mainly interested in applying this technical result
may fast forward to §4 at first reading.

(2) By Perron-Frobenius arguments (see Appendix C), the first eigenfunction
1=1(x)>0 of H is always strictly positive. Hence, by the self-adjointness of H, we
easily see that 1y changes its sign at least once in order to satisfy the orthogonality
condition (31, 12)=0.

The proof of Theorem 3.4 will be given at the end of this section. But first we have
to establish some auxiliary facts in the following subsections. In particular, we derive the
key variational principle of eigenvalues of H in terms of a local energy functional, which

we formulate in Corollary 3.8 below.
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3.1. Extension to ]R?F and a sharp trace inequality

We recall the known fact that the fractional Laplacian (—A)® on R? can be expressed
as the Dirichlet-to-Neumann operator for a suitable local problem on the upper half-
space RS ={(x,y):2€R% and y>0}. See the recent work by Caffarelli-Silvestre [9] for
this fact. We also refer to the work of Graham-Zworski [19], where this observation
occurred in a geometric context; see [12] for a comparison and extension of [9] and [19].
Our trace inequalities can also be viewed as sharp versions of certain bounds in [29,
Theorem 7.1.1.1].

We consider d=1 space dimension in the sequel. Let 0<s<1 be given and set
a=1-2s. For a measurable function f:R—R, we (first formally) define its extension
Eaf:RZ5R as

(€l e0)i= [ 1Pa(x_x/>f($’) ', (3.1)

RY Y
where the convolution kernel P,: R—R is given by
(32— 1
Pu(z): (;(2-0)) (3.2)

" VR (0-a) (e

Under suitable assumptions on f it is known (see, e.g., [9]) that w=E&,f solves the

boundary value problem

{ div(y*Vw) =0, in R?, (3.3)

w=f, on OR? =R x {0}.

Here the boundary condition w=f is understood in some suitable sense, which will be

formulated below. If f is sufficiently regular, then we also have that
: a . - _ _ s
lim yOyw(-,y) = —ca(=A)", (3.4)

where ¢, >0 is some explicit constant; see Proposition 3.5 below.

To give a precise meaning to the statements mentioned above, we first recall the
definition of the homogeneous Sobolev spaces H*(R) as the completion of C§°(R) with
respect to the quadratic form |(—A)%/2f||2. It follows from Hardy’s inequality that
this completion is a space of functions when 0<5<%. On the other hand, if %gsgl,
this completion is not a space of functions, but rather a space of equivalence classes
of functions differing by an additive constant. (To see this phenomenom for s=1, con-
sider a smoothened version of the sequence f, (x)=(1—|z|/n),. Similar examples can be
constructed for any 1<s<1.) For simplicity, we shall write elements of H*(R) still as
functions, but with the understanding that for s}% equalities are understood modulo

constants.
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Next, for —1<a<1 given, we introduce the weighted homogeneous Sobolev space
H'(R?) as the completion of C§°(R2) with respect to the quadratic form

e (3.5)
+

Similarly as before, this completion is a space of functions for 0<a<1 and a space of
equivalence classes modulo constants for —1<a<0. (These facts are known, but they
are also consequences of our analysis below.) We note that, if a=1—2s, then 0<a<1 if
and only if 0<s<3. Moreover, by scaling, one sees that [, y~*P,(x/y) dz is a constant
independent of y (indeed, it is 1, as we shall see below). Hence, if f is an equivalence

class modulo constants, then so is &, f. We have the following basic result.

PROPOSITION 3.5. Let 0<s<1, fEH*(R) and set a=1—2s. Then E,fcH *(R?)

and we have that

// VEfy® du dy = cal (=A)*/ |3, (3.6)
=2
where )
I(s(1+
A ) (37)
F(z(1-a))
Moreover, the function w=_E&,f is a weak solution to the partial differential equation
div(y*Vw)=0 in R2. (3.8)
Finally,
L e® Qw € g
w(-,e)— f in H*(R) and fc—a—y(',s)%(fA) f i H*(R),
both as e—0.

Proof. We begin by writing
-8)2 1= | AT T ) da.
R

where the right-hand side should be understood as the duality pairing between H—* and
H*. Our goal now is to express both functions (which are strictly speaking distributions)
on the right-hand side as boundary values of functions defined on the upper half-plane
R2. We put w=&, f and claim that

e dw

w(-,e)— f in H*(R) and —C—a—y(~,5)—>(—A)sf in H=*(R), (3.9)
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both as e—0.
These properties are easily seen in Fourier space. Indeed, using the computation [2,

equation (11.4.44)] of the Fourier transform of P,, we see that

_L i m 61’5-9:
(€)== [ HOmalelnes= ds (3.10)
where ) (a)/2

Mq(T) isz) Ka_ay/2(r)

and K(;_gq)/2 is a Bessel function of the third kind. From standard properties of these
functions (see, e.g., [2] again) we know that m,(0)=1 and 0<m,(r)< A, for all r>=0.

This means that
ma(l€le) =1 ase—0 and 0<mq(|¢le) < Ag,

and hence

/R €2 [ma(lEle)—1PIF ()P dE 0 as e 0,

by dominated convergence. This proves the first relation in (3.9). In order to prove the

second one, we note that

ow 1 N , i€
Grw.e == [ Felem (el de

and that, again by properties of Bessel functions,

lim rml(r) =—c,

and 0<—r%mg(r)< B, for all r>0. This means that

——lelmi(€le) =+ €% ase—0 and 0< [g|m}(1g]e) < Bul],

a a

which, again by dominated convergence, implies that

J

and thus establishing the second relation in (3.9).

dg
€

—0 ase—0,

a 2 .
—lelml(lele)+1¢l**| 1f(©)P

Next, we prove that w=E&, f satisfies the partial differential equation (3.8). This can
either be shown directly by differentiating (3.1), or using (3.10) and a partial Fourier
transform with respect to z. Indeed, the Bessel equation satisfied by K(;_,)/2 is equiva-

lent to (r*m/) =r%m,, which is the same as (3.8) after Fourier transform and scaling.
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With (3.9) and (3.8) at hand, it is now easy to show that (3.6) holds. Indeed,

I(—A)2 2= / (A F@)f (@) da =l " | %’(w,e)w(m dz

Cq €0

—hm// |Vw(z,y)|*y* dv dy.
Cq e—0 >e

This proves that &, f belongs to H*(IR? ) and satisfies (3.6). The proof of Proposition 3.5

is now complete. ]

For ue C§°(R?), we denote by Tu(x):=u(x,0) its trace. As we shall see, the operator
T can be extended by continuity to Hl’a(Ri), due to the next proposition which also
yields a sharp trace inequality. In particular, this auxiliary result identifies the space of
functions on R that arise as traces of functions in Hl’“(Ri) as the homogeneous Sobolev
space H*(R) when s=1(1-a).

PROPOSITION 3.6. Let 0<s<1 and a=1—2s. Then there is a unique linear bounded
operator T: HY*(R2)— H*(R) such that Tu(z)=u(z,0) for ucCg°(R2). Moreover, for
any uGHl’a(RiL the following inequality holds:

[ Py eyl (-8) 2l (3.11)
R+

with the constant ¢, from (3.7). Here equality is attained if and only if u=E,f for some
feH*(R).

Remark 3.7. In [18] inequality (3.11) was derived by different arguments in the range
1

Proof. We use a similar argument as in the proof of Proposition 3.5. Let ue C§°(R?)
and ge H*(R) be given. Note that f:=(—A)"*ge H*(R). By the same arguments as
in the proof of Proposition 3.5, the function w:=&, [ satisfies (3.8) and (3.9). Hence we
conclude

/R@u(x,O)de/w (z, ())dgg_——hma / By (z,)ulz, &) dz

R Cq €0

— hm Yw(z,y)-Vu(z,y)y® de dy.

Ca e—0 y>e

Next, by the Cauchy—Schwarz inequality,

/Rg<><x0dx

1/2

(// Vw(z, y)|*y* dxdy>1/2 (//Ri Vu(z, )| 2y* da:dy)

(3.12)
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We also note that, by Proposition 3.5,

timsup ([ (Vo) Py dody=co(-8) 1 =call (-8)* g1
y>e

e—0

Thus we have shown that

r /RWw)u(x, 0) dx

1 1/2
< —A)"/2g (// Vu(z, y)[*y* dxdy) ,
@H( ) 2 Ri| (. )]

which, by duality, is the same as (3.11) for u€C§°(R?). This allows us to extend the
operator T' by continuity from C§°(R2) to H"*(R?), preserving the above inequality,
whereas the uniqueness of T follows from the density of C§°(R?).

Moreover, the above argument is valid for any u€H"*(R?) and equality in (3.12) is
attained if and only if Vu is a constant multiple of Vw. Hence u is a weak solution of
equation (3.8). By the unique solvability of this equation, u is given as the &£,-extension
of its trace. O

For the rest of this section, we will adapt the following convention.
Conwention. For uc H“*(R?), we also write u(z,0) to denote its trace Tu(z).

We conclude our preliminary discussion by introducing the ‘inhomogeneous’ Sobolev
space
HY(R?) = {u e HY(R?) :u(z,0) € L*(R)}, (3.13)

endowed with the norm ||uHH1,a(Rz+)::||u||H1,a(Ri)+||TUHL2(R). Note that H'*(R?) is
in fact a space of functions (even for —1<a<0). This space will be of use in the next

subsection.

3.2. Variational characterization of eigenvalues

Using the results of the previous subsection, we now derive a variational principle for
the first n>1 eigenvalues of a fractional Schrodinger operator H=(—A)*+V in terms
of a local energy functional. Apart from requiring that V be in the class K, we make
the convenient assumption that the bottom of the essential spectrum of H=(—A)*+V
satisfies

inf oess(H) > 0.

This can be imposed without loss of generality, by replacing V' with V +c¢ where ceR is
some suitable constant.

We are now ready to formulate our key variational principle for the eigenvalues of
H below the essential spectrum.
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COROLLARY 3.8. Let 0<s<1 and VeK,. Suppose that n>=1 is an integer and
assume that H=(—A)*+V has at least n eigenvalues

A <...< )\, <0.

Furthermore, let M be an (n—1)-dimensional subspace of L?*(R) spanned by eigenfunc-

tions corresponding to the eigenvalues \; with j=1,...,n—1. Then

)\ninf{l// \Vu|2y“dxdy+/ V(x)|u(z,0)|? du:
Ca J JR2 R
ueHL“(R_iL/ |u(x,0)|*de=1 and u(-,O)J_M},
R

where a=1—2s and ¢, >0 is the constant from (3.7). Moreover, the infimum is attained if
and only if u=E,f, where || f||2=1 and f€ M= is a linear combination of eigenfunctions

corresponding to the eigenvalue \,,.

Proof. By Proposition 3.6, the infimum on the right-hand side is bounded from
below by

inf{ll(A)s/2f||§+ / VIfPde: fe H'(R), |F]3=1 and fLM},

and equality is attained if and only if u=&,f. The assertion now follows from the usual

variational characterization for the eigenvalues of H=(—A)*4V. O

3.3. Nodal domain bound on Ri

Let VeK,. Recall that we can always assume that any L2-eigenfunction 1 of H is real-
valued, since H=(—A)®*+V is areal operator. Furthermore, by the remark following Def-
inition 3.1, any such eigenfunction ¥ of H is bounded and continuous. Likewise, the ex-
tension &,1 belongs to CY(R?) as well. Consider the set N={(z,y)€R2:(E,)(z,y)=0}
which is closed in Ri. We define the nodal domains of £,1 as the connected components
of the open set Ri\N in R2. We have the following bound on the number of nodal

domains.

