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1. Introduction

Throughout this paper, by a Kleinian group we mean a discrete and torsion-free subgroup
of PSL2(C) which is not virtually abelian. By definition, a Kleinian group is geometrically
finite if its action on hyperbolic 3-space has a fundamental domain with finitely many
sides. Equivalently, the Kleinian group Γ is geometrically finite if it is finitely generated
and if the convex core CC(H3/Γ) of the associated hyperbolic 3-manifold H3/Γ has finite
volume. Recall that the convex core is the quotient under Γ of the convex hull of the
limit set of Γ.

It is well known that not all finitely generated Kleinian groups are geometrically
finite. In fact, Greenberg [Gr] proved that certain Kleinian groups, shown to exist by Bers
[Ber] and Bers–Maskit [BM], are not geometrically finite; in [Jø], Jørgensen gave concrete
examples of such groups. The original examples of Greenberg are, by construction,
algebraic limits of sequences of quasi-Fuchsian groups. Bers himself asked if Kleinian
groups isomorphic to a surface group are always obtained by such a limiting process.
This question was later modified by Sullivan and Thurston to cover all finitely generated
Kleinian groups.

Density conjecture. Every finitely generated Kleinian group is an algebraic limit
of geometrically finite groups.

The goal of this paper is to give a complete proof of this conjecture.
We fix from now on a finitely generated Kleinian group Γ. Following Thurston,

let AH(Γ) be the set of all conjugacy classes of discrete and faithful representations
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%: Γ!PSL2(C) with %(γ) parabolic if γ∈Γ is parabolic. A faithful and discrete represen-
tation %∈AH(Γ) is said to be geometrically finite if the Kleinian group %(Γ) is; observe
that any representation conjugated to a geometrically finite one is also geometrically
finite. A sequence {[%i]}∞i=1 in AH(Γ) converges algebraically to [%]∈AH(Γ) if there are
representatives %i∈[%i] and %∈[%] such that for all γ∈Γ the sequence {%i(γ)}∞i=1 con-
verges to %(γ) in PSL2(C). Abusing notation, we will not distinguish between discrete
and faithful representations and the associated points in AH(Γ).

Theorem 1.1. (Density conjecture) If Γ is a finitely generated Kleinian group, then
the set of geometrically finite points in AH(Γ) is dense in the algebraic topology. In other
words, the density conjecture holds.

Continuing with the same notation, let X (Γ,PSL2(C)) be the character variety of the
group Γ. The relative character variety Xrel(Γ,PSL2(C)) is the set of those characters
corresponding to representations %: Γ!PSL2(C) with Tr(%(γ))2=4 for every γ which
is contained in a non-cyclic abelian subgroup. Recall that AH(Γ) is a subset of the
set of smooth points of the relative character variety Xrel(Γ,PSL2(C)) of Γ (see for
instance [Ka]). The algebraic topology on AH(Γ) is induced by the analytic topology
of this variety. It is due to Sullivan [Su2] that the interior of AH(Γ), as a subset of
Xrel(Γ,PSL2(C)), consists of conjugacy classes of geometrically finite representations.
Conversely, every geometrically finite point in AH(Γ) belongs to the closure of the interior
of AH(Γ) by the work of Maskit [Mask] and Ohshika [Oh1]. We deduce hence from
Theorem 1.1 the following result.

Corollary 1.2. If Γ is a finitely generated Kleinian group, then AH(Γ) is the
closure of its interior.

Suppose from now on that Γ is a finitely generated Kleinian group, fix %∈AH(Γ) and
let N%=H3/%(Γ) be the associated oriented hyperbolic 3-manifold. It follows from the
Margulis lemma that for every ε positive and smaller than a certain universal constant,
the Margulis constant, every unbounded connected component of the set of points in N%

where the injectivity radius is less than ε is homeomorphic either to S1×R×(0,∞), or
to S1×S1×(0,∞). In addition, each such component, which we call an ε-cusp of N%,
is a quotient of the interior of a horoball in H3 by a rank-1 or rank-2 abelian parabolic
subgroup of %(Γ). It is due to Sullivan [Su1] that the number of ε-cusps is finite. Let Nε

%

be the complement in N% of all the ε-cusps. It follows from the proof of the tameness
theorem by Agol [Ag] and Calegari–Gabai [CG] that the manifold Nε

% admits a standard
compact core. By this we mean a compact submanifold M⊂Nε

% whose complement is
homeomorphic to a product and such that the inclusion of P =M∩∂Nε

% into ∂Nε
% is a

homotopy equivalence; the pair (M,P ) is a pared manifold.
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We denote by AH(M,P ) the subset of AH(Γ) consisting of conjugacy classes of
discrete and faithful representations of Γ=π1(M) into PSL2(C) with the property that
those elements whose conjugacy classes are represented by loops on P are mapped to
parabolic elements. By construction, % is a minimally parabolic element of AH(M,P ),
i.e. the image of an element is parabolic if and only if its conjugacy class is represented
by a loop in P . In order to prove Theorem 1.1, we will show that that % is an algebraic
limit of geometrically finite, minimally parabolic, points in AH(M,P ).

Each component of ∂M \P is called a free side of the pared manifold; ends of the
manifold Nε

% are in one-to-one correspondence with free sides. Suppose that E is the end
associated with the free side F . We say that E is convex cocompact if it has a neighbor-
hood whose intersection with the convex core of N% is compact. The end invariant of the
convex cocompact E is the point in the Teichmüller space of the free side F determined
by the conformal structure at infinity. The geometry of convex cocompact ends is well
understood by the work of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan and others; we
will refer to this as the theory of quasi-conformal deformations of Kleinian groups.

If the end E is not convex cocompact, then it is said to be degenerate. Every
degenerate end has an associated ending lamination [Ca3]. In other words, the geometry
of E determines a filling geodesic lamination on the free side F . The end invariant of E
is, by definition, its ending lamination.

Canary [Ca3] proved that the end invariants of the ends of Nε
% satisfy the following

two, rather mild, conditions:
(*) If M is an interval bundle over a compact (possibly unorientable) surface S and

N% has no convex cocompact ends, then the projection of the ending laminations to S

has transverse self-intersection.
(**) If a compressible component F of ∂M faces a degenerate end E , then the ending

lamination is the support of a Masur domain lamination. Equivalently, the support of the
ending lamination is not contained in the Hausdorff limit of any sequence of meridians.

Note that by a meridian on a free side F , we mean a simple non-contractible loop
on F which is homotopically trivial in M .

A collection of end invariants for (M,P ), i.e. points in Teichmüller space for some
free sides and filling laminations for others, is said to be filling if it satisfies the two
preceding conditions (*) and (**). A spin-off of our proof of the density conjecture
is that any filling collection of end invariants is in fact the set of end invariants of a
hyperbolic 3-manifold.

Theorem 1.3. Let (M,P ) be a pared 3-manifold. Given a filling collection of end
invariants for (M,P ), there exists a minimally parabolic representation %∈AH(M,P )
and an embedding (M,P )!(Nε

% , ∂Nε
% ) in the homotopy class determined by %, whose
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image is a standard compact core of N% and such that the end invariants of N% with
respect to this standard compact core are the given end invariants in the beginning. Here
N%=H3/%(π1(M)) is the hyperbolic 3-manifold determined by the representation %.

The ending lamination theorem, proved by Minsky [Mi2] and Brock–Canary–Minsky
[BCM], asserts that the manifold N% is determined up to isometry by the topological type
of a standard compact core together with the associated end invariants. As a result, the
hyperbolic 3-manifold N% provided by Theorem 1.3 is unique up to isometry.

Using the same notation as above, assume that F is a free side of (M,P ) and λ

is a geodesic lamination on F . We say that λ is realized in N% if there exist a finite-
area complete hyperbolic metric σ on F and a proper map f : (F, σ)!N which is totally
geodesic on leaves of λ and which, on the level of fundamental groups, induces the same
map as the composition of the embeddings F ↪!M!N%. An important property of the
ending lamination for an end of Nε

% is that it is not realized [Ca3]. Our proof of the density
conjecture basically amounts to proving that in some sense this property identifies the
ending lamination. This is in fact the most important contribution of this work to the
proof of the density conjecture.

Theorem 1.4. Let (M,P ) be a pared manifold and %∈AH(M,P ). Let (M ′, P ′)⊂
(Nε

% , ∂Nε
% ) be a relative compact core of the hyperbolic 3-manifold N%=H3/%(π1(M)) and

φ: (M,P )!(M ′, P ′) be in the homotopy class determined by %. Suppose that λ is a filling
Masur domain lamination on a free side F of (M,P ) which is not realized in N%. Then
φ is homotopic, relative to the complement of a regular neighborhood of F , to a map
φ1: (M,P )!(M ′, P ′) such that

• the restriction of φ1 to F is a homeomorphism to some free side F ′ of (M ′, P ′);
• the end of N% associated with F ′ is degenerate and has ending lamination φ1(λ).

To explain the relevance of Theorem 1.4, suppose that Γ is a finitely generated
Kleinian group as above, %∈AH(Γ) and (M,P ) is a standard compact core for N%. One
can use the quasi-conformal deformation theory and choose a sequence of geometrically
finite elements of AH(M,P ) with standard compact core (M,P ) and so that the end
invariants for this sequence “converge” to the end invariant of N% on (M,P ). Convergence
results for representations in PSL2(C), that start from Thurston’s double limit theorem
and are extended and reproved by what is known as Morgan–Shalen theory, can be
applied to show that a subsequence of this sequence converges to a minimally parabolic
element %′ of AH(M,P ). To prove the conjecture it is enough to show that % and %′

are conjugate, i.e. represent the same point of AH(Γ). This follows form the ending
lamination theorem if there is an embedding of (M,P ) in (Nε

%′ , ∂Nε
%′) as a standard

compact core in the homotopy class determined by %′ and the end invariants of N ′
% and



density conjecture 327

N% on (M,P ) are the same. Previously known results guarantee that for every convex
cocompact end of N%, there is a convex cocompact end of N ′

% with the same conformal
structure at infinity, and also that the ending laminations of degenerate ends of N% are
not realized in N ′

%. The above theorem is needed to show that, for every degenerate end
of N%, there is a homeomorphic degenerate end of N ′

% with the same ending lamination.
Once we know this, results from classical 3-dimensional topology can be used to finish
the proof. The fact about the degenerate ends of N%′ and the above theorem is what
was overlooked previously and is the original part of this article. Non-realizability of an
ending lamination of N% in N%′ can be used to produce a sequence of hyperbolic surfaces
and path-length preserving maps into N%′ whose images exit an end. If one knew that the
maps from these surfaces to a neighborhood of this end was a homotopy equivalence, then
we could prove the required claim for that end. In fact in many cases and in particular
when the free sides of (M,P ) are incompressible, this follows from elementary topological
arguments and therefore the proof of the conjecture in those cases does not depend on
our new results here. In other cases however, one has to rule out the possibility that the
images of these surfaces are “twisted” in some non-trivial way. This is essentially the
main objective of this paper.

Who has proved the density conjecture?

This paper concludes the proof of the density conjecture, but it would have been com-
pletely unconceivable without the proof of the tameness theorem by Agol and Calegari–
Gabai and the proof of the ending lamination theorem by Brock–Canary–Minsky. It
goes without saying that the more classical results of Ahlfors, Bers, Bonahon, Marden,
Sullivan, Thurston and others are also basic. In some cases, the needed compactness
theorems for sequences of representations can be obtained without making reference to
actions on trees; however, in the general case, it seems that there is no way to make
do without using the Morgan–Shalen machinery. In this paper, the needed compactness
result relies directly on the work of Otal and Kleineidam–Souto but we could have chosen
to use the more sophisticated theorem due to Kim–Lecuire–Ohshika. In fact, Ohshika
has given alternative proofs to many of the results in this paper. This list is far from
being complete. However, returning to the question preceding this list, we think that
the appropriate answer is that the two Gastarbeiter who proved the last lemma had
something to do with the proof, but that the proof is certainly not reduced to this last
lemma.
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Alternative approach

Before moving on we should mention that there is a different approach to the proof of
the density conjecture. In [Bro] Bromberg proved Bers’s original conjecture (for groups
without parabolic elements) using the deformation theory of cone-manifolds. Later,
Brock and Bromberg [BB] extended this result to prove that every finitely generated,
freely indecomposable Kleinian group without parabolic elements is an algebraic limit
of geometrically finite Kleinian groups. In their work, Brock and Bromberg avoid using
most of the ending lamination theorem: they only need Minsky’s original result [Mi1].

Bromberg and Souto have announced a complete proof of the density conjecture
using the deformation theory of hyperbolic cone-manifolds and which does not contain
any reference to the ending lamination theorem. Other ingredients of the proof given
in this paper, for example the tameness theorem, are still absolutely crucial. In fact, in
their work, Bromberg and Souto also need some simple consequences of the main new
result of this paper, Theorem 1.4, such as the lack of unexpected parabolic elements.

Plan of the paper

After giving an outline of the proof of Theorem 1.1 in the case where Γ has no parabolics
in §2, we recall in §3 some facts and definitions on pared manifolds; the only result of
which we give a complete proof, Theorem 3.12, is an extension of a well-known result of
Walshausen to the pared setting. In §4 we collect a few facts on hyperbolic 3-manifolds
and on the basic deformation theory of Kleinian groups. In §5 we discuss laminations,
measured laminations, currents and train-tracks. Laminations appear in the two subse-
quent sections as well: in §6 in the context of pleated surfaces and hyperbolic 3-manifolds
and in §7 in the context of small actions of groups on trees. As the reader can see, §§3–
7 of this paper are devoted in one form or another to recalling known facts; our own
contributions are very minor.

In §8 we prove Theorem 8.1 ensuring that certain algebraic limits exist, have the
expected conformal boundaries and where the ending laminations-to-be are not realized.
In §9 we reduce the proof of Theorem 1.1 to proving Theorem 1.4. We also reduce to the
case when the pared manifold in question is a compression body. The next two sections
are devoted to the proof of Theorem 1.4 in the case of compression bodies. At this point,
we will have proved all the results announced in the introduction.

In a final section, we add a few remarks and observations on other related results
that we can prove using the same strategy.
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2. Outline of the proof of Theorem 1.1

Let Γ be a Kleinian group and %∈AH(Γ). If the associated hyperbolic 3-manifold N%=
H3/%(Γ) has finite volume, then it follows from the Mostow–Prasad rigidity theorem
that AH(Γ) consists of two points, namely {%, %̄}, where the hyperbolic manifold N%̄ is
isometric to N% via an orientation-reversing isometry. In particular both % and %̄ are
geometrically finite and we have nothing to prove. From now on we assume vol(N%)=∞.

It is a well-known feature of the deformation theory of Kleinian groups that most
results which are true in the absence of parabolic elements are also true, at least in some
form, in the general case. In fact, the proofs are often the same; however, the presence of
parabolic elements causes additional technical difficulties. For the sake of readability, we
will suppose until the end of this section that the Kleinian group %(Γ) has no parabolic
elements. Using the notation introduced in the introduction, this means that Nε

% =N%

and that the pared locus P of the standard relative compact core (M,P ) is empty.

Recall that ends of N% are in one-to-one correspondence with boundary components
of M , the standard compact core of N%. In order to find a suitable sequence {%i}∞i=1, we
start choosing a convex cocompact representation %0∈AH(Γ) with N%0 homeomorphic
to the interior of M . The existence of such a representation %0 is a consequence of
Thurston’s hyperbolization theorem. It follows from the quasi-conformal deformation
theory of Kleinian groups that the connected component QH(%0) of the interior of AH(Γ)
containing %0 is parameterized by the Teichmüller space T (∂M) of ∂M (cf. Theorem 4.3);
this can be seen as a special case of the ending lamination theorem. Endowing all the
laminations in the list of end invariants of N% with a projective transverse measure, we
can consider the tuple of end invariants as a point in the space of projective measured
laminations on ∂M . Let {%i}∞i=1 be any sequence in QH(%0) obtained by taking the image
under the parametrization described above of a sequence in T (∂M) which converges to
the end invariants of N%; by construction %i is quasi-conformally conjugated to %0 and
hence is convex cocompact for each i.
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We claim that this sequence has a convergent subsequence. That this is the case
is the first statement of Theorem 8.1 below. Before going any further, we add a few
words on the proof of Theorem 8.1. By the work of Morgan and Shalen [MS], in order
to show that {%i}∞i=1 has a convergent subsequence, it suffices to show that certain small
actions on real trees do not exist. We will achieve this combining Bestvina and Feighn’s
[BF] relative version of the Rips machine with previously known non-existence results for
groups isomorphic to free products of surface groups and free groups [Sk2], [Ot3], [KS1].
Theorem 8.1 is also due to Ohshika who, in joint work with Kim and Lecuire [KLO],
obtained a much more sophisticated compactness theorem.