THEOREM 3.9. Let 0<s<1, VE€K, and set a=1—2s. Let n>1 be an integer and

assume that H=(—A)*+V has at least n eigenvalues
A<, <0

If 1, € H*(R)NC°(R) is a real eigenfunction of H with eigenvalue \,, then its extension

E.Pn has at most n nodal domains in Ri.
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Proof. We argue by contradiction. Assume that £,1,, has nodal domains 4, ..., Q,,,
where m>n+1. We consider the sets K;:={zcR:(z,0)eQ,} for j=1,...,m, where ; is
the closure of ©; in R?. Since £,1, is continuous up to the boundary and 1, 20, we may
assume that K;#@. Furthermore, let M be an (n—1)-dimensional subspace of L?(R)
spanned by eigenfunctions corresponding to the eigenvalues \;, j=1,...,n—1. Next, we

define the function

u=(En) Z 'Vj]le'
=1

Note that we can choose the constants v, €R, j=1,...,n, in such a way that u(-,0) LM

and [Ju(-,0)|l2=1. Using standard facts about Sobolev spaces, one can show that

uGHl’a(Ri) and Vu:(vgaiﬁn)Z’Yj]le-

j=1

By the same argument as in the proof of Proposition 3.6, the function &,1,, satisfies
1 — [ -

~ [ (Ve dedy+ [ V@0 (e) de= A, [ V@00 () do

Ca JJRZ R R

for any veH"*(R%). We can apply this to v:|’yj|2]le5a1/)n, j=1,...;n, (which belong
to H1*(R?)) and sum over j to obtain

1 n

— [ 1vupyt dsdy+ [ V@t 0P ds=2n Yl [ e

Ca JJR2 R = K;
=l 0= A

Thus we conclude that equality holds in the variational principle in Corollary 3.8. Hence
u=E&,f, where f€M~ is a linear combination of eigenfunctions corresponding to the
eigenvalue \,,. In particular, the non-trivial function u satisfies equation (3.8). Note that
u=0 on the open non-empty set Q,, 1 CR?. However, we can deduce, by unique contin-
uation of solutions of the elliptic equation (3.8), that u=0 on the upper half-plane R?.
Indeed, consider the open connected set Ds={(x,y)ER?:6<y<1/d}, where 0<d<1 is
a fixed constant. Clearly, the differential operator L on Ds with Lu=div(y*Vu) has
smooth coefficients, and moreover L is uniformly elliptic on Ds (with bounds depending
on ¢). By choosing d9>0 so small that €,,11NDs, #2, we deduce by standard unique
continuation for Lu=0 that u=0 on the connected set Ds,. We can repeat this argu-
ment for any set Ds CR? with 0<d<d to conclude that u=0 on R? itself. But this is a
contradiction. The proof of Theorem 3.9 is now complete. ]
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3.4. Proof of Theorem 3.4

We argue by contradiction. Suppose that 15: R—R changes its sign at least three times
on R. Thus, after replacing ¥s by —1o if necessary, there exist points 1 <wo<wz<my

on the real line such that
(x;)>0 for j=1,3 and (z;) <0 for j=2,4.
Next, we consider the extension £,1- on Ri. Since
(Eath2)(21,0)>0 and  (Eqvh2)(22,0) <0,

and by continuity of £,15 up to the boundary 8Ri, the function £,15 has at least two
nodal domains in Rﬁ. But, in view of Theorem 3.9, we conclude that £,12 has exactly
two nodal domains in R2, which we denote by 2, and Q_ from now on.

By continuity of £,v9(x,y) again, we deduce that
(xj,6)€Qy for j=1,3 and (zj,e) € Q. for j=2,4,

for all 0<e<eq, where £9>0 is some sufficiently small constant. Note that the connected
open sets ). CR% must be arcwise connected. Thus we conclude that there exist two
simple continuous curves v, ,v_€C?([0,1]; R?) with the following properties:

® 7:(0)=(z1,0),7+(1)=(23,0) and v (t) € for t€(0,1);

e v_(0)=(22,0),v-(1)=(24,0) and y_(t)eQ_ for t€(0,1).

By Lemma D.1 (based on basic topological arguments) we deduce that ~, and ~_
must intersect in the upper half-plane R?. But this contradicts 2, NQ_=2. Hence the
function 19:R—R changes its sign at most twice on R.

Finally, if 9o =19 (|z|) is even, then clearly ¢, can change its sign on {z>0} at most
once, since otherwise 1 would change its sign at least four times on R, contradicting
the result just derived. By the remark following Theorem 3.4, we deduce that 1o must

change its sign at least once on R;. This completes the proof of Theorem 3.4.

4. Non-degeneracy of ground states

This section is devoted to the proof of Theorem 2.3. That is, we show that (local)
non-negative minimizers Q(x)>0 for the functional J*¢ defined in (1.5) have a non-
degenerate linearization. In fact, we shall prove a slightly more general result formulated
as Lemma 4.1 below.
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Let 0<s<1 and 0<a<amax(s) be fixed throughout this section. Suppose that
Qe H?*(R), with Q#£0, is a non-negative solution Q@Q=Q(z)>0 of

(A)’Q+2Q—-QF! =0, (4.1)

with some positive constant A>0. Note that, by Lemma B.4 which is based on the method
of moving planes, we have Q(z)=Q(|z—0|)>0 for some zo€R, where Q=Q(|z|)>0 is
an even and positive function strictly decreasing in |z|. Moreover, a simple rescaling
argument shows that we could assume A=1 without loss of generality. But for the sake
of later purpose, we will keep A>0 explicit here.

Associated with Q€ H*(R), we define the linearized operator

L. =(-A)P+ —(a+1)Q" (4.2)
acting on L?(R). We record the following (partly immediate) facts about L.

o QYcK,, ie., the potential V=Q belongs to the ‘Kato-class’ with respect to
(—A)®. This follows from the remark following Definition 3.1 and Sobolev inequalities.
In particular, any L2-eigenfunction of L. is continuous and bounded.

e L, is a self-adjoint operator on L?(R) with quadratic-form domain H*(R) and
operator domain H?*(R).

e The essential spectrum is gess(Ly) =]\, 00).

e The Morse index of L, satisfies N_(L,)>1. Recall that N_(L,) is defined as the

number of strictly negative eigenvalues, i.e.,
N_(Ly)=#{e<0:e is eigenvalue of L, acting on L*(R)},

where multiplicities of eigenvalues are taken into account. To see that indeed N (L, )>1,
we just use <Q,L+Q):fQHQ||gi§<O by (4.1). Thus, by the min-max principle, the
operator L, has at least one negative eigenvalue.

e We always have L, Q'=0, and thus span{Q’}Cker L. This follows from differen-
tiating (4.1) with respect to x.

e The lowest eigenvalue eg=inf o (L. ) is simple and the corresponding eigenfunction
o=1o(x) >0 strictly positive; see Lemma C.2.

To formulate the main result of this section, we now suppose that Q=Q(|z|) is an
even function. We introduce the Morse index of L. in the sector of even functions by

defining
N even(Ly) :=#{e < 0:e is eigenvalue of L, restricted to L2, (R)},

where multiplicities of eigenvalues are taken into account. Note that (Q, L, Q)<0 with
Q=Q(|z|) even. Hence we deduce the general lower bound N_ cven(L:)>1 from the
min-max principle.

The key non-degeneracy result of this section is now as follows.
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LEMMA 4.1. Let QeH*(R) be an even and positive solution of (4.1) with some
A>0. Consider its associated linearized operator L, acting on L*(R) and assume that

its Morse index in the even sector satisfies N_ even(L+)=1. Then we have

ker L, =span{Q’}.

Remark 4.2. We will see below that the second-order condition

d2
—|  JP(Q+en)=0 forall ne CF°(R)
de?|__,
will imply that N_ cven(L;)=1. In particular, any ground state solution Q@=Q(|x|)>0

will satisfy the assumption of Lemma 4.1.

Proof. By rescaling Q(z)—A"*Q(\*/?%) (and likewise any element in ker L, trans-
forms accordingly), we may assume that A=1 holds in (4.1).
Next, we consider the orthogonal decomposition L?(R)=LZ . (R)& L2, (R). Since

even
Q=Q(|z|) is an even function, we note that L, leaves the subspaces L2 ., (R) and L2, (R)
invariant. We treat these subspaces separately as follows.

Recall that Q'€ L2, (R) satisfies L, Q"=0. Moreover, by Lemma B.4, we have that
Q' (x)<0 for x>0. In view of Lemma C.3 applied to L, we conclude that @’ is (up to
a sign) the unique ground state eigenfunction of L, restricted to L2 ,(R). Hence we see
that ker L, |L3dd =span{Q'}.

It remains to show that

ker Ly|p2 ~={0}.

To prove this claim, we argue by contradiction. Suppose there exists ve LZ ., (R), with
v#0, such that L,v=0. Note that v is continuous and bounded due to the remarks
above. Also, since L, is a real operator, we may assume that v is real-valued. Next, by
assumption, we have N,,even(LQ:l, and hence v must be an even eigenfunction of L,

corresponding to its second eigenvalue. By applying Theorem 3.4 to
H=(-A)"=(a+1)Q%,

we deduce that v=v(|z|) changes its sign exactly once as a function of |z|. That is, there

exists 7. >0 such that the following holds (after multiplying v by —1 if necessary):
v(|z]) =0 for |z|<r. and wv(|z]) <0 for |x|>r,, (4.3)

where v0 on both sets {z:|x|<r.} and {x:|z|>r,}. Note that we have the same estimate
on the number of sign changes of v=v(|z|) on the half-line R,, as if Sturm-Liouville
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oscillation theory for ODEs were applicable. Therefore we can now proceed along the
lines of [11], where a simple non-degeneracy proof for non-linear Schrédinger ground
states was given based on a result from Sturm-Liouville theory. Adapting this argument

to our setting, we notice that a calculation yields
L.Q=-aQ and L, R=-2sQ, (4.4)

where
Rim o 3080 = 2 Q4. (45)
B=1
Note that R€ L?(R), due to the decay estimate stated in Proposition 1.1. By bootstrap-
ping the equation satisfied by R, we further deduce that R€ H***1(R) and, in particular,
we see that R is in the domain of L,. Since L, is self-adjoint and v€ker L, , we obtain

from (4.4) that
(@, v) =(Q,v) =0.

Next, we consider the even function feran L, given by

f=Q T —puQ=0Q(Q"—pn),

where p€R is some parameter. Note that (v, f)=0 for all p€R. Now choose u=Q(r.)*
with r,>0 from (4.3). Since Q=Q(|z|)>0 is positive and strictly decreasing in |z|, we
deduce that

f(z|)>0 for |z| <r. and f(|z])<0 for |z|>r.. (4.6)

Combining now (4.6) and (4.3), we see that vf >0 with vf#0. Hence (v, f)>0. But this

violates the orthogonality condition (v, f)=0. Therefore, the operator L, does not have

2
even

a zero eigenfunction in L7 ., (R). The proof of Lemma 4.1 is now complete. O

Proof of Theorem 2.3

Suppose that @Q=Q(x)>0 is a positive solution to (4.1) with A=1. By Lemma B.4 and
translational invariance, we may assume that Q=Q(|z|)>0 is even.
Let
L, =(-A)y+1—(a+1)Q"
be the associated linearized operator. In order to apply Lemma 4.1, it suffices to show
that NV even(L+)=1 holds. Indeed, we recall that, by assumption in Theorem 2.3, the
function @ is a local minimizer of J*. Therefore, we have the second-order condition
2

e J>(Q4+en) =0 for all ne C§(R). (4.7)
e=0
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We claim that this implies the upper bound N_ eyen(L1)<N_(L.)<1. To estimate
the Morse index, we can adapt an argument for ground states of classical non-linear
Schrodinger equations (see [11] and [33]) to our setting as follows.