Continuing with the sketch of the proof of Theorem 1.1 and keeping the same no-
tation, let %′ be an accumulation point in AH(Γ) of the sequence {%i}∞i=1. Recall that,
by the ending lamination theorem, we need to prove that N%′ has the same topological
type and ending invariants as N%. It is relatively easy to see that N%′ has the correct
conformal boundary and that the ending laminations of N% are not realized in N%′ by any
pleated surface; this is the content of the second and third statements of Theorem 8.1.
We prove next that these non-realized laminations are indeed ending laminations of N%′ .
In particular, this shows that if a boundary component F of ∂M supports an ending lam-
ination, then a standard compact core of N%′ has a boundary component homeomorphic
to F , the associated end is geometrically infinite and has the same ending lamination as
the end of N% associated with F .

In many cases, this fact can be easily deduced from earlier work. For instance, the
boundary incompressible case is due to Thurston. The case where Γ is the free product
of two surface groups is due to Otal, which unfortunately was never published. More
generally, the case where M is not homeomorphic to a handlebody follows from [KS2]. In
all these cases one can either use incompressibility or the fact that the second homology
group of a certain cover is non-trivial. In the remaining case, if M is a handlebody, none
of these are available. The following is a particular case of the needed result when M is
a handlebody.

Theorem 2.1. Let N be a hyperbolic manifold homeomorphic to the interior of
a handlebody H of genus greater than 1 and suppose that λ⊂∂H is a filling Masur
domain lamination which is not realized in N . Then there is a homeomorphism φ:H!H

homotopic to the identity such that φ(λ) is the ending lamination of N . In particular,
N does not have cusps.

The above theorem is a particular case of the more general Theorem 1.4. We prove
the latter using an argument which is in spirit close to Bonahon’s [Bo2] proof that
incompressible degenerate ends of hyperbolic 3-manifolds are tame and have an ending
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lamination. Theorem 1.4 is the main novel result of this paper.

Continuing with the discussion above, it follows from Theorem 1.4 and the previously
collected facts that for every end of N%, the algebraic limit N%′ has a homeomorphic end
with the same end invariant. Since N% and N%′ are homotopy equivalent, it follows from
a well-known generalization of a classical result of Waldhausen that N% and N%′ are
homeomorphic. At this point we will have proved that the original manifold N% and the
algebraic limit N%′ are homeomorphic and have the same end invariants. By the ending
lamination theorem, the representatives % and %′ are conjugated. Hence % is an algebraic
limit of geometrically finite points in AH(Γ). This concludes the outline of the proof of
Theorem 1.1.

3. Pared manifolds

In this section we recall a few facts and definitions on pared manifolds. Most of the
material is well known and we would humbly suggest the reader to skip this section in a
first reading. The only result of which we give a rather complete proof is Theorem 3.12,
which essentially gives sufficient conditions for a homotopy equivalence between pared
manifolds which maps boundary-to-boundary, to be homotopic, through maps which
map boundary-to-boundary, to a homeomorphism. This extends to the pared setting a
well-known theorem due to Waldhausen.

Pared manifolds are special types of 3-manifolds with boundary patterns. See Jo-
hannson [Jo] and Canary–McCullough [CM] for a complete discussion of 3-manifolds
with boundary patterns. All the results discussed in this section are well known for man-
ifolds without boundary patterns; the proofs in the pared setting can be either found
in the aforementioned references or are only minimal modifications of the proofs in the
traditional setting. See [H] and [Ja] for basic facts on 3-manifolds.

3.1. Pared manifolds

Let M be a compact, oriented, irreducible and atoroidal 3-manifold with non-empty
boundary. Assume that M is neither a 3-ball nor a solid torus and let P⊂∂M be a
compact subsurface. We say that (M,P ) is a pared 3-manifold (see Morgan [Mo]) if the
following three conditions hold:

• every component of P is an incompressible torus or annulus;
• every non-cyclic abelian subgroup of π1(M) is conjugated into the fundamental

group of a component of P ;
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• every map c: (S1×I, S1×∂I)!(M,P ) which induces an injection on fundamental
groups is homotopic, as a map of pairs, to a map whose image is contained in P .

If (M,P ) is a pared manifold, then the components of ∂M \P are the free sides of
(M,P ). In order to avoid unnecessary details, we will refer to the closure of a free side
as a free side as well. Accordingly, we will also denote the interior of P by P .

We say that a pared manifold (N,Q) is a pared submanifold of a pared manifold
(M,P ) if N⊂M , Q⊂P and every component of Q is essential in the corresponding
component of P . The pared submanifold (N,Q) is properly embedded if the interior of
each one of its free sides is either contained in or disjoint of the union of the free sides
of (M,P ). Two pared submanifolds which are isotopic through pared submanifolds are
pared isotopic.

3.2. JSJ-splitting

Let (M,P ) be a pared 3-manifold and F be the union of its free sides. By an essential
disk in (M,P ) we mean an inclusion (D, ∂D)↪!(M,F ) which is not homotopic to a map
whose image is contained in F . A meridian is a simple closed curve which bounds an
essential disk. It follows from Dehn’s lemma that a simple closed curve is a meridian
if and only if it is homotopically trivial in M . Also, by the loop theorem, a free side
F of (M,P ) contains a meridian if and only if the homomorphism π1(F )!π1(M) is
not injective. A free side which contains a meridian is said to be compressible; a pared
manifold without compressible free sides is said to have incompressible boundary.

We say that a pared manifold (M,P ) is an interval bundle if there is a compact
surface F such that M is the total space of a bundle

I = [0, 1]−!M −!F

and P is the preimage of ∂F in M . Observe that, because of our restriction to orientable
manifolds, every topological surface is the base of a single I -bundle with orientable total
space. The bundle is trivial if F is orientable and twisted otherwise. Before going further,
we recall Waldhausen’s characterization of trivial interval bundles.

Cobordism theorem. (Waldhausen) Let (M,P ) be a pared manifold which has
two distinct, incompressible free sides F1 and F2 which are properly homotopic to each
other. Then (M,P ) is an interval bundle with orientable base.

Before moving on, we would also like to mention the following useful, and well known,
fact.
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Lemma 3.1. Suppose that φ: (M,P )!(M ′, P ′) is a, necessarily finite, (pared) cover
between orientable pared manifolds. If (M,P ) is an interval bundle, then so is (M ′, P ′).

An essential annulus in (M,P ) is an embedding (A, ∂A)↪!(M,∂M \P ) which is not
properly homotopic to a map whose image is contained in either a free side of (M,P )
or a component of P . By the annulus theorem, any two disjoint homotopically essential
simple curves in ∂M \P which are freely homotopic in M bound an embedded annulus.
A pared manifold (M,P ) with incompressible boundary which does not contain any
essential annuli is said to be acylindrical.

The JSJ-splitting, which we briefly describe now, is a canonical decomposition of
a pared manifold with incompressible boundary along essential annuli into acylindrical
pared manifolds, interval bundles and solid tori.

Theorem 3.2. (JSJ-splitting) Let (M,P ) be a pared manifold with incompressible
boundary. Then there is a collection A of disjoint properly embedded annuli in (M,P )
such that the following holds:

(1) If U is a connected component of the manifold obtained by cutting M along A,
then

• either U is a solid torus and (P∪A)∩U is a collection of parallel non-meridional
annuli in ∂U , or

• (U, (P∪A)∩U) is an interval bundle, or
• (U, (P∪A)∩U) is an acylindrical pared manifold.
(2) Any essential annulus and any properly embedded Möbius band in (M,P ) can

be properly isotoped into one of the components of M \A.

Moreover, if A is chosen to be minimal with respect to these properties, then A is
unique up to pared isotopy.

We refer to the decomposition of (M,P ) given by Theorem 3.2 as the JSJ-splitting
of (M,P ). A free side F of (M,P ) is small if it does not intersect any of the annuli in the
collection A provided by Theorem 3.2; naturally, a free side which is not small is large.
The following observation will play a role below when we ensure that certain sequences
of representations have a convergent subsequence.

Lemma 3.3. Let (M,P ) be a pared manifold with incompressible boundary and sup-
pose that it is not an interval bundle. Then every small free side F is either contained
in one of the acylindrical pieces of the JSJ-splitting of (M,P ) or can be homotoped, but
not properly homotoped, within M to a subsurface of a large free side.
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3.3. Pared compression bodies

A pared manifold (C,P ) is a pared compression body if there is a free side ∂e(C,P ) such
that the homomorphism

π1(∂e(C,P ))−!π1(M)

is surjective. The free side ∂e(C,P ) is the distinguished free side of (C,P ) and we often
denote it simply by ∂eC; the remaining free sides, i.e. the connected components of
C\(P∪∂e(C,P )), are the constituents of (C,P ).

A pared compression body is trivial if ∂e(C,P ) is incompressible; equivalently, the
inclusion of ∂e(C,P ) into C is a homotopy equivalence. If (C,P ) is a trivial pared
compression body, then there is a compact orientable surface F and an annular subsurface
A⊂F such that (C,P ) and (F×I, (∂F×I)∪(A×{0})) are pared compression bodies
homeomorphic to each other. Observe that interval bundles with orientable base are
examples of trivial pared compression bodies. On the other hand, twisted interval bundles
over a closed non-orientable surface are not compression bodies.

Assume now that (C,P ) is a non-trivial pared compression body with distinguished
free side ∂e(C,P ). Then there is a properly embedded disk (D, ∂D)⊂(C, ∂e(C,P )). Let
C ′ be the manifold obtained from C by cutting along D and observe that P⊂∂C ′ and
∂e(C,P )\∂D⊂∂C ′. Let F ′ be the subsurface of ∂C ′ obtained by gluing the two copies of
D to ∂e(C,P )\∂D. It is easy to see that each component of (C ′, P ) is either a solid torus,
which possibly contains an annular component of P , or a pared compression body whose
distinguished free side is a connected component of F ′. Observe also that F ′ has larger
Euler characteristic than ∂e(C,P ). In particular, after repeating this process finitely
many times, we obtain that (C,P ) can be cut open along disks into solid tori with or
without marked essential primitive annuli and trivial pared compression bodies. In other
words, we have the following: A pared manifold (C,P ) is a pared compression body if and
only if it is obtained from a finite collection of trivial pared compression bodies and solid
tori, each possibly containing a marked essential primitive annulus, by attaching finitely
many 1-handles to the boundaries of the tori and to the distinguished free sides of the
trivial pared compression bodies.

Note that any π1-injective surface (F, ∂F )⊂(C,P )=C in a compression body can
be made disjoint of any given finite set of properly embedded disks (D, ∂D)⊂(C, ∂eC).
In particular, if (C,P ) has no constituents, there is no such surface. More generally, we
have the following result.

Lemma 3.4. Let (C,P ) be a pared compression body and (F, ∂F )!(C,P ) be a
proper π1-injective immersion of the surface F with the property that the image of no
non-peripheral homotopically essential simple closed curve in F can be homotoped within
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C to a curve in P . The immersion (F, ∂F )!(C,P ) is properly homotopic to a cover of
a constituent of (C,P ).

In this article we are mostly concerned with compression bodies without constituents.
Our characterization above tells us that such a compression body is constructed from
a number of solid tori, each possibly containing a marked essential primitive annulus,
and attaching finitely many 1-handles to the complements of the marked annuli. The
underlying manifold for any such pared compression body is a handlebody and the annuli
in the pared locus represent conjugacy classes of elements in a subset of a generating
set for the fundamental group. In particular the homeomorphism type of the pared
compression body is determined by the genus of the handlebody and the number of
components of the pared locus. As a simple consequence we have the following lemma.

Lemma 3.5. Let (C1, P1) and (C2, P2) be pared compression bodies. Suppose that
(C1, P1) has no constituents, and let f : (C1, P1)!(C2, P2) be a π1-isomorphism such that
every component of P2 contains the image of a component of P1. Then f is homotopic
to a homeomorphism through maps of pared manifolds.

Proof. Let g:C2!C1 be the homotopy inverse of the map f , i.e. f �g and g�f are ho-
motopic to the identity. Because of the assumption that every component of P2 contains
the f -image of a component of P1, we may assume that g: (C2, P2)!(C1, P1) is a pared
map. If (C2, P2) had a constituent then the restriction of g to this constituent would
contradict the conclusion of Lemma 3.4. Hence (C2, P2) is also a pared compression body
without constituents and f induces a bijection between the components of P1 and P2.
Now our discussion above shows that f is homotopic to a homeomorphism through maps
of pared manifolds.

3.4. Relative compression bodies

Let F be a compressible free side of a pared manifold (M,P ). Following Bonahon [Bo1]
and Canary–McCullough [CM], we now define the relative compression body neighbor-
hood of F to be any properly embedded pared submanifold (C,Q) of (M,P ) with F⊂C

satisfying the following conditions:
• (C,Q) is a pared compression body with distinguished free side F ;
• each constituent Fi of (C,Q) is incompressible in M ;
• if a constituent Fi of (C,Q) is properly isotopic in (M,P ) to a free side F ′ of

(M,P ), then Fi=F ′;
• no non-peripheral homotopically essential simple closed curve in the constituents

of (C,Q) can be freely homotoped into P within M .
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Our definition is slightly different from that in [CM], since we only needed to deal
with pared manifolds. But the next proposition follows from the same arguments as in
[CM].

Proposition 3.6. Let (M,P ) be a compact orientable irreducible pared 3-manifold
and F be a compressible free side. Then F has a relative compression body neighborhood
(C,Q) and any two such neighborhoods are isotopic through properly embedded pared sub-
manifolds of (M,P ). Moreover, the relative compression body neighborhoods of different
compressible free sides of M can be isotoped to be disjoint.

Sketch of the proof of the existence part. Fix a maximal collection of disjoint, non-
parallel properly embedded disks in (M,P ) with boundary on F . Let C1 be a regular
neighborhood of the union of F with these disks, and C2 be the union of C1 and those
balls in M which are bounded by spheres contained in ∂C1. Let Q2 be the intersection
∂C2∩P and observe that every component of ∂C2\P distinct from F is incompressible
in M . Consider now a maximal collection of disjoint, non-parallel properly embedded
annuli (A, ∂1A, ∂2A)⊂(M \C2, ∂(M \C2)\P, ∂(M \C2)∩P ) and let C3 be a regular neigh-
borhood of the union of C2 with these annuli; set Q3=∂C3∩P . If some component Z of
∂C3\Q3 is an annulus, then there is Z ′⊂P with ∂Z=∂Z ′. In particular, Z∪Z ′ bounds
a solid torus; let C4 be the union of C3 and all so obtained solid tori. As above, set
Q4=C4∩P . If some constituent F ′ of (C4, Q4) is properly isotopic in (M,P ) to a free
side 
F ′ of (M,P ), then there is a pared trivial interval bundle in (M,P ) homeomorphic
to (F ′×[0, 1], ∂F ′×[0, 1]) with free sides F ′ and 
F ′. Let C be the union of C4 and all
these trivial interval bundles and Q=C∩P ; (C,P ) is the desired relative compression
body neighborhood of F .

Let (M,P ) be a pared manifold and F1, ..., Fk be the collection of its compress-
ible free sides. By the last claim of Proposition 3.6, we may assume that the relative
pared compression body neighborhoods (Ci, Qi) in M of the sides Fi are disjoint. Their
complement

(
M \

⋃k
i=1 Ci, P \

⋃k
i=1 Qi

)
is a (possibly disconnected) pared manifold with

incompressible boundary. Following [CM], we refer to
(
M \

⋃k
i=1 Ci, P \

⋃k
i=1 Qi

)
as the

incompressible core of (M,P ).

3.5. Homeomorphisms and homotopy equivalences between pared manifolds

In this section we discuss the relation between homotopy equivalences and homeomor-
phisms of pared manifolds. Let (M,P ) and (M ′, P ′) be pared manifolds. We say that
a map of pairs φ: (M,P )!(M ′, P ′) is a homotopy equivalence if φ∗:π1(M)!π1(M ′) is
an isomorphism; in other words, f is a homotopy equivalence of the underlying mani-
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fold. The following important observation follows directly from the definition of pared
manifolds.

Lemma 3.7. Let φ: (M,P )!(M ′, P ′) be a homotopy equivalence between pared man-
ifolds and let 
P ′ be the union of those components of P ′ which contain the image of a
component of P . Then the restriction φ|P of φ to P is a homotopy equivalence onto 
P ′.

A homotopy equivalence φ: (M,P )!(M ′, P ′) is type preserving if every closed curve
on a free side of (M,P ) whose image under φ can be homotoped into P ′, can be itself
homotoped into P . Finally, we say that φ maps boundary-to-boundary if the image under
φ of every free side of (M,P ) is contained in some free side of (M ′, P ′). Observe that
this implies that if F and F ′ are free sides of (M,P ) and (M ′, P ′), respectively, with
f(F )⊂F ′, then the map

f :F −!F ′

is proper and hence has a well-defined degree deg(fF ). Here we have endowed ∂M and
∂M ′ with the induced orientations.