By Lemma 5.4 below (with A;=1 and s=sg), we obtain the following Pohozaev

identities of the form

1 1 1
— [ [(=A)"2Q*d 27/ d :—/ o2y =k
2Q/RI( )7QI dz = o IRIQ\ =0 RIQ\ x=:k,

where a=a/4s>0, b=«(2s—1)/4s+1>0 and k>0 are positive constants. Then an ele-
mentary (but tedious) calculation shows that inequality (4.7) is equivalent to

B Lo > 11, (<A Q)P+ 5, @~ 4, Q)2
Therefore (n, L.n)>0if n .. Q*"!. By the min-max principle, we obtain that N (L,)<1,
and hence N_ oyen (L4 ) <N_(Ly)<1.

On the other hand, we recall that we always have N_ cven(L4)>1, as remarked in
the beginning of this section. Thus we conclude that N_7CVCH(L+):1 holds, whence it
follows that ker L, =span{Q’}, due to Lemma 4.1. The proof of Theorem 2.3 is now

complete.

5. Uniqueness of ground states

In this section we prove Theorem 2.4. Our strategy is based on the non-degeneracy
result from §4 and an implicit function argument, combined with a global continuation
argument. For the reader’s orientation, we first give a brief outline of this section as
follows.

In §5.1, we fix 0<sgp<1 and 0<a<amax(So). By an implicit function argument,
we construct (in some suitable Banach space of even functions) a locally unique branch
(Qs, \s) parameterized by s close to sg and satisfying

(—A)°Qs+A:Q5—|Qs|*Qs =0.

Here the starting point of the branch (Qo, A\g)=(Qs=s,, A\s=s,) is assumed to satisfy some
spectral condition; see Proposition 5.2.

Then, in §5.2, we show (as a main result of this section) that the local branch
(Qs, As) can be indeed globally continued to s=1, provided that (Qq, \g) satisfies some
explicit conditions, such as positivity Qo=Qo(|x|)>0; see Proposition 5.13. The crucial
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and delicate point that allows us to extend to s=1 is based on suitable a-priori bounds

on regularity and spatial decay for (Qs, As) of the form

/|(—A)5/2QS\2dnc~1, /|QS|2dx~1 and Ay~ 1,
R R

in combination with a uniform pointwise decay estimate Q(|z|)<|z|~! for |x|>1. The
derivation of all these bounds will cover most of this section and it requires a careful
study of the non-linear problem.

Finally, with help of Propositions 5.2 and 5.13, we are able to prove Theorem 2.4
in §5.3 below. That is, we show that the branch (Qs, \s) starting from a ground state
(Qo, \o=1) exists and is globally unique; in particular, the assumption of having another
branch starting from a different ground state (@0, ;\Ozl) leads to a contradiction. This
will follow from the global uniqueness and non-degeneracy for the limiting problem when
s=1, i.e.,

5.1. Construction of a local branch

We start with some preliminaries. Let 0<s<1 and 0<a<aumax(s) be given. We consider
solutions (Q, ) with Qe L?(R)NL>T2(R) and AeR, satisfying

(—A)°Q+2Q—1Q|*Q@=0. (5.1)

In fact, by a bootstrap argument, we see that Q€ H?**1(R) holds. Nevertheless, it turns
out to be convenient to work in the space L?(R)NL**2(R), which is independent of s.
Since we are interested in real-valued and even solutions only, it is convenient to define

the (real) Banach space
X*:={fec L*(R)NL*"*(R): f is even and real-valued}, (5.2)
which we equip with the norm

[fllxce == [ fll2+ 11 f ot

Recall that we make the standard abuse of notation by writing both f(z) and f(|z|)
whenever f is an even function on R.

As a next step, we will construct a local branch of solutions (Qg, As)€X*XR, of
(5.1), which is parameterized by s in some small interval. To this end, we introduce the

following assumption.
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Assumption 5.1. Let 0<s<1 and 0<a<amax(s). Suppose that (Q,\)eX*xR,

satisfies equation (5.1). We assume that the linearized operator
Ly =(=A) +A=(a+D)|Q["

acting on L?(R) has a bounded inverse L' on L2 ., (R).

even

Remarks. (1) We emphasize that we do not require Q€ X* to be positive here.
(2) Since Q€ X is even, and hence Q@ LQ’ in L?(R), the bounded inverse L' exists
on Lgven

acting on L*(R).
(3) By Sobolev inequalities, the invertibility of L' on L2

even

(R), provided that L, is non-degenerate, i.e., we have ker L, =span{Q’} for L,

(R) implies that L7

exists on X< as well.

As a next step, we establish existence and local uniqueness of a branch (Qs, As) for

(5.1) around a solution (Qg, \g) that satisfies Assumption 5.1.

PROPOSITION 5.2. Let 0<sp<1 and 0<a<amax(s0). Suppose that
(Qo, M) € X* xR,

satisfies Assumption 5.1 with s=sg and A=X\g. Then, for some §>0, there exists a map
(Q,\)eCH(I; X*xR,), defined on the interval I=[sg,so+0), such that the following
holds, where we write (Qs, As)=(Q(s), A(s)) in the sequel:

(i) (Qs, As) solves equation (5.1) with A=A, for all s€l and (Qs, As) satisfies As-
sumption 5.1.

(ii) There exists £>0 such that (Qs, As) is the unique solution of (5.1) for s€l in
the neighborhood {(Q,\)€X* xR :||Q—Qo|lx+|A—Xo|<e}. In particular, we have that
(@s0, As0)=(Qo; Ao)-

(iii) For all s€l, we have

/ Qul*+? do = / 1Qol*+? da.
R R

Remark 5.3. Introducing the function A;=M\(s) ensures that the above “conservation
law” for [, [Qs|**? dx holds. The use of this fact will become evident further below when

we derive a-priori bounds.

Proof. We use an implicit function argument as follows. First, we observe that (5.1)

can be written as 1
Q= m|@| Q.
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For some small constant ¢ >0 chosen below, we consider the mapping

F: X*xR, x[s0,80+0) — X xR, (5.3)
which we define as )
F(Q, A, 8) = Q- (*A)sH'Q| @ (5.4)

Q1813 1Qs, 1655
As shown in Lemma E.1, the map F is well defined and C'. Also, by construction, we
have that F(Qs,, Ao, S0)=0. To invoke an implicit function argument, we have to show
the invertibility of the Fréchet deriviative of F' with respect (Q,\) at (Qo, Ao, So), which
we establish next.
First, we note that the Fréchet derivative of F' with respect to (@, \) is given by
Y (R [[o L e
donF = (=A)s+A ((A)s+A)?

(a+2)(QI*Q, ) 0

Here (f,-) denotes the map g—(f, g). See also Lemma E.1 and its proof.

(5.5)

Now, we claim that the inverse (G(Q’A)F)_l exists at (Qs,, Ao, S0). Hence we have
to show that, for every f€ X and S€R given, there is a unique solution (7,7)€X*xR
of the system

(I+K)n+vg=f, (5.6)
(a+2)(|Qso|*Qso, m) =B, (5.7)
where we set
1 o . 1 o
K= —m(a+1)|Qso| and g:= (EYNCESWHE |Qso|*Qso- (5.8)

Next, we note that K is a compact operator on L2 . (R). Moreover, we see that
—1¢0(K) due to Assumption 5.1. Indeed, assume on the contrary that —1 is in the
spectrum o(K) for K acting on L2 . (R). Then the self-adjoint operator

Ly =(=A)" 40— (a+1)[Qs|* (5.9)

would have an even eigenfunction ve L2, (R) such that L,v=0, which contradicts As-

sumption 5.1.
Thus the operator 1+K is invertible on L2, (R). Moreover, since K: X*— X

holds (see the proof of Lemma E.1 for details), we deduce that (14K )~! exists on the
space X as well. Hence we can solve (5.6) uniquely for n€ X to find that

n=01+K)"'f—y(1+K) !g. (5.10)
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Plugging this into (5.7) yields

(@+2){|Qso] " Qs» 1+ K) T g)y = =B+ (a+2)(|Qs, |* Qs (1+K) 1 ). (5.11)

To deduce unique solvability for y€R, it remains to show that the coefficient in front of
~ does not vanish. To see this, we observe the identity

(1+K)" P = L7 e ((—A)* +)), (5.12)

with L, given by (5.9). Using this identity together with L. Q. ,=—c|Qs,|*Qs, and

equation (5.1) satisfied by Qs,, we now easily deduce that

a oL
(1Qs0*Quy (1K) 1g) = Q/R|QSO|2dx7éO. (5.13)

This completes the proof that g ) F is invertible at (Qs,, Ao, s0). By applying the
implicit function theorem to the map F at (Qs,, Ao, So), we derive the assertions (i)—(iii)
provided that §>0 is sufficiently small.

The proof of Proposition 5.2 is now complete. O

5.2. A-priori bounds and global continuation

Let 0<sp<1 and 0<a<amax(so) be given. Throughout this subsection, we suppose
that (Qs, \s)€CH(I; X% R, ) is a local branch defined for I=[sg, s9+4), as provided by
Proposition 5.2.

Now, we consider the corresponding mazimal extension of the branch (Qs, As) for

S€E€[so, $«), where s, is given by

S.i=sup{so <5< 1:(Qs,\s) € C([s0,3); X*xR,) given by Proposition 5.2

and (Qs, \s) satisfies Assumption 5.1 for s € [sg, §)}.

Clearly, we have s, <1, and our goal will be to show that s, =1 holds under some suitable
assumption on (Qs,, Ao)-

In order to derive suitable a-priori bounds for the maximal branch (Qs,\s), we
recall the notation @ <b, which means that a <Cb, where C'>0 is some constant that only
depends on the fixed quantities sg, @ and (Qs,, Ag). As usual, the constant C' is allowed
to change from inequality to inequality.

As an initial step to derive a-priori bounds, we start with the following Pohozaev
identities satisfied by Q.
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LEMMA 5.4. For all s€[sg, s«) the following identities hold:

A 9 a 1 bs
As Jrde= s Sa+2 7/ —A s/2 52 _ s / sa+2
s 1= [ and 5 [ -8 RQFdr= 25 [ 1 a,

where as=a(2s—1)/4s+1 and bs=«/4s.

Proof. By integrating (5.1) against Q<€ H*(R), we obtain

[IayrQpaven [ 1@ do= [ 1@ d. (514)
R R R
Next, we integrate (5.1) against z@)’,. Integration by parts yields that
/ « 1 a+2 / s 2s—1 s
<-TQ57 ‘Qs| Qs> = |Qs| dr and <wst (_A) Qs> = <Qsa (_A) Qs>a
Oé+2 R 2

where for the second identity we also use that [V-x, (—A)*]=—2s(—A)*, which is easily

verified in Fourier space. Hence, we deduce that

2s 1

1 AL .
- /R\(—A)S/2Q5|2dx—?/R|QS|2dx:——/R|QS\ 2 gy (5.15)

a+2

(Note that the calculations here involving x@Q’, are well defined, due to the regularity
and decay estimates from Proposition 1.1.) By combining equations (5.14) and (5.15),

we readily deduce Lemma 5.4. O
Next, we derive the following straightforward a-priori bounds.

LEMMA 5.5. For all s€[sg, s«) we have the following bounds:
[IayrQpaent A [ (@ dont and 15 [ 1QuP d
R R R

Proof. By Lemma 5.4, we obtain the desired a-priori bounds for [; [(—A)*/2Q,|* dz
and A, [, |Qs|? dx, since we have [ |Q4|*"? dz=const.#0 along the branch (Qs, \s) and
clearly as, bs~1 holds for s€[sg, S ).

To derive the lower bound [, |Q|? dz =1, we recall the interpolation estimate (1.4),

which yields that
—a/4s 1
< [ dx) ( / <A)S/2Qs|2dx) > L
R R C

a(2s—1)/4s+1
(/ |Qs‘2 dm) =
R

with some constant C'>0 independent of s. Here we used again that [; |Q|*" dz=const.
and [ [(—A)*/2Q,|? dz <1 from above, as well as the fact that the optimal interpolation
constants satisfy Cs o <K by Lemma A.5 for some K >0 uniformly in s>so>a/2(a+2).

1
Cs,a

Here the last strict inequality is due to a<max(so)- O
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We now derive an a-priori upper bound for [, |Q|*dz along the branch (X, Qs).
In fact, this result will be one of the key steps in order to extend the branch all the
way to s,=1. The proof of the following fact requires substantially more insight into
the problem and it will also make use of some auxiliary results, which we derive further

below.

LEMMA 5.6. For all s€[sq, sx), we have the a-priori upper bound

/\stgdmsl.
R

Proof. We will derive the following the differential inequality

d
= [1apas [ 1o (5.16)
R R

Once this estimate is established, the desired a-priori bound follows from integrating this
differential inequality.

To show (5.16), we argue as follows. First, we note that

d 2 _ dQs
£/R|Qs| d$2<Qsad8>-

Next, by differentiating the equation (5.1) satisfied by Qs with respect to s, we see that

dQs
L
T ds

dAs
= 7(7A)8 IOg(*A)Qs - %QS’

with L, =(=A)*+Xs—(a+1)|@Qs|*. Recall that A, is a differentiable function of s. Also,

by Proposition 1.1, we note that Q,€ H**T1(R) and hence (—A)®log(—A)Qs€ L2, (R).

2

ven (R) and self-adjoint, we can combine the previous equations

Since L, is invertible on L

to obtain p
ds /R Qs |2 dor =T+1I, (5.17)

where
—1 s d)\s —1
I=-2(L7"Qs,(—A)°log(—A)Qs) and II= —2E<Qs, L7 Q). (5.18)
We start by estimating the term I from above. Here a calculation shows that(?)

d 2
L.R=—-2s)\,Q,, with R:i=—| g%/°Q,(fz)= Q. +2Q.. (5.19)
ag =1 €9

(3) Note that R€L2(R), by the decay estimate in Proposition 1.1. Moreover, we easily deduce
that R€ H25T1(R), by analogous bootstrap arguments as done for Q.
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Therefore we conclude that

1= (R (-2) og(-2)Q)
— 1 i 2s/a . N s _ >
; <dg\6 QU ), () og(-A)Q,
_ i s/a . - s . s/a )
"2, dﬂ‘ﬁ (FHEQu( ), (—2)" log (=)@ (5))
1 d

= 3ox 4, (ﬁa/‘““s—l /R |@s(§)|2|§|2slog(ﬂ2|£|2)d§>

251>\ ((48 +2s —1) (Qs, (—A)* log(—A)Qs)+2(Qs, (_A)SQS>> .

In the third equality above, we used the self-adjointness of (—A)® log(—A); whereas the
fourth equality follows from Plancherel’s identity and change of variables. Note that all
the manipulations here are well defined, due to the regularity of Q,€ H**1(R).

Next, we apply Lemma 5.7 (derived below) which shows that the a-priori upper
bound (Qs, (—A)*log(—A)Q) <1 holds. Moreover, we notice that

4 4
205120 19610,
(07 «

due to the condition that a<amax(So). In summary, we deduce that
1 12

for sg<s<s,, where the last inequality clearly follows from Lemma 5.5.
It remains to derive an upper bound for I defined in (5.18) above. To this end, we
recall the definition of R in (5.19) which shows that

-1 — — -
(Qu 171Q.) = 2SAS<R,QS>— i

~o (1-2) [1ap e

Next, if we differentiate the Pohozaev identities in Lemma 5.4 with respect to s, we

543/04 <Qs (ﬁ : )7 Qs (5 : )>
p=1 (5.20)

obtain
dg 1

d
|2dx+A%/R|QS|2dx—72—/ 104+ da, (5.21)

using that

d a+2 .
dS/R|Qs| dz=0.
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By combining (5.20) and (5.21), we deduce that

d 1 2 d 1 «
m=—2%0, 170)=(——2) (2L [ 0.2 —77/ St
(@, L57Qs) (23 a) (ds /R|Q " dz 252X\ a+2 R‘Q | da:)

A
ds
1 2\d , . C
< a5 )5 S d N
(25 a)ds/R|Q | x+>\s
for some constant C'>0 independent of s. In the last step, we used again the fact that

Jg 1Qs|*T2dx is a constant. Next, we recall that A\;' <[5 |Qs]? dz and IS [, |Qs? da.

Hence, we get

d 1 2\d
& [1era—tis (2-2) 2 [0 derc [ QP
ds Jr 2s a/)ds Jp R

where C'>0 is some constant independent of s. Noticing again that

112>112>O
2s o)~ 250 a)

by the condition av<amax(So), we conclude that (5.16) holds. The proof of Lemma 5.6

is now complete. O

Next, we establish the a-priori upper bound on (Qs, (—A)®log(—A)Qs), which was
needed in the previous proof.

LEMMA 5.7. For all s€[sg, s.) we have

(Qs, (=4)"log(=A)Qs) S 1.

Proof. From the identity Qs=((—A)*+Xs) "1 Qs]|*Qs we deduce that

<[(=2)7*(1Qs*Qs) 2 (5.22)

2

—A)t
e

I-8yQle= | 5

for any ¢t>0. In particular, we can choose

e
ti=5— m,
which implies that s>t>s—%so> %50, due to the condition a<amax(So)-

By our choice of ¢, the operator (—A)!~% on R is given by convolution with the
singular integral kernel |z|~(®t%/2(¢+2) yp to a multiplicative constant C' depending
only on a. Hence, by the weak Young inequality, we deduce from (5.22) the following
bound:

1=28)Qull2 S 1]+ 20w (1Qul" Q| S NQI™ | sy sy S N QISR S 1,
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using the fact that [, |Qs|*"? dx is a constant. But the last estimate implies that

(Qu (=) Tor(=2)Q0) = [ 1€ 1og(€P)IQu (O de
< [leM@u P s I-Ar Q<1
Here we used Plancherel’s identity together with the inequality
log [¢]* < Cl¢[*=2, (5.23)

where the constant C'>0 only depends on « and sg. Indeed, this inequality can be simply
derived as follows. Clearly it suffices to show that (5.23) holds for |£|>1, since otherwise

the left-hand side is negative. Now, we note that

A—25=25— —2 >95p——2 >4
a+2 a+2

for some constant ¢ >0 depending only on a and sg. (To see this, simply use the strict
inequality a/(a+2)<2so due to the condition on a.) Since log22<2(5/e)~12° for z>1
and 6 <4t—2s, we deduce that (5.23) holds for |¢|>1. This completes the proof. O

As a first application of our a-priori bounds we shall prove that the linearization of
the equation satisfied by Qs depends continuously (in a sense to be made precise) on s.

Along with the operator
Ly o= (=AP 4 —(a+1)|Qs]*
which has already appeared above, we consider
Los=(—AY+A,— Q.

Both are self-adjoint and lower semi-bounded operators in L?(R). Recall that convergence
of a sequence {4, }2°; of self-adjoint operators to an operator A in norm-resolvent sense

means that

—0

H 1 1
L2—L?

A, +z Atz

as n—00, where z€C with Im z#£0.

LEMMA 5.8. Let {s,}52, C[s0, S«) be a sequence with s,,—5<s.. Then Ly ,, —L, 3

in norm-resolvent sense.
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Proof. By straightforward estimates, we find that norm-resolvent convergence will

follow from A\s— Az, provided we can show that Vy=|Q,|“ satisfies
I[Vs—Vsll, >0 ass—3§ (5.24)

for some p>1 such that p>1/2s9>1/2s.

To see that we can always find such p, we argue as follows. By Lemmas 5.5 and 5.6,
we have ||Qs||z+ <1, and thus ||Qs|| g0 <1 since s=s0. As Qs —Qz in L2(R), we deduce
from the uniform bound ||Qs|| g0 S1 that

Qs —QszllHeo =0 ass—3

for any 0<og<sp. In particular if so>%, then ||Qs—Qsllco—0 by Sobolev inequalities.
Hence we can choose p=o00 in (5.24) and we conclude that norm-resolvent convergence
holds whenever so>%. Assume now that sogé. In this case, by Sobolev inequalities
and Holder’s inequality, we deduce that V,=|Qs|* satisfies (5.24) for p=2/a(1—20¢)
with any 0<op<sg. But since 2/a(1—2s¢)>1/2so due to the condition a<amax(s0), we
can choose oo <sg sufficiently close to sg such that p=2/a(1—20¢)>1/2s¢ as well. This

shows that norm-resolvent convergence also holds when sg< % O

As a result of the norm-resolvent convergence, we shall see that both the Morse index
of L, ¢ and the positivity of Q)5 are preserved along the branch. We begin by deriving
the first fact.

COROLLARY 5.9. We have N_ cven (Lt s) =N_ even(L+ s,) for all s€[so, s4).

Proof. By continuity of the eigenvalues of L 4, any change of the Morse index along

2

oven (R) for some

the branch would imply that 0 must be an eigenvalue of L 5 acting on L

S€E€ (80, 8«). But this contradicts Assumption 5.1. O

As a next step, we wish to analyze sequences {Qs, }°2 , with s, —s.. In particular,
our goal is to derive strong convergence (along subsequences) for {Qs, }52; with respect

to the norm || - ||xo=]||-|l2+] - ||as2. Recall from Lemmas 5.5 and 5.6 the a-priori bound

||QS||%IS:/R\(—A)S/2Q8|2dx—|—/R|QS\2dx§1 for s € [sg, $«).

Suppose now that s, —s.. To turn the uniform bound ||Q, ||z= <1 into strong conver-
gence of {Qs, 152, in some LP-norm, we need a further ingredient. Indeed, since we
consider d=1 space dimension, we recall the well-known fact that the even symmetry of
the functions {Qs, }72, (unlike for radial symmetry in d>2 dimensions) is not sufficient
to gain relative compactness of {Qs, }°; in some LP-norm. To deal with this, we will
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now impose that Q,,=Qs,(|z|) >0 is a positive function. Then the following result shows
that Qs(]x|)>0 along the branch. This fact, in turn, will lead to monotonicity of the
functions Q4(|z|) in |x|. From this property and the a-priori bound on As~1, we finally
derive a uniform decay estimate of the form Q,(|z|) <|z|~t for |z| outside a fixed compact
set, which will enable us to gain relative compactness in L?(R)NL>T2(R).

The fact that positivity of (), implies positivity of @, for all s is another consequence

of norm-resolvent convergence.

COROLLARY 5.10. Suppose that Qs,=Qs,(|x])>0 is positive. Then Qs=Qs(|z|)>0
for x€R and s€[sg, S4).

Proof. We divide the proof into two steps as follows.

Step 1. First, we show that positivity of Q4(|x|)>0 is an “open” property along the
branch (Qs, \s). That is, if we assume that Q;=Q3(|z|) >0 for some §€ (s, $.), then

Qs =Qs(|z]) >0 for s € [sp, s.) with [s—35| <e,

where €>0 is sufficiently small. To prove this claim, we consider the family of self-adjoint

operators L_ g, introduced before Lemma 5.8, and note that
Last:Oa (525)

that is, Qs is an eigenfunction of L_ ; with eigenvalue 0. Furthermore, by Lemma C.2,
the lowest eigenvalue of L_ ; is non-degenerate and its corresponding eigenfunction can
be chosen strictly positive. In particular, the function Qz(|x|)>0 is the ground state
eigenfunction of L_ ; and 0 is the lowest eigenvalue of L_ ;. Thus, in view of (5.25) and
Lemma C.2, it suffices to show that 0 is the lowest eigenvalue of L_ 4 (for s close to §)
and finally rule out that Qs<0 holds.