Before going any further, we give some examples showing that in general homotopy
equivalences are not properly homotopic to homeomorphisms. It is helpful to keep these
examples in mind when reading this paper.

Example 3.8. Let F1, F2, F3 and F4 be compact orientable surfaces with pairwise
different genera, each one with a single boundary component, and let X be the 2-complex
obtained by identifying the boundary of Fi with S1 via a homeomorphism for i=1, ..., 4.
Then the complex X is homotopy equivalent to three different manifolds M1, M2 and
M3 with incompressible boundary. In particular, there are homotopy equivalences

(M1, ∅)−! (M2, ∅)

which are not homotopic to any homeomorphism. This is Canary’s oil drum example.

Example 3.9. Let F be a closed orientable surface and M=F×I. The map

φ: (M, ∅)−! (M, ∅)

given by φ(x, t)=(x, 0) is a type-preserving homotopy equivalence which maps boundary-
to-boundary but which is not homotopic to a homeomorphism via maps which map
boundary-to-boundary.

Example 3.10. Let F be a compact orientable surface with boundary and M=F×I;
observe that M is a handlebody. The map φ: (M, ∅)!(M, ∅) given by φ(x, t)=(x, 0) is
a type-preserving homotopy equivalence which maps boundary-to-boundary but whose
restriction ∂M!∂M to the only boundary component is not even π1-injective.
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After these examples recall the following positive result which is a generalization of
a theorem by Waldhausen to the case of ∂-reducible 3-manifolds. (Cf. Tucker [Tu] and
Jaco [Ja] for discussion and proof.)

Theorem 3.11. Assume that f : (M,∂M)!(M ′, ∂M ′) is a homotopy equivalence
between compact manifolds M and M ′, where M ′ is a Haken manifold and f induces a
homeomorphism ∂M!∂M ′. Then f is homotopic to a homeomorphism with a homotopy
that remains constant on ∂M .

Minimally extending Theorem 3.11, we describe the possible π1-injective pared maps
between pared manifolds. Essentially the outcome is that, as long as we consider maps
which map boundary-to-boundary, any such map is homotopic to a covering or is one of
the Examples 3.9 and 3.10.

Theorem 3.12. Suppose that (M,P ) and (M ′, P ′) are pared manifolds and that
f : (M,P )!(M ′, P ′) maps boundary-to-boundary and induces an injective map on the
level of fundamental groups. Then there is a homotopy, through maps (M,P )!(M ′, P ′)
which map boundary-to-boundary, from f to a map g such that one of the following
mutually exclusive alternatives is satisfied :

(1) f maps a meridian in (M,P ) to a homotopically trivial curve in ∂M ′\P ′. In
this case (M,P ) is a non-trivial pared compression body without constituents and one
has g(M)⊂∂M ′. Moreover, deg(f |∂e(M,P ))=0.

(2) f maps two distinct free sides F1 and F2 of (M,P ) to the same free side F

of (M ′, P ′) in such a way that deg(f |F1)>0 and deg(f |F2)60. In this case (M,P ) is a
trivial interval bundle and g(M)⊂∂M ′.

(3) Neither (1) nor (2) are satisfied and g is a covering map of finite degree.

In the course of the proof of Theorem 3.12 we will make use several times of the
following observation.

Lemma 3.13. Let (S, ∂S) and (S′, ∂S′) be compact surfaces of negative Euler char-
acteristic. If f : (S, ∂S)!(S′, ∂S′) is a proper map which does not map any essential
simple closed curve to a homotopically trivial one, then f is homotopic via a map of
pairs to a map g: (S, ∂S)!(S′, ∂S′) satisfying one of the following :

• either g is a branched cover, or
• the image of g is contained in ∂S′.

If the surfaces S and S′ in the statement of Lemma 3.13 are closed, then the claim
follows directly from the first (easy) part of the proof of the simple loop theorem [Ga].
We assume that the proof in the closed case can be modified to the general case. We



density conjecture 339

prefer however to give an analytic argument using harmonic maps; observe that this
argument also applies in the closed case.

Proof. Assuming that the second alternative in Lemma 3.13 does not hold, we claim
that f is homotopic to a branched cover. To begin with observe that the assumptions
in the lemma imply that f is not homotopic to either a constant map nor a map whose
image is a closed essential curve in S′. Endow (the interior of) S′ with a fixed complete
hyperbolic metric %0 with finite area. The assumption that f is not homotopic to a
map whose image is contained in ∂S′ implies [Co] that for every finite-type conformal
structure σ on (the interior of) S the map f is properly homotopic to a harmonic map

fσ: (S, σ)−! (S′, %0).

Denote by E(fσ, σ) the energy of fσ with respect to σ and %0.
The assumption that f does not map any essential simple loop to a homotopically

trivial curve implies [SU] that there is some conformal structure σ0 on S with

E(fσ0 , σ0) 6E(fσ, σ)

for every other choice of σ. This implies that the map fσ0 is conformal with respect to
the Riemann-surface structure induced by %0 on S′ [SU]. Since conformal maps between
surfaces are branched covers and since f is properly homotopic to g=fσ0 , the claim
follows.

Before launching the proof of Theorem 3.12, we state concretely the incarnation of
Lemma 3.13 needed below. Observe that it follows from Dehn’s lemma and Lemma 3.7
that, under the assumptions of Theorem 3.12, any essential simple closed curve in ∂M \P
whose image under f is homotopically trivial in ∂M ′\P ′ is in fact a meridian. In par-
ticular, assuming that no meridian in (M,P ) is mapped to a homotopically trivial curve
in ∂M ′\P ′ implies that the restriction of f to ∂M \P is homotopic to a branched cover.
We start now the proof of Theorem 3.12.

Proof of Theorem 3.12. We start proving that if (1) and (2) are not satisfied then
we are in case (3).

Claim 1. Suppose that
• f does not map any meridian in (M,P ) to a homotopically trivial curve in

∂M ′\P ′, and that
• there are no two distinct free sides F1 and F2 of (M,P ) which are mapped to the

same free side F of (M ′, P ′) in such a way that deg(f |F1)>0 and deg(f |F2)60.
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Then f is homotopic, through maps (M,P )!(M ′, P ′) which map boundary-to-
boundary, to a finite covering g: (M,P )!(M ′, P ′).

Proof of Claim 1. Let F and F ′ be free sides of (M,P ) and (M ′, P ′), respectively,
with f(F )⊂F ′. As remarked above, the assumption that f does not map any meridian
in F to a homotopically trivial curve in F ′ implies that the restriction of f to F is
homotopic to a branched cover. From now on we assume that the restriction of f to any
free side is a branched cover. Observe at this point that this implies that the restriction
of f to any free side F of (M,P ) is either orientation preserving or reversing. The second
assumption in the claim implies that any two free sides of (M,P ) which are mapped to
the same free side of (M ′, P ′), are mapped with the same orientation.

Let M̃ ′ be the cover of M ′ corresponding to the image of π1(M) under the homo-
morphism induced by f , and denote by P̃ ′⊂M̃ ′ the preimage of P ′. The map f lifts to
a homotopy equivalence f̃ :M!M̃ ′; we claim that it is homotopic to a homeomorphism.
We first prove that f̃ is onto. Recall that, by Lemma 3.7, the restriction of f̃ to P is
homotopic to a homeomorphism onto its image in P̃ . In particular, we can homotope
f̃ , through maps which map boundary-to-boundary, to a map whose restriction to P is
a homeomorphism onto its image and whose restriction to every free side is a branched
cover; we assume that f̃ had this property to begin with. Since no two free sides are
mapped to the same free side with different orientations, it follows that the restriction of
f̃ to ∂M is altogether a branched cover onto its image. As the degree of the restriction
of f̃ to any two boundary components of ∂M which are mapped to the same component
of ∂M ′ has the same sign, it follows that the image of ∂M is a non-trivial 2-cycle in
H2(∂M̃ ′). This implies that the induced map H3(M,∂M)!H3(M̃ ′, ∂M̃ ′) is an injective
homomorphism, and hence shows that f̃ is onto.