This follows from Lemma 5.8 by standard spectral arguments: Let A;(L_ ;) denote
the lowest eigenvalue of L_ ;. By Lemma C.2, the eigenvalue A;(L_ ;) is non-degenerate
and its corresponding eigenfunction 1 4(x)>0 is strictly positive. We have already
observed that A;(L_ ;)=0 and Qs(z)=11 3(x). From the norm-resolvent convergence,
we conclude that A\ (L_ s)—A1(L_ 5) as s—3§ and that A\ (L_ ;) is simple for s close to §.
(The last statement also follows from Lemma C.2.) Moreover, since A1 (L_ 3) is isolated,
we can find ¢>0 so small that the interval I.=(—c,c) satisfies o(L_ 5)NI.={ \(L_3)}.

Thus, by the above convergence properties, we deduce that
o(Lo )N L= (L)}

whenever |s—3§|<e, where >0 is sufficiently small. On the other hand, (5.25) shows
that 0 is an eigenvalue of L_ ,, and therefore A;(L_ ,)=0 for |s—§|<e. By Lemma C.2
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again, we deduce that Qs(z)=0(s)i1 s(z), where o(s)e{1l,—1} is some sign depending
on s. But since Q;—Q5 in L*(R) and Q3(x)>0, we conclude that o(s)=1 for all s close
to sp. To summarize, we have shown that Q,(x)=11 s(z)>0 for all |s—35|<e, provided
that £>0 is small and Qz(x)>0 holds.

Step 2. Next, we prove that positivity of Qs along the branch is a “closed” property.
That is, if Qs(|x])>0 for all s€[sg, §) with some §<s,, then Qs(|z|)>0 as well. Indeed,
let §€(s0, $«) be given and suppose that {s,}72,C[so,5) is a sequence with s, —§ such
that Qs, (|z])>0 for all neN. Since Qs, —+Q;z in L*(R), we see that the limit is a non-
negative function Q;z(|x|)>0. We note that Qs #0 due to ||Qs|la+2=]Qs, ||l a+27#0. Hence

Q5=Qs5(|z]) >0 is a non-negative and non-trivial solution of

1 «

(-4)
From this we deduce that positivity Qs=Q3(|x|)>0 holds by using Lemma A.4, which
establishes the positivity of the integral kernel for the resolvent ((—A)*+\)~! with
0<s<1 and A>0.
By combining the results of steps 1 and 2 above, the proof is completed. O

Next, we derive a uniform spatial decay estimate along the maximal branch (Qs, As),
provided that @, (|z|)>0 holds initially.

LEMMA 5.11. Suppose that Qs,(|x])>0 holds. Then we have the uniform decay
estimate 1
0<Qs(lz) S
||

for |z| =Ry and s€|so, s+). Here Ry>0 is some constant independent of s.

Proof. For any ;1>0 given, we can rewrite the equation satisfied by Qs as

Qs =((=A)+m) ™" fs,  with fi(2) = Qs(2)(Q2 (x) = As+p).

Note that |Q|?=Q%, since Qs(|z|)>0 for s€so, s.), by Corollary 5.10.

By Lemmas 5.5 and 5.6, we have the uniform lower bound As21. In particular, we
can choose >0 fixed and independent of s such that As>2u for s€[sg, sx). Next, we
claim that the positive part f}:=max{fs,0} has compact support such that

fH(@)=0 for |z| > iRy, (5.26)

where Rp>0 is some large constant independent of s. Indeed, the functions Qs=Q(|x|)
are even and positive. Hence, by Lemma B.4, we deduce that each function Q4(|x|) is
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decreasing in |z|. Also, we recall the uniform bound ||Qs]2<1 from Lemma 5.6. Hence,

for any |z|>0,

1

1
] 2\7 S 2d X 5 s 2d <1.
Py [ ewrd<; [10.wkas

Therefore Q,(y) <|z|~1/2 for |x|>0. Moreover, we have —\,+u<—pu<0 and Q,(|z|)>0.
These facts imply that (5.26) holds with some large constant Ry>0 independent of s.

Next, by Lemma A.4, we conclude that the kernel G ,, of the resolvent ((—A)*+p)~!
is given by a positive function G, ,(x)>0 that satisfies the uniform bound

1
0<Gs p(x) S— for |z|>0. (5.27)

~ ]
Since |z —y|>1|z| when |z| >Ry and |y|<3 Ry, we can combine (5.26) and (5.27) to find

the bound

1 1
0<Qu(la)) < / G (=) [ (0) dy < — F)dy S -
ly|<Ro/2 || ly|<Ro/2 |z|

for |x|>Ro. In the last step, we used the fact that f,<Q2™! and the uniform bound
1Qsllat2<1 together with Holder’s inequality to obtain that

/ IR AL (e )
Yy|x o

This completes the proof of Lemma 5.11. O
We are now in the position to derive the following key fact.

LEMMA 5.12. Let {s,}52; C[s0,5+) be a sequence such that s,—s.. Furthermore,
we suppose that Qs =Qs, (|z|)>0 are positive functions. Then (after possibly passing to

a subsequence) we have that
Qs, = Qx in LAR)NLT2(R)  and A, — A,
where A >0 and Q.=Q.(|z|)>0 satisfy
(—A)" Q:+X.Q.—QT =0.
Moreover, we have the following estimates on the Morse index:
Hminf A even (L n) 2N even(Ls ) 21,

n—oo

where Ly = (—A)""+ X, —(a+1)QF and L, .=(—A)* + X, —(a+1)Q¢ denote the lin-

earized operators associated with Qs, and Q., respectively.
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Remarks. (1) One key step in the proof of Lemma 5.12 will be to establish strong

oo

convergence of {Qs, }°°; in L?(R). Here, the pointwise decay bound from Lemma 5.11

will guarantee this fact. Note that the (immediate) uniform decay estimate

Qs, (@) S |71/

(see the proof of Lemma 5.11) is not sufficient to conclude strong convergence of {Qs, 152,

in L?(R). Generally speaking, the gain of relative compactness of {Qs, }22; in L*(R) is

due to the fact that we can derive a better uniform decay estimate of the form
Qs,, (|z]) S l= 71,

which is square-integrable at infinity.

(2) By bootstrapping arguments, we can derive strong convergence of {Q }°2  in
H?3+(R), once strong convergence in L*(R)NL**?(R) is known. However, we do not
need this refinement and hence we omit its proof.

(3) Note that we do not claim nor need uniqueness of Q,=@Q.(|z])>0 at this point.

Proof. Define the sequences {Q,,}2; with Q,=Qs, and {\,}52, with A\,=X;, .

First, by combining Lemmas 5.5 and 5.6, we obtain the uniform bounds \,~1.
Thus, after passing to a subsequence, we may assume that A\, — )\, with some positive
limit A, >0.

From Lemmas 5.5 and 5.6 we have the a-priori bound ||@Qp | msn S1. Since s, >so,
this implies in particular that ||@Qy, | ms0 <1 holds. Hence (after passing to a subsequence)
we may assume that @, —Q, weakly in H%°(R) and, by local Rellich-Kondratchov com-
pactness, we deduce that Q,, = Q. in L?

i o(R). To upgrade this fact to strong convergence

in L?(R) itself, we recall that Lemma 5.11 implies the uniform decay estimate
1
|Qn ()] < 2l for || > Rp and n>1, (5.28)

where Ry>0 is independent of n. Using this uniform decay, we easily derive strong
convergence of {Q,}%; in L?(R). Indeed, let £>0 be given. Choose R.> Ry so large
that [, p |z| 72 dr<e? and Jiei>r. |Q.]? dz<e?. Since moreover Q,—Q. in L (R),
there exists ng>1 such that flxléRs \Qn—Q*|2dx<52 for n>ng. Using the pointwise

bound (5.28) and the triangle inequality, we thus conclude that

[Qn—Qxllz2®) <|Qn—QullL2(2|<r) T 1Qn—QullL2(je)>R.) S€

for all n>ng. This shows that Q, — Q. strongly in L?(R).
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In order to see that Q, — Q. strongly in L**2(R), we first recall the uniform bound
|Qn o0 S1. Using the condition ov<amax(so) and Sobolev inequalities, we deduce that
|Qnllp <1 for some p>a+2 (with p<2/(1—2s¢) if so<31). Thus, by Holder’s inequality,
we deduce that Q,,— @, in LoT2(R) as well.

Using now the convergence properties of {Q,}22; derived above, we conclude that
the limit Q. € L?(R)NL*T2(R) satisfies the equation

(_A)S*Q* +)\*Q*_Q$+l =0. (529)

Note that Q,=Q,(|z|)>0 and Q,,—Q. in L?(R), which implies that Q.=Q.(|z|)=0.
Furthermore, Q,, —@Q, in L%2(R) and ||Qn||as2=]Qo|lar270 for all n€N. Hence Q. #0
as well. Finally, we deduce Q. (x)>0 by noting that Q.= ((—A)* +\,)"1Q%*! and using
the positivity of the integral kernel of the resolvent ((—A)%*+\,)~1; see Lemma A.4.

It remains to show the claimed estimate for the Morse index of L, , in the sector of
even functions. Consider the sequence {L, ,}22; of self-adjoint operators defined in the
lemma. Note that ||Q,| g0 <1 and Q, —Q, in L?(R). Then, by adapting the proof of
Lemma 5.8, we deduce that @, —Q, in LP(R) for some p>1/2s9>1/2s,. In particular,
this implies that L, ,— L, . in the norm-resolvent sense. Since the Morse index is lower
semi-continuous with respect to the norm-resolvent topology, we conclude that

lim ianf,even(LJr,n) 2 Nf,even(LJr,*)-

n—o0

Furthermore, an elementary calculation shows that

(Qu, Ly Q)= —oz/]R Q. |2 dx < 0.

Hence, by the min-max principle, we conclude that L, . acting on L2 . (R) has at least

one strictly negative eigenvalue. Therefore, we obtain that
Ni,even(LJr,*) P> 1.

The proof of Lemma 5.12 is now complete. O

As one of the main results of this section, we now prove that any maximal branch
(Qs, As) extends to s,=1, provided that @, satisfies some explicit conditions (which in

particular hold true if @, is a ground state).

PROPOSITION 5.13. Let 0<sp<1 and 0<a<amax(so) be given. Suppose that

(Qos Xo) € X* xR,
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satisfies Assumption 5.1 with s=so and A=X\g. Furthermore, assume that Qo=Qo(|x|)
is positive and that the corresponding linearized operator L. o satisfies N_ even(L+0)=1.
Then the corresponding mazimal branch (Qgs, \s)€C([s0,5+); X xR, extends to

s«=1. Moreover, we have that
Qs — Q. in L2(R)NLT2(R) and s — A\
as s—1, where Q.=Q.(|x])>0 is the unique solution of

_AQ* +)\*Q* _Qerl =0,
Qs =Qu(Jz]) >0,
Q. € LA(R)NLO+2(R),

and \.>0 is given by

P Jg 1Qo|* 2 dx 2a/(et4)
T\ R |Plet2de '

Here P=P(|z|)>0 denotes the unique positive even solution in C*(R) that satisfies
—AP+P-P*T =0

with P—0 as |z|—o0.