Since M is compact, we deduce that M̃ ′ is compact as well; hence the cover M̃ ′!M ′

is finite. It remains to prove that f̃ is homotopic to a homeomorphism. In the light of
Theorem 3.11, it suffices to prove that the restriction of f to the boundary of M is a
homeomorphism to the boundary of M̃ ′. In order to see that this is the case, we observe
that

χ(M) =
χ(∂M)

2
=

1
2

∑
S⊂∂M

χ(S) 6
1
2

∑
S⊂∂M̃ ′

χ(f̃(S))=
χ(∂M̃ ′)

2
=χ(M̃ ′),

where the inequality holds because the restriction of f to every component of ∂M is a
branched cover and because f is surjective. In particular, equality holds if and only if the
restriction of f to every component S of ∂M is a homeomorphism. Since M and M̃ ′ are
homotopy equivalent χ(M)=χ(M̃ ′), and hence equality must hold. We have proved that
the restriction of f̃ to ∂M is a homeomorphism. As mentioned above, it follows from
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Theorem 3.11 that f̃ is homotopic to a homeomorphism, proving that Theorem 3.12 (3)
holds. This concludes the proof of Claim 1.

We suppose now that we are not in case (1) but that the assumption of case (2) is
satisfied.

Claim 2. Suppose that f does not map any meridian in (M,P ) to a homotopi-
cally trivial curve in ∂M ′\P ′, and that there are two distinct free sides F1 and F2 of
(M,P ) whose images are contained in the same free side F ′ of (M ′, P ′) and such that
deg(f |F1)>0 and deg(f |F2)60. Then (M,P ) is a trivial interval bundle and f is ho-
motopic, through maps (M,P )!(M ′, P ′) which map boundary-to-boundary, to a map g

with g(M)⊂F ′.

In order to prove Claim 2, we will need the following observation that, lacking a
better name, we state as a lemma.

Lemma 3.14. Let (M,P ) be a pared manifold and F be a free side of (M,P ). If
for every simple loop γ on F there is a non-zero multiple γm which is freely homotopic
into another free side of (M,P ), then F is incompressible.

Proof of Claim 2. As in the proof of Claim 1, let (M̃ ′, P̃ ′) be the cover of (M ′, P ′)
corresponding to the image of π1(M) under the homomorphism induced by f and denote
a lift of f by f̃ . Again as in the proof of Claim 1, we may assume that the restriction of
f to any free side of (M,P ) is a branched cover onto a free side of (M ′, P ′).

A priori, it could be that there are no two free sides F1 and F2 of (M,P ) which
are mapped under f̃ to the same component of ∂M̃ ′\P̃ ′ with degrees of distinct sign.
Suppose for a moment that we are in this situation. Then, the argument used in the
proof of Claim 1 shows that the image of ∂M is a non-trivial 2-cycle in H2(∂M̃ ′), that the
induced map H3(M,∂M)!H3(M̃ ′, ∂M̃ ′) is an injective homomorphism, that f̃ is onto
and that f̃ is homotopic to a homeomorphism. Hence, f was to begin with homotopic to
a covering, but this contradicts the assumption that the different free sides are mapped
to the same free side with degrees of distinct sign.

It follows that f̃ maps two free sides, which we may assume to be F1 and F2, of (M,P )
to the same free side F ′ of (M ′, P ′) in such a way that deg(f |F1)>0 and deg(f |F2)60.
Since the restriction of f̃ to Fi is a branched cover, it follows that the images of π1(F1)
and π1(F2) have finite index in π1(F ′). Since f̃ is an isomorphism on π1, it follows
that π1(F1) and π1(F2) in π1(M) have finite-index subgroups which are conjugate within
π1(M). Lemma 3.14 shows that F1 and F2 are incompressible. Passing to a finite
sheeted cover (M̃, P̃ ) of (M,P ), the free sides F1 and F2 lift to incompressible boundary
components F̃1 and F̃2 which are homotopic in the cover. Waldhausen’s cobordism
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theorem shows that (M̃, P̃ ) has to be a trivial interval bundle. By Lemma 3.1, (M,P ) is
also an interval bundle, which is trivial because it has two distinct boundary components.
We have proved the first part of the claim.

Consider now the commuting diagram

F1

� �

f̃ |F1 // F ′

��

M
f̃

// M̃ ′,

where the vertical arrows are inclusions. The inclusion of F1 into M and the map

f̃ :M −! M̃ ′

are both homotopy equivalences. It follows that the restriction f̃ |F1 is π1-injective. Being
a π1-injective branched cover, it follows that f̃ |F1 is a homeomorphism and hence a
homotopy equivalence. This proves that the inclusion of F ′ into M̃ ′ is a homotopy
equivalence. Hence, F ′ is a strong deformation retract of M̃ ′. This implies that f̃ is
homotopic, through maps mapping ∂M \P =F1∪F2 to F̃ ′, to a map whose image is
contained in F ′. This homotopy descends to the desired homotopy of f . This concludes
the proof of Claim 2.

At this point it remains to prove that whenever a meridian α in a free side F of
(M,P ) is mapped to a homotopically trivial curve in a free side F ′ of (M ′, P ′), then
(M,P ) is a non-trivial pared compression body without constituents and f is homotopic
to a map g with g(M)⊂∂M ′. In order to see that this is the case we will argue by
induction on χ(∂M). Observe that whenever χ(∂M)=0 then ∂M=P . Hence ∂M is
incompressible and therefore the base case of the induction is trivially satisfied.

Suppose now that F and F ′ are free sides of (M,P ) and (M ′, P ′), respectively, with
f(F )⊂F ′, and that f maps a meridian α⊂F to a homotopically trivial curve in F ′. By
Dehn’s lemma, there is a properly embedded disk (D, ∂D)⊂(M,F ) with ∂D=α. Up to
homotopy constant on ∂M , we may assume that f(D)⊂F ′. Let (M1, P1) be the pair
obtained by cutting (M,P ) along the disk D. Every component (N,Q) of (M1, P1) is
either a solid torus, with at most a single primitive annulus from P1, or a pared manifold.
In the latter case, observe that the map f induces a π1-injective map

f1: (N,Q)−! (M ′, P ′)

and that χ(∂N)>χ(∂M). Arguing by induction, we may assume that the components
of (M1, P1) are either solid tori or satisfy Theorem 3.12. Then the following claim is
immediate.
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Claim 3. Suppose that every component (N,Q) of (M1, P1) which is not a solid
torus satisfies one of the outcomes (1) and (2) of Theorem 3.12. Then

f : (M,P )−! (M ′, P ′)

is homotopic, through maps which map boundary-to-boundary, to a map

g: (M,P )−! (M ′, P ′)

with g(M)⊂∂M ′.

Now, we are ready to rule out outcomes (2) and (3) for every pared manifold com-
ponent (N,Q) of (M1, P1) which is not a solid torus. The map f1 cannot be homotopic,
through maps mapping boundary-to-boundary, to a finite cover g1: (N,Q)!(M ′, P ′) be-
cause then the image of π1(N) would have finite index in π1(M ′); but π1(N) has infinite
index in π1(M) and hence the map f could not have been π1-injective. This proves that
f1 does not satisfy the conclusion of (3) in the statement of Theorem 3.12. Suppose
now that (2) holds for f1. In other words, there is a compact oriented surface F1 with
(N,Q)=(F1×I, ∂F1×I) and the map f1 induces an injective homomorphism from π1(F1)
to π1(M ′), and therefore to π1(F ′). This implies that the proper map f1|F1 :F1!F ′ is
homotopic to a covering and therefore the image of π1(N) has finite index in π1(F ′).
But π1(N) has infinite index in π1(M). By Claim 3, f is homotopic to the map g whose
image is contained in F ′, and we have again a contradiction with the π1-injectivity of f .

We have proved that Theorem 3.12 (1) holds for every component (N,Q) of (M1, P1)
which is not a solid torus. In particular, any such (N,Q) is a non-trivial pared compres-
sion body without constituents. It follows that (M,P ) itself is a non-trivial pared com-
pression body without constituents. The claim that f is homotopic, via maps mapping
boundary-to-boundary, to a map g with g(M)⊂∂M ′ follows directly from Claim 3.

This concludes the proof of Theorem 3.12.

We state here the following consequence of Theorem 3.12.

Lemma 3.15. Let f : (C,P )!(C ′, P ′) be a π1-injective map between pared compres-
sion bodies (C,P ) and (C ′, P ′) which takes ∂eC to ∂eC

′. Also assume that (C,P ) is
non-trivial and that the f-image of no non-peripheral loop in a constituent of (C,P ) is
homotopic into a component of P ′. Then f is homotopic, through maps (C,P )!(C ′, P ′)
which map ∂eC to ∂eC

′, to a map g such that either
(a) g is a covering of finite degree, or
(b) g(C)⊂∂eC

′, (C,P ) has no constituents and f maps a meridian of (C,P ) to a
homotopically trivial curve on ∂eC

′.
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Proof. In the light of Theorem 3.12, it suffices to show that f is homotopic, through
maps (C,P )!(C ′, P ′) which map ∂eC to ∂eC

′, to a map which maps boundary-to-
boundary. Clearly, it suffices to prove that if F is any constituent of (C,P ), then the
restriction f |F of f to F is properly homotopic to a map into a constituent of (C ′, P ′).
That this is the case follows immediately from Lemma 3.4.