Remarks. (1) The function P(z) is in fact known in closed form, i.e., we have that

B (o+1)1/2%

B cosh'/? (o)’

where OZ%OA However, this fact has no relevance in the proof below.
(2) Note that A, >0 only depends on a and the quantity [; |Qo|*"? da.

Proof. Let (Qs,Xs)€C*([s0,8+); X*xR,) be the maximal branch with s, € (s, 1].

Let {s,}2%,C[so,5x) be such that s,—s.. Define the sequences {@Q,}52,;CX* and

{22, CR, by @,=0Qs, and A\, =)\, for n€N. By Lemma 5.12 and after passing to a

subsequence if necessary, we may assume that Q,— Q. in L*(R)NL*"2(R) and A\, — .

for some Q. (|z|)>0 and A, >0. For the Morse index of L, .=(—A)* + A, —(a+1)Q% on
even functions, we claim that

N even(Ly +) =1. (5.30)

Indeed, by assumption, by Corollary 5.9 and Lemma 5.12 we have

1 :N—,cvcn(L+,so) =lim ian—,cvcn(L+,n) >N—,cvcn(L+,*) > 1.

n—00
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Next, we shall use (5.30) to deduce that s,=1. Suppose on the contrary that s, <1
was true. Then by (5.30) we can apply Lemma 4.1 to deduce that L, , is invertible on
L2, (R). Hence (Q«, \s)€X xR, satisfies Assumption 5.1. Thus, by Proposition 5.2,
we can extend the branch (Qg, As) beyond s., which contradicts the maximality property
of s,. This contradiction proves that s,=1.

By Lemma 5.12, Q.=Q.(|x|)>0 solves the non-linear equation
—AQ.+NQ.—QT=0. (5.31)

Note that, by bootstrapping this equation for @Q.€L*(R)NL*"?(R), we conclude that
Q.€ H*(R). Using this fact, we deduce that in fact Q,€C?(R) holds. Now we recall the
well-known fact that —AP+P— P*T1=( has a unique positive solution P=P(|z|)>0 in
C?(R) with P—0 as |x|—o0; see the remark above. By a simple scaling argument, we
infer that

Q. (z) =\ P\ x). (5.32)

Furthermore, since [, |Qn|* ™2 dz= [3 |Qs,|*T? dz for all n>1 and Q,,—Q, in L*"(R),
we find that

/|Q*|a+2dx:/ |Qsy |22 da. (5.33)
R R

Using now (5.32) and (5.33), we see that A, >0 is given by the formula in Proposition 5.13.
In particular, this shows that the limit A,.>0 is independent of the sequence {s,}>2 .
Furthermore, by uniqueness of @, with A,>0 given, we conclude that the limit @, is
also independent of {s,}5° ;. Hence Qs —Q. in L>(R)NL** ?(R) and A\s— A, as s—1.
The proof of Proposition 5.13 is now complete. O

5.3. Proof of Theorem 2.4

First, we prove uniqueness of ground states and we argue by contradiction as follows.
Let 0<s9<1 and 0<a<amax(So) be given. Recall our definition of the (real) Banach
space X of real-valued and even functions in L?(R)NL*T2(R); see (5.2).
Suppose that Q=Qo(|z|)>0 and Qu=Qq(|z|)>0 are two ground states for problem
(1.2) such that Qogé@o. First, we observe that we always have

/|Q0|“+2dx=/|@o|“+2dx. (5.34)
R R

Indeed, from Lemma 5.4 we find that Qo€ H*°(R) satisfies the Pohozaev idenitites

1 2 Asg +2 1/ /2, 12 bs, / +2
— s — 20 o - —A)%0 — S0 «@ ,
5 ] 1QuPdr =22 [ 1@l de and 5 [ -8y 2 QuP de= 25 [1Quf* 2 da
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where as, =(2s9—1)/4s0+1 and bs, =« /4s9. Moreover, by assumption, the ground state
Qo€ H?®°(R) optimizes the interpolation estimate (1.4). Thus, we also find that

a/4so a(2s0—1)/4s0+1
[arsar—con(ficarass ([l
R R R

with Cy s, >0 being the optimal constant for (1.4) when s=sy. Combining now the last
three equations, we conclude that [, [Qo|**? dz=f(a, s0), for some function f(a, so) that
only depends on « and sg. By repeating the same arguments for the ground state @Sm
we thus deduce that [, |Qo|**? dz= [, |Qo|**? dz holds.

Next, by Theorem 2.3, we see that both Qo€ X* and @0 € X satisfy Assumption 5.1

with s=sg and A=1. Hence, by Proposition 5.13, there exist two global branches
(Qs, Xs) €C ([50,1); X*xR,) and  (Qs,As) €C ([50,1); X xR,),

which solve equation (5.1) and we have (Qs,, Aso)=(Qo, 1) and (Qsy, Asy)=(Qo, 1). Note
that, by the local uniqueness stated in Proposition 5.2, the branches (Qs, As) and (@57 5\5)
cannot intersect. Moreover, by Proposition 5.13, we have the following facts.

e Q,—Q. in L2A(R)NL*T2(R) and A\;— A, as s— 1.

e Q.—Q, in L2R)NL*T2(R) and A, — A, as s—1.

Here A, >0 and A, >0 are given by the formula in Proposition 5.13. Furthermore, the
functions Q. =Q.(|z|)>0 and Q,=Q.(|z|)>0 are the unique even and positive solutions
in L2(R)NL**2(R) of the non-linear equations

_AQ*‘F)‘*Q*_Q?H:() and —A@*+5\*@*—@f+1=07

respectively. However, by Proposition 5.13 and equation (5.34), we deduce that A=A,
which implies that

Q.=Q.,

due to the uniqueness result for the limiting equation as stated in Proposition 5.13. Next,

we remark that @), has a non-degenerate linearized operator

2

L.——%
* dz?

+A—(a+1)Q5;

see, e.g., [11]. Hence, we can invoke an implicit function argument around (Q., As) to
construct a locally unique branch (Qg, As)€C((1—6,1]; X*x R, ), with some § >0 small,
such that

(_A)SQ5+/\SQ3 _Q?Jrl = 07
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and (Qs, As) is the unique solution for s€(1—4, 1] in the neighborhood
N={(Q,\) e X“XR, : [|Q—Qul|xo+|A=Ai| <&},

where >0 is a small constant. Since Qs—@Q, and Qs—Q, in L2(R)NL*2(R) and both
Ae— A, and Ag— )\, as s—1, we conclude that the branches (Qs, As) and (@8,5\5) must
intersect at some s€[sg,1). But this is a contradiction to the local uniqueness of the
branches (Qs, As) and (@s, 5\3), as given by Proposition 5.2. This proves uniqueness of
ground states as stated in Theorem 2.4.

Finally, we establish uniqueness of optimizers for the Gagliardo—Nirenberg inequality

(1.4). Here we simply note that, by rearrangement inequalities, we have
JH (") < TP (v), (5.35)

where v*=v*(]z|) >0 denotes the symmetric-decreasing rearrangement of ve H*(R). By
[16] we see that strict inequality holds in (5.35), unless v(z) equals v*(|z|) up to a complex
phase and spatial translation. Since v minimizes J*“ and so does v*, we deduce that
v*=v*(|x|) >0 solves the corresponding Euler-Lagrange equation

(=A)*0* + " —p(v*)* T =0,

with some positive constants A>0 and ©>0. By a simple rescaling argument and unique-
ness of the ground state @=Q(|z|)>0, we see that v*(|z|)=aQ(b|x|) for some constants
a>0 and b>0.

The proof of Theorem 2.4 is now complete.

Appendix A. Some uniform bounds

In this appendix, we derive some uniform bounds (with respect to s) for the heat kernel
o—t(=2)°
uniform bounds for the resolvent ((—A)®+ )7L,

Although many of the following bounds can be directly inferred from the literature

with 0<s<1. Moreover, as a a direct consequence, we obtain corresponding

for each 0<s<1 individually, we were not able to find a reference which yields the desired
bounds in a uniform fashion for sg<s<1 with sq>0 fixed. Also, we mention that it is
straightforward to generalize the following arguments to any space dimension. However,
due to notational convenience, we have decided to focus on the 1-dimensional case in
what follows.

Consider the heat kernel e *(=2)" on R with 0<s<1. That is, we consider the
convolution operator with convolution kernel given by

PO ()= 2i / e HE e it g (A1)
R

™
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where t>0 is a parameter. Note the scaling property
P (z,t)=t"Y2pE) (17125 1) for z€R and > 0.
Moreover, it is obvious that P()(x,t) is an even function of 2. We first record the

following known (but not completely obvious) positivity and monotonicity result.

LEMMA A.1. Let 0<s<1 and t>0 be fized. Then
(s) d (s)
PY(x,t)>0 for zeR and d—P (z,t) <0 for x>0.
x

Proof. We give the following (fairly simple) proof, which mainly rests on Bernstein’s
theorem about the Laplace transform.

First, by the scaling property of P(S)(x, t), we may assume that t=1 holds. Now we
consider the non-negative function f(F)=FE?* on the positive real line (0, c0). Using that
0<s<1, it is easy to see that f'(E) is completely monotone (i.e., we have (—1)" f(")(E) <0
for all n€N). This fact, in turn, implies that the map Erse~f(E) is completely monotone

as well. Hence, by Bernstein’s theorem, we infer that
oo
10— [ ()
0

for some non-negative measure py depending on f. Setting E=|¢|* and recalling the
inverse Fourier transform of the Gaussian e~ 71¢ |2, we obtain the following “subordination

formula” given by
>~ 1 2
PG ,1:/ — e T A2
@ D)= [ e (r) (A2)

with some non-negative measure s >0 and ps7#0. From this formula we readily deduce
that P(*)(2,1)>0 for z€R and

d

dx

P (z,1)<0 for z>0.

As remarked above, this yields the desired result for all ¢>0. O
Next, we derive the following pointwise estimate for P(*) (¢, z).

LEMMA A.2. For 0<sp<1 fized, we have the pointwise bound
P (z,t) < Cmin{t~Y?* x|~}

for zeR, t>0 and sg<s<1. Here the constant C'>0 depends only on sg.
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Remark A.3. By a classical result in [8], we can obtain the following bounds

A s B
W<P( )(x,t=1)<W for |z| >1,

where the constants A>0 and B>0 depend on s. However, the arguments given there do

not provide any insight on how to obtain uniform decay bounds with respect to s>s¢>1.

Proof. First, we easily obtain the bound

PO (xz,t) </

e~ HEP ge = lp <1>t_1/25 <OtV
R s \2s

with some constant C'>0 depending only on sg. Furthermore, integration by parts yields

that g
P (,t =—i/(et|§|2s>e”5d .
@i=-i | (% ¢

Hence, we find that

|:EP(S)(:E,t)|</25t\£|2sfle*t‘§‘2s dfz/e*‘"l du=2,
R R

which completes the proof. O

Now, we consider the kernel for the resolvent ((—A)*+X)~! on R with A>0. By

functional calculus, we have the general formula

ﬁ = /000 e Me =R gy (A.3)
We have the following properties of the integral kernel associated with
b
(A +X

LEMMA A.4. For 0<s<1 and A>0 set

1 1 .
_ —ix
Gs7,\(x)——2 / |€|2s )\e dx.

Then the following properties hold:
(i) GsA€LP(R) for 1<p<oo with 1—1/p<2s.
(ii) GsaA(z)>0 for z€R and G x(x) is an even function which is strictly decreasing

(iii) For 0<so<1 fized, we have

1/p
p (1-1/p)/2s—1 1 1
s < —_— A I'(1- 1—-
1Gaally C(p_1> oM G

for so<s<1 and 1<p<oo with 1—1/p<2s. Here the constant C>0 only depends on sq.
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(iv) For 0<so<1 fized, we have the pointwise bound

C

0 < G37)\(l’) < m,
for |x|>0 and so<s<1, where the constant C'>0 only depends on sq.

Proof. As for property (i), this will clearly follow once we have deduced that (iii)
holds. To see that (ii) holds, we simply recall formula (A.3) and use the corresponding
properties of P(*)(t,x) in Lemma A.1. To prove (iii), we note that (A.3) yields

1Garlly < / PO (- 1), dt.

From Lemma A.2 we conclude that

1/p 1/p
||P(5)(~,t)||p<C(/ 1—P/2s der/ |z| P dm) gc(p) t=(1=1/p)/2s
|| <t1/2s || >1/2s p—1

with 1<p<oo and where C'>0 only depends on sg. A straightforward combination of
these bounds yields the desired estimate, provided that 1—1/p<2s holds.

To establish the pointwise bound stated in (iv), we simply use (A.3) in combination
with Lemma A.2. O

We conclude this section by deriving a uniform bound for the optimal constants

Ca.s>0 in the Gagliardo-Nirenberg inequality (in d=1 dimension)

a/ds a(2s—1)/4s+1
[z as< o ([ 1-arpean) ([ 1) ,
R R R

where 0<s<1 and 0<a<amax(s). We have the following uniform bound.

LEMMA A.5. Let O<a<oo be given. Then there is a constant K,>0 such that
Co,s <K, for af2(a+2)<s<1.

Proof. Let sp=a/2(a+2) and note that 0<so< % By Sobolev inequalities, we have
£ llaga <K || (=A)*0/2 f||5 for some constant K >0 depending only on ov. Next, we use that
oH<OHY?+(1-0)0" (=9 for any non-negative operator H>0 and any real numbers
0>0 and 0<f<1. Evaluating this operator inequality on a function f and optimizing
with respect to p, we find that

(FHFY < (F,HY £ #1207,
Given 5>s0, we apply this to H=(—A)% with §=s0/s. This yields
[ Fllass < KN (=0)"2 1l < KN (=) £ £13,

whence the result follows with K, =K+2. O
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Appendix B. Regularity, symmetry and monotonicity

Let 0<s<1 and 0<a<amax(s) be fixed throughout this section. We consider (not nec-

essarily real-valued) solutions @=Q(x) in the distributional sense of the equation
(A Q+AQ-Q|*Q=0, (B.1)

where A>0 is given. Again, we could assume that A=1 by a rescaling argument, but we
keep A>0 explicit below.

We start with a simple regularity result used in §5.
LEMMA B.1. If QeL?(R)NLY2(R) solves (B.1), then Q€ H*(R).

Remark. Formally, this regularity result follows from integrating (B.1) against Q.
However, this argument is not legitimate, since we only assume that (—A)*Q€ H~2*(R)

a priori.
Proof. Using that Q=((—A)*+\)71|Q|*Q for Qe L*(R)NL**2(R), we deduce that

(~A)"

I-aral = S50

(= A)5/2+1

Now, we invoke Lemma A.4, part (iii), with sozés and use Young’s inequality. Indeed,
since 14+3=1/p+(a+1)/(a+2) implies that 1—1/p=a/(a+2)<2s as a<amax(s), We
deduce that

H()S/QH NS H|Q| QH(a+2)/(a+1 ||Q|gi%

Therefore Q€ L?(R) satisfies ||(—A)*/2Q||2<oo and hence Q€ H*(R). O
Next, we proceed with the following improved regularity result.
LEMMA B.2. If Qe H*(R) solves (B.1), then Q€ H*T(R).

Remark B.3. If a>1 is an integer in equation (B.1), it is easy to see that Q€ H*(R)
for all k>1. See also [22] for an analyticity result of Q(z) in this case.

Proof. First, we remark that Q€L (R). Of course, this fact immediately follows
if s>%, due to Sobolev inequalities. To see that Q€ L>(R) also when 0<5<%, we can
use the LP-bounds for the resolvent ((—A)*+\)~! derived in Lemma A.4. Then, by
iterating the identity Q=((—A)*+\)7|Q|*Q sufficiently many times, we conclude that
Qs <oo. (Alternatively, we could use that Q*€ K and use the remarks in §3 to infer
that Qe L>°(R) holds.)
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Given Q€ L*(R), we can now show that Q€ H?*T1(R) as follows. Since Q€ L*(R),
it remains to derive the bound |[(—A)**1/2Q||2<oco. We treat the cases s> and 0<s<3

separately as follows.

Case s> % As usual, this case is straightforward to handle. Indeed, we notice that

(=A
(= )

Hence we have Q€ H?*(R) and in particular Q€ H*(R), since s}% by assumption. Next,

1(=A) Qs —H Qr° QH < 1Q1°@l, 0 1QI% QI < .

we proceed to find that

( A)s+12
(—A)+

where we used that |V(|Q|*Q)|<(a+1)|Q|*|VQ| a.e. in R. Thus, we have shown that
QeH**1(R), provided that s>1 holds.

||<—A>S+l/2@||2=H e QH e [VIQPQ, £1 Q1% 1VQl: < oo,

Case 0<s< % First, we recall that the well-known identity

201
Iy =2 LG [ MO-uE
N el

for any 0<o<1. From this we conclude that

1(=2)72(1QI“Q)l2 Sa QNI %N (=2)7/2Q]l2, (B.2)

where we use the pointwise inequality

1QI%(2)Q(2) ~ Q1" (%) Q(y)| < @ max{|Q|*(x), |Q|* () }|Q(x) - Q(y)|-

Recall that 0<5<% by assumption, and let N>2 be the unique integer such that
1/(N+1)<s<1/N. By using estimate (B.2) and Q€ L*(R), we conclude that

_ s/2(__ ks/2
e Snana AR Q:

SksAa IIQII‘o’oII(—A)’“/QQllz Sk [(=8)"/2Q]|2

I(=2)EFD2Q)|, = H

for k=1,..., N. By iteration and since Q€ L?(R), we thus obtain that

1Qs || gv+ve Ssksor Qs |l mrs < 00

Since (N +1)s>1, we deduce that Q€ H'(R) holds. Given this fact, we can now conclude
that @€ H?***1(R) in the same fashion as done above for s>1.

The proof of Lemma B.2 is now complete. O
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Next, we turn to symmetry and monotonicity results about solutions of (B.1). In-
deed, by adapting the recent moving plane arguments developed by L. Ma and L. Zhao
in [26] for the non-local Pekar—Choquard equation, we can derive the following symmetry

and monotonicity result.

LEmMA B4, If QeH*(R), with Q>0 and Q#0, solves (B.1), then we have

Q(z) = Q(|lz—wol)

with some zo€R and the function Q(r) satisfies Q(r)>0 and Q'(r)<0 for r>0.

Proof. To deduce Lemma B.4 with the slightly weaker statement that @(r) is (not
necessarily strictly) decreasing, we can directly apply the moving plane arguments devel-
oped in [26]. More precisely, by following [26, §5], we only have to verify that the kernel
K=K (z—vy) for the resolvent ((—A)*+1)~! on R satisfies the following conditions:

(1) K(]z|) is real-valued and even;

(2) K(]z])>0 for z€R;

(3) K(|z|) is monotone decreasing in |z|.

Indeed, we have all these facts about K(z—vy) due to Lemma A.4, which is based
on the properties of the heat kernel e t(=2)" on R.

Finally, we show that Q’'(r)<0 for 7>0. Without loss of generality, we may assume
that 2o=0, and hence Q(z)=Q(|z|)>0. By differentiating (B.1) with respect to z, we
obtain

L, Q/ =0,

where
L. = (~A) +1—(a+1)Q",

Note that Q'€ L?4(R) and Q' (z)=Q' (r)<0 for z=r>0, since Q(r) is monotone decreas-
ing. In view of Lemma C.3 applied to L, we deduce that Q'€ L2, (R) is the ground state
eigenfunction of L, restricted to L2,4(R). Thus we either have Q'(z)<0 or Q'(z)>0

for >0, where the latter alternative is clearly ruled out. Hence Q'(z)=Q'(r)<0 for
r=r>0. O

Appendix C. The Kato class K; and
Perron—Frobenius theory for H=(—A)*4+V

In this section, we collect some basic results about fractional Schrédinger operators

H=(-A)*+V acting on L?(R).
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Although most of our discussion generalizes to higher space dimensions d>1, we shall
content ourselves with the 1-dimensional case. In §3, we defined K, as the Kato-class
with respect to (—A)?; see Definition 3.1. In particular, the condition V € K guarantees
that the heat semi-group e ¥ maps L?(R) to L>(R)NC?(R) for t>0. In particular, any
L?-eigenfunction of H is bounded and continuous. See [10] for more details.

First, we derive the following sufficient condition in terms of LP-spaces for a potential
V to be in K. (Although the following result may be known in the literature, we were
not able to find a suitable reference.)

LEMMA C.1. Let 0<s<1 and V:R—R be given. Then the following holds.
If 0<s<1i and VELP(R) for some p>1/2s, then VEK,. If 1<s<1 and VeELP(R)
for some p>1, then VeK,.

Proof. In view of Definition 3.1, we have to show that

lim ||((~A)*+E) =0. (C.1)

Jim N

Using that

(-ay 4Byt = [Pt
0

for >0 and Holder’s inequality, we obtain
||((7A)S+E)71|V|HL°°4>L°° < HV”p/O eiEtH@it(fA)SHLPﬂL“ dt.

Next, let P(*)(x,t) denote the kernel of e t(=2)" on R. By Young’s inequality, we have
e * =AY Loy poe || P (-, 8)]|4 With 1/p+1/g=1. Next, we find that

1/q
t4
POt <C/ t=1/%q / —d <Ot~ (e 2sq
| (5 t)llq o|<tt/2n T+ i se1/20 [2]10F29) v

where the constant C'>0 only depends on s. Indeed, this follows from the simple bound
P (z,t)<Ct=1/25 for all z€R from Lemma A.2, combined with the s-dependent bound
stated in Remark A.3 and the scaling property P®) (z,t)=t=1/2s P(s)(t=1/253 1) for t>0.
Since 1/p=(q—1)/q, the previous bound for ||[P(*)(-,¢)||, implies that

(=AY +E) V|| oy o <C|\V||p/0 e PR dt,

From this we deduce that (C.1) holds if p>1/2s for s<3, or if p>1 for s> 1. O

As a next result, we show that fractional Schrodinger operators H=(—A)*+V enjoy
the following Perron—Frobenius property.
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LEMMA C.2. Let 0<s<1 and consider H=(—A)*+V acting on L?(R), where we
assume that VEK,. Suppose that e=inf o(H) is an eigenvalue. Then e is simple and
its corresponding eigenfunction =1 (x)>0 is positive (after replacing ¥ by — if nec-

essary).

Proof. By Lemma A.1, the operator e *(=®)" acting on L?(R) is positivity improving
for t>0. By this, we mean that if f>0 and f#0, then e~ *(=2)" £>0.
Next, we consider H=(—A)*+V acting on L?*(R). Since V€K, it follows that

S

V is an infinitesimally bounded perturbation of (—A)*. Hence we can apply standard
Perron—Frobenius-type arguments (see, e.g., [32]) to deduce that the largest eigenvalue
of e7*H is simple and its corresponding eigenfunction strictly positive. By functional
calculus, this fact is equivalent to saying that the lowest eigenvalue of H is simple and

has a positive eigenfunction. O

LEMMA C.3. Let H=(—-A)*+V be as in Lemma C.2. Moreover, we assume that
V=V (|z|) is even and let Hoaa denote the restriction of H to L2,4(R). If e=inf o(Hoaq)
is an eigenvalue, then e is simple and the corresponding odd eigenfunction =1)(x)
satisfies (x)>0 for x>0 (after replacing v by — if necessary).