3.6. Mapping class group

Recall that the mapping class group Mod(M,P ) of a pared manifold (M,P ) is the group
of all pared isotopy classes of pared self-homeomorphisms of (M,P ). We denote by
Mod0(M,P ) (resp. Mod+

0 (M,P )) the subgroup consisting of those mapping classes rep-
resented by elements which are pared homotopic to the identity (resp. pared homotopic
to the identity and orientation preserving). At this point we would like to observe that
if the free sides of (M,P ) are incompressible, then Mod+

0 (M,P ) is trivial. Under the
same assumption, Mod0(M,P ) has at most order 2 and this happens only when (M,P )
is an interval bundle. On the other hand, both Mod0(M,P ) and Mod+

0 (M,P ) are infinite
groups if (M,P ) has a compressible free side.

4. Hyperbolic manifolds

Throughout this section let N be an oriented hyperbolic 3-manifold with finitely gen-
erated non-abelian fundamental group. In other words, N is a complete Riemannian
manifold isometric to the quotient H3/Γ, where Γ is a discrete and torsion-free finitely
generated subgroup of PSL2(C)=Isom+(H3). We will be exclusively interested in those
hyperbolic 3-manifolds which have infinite volume.

See [MT], [BP], [Ka] and [Mar] for basic facts on hyperbolic 3-manifolds and Kleinian
groups.

4.1. Thick-thin decomposition

For x∈N , let injN (x) be the injectivity radius of N in x, i.e. half of the length of the
shortest homotopically essential loop in N based at x. It follows from the thick-thin
decompositon theorem that for every positive ε smaller than the 3-dimensional Margulis
constant, the closure of every component U of the subset

N<ε = {x∈N : injN (x)<ε}

has one of the following forms:
(a) U is a regular neighborhood of a short closed geodesic;
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(b) U is isometric to the quotient of a horoball under a rank-1 parabolic subgroup;
in particular U is homeomorphic to [0,∞)×S1×R;

(c) U is isometric to the quotient of a horoball under a rank-2 parabolic subgroup;
in particular U is homeomorphic to S1×S1×[0,∞).

The components of type (a) are called the Margulis tubes; the components of types
(b) and (c) are respectively rank-1 and rank-2 cusps. The assumption that the funda-
mental group of N is finitely generated implies that N contains only finitely many cusps
[Su1].

Denote by Nε the closure of the complement of the union of the cusps of N and
notice that N is homeomorphic to the interior of Nε.

4.2. Pared manifold associated with a hyperbolic 3-manifold

Still under the assumption that N is a hyperbolic 3-manifold with finitely generated fun-
damental group, it follows from the tameness theorem by Agol [Ag] and Calegari–Gabai
[CG] that N is homeomorphic to the interior of a compact manifold. More precisely, we
have the following result.

Tameness theorem. (Agol, Calegari–Gabai) Suppose that N is a hyperbolic 3-
manifold with finitely generated fundamental group and let ε be positive and smaller than
the Margulis constant. There is a compact 3-manifold M whose boundary ∂M contains a
subsurface P consisting of all toroidal components of ∂M and a possibly empty collection
of annuli such that Nε is homeomorphic to the complement in M of ∂M \P .

Continuing with the same notation as in the tameness theorem, it is well known that
(M,P ) is a pared manifold. Moreover, (M,P ) is unique up to pared homeomorphisms;
in particular, (M,P ) does not depend on the concrete choice of ε. It is hence justified to
refer to (M,P ) as the pared manifold associated with N .

An immediate consequence of the tameness theorem is the existence of what we refer
to as a standard (relative) compact core of (Nε, ∂Nε). This is a compact submanifold
(M ′, P ′)⊂(Nε, ∂Nε) homeomorphic to (M,P ) and such that (Nε\M ′, ∂Nε\P ′) is home-
omorphic to (∂M ′\P )×R. Observe that while every standard compact core (M ′, P ′) is
homeomorphic to the pared manifold (M,P ) associated with N , this identification is far
from being canonical. Even if we do not distinguish between isotopic identifications, we
must still take into account the effect of precomposing the embedding of (M,P ) with
self-homeomorphisms of (M,P ).
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4.3. Convex core and conformal boundary

We are still assuming that N=H3/Γ is a hyperbolic 3-manifold with finitely generated
non-virtually abelian fundamental group. Let ΛΓ⊂∂∞H3 be the limit set of Γ, i.e. the
minimal closed Γ-invariant subset of the boundary at infinity ∂∞H3 of hyperbolic space.
The convex hull CH(Γ) of the limit set ΛΓ is the minimal, closed, Γ-invariant convex
subset of H3. The convex core CC(N)=CH(Γ)/Γ of N , i.e. the projection of the convex
hull to N , is a totally convex submanifold of N . Unless Γ is Fuchsian, the boundary
of the convex hull is, with respect to the induced path metric, a complete hyperbolic
surface without boundary [EM]. In particular, the boundary ∂CC(N) also has a natural
hyperbolic metric; it is known that with respect to this metric ∂CC(N) has finite area.

Continuing with the same notation, let ΩΓ=∂∞H3\ΛΓ be the discontinuity domain
of Γ. The action of the group Γ on H3∪ΩΓ is properly discontinuous and free. In
particular, N∪∂cN=(H3∪ΩΓ)/Γ is a 3-manifold with boundary. It is known that every
connected component of ∂cN has negative Euler characteristic.

The boundary at infinity of the hyperbolic space ∂∞H3 can be identified with
the complex projective line CP 1. This identification is compatible with the actions
PSL2(C)yH3 by orientation-preserving isometries and PSL2(C)yCP 1 by Möbius trans-
formations. As a consequence of the Ahlfors finiteness theorem, we see that the surface
∂cN=∂c(H3/Γ)=ΩΓ/Γ is naturally endowed with the structure of a Riemann surface of
finite conformal type, and hence with a finite-volume hyperbolic metric. The Riemann
surface ∂c(H3/Γ) is the conformal boundary of H3/Γ.

The convex projection �:N!CC(N) extends continuously to the conformal bound-
ary ∂cN . The following result due to Canary asserts that the restriction of � to ∂cN is
Lipschitz when we endow ∂cN with the canonical hyperbolic metric.

Proposition 4.1. (Canary [Ca1]) For every ε>0 there exists K>0 such that the
following holds. Let M be a hyperbolic 3-manifold, with finitely generated fundamental
group, such that every closed geodesic in the conformal boundary which is homotopically
trivial in M has at least length ε with respect to the canonical hyperbolic metric of ∂cN .
Then the convex projection �: ∂cM!∂CC(M) is K-Lipschitz.

4.4. Ends

A geometric end of N is an end of Nε. Observe that whenever (M,P ) is a standard
compact core of (Nε, ∂Nε), then we have a bijection between the ends of Nε and the free
sides of (M,P ). A geometric end E is convex cocompact if it has a neighborhood which
is disjoint from CC(N)∩Nε. If every geometric end of N is convex cocompact then we
say that N is geometrically finite. The following is a well-known fact.
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Proposition 4.2. Suppose that N is geometrically finite and let N (CC(N)) be a
regular neighborhood of the convex core of N . Then

(N (CC(N))∩Nε,N (CC(N))∩∂Nε)

is a standard compact core of (Nε, ∂Nε). Moreover, the union N∪∂cN of N and its
conformal boundary is homeomorphic to Nε\∂Nε.

Geometric ends E which are not convex cocompact are said to be degenerate. We
will discuss a few properties of degenerate ends in §6.

4.5. AH(M, P )

If (M,P ) is a pared manifold, let AH(M,P ) be the set of conjugacy classes of discrete and
faithful representations %:π1(M)!PSL2(C) which map conjugacy classes represented by
curves in P to parabolic elements.

Given [%]∈AH(M,P ) choose a representative %∈[%] and consider the hyperbolic 3-
manifold N%=H3/%(π1(M)). We say that % is geometrically finite if N% is. Similarly,
we say that % is minimally parabolic if every element in π1(M) whose image under %

is parabolic, is represented by a curve in P . Conjugated representations give rise to
isometric hyperbolic 3-manifolds. In particular, if a representation is conjugated to a
geometrically finite (resp. minimally parabolic) one, then it is itself geometrically finite
(resp. minimally parabolic). Abusing notation and terminology, we will not make any
distinction between representations and the corresponding points in AH(M,P ).