Proof. This result follows by a slight twist of standard abstract Perron—Frobenius
arguments.

Let (—A)3,, denote the restriction of (—A)*® to L2,4(R). By odd symmetry, we find
that e *(=A)oaa acts on feL2,,(R) according to

(D))= [ Kinlo,)f(0) dy (€2)

0

Here the integral kernel K, s(z,y) is given by
Kt,s(xay):P(S)(zfyat)*P(S)(z‘i’y,t)a (C?’)

with P()(x,t) denoting the Fourier transform of e~tE™ in R. Now, we claim that
Ki(x,y)>0 holds for 0<z,y<oo. Indeed, recall that P(*)(x,t) is even in z, positive
and strictly decreasing with respect to |z|; see Lemma A.1. Hence if we write z=z—y
and z'=z+y for z,y>0, we easily check that |z|<|z’| holds. Therefore we deduce that
K, (x,y)>0 is a strictly positive kernel on L?(R,). Hence e~*(=®)saa can be identified
with a positivity improving operator on L?(RR,).

Now, we consider Hoqa=(—A)344+V with V=V (|z|) even. Using standard Perron—
Frobenius arguments (see the proof of Lemma C.2 and the reference there), we deduce
that the largest eigenvalue of e *Hedd on L2(R,) is simple and its corresponding eigen-
function satisfies ¥o=1o(x)>0 for £>0. By functional calculus, this fact now implies
Lemma C.3 about Hyqq. O
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Appendix D. A topological lemma

The following auxiliary result was needed in §3.

LEMMA D.1. Let x1<zo<x3<m4 be real numbers. Suppose that v,7:[0,1]—R2 are
simple (i.e. injective) continuous curves such that

(i) 7(0)=(21,0), 7(1)=(w3,0) and ~(t)€R2 for t&(0,1);

(i1) 5(0)=(22,0), 7(1)=(24,0) and A(t)€R2 for t€(0,1).

Then v and 7 intersect in R2, i.e., we have y(t)=5(t.) for some t,t.€(0,1).

Proof. We define the continuous curve 7: [0, 1] —R2 by setting

A()._{y(Qt) for 0<t< 3,
L ((2t—1) (21 —x3)+23,0)  for F<t<l.

Note that 5(0)=7(1)=(z1,0). Clearly 7 is a Jordan curve (i.e., a simple and closed
continuous curve) in R2. By Jordan’s curve theorem (see [27] for a simple proof based on
Brouwer’s fixed point theorem), the set A=R?\7([0,1]) has exactly two open connected
components in R%. Let us denote these two components by B and C in what follows.
Moreover, we have that B, say, is bounded, whereas the component C is unbounded.
Finally, the Jordan curve theorem states that 5(]0, 1])=0B=0C holds. Next, we consider
the sets

Ny (29) ={(z,y) €R?: \/(z—22)2+y2 <& and y >0},
N.. (22) = {(2,5) €R?: /z—22) 4y <= and y < 0},

where £>0 is given. Since x;<wze<zz by assumption and by construction of 7, we
have that (x2,0)€7([0,1]). Suppose now that (%, 7)€ N, _(x2), where £>0 is arbitrary.
Clearly, we can connect the point (Z,7) with (z4,0) by a continuous curve in the lower
half-plane without intersecting the Jordan curve 5. Furthermore, it is obvious that (x4, 0)
belongs to the unbounded component C' (by connecting it to (24, y) with y— —oo without
intersecting 7). Hence, we conclude that N, _(x2)CC for any £>0. On the other hand,
we recall that 0A=5([0,1]). Since N, _(z2)NB=g for all £>0, we find that N, .(z2)CB
for some £>0 sufficiently small.

Now we conclude as follows. First, we note that N, ;(x4)CC for e>0 sufficiently
small, since C' is open and (z4,0)€C. Second, from 7(0)=(z2,0) and ¥(1)=(z4,0) and
by continuity, we deduce from 5(t)€R? for t€(0,1) that

Y(t) € Ny c(x2) C B for t close to 0 and F(t) € N. . (x4) CC for t close to 1

for some >0 sufficiently small. Hence there exists t.€(0,1) such that 5(¢.)€7([0,1]).
But since J(t.) lies in the upper half-plane R?, we actually deduce that ¥ must intersect
v in R2. 0
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Appendix E. Regularity of F

We define the map

1 «
PN = | TR (E.1)

QN85 —co
for Qe L?(R)NL*T2(R), so<s<1 and A>0. Here co€R is some fixed constant.

LEMMA E.1. Let 0<so<l and 0<a<amax(so). Consider the real Banach space
Xo=L2(R)NL*"2(R) equipped with the norm |- ||xo=|" |2+ |laxe. Define F(Q,\,s)
as above. Then the map F: X*xR, x[s9,1) = X*xR is C*.

Proof. We start by showing that F: X* xR, X[sg, 1) > X*XR is well defined. From
Lemma A.4 together with Young’s and Holder’s inequalities we find that

1
A Q| S g W[ E.2
where 1<p<oco and 1<g, r<oo satisty
1 1 1 1
*+177:aJr and 1—-<2s. (E.3)
q p r p

In particular, if we choose r=a+2 and ¢=2, we find that

<s <2S7
1[ (:K )

since a< max($o0). Furthermore, by setting r=a+2 and g=a+2, we see that

1—1:L <250 < 2s,
P a+2
due to @ <amax(So). Hence we can apply (E.2) to conclude that F'(Q, A, s) is well defined.
Next, we turn to the Fréchet differentiability of F. (Recall that we restrict to real-
valued functions.) First, we consider the second component of the map F=(F}, F»),
which is given by

F(Q, A, s):=|Q|%%3 —co,

with some fixed constant co€R. It is easy to see that F5(Q, A, s) is Fréchet differentiable

with
or; or,

%—(O{+2><|Q|OLQ,>, a—o and gzo,
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where (f,-) denotes the map g—(f,g). Moreover, it is straightforward to check that
OF»/0Q depends continuously on @ with respect to the topology in X =L?(R)NL*"2(R).

Let us now turn to the Fréchet differentiability of the first component

1
Fl(Q,)\,s) :Q—WKNQQ
We claim that
aFl B 1 o 8F1 7; a
50 =A@l B = (Capplee

and
OF1 _ (=A)log(—=A) .
ds  ((—A)s+N)2 QI"Q-

Indeed, it follows from standard arguments (e.g., Sobolev embeddings and Hélder’s in-
equality) combined with (E.2) that the derivatives 0F}/0Q, 0F;/0X and 0F;/0s exist
and are given as above. For instance, to prove this claim for 0F; /0s we argue as follows.
Let (Q, A\, s)€X xR, x[sg, 1) be fixed and suppose that s+h€[sg, 1) with heR and h#0.
We have to show that

or

Fi(Q A s+h)—Fi(Q A 5) ==

(Q, A, s)h+r(h),

where |h|71r(h)—0 in X as h—0. To show this fact, we consider the function

f(&s): for £€R and s € [sg, 1).

1
REEER)

An elementary calculation yields

2s 2
of __lePlogleP

_ *f _le* (log [€]%)?  [¢]** (log [¢]*)?
9s (&l +A)? 0s? (I€[7+2)? (€25 +A)2

In particular, for any %so >0>0 and s>sg, we have the following bounds:

of |€[35 T +1 1

a <s 07<as ATel9e —0 1 10

s | > (P42 ¥ oo 11

an |£‘45+0+1 |£|28+0‘+1 - 1

952

< .
ST (€3 T (€PN ST g 41

Next, by Sobolev inequalities, we obtain

lull xo Sa ||((—A)SQ/2+1)U||2 with s, =

2(a+2)
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Note that s, <sp since a<amax(so). Now, by Plancherel’s identity and Taylor’s theorem
applied to f(&, s) and estimate (E.2), we deduce (with 0F;/0s given above) the following

estimate:

Fl(Q,)\,S+h>—F1(Q,)\,S) 8F1

@)

XO(
1
(s +e /2+1

(= +1) 9L f

Fe,s)(el e+ 1) ]H

<a h? sup
£ER

< h |£|280‘+0+1 a+1 < h2 a+1
~AN,S0,0 Sup |§|250 U+1 ||Q||a+2 OGN, 80,0 ||QHX‘1 )

with some small constant o >0 such that sg>s,+20 holds, which is possible since s4 <.
Also, we used above that ||((—=A)E=F9)/24+1)"1Q|*|Ql||,Ss.  |1QIISTS by (E.2). Thus
we conclude that OF;/0s exists and is given as claimed.

Let us now turn to the continuity of 0F;/0Q, OF;/OX and OF;/0s. Again, this
follows from standard arguments in combination with (E.2). For example, to show that
0F1/0Q depends continuously on (Q, A, s), we can argue as follows. Let (Q, A, s)€ X< x
R, X[sg,1) be fixed and suppose that >0 is given. We have to find 6 >0 such that

0
(G @ra-5a@ra)s] <l (£5)

whenever [|Q—Q||xo+|A—A|+|s—5| <5 and (Q, A, 5) € X* xR, x [s¢, 1). Indeed, by using
(E.4), we see that (E.5) follows if we can show that

(A QI = Ag 51Q1*) fll2 <l fllxs (E.6)

where we set
(—A)=/2+1

Agyi=——~——.
AT (CA) A
Next, we note that Ag’x:A§7A—(>\—5\)B§,)\7X with

(-A)/2+1
Bg,k,}‘\: _ R _ 3 :
(=20 +M((=4)*+A)

Furthermore, we observe that
AAlQI" = AsalQI” = (An = 450)|QI" + A (101~ Q1.
Hence the left-hand side of (E.6) can be estimated as follows

LHS of (E.6) <I+II-+1II,
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where

I=|(Ag—As0) = || A (1Q1*~1Q[*) f]],

and

I = ||(A—X) B;

To estimate I, we recall the bounds for f(&,s) derived above and we find (with 0>0 so
small that so>s,+20) the following bound

1
A)(sa+a)/2+1

1<sup|<f<¢s>—f<s,§>><|s|8a+1><|§|8a+“+1>!H —
£eR

[+ +1
€ =o+1

Sso.aon 8 =3 |Ql|5%all f]lxa

< zell fllxe,

S |5— s|sup( )|Q|| ol Fllase

provided that |s—35|<¢ for some §>0. Here we also used (E.2).

To control II, we choose again >0 so small that sg>s,+o, which yields

(1Q1*~1QI")f

Hrsso,%@)\

(€= + 1) (€[> +1) ‘H
¢eRr 2507+ A

s+a/2+1 9

Sso,a,a,)\ H‘é|a7|Q| ||(a+2)/a”f||(’+2-

Suppose now that 0<a<1. Then“@o‘ Q| ‘<|@ Q| a.e. in R. On the other hand, if
we have a>1, we deduce that |\Q|O‘ Q|| Za (1QI* 1 +|Q|*1)|Q—Q| a.e. in R. Hence,

in either case, we can apply Holder’s inequality to conclude that

min 1
T <o con[@lxe |Q— Qo | fllxca < el ]l xe,

provided that ||Q— Q|| x« <d for some §>0.

Finally, we remark that we readily deduce that

IS0 A=ALIQIE 2l fllare < gell Fllxe

provided that |5\7)\|<5 for some §>0. This completes the proof that 9F; /0@ depends
continuously on (@, A, s).

The arguments that show continuity for the derivatives 0F; /OA and OF5 /s are very
similar to the estimates given above. Therefore we omit the details, and the proof of
Lemma E.1 is now complete. 0
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Note added in proof

Recently, the results of this paper have been generalized to N>2 dimensions by the

authors together with L. Silvestre in [15].
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