Given %∈AH(M,P ), let N% be the associated hyperbolic 3-manifold. Let (M ′, P ′) be
the pared manifold corresponding to N% and identify (M ′, P ′) with a standard compact
core of (Nε

% , ∂Nε
% ). The representation % can be interpreted as an isomorphism between

π1(M) and π1(N%)'π1(M ′). In particular, % determines, up to homotopy, a homotopy
equivalence φ:M!M ′. The assumption that % maps elements represented by curves in
P to parabolic elements implies that φ is homotopic to a map of pairs

(M,P )−! (M ′, P ′).

Any map of pairs in this homotopy class is said to be in the homotopy class determined
by %.

In general % also maps some elements which are not represented by curves in P to
parabolic elements; if this is the case, then the pared manifolds (M,P ) and (M ′, P ′)
are not homeomorphic. However, much more dramatic events can occur, since it may
well be that M and M ′ themselves are not homeomorphic to each other. Compare with
Example 3.8 above.
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From now on, we will consider AH(M,P ) with the algebraic topology : a sequence
of conjugacy classes of representations {[%i]}∞i=1 converges algebraically to [%] if there are
representatives %i∈[%i] and %∈[%] such that for each γ∈π1(M) the sequence {%i(γ)}∞i=1

converges to %(γ).
At this point we would like to point out that the behavior of the hyperbolic man-

ifolds associated with an algebraically convergent sequence of representations is all but
transparent. For example, it was observed by Anderson and Canary [AC1] that the
homeomorphism type of the quotient manifold can be constant along the sequence and
change at the limit.

4.6. Quasi-conformal deformations of Kleinian groups

Continuing with the same notation, fix %∈AH(M,P ) geometrically finite and minimally
parabolic and such that (M,P ) is the pared manifold associated with the hyperbolic
3-manifold N%. The existence of such a representation % is ensured by Thurston’s hy-
perbolization theorem [Ot4], [Ka]. Identify (M,P ) with a standard compact core of
(Nε

% , ∂Nε
% ); doing so we obtain an identification, well defined up to isotopy, between the

conformal boundary ∂c(N%) of N% and ∂M \P , the union of the free sides of (M,P ).
In particular, we may consider the Riemann surface ∂cN% as a point in the Teichmüller
space T (∂M \P ).

We say that two representations %′ and %′′ of the same group G are quasi-conformally
conjugated if there is a quasi-conformal homeomorphism f : ∂∞H3!∂∞H3 with

%′(γ)�f = f �%′′(γ) for all γ ∈G.

Continuing with the same notation as above, let QH(%) be the subset AH(M,P ) consist-
ing of representations which are quasi-conformally conjugated to %.

Suppose that %′∈QH(%) and let f : ∂∞H3!∂∞H3 be a conjugating map. The map f

extends to a bi-Lipschitz diffeomorphism F : H3!H3 conjugating the actions of %(π1(M))
and %′(π1(M)) on H3. In particular, N ′

% is homeomorphic to N% and % is geometrically
finite and minimally parabolic. It follows that (M,P ) is the pared manifold associated
with N%′ , and hence that we can again consider the conformal boundary ∂cN%′ as a point
in the Teichmüller space T (∂M \P ). More precisely, it is a major consequence of the
theory of quasi-conformal deformations of Kleinian groups developed by Ahlfors, Bers,
Maskit, Kra, Marden and Sullivan that QH(%) is parameterized by T (M \P ). We refer
to this as the Ahlfors–Bers parametrization.

Theorem 4.3. (Ahlfors–Bers parametrization) There is a covering map

πAB: T (∂M \P )−!QH(%)
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with covering group Mod+
0 (M,P ). Moreover, for all X∈T (∂M \P ), the hyperbolic man-

ifold associated with the representation πAB(X) has associated pared manifold (M,P )
and conformal boundary bi-holomorphic to X.

Before going further, we prove the following technical result which we will need
below.

Proposition 4.4. Let (M,P ) be a pared manifold with free sides F1, ..., Fs and
let %0∈AH(M,P ) be a geometrically finite representation such that the hyperbolic mani-
fold N%0 =H3/%0(π1(M)) has associated pared manifold (M,P ). Assume that we have a
sequence (Xn

1 , ..., Xn
s ) in T (∂M \P ) such that

• for i=1, ..., r we have Xn
i =X1

i for all n;
• the images %n of the points (Xn

1 , ..., Xn
s ) under the Ahlfors–Bers parametrization

πAB: T (∂M \P )!QH(%0) converge to some %∈AH(M,P ).
If (M ′, P ′) is the pared manifold associated with the manifold N%=H3/%(π1(M)),

then there is a map φ: (M,P )!(M ′, P ′) in the homotopy class determined by % which
maps the free sides F1, ..., Fr homeomorphically to free sides F ′

1, ..., F
′
r of (M ′, P ′) fac-

ing convex cocompact ends of N%. Moreover, for i=1, ..., r, X1
i is the point of T (Fi)

obtained by identifying F ′
i with the corresponding components of ∂cN% and pulling back

the structure by φ|Fi
.

Proof. The claim is well known if % is Fuchsian. We assume that this is not the case
and observe that this implies that, up to forgetting finitely many terms of the sequence,
none of the representations %n is Fuchsian either.

Abusing notation slightly, let %n and % be actual representations such that %n(γ)
converges to %(γ) for all γ∈π1(M). Fixing a base point pH3 (or more precisely a base
frame), we obtain base points pn∈Nn and p%∈N%, respectively. It is then standard to see
that the sequence of pointed manifolds (Nn, pn) converge, up to passing to a subsequence,
in the geometric topology (pointed Gromov–Hausdorff topology) to a complete hyperbolic
3-manifold NG. Equivalently, the groups %n(π1(M)) converge in the Chabauty topology
to a discrete faithful group G with NG=H3/G; observe that %(π1(M))⊂G.

Given i∈{1, ..., r}, we know that the geometric end associated with Xn
i =X1

i of Nn is
convex cocompact and the corresponding component of ∂CC(Nn), with the induced path
metric, is a complete hyperbolic structure on the interior of Fi. We denote this component
of ∂CC(Nn) by Y n

i . Even more by Canary’s Theorem 4.1, the convex projection from
X1

i to Y n
i is Lipschitz, with a Lipschitz constant independent of n. In particular, there is

ε>0 such that for every i=1, ..., r and n, the surface obtained by removing the ε-cusps of
Y n

i is ε-thick and has diameter bounded independently of n. Our first claim is to show
that the distance between pn and the ε-thick part of Y n

i is bounded independently of n.
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As before, let i∈{1, ..., r} and let γ1, ..., γm be a finite set of elements in π1(M)
such that the subgroup of π1(M) generated by these elements is conjugate to the image
of π1(Fi) in π1(M). Since {%n(γj)}∞n=1 converge to %(γj) for every j=1, ...,m, there is
an upper bound for the translation length of %n(γj) independent of n. However, since
the map from X1

i to Y n
i is uniformly Lipschitz, we know that the conjugacy classes of

γ1, ..., γm can also be represented by loops on the ε-thick part of Y n
i with a base point

on the ε-thick part of Y n
i and lengths bounded independently of n. But the group

generated by %n(γ1), ..., %n(γm) is non-elementary and in particular for every n, there
are two elements, say γ1 and γ2, such that %n(γ1) and %n(γ2) generate a free group.
By discreteness, the axes of these two elements cannot be too close to be parallel, and
therefore the locus in H3 where both elements have simultaneously bounded translation
length is uniformly bounded. This bounds the distance between the base point pH3 and
a lift of the base point on the ε-thick part of Y n

i . Hence, the distance between pn and
the base points on the ε-thick part of Y n

i must be bounded independently of n.

Once we know this, and after passing to a subsequence, we may assume that the
sequence of surfaces {Y n

i }∞n=1 converges to a surface Yi in the geometric limit NG. Since
Y n

i is embedded for all n and we are assuming that the algebraic limit % is not Fuchsian,
we deduce that Yi is also embedded in the geometric limit NG. Even more, the surface
Yi separates a geometric end of NG, homeomorphic to Fi×R, from a convex subset of
NG. In fact, we can use the convergence of arbitrarily large neighborhoods of the ε-thick
parts of the surfaces Y n

i to see that this geometric end of NG is convex cocompact. On
the other hand, the fundamental group of this end is generated by

lim
n!∞

%n(γ1) = %(γ1), ..., lim
n!∞

%n(γm) = %(γm).

So this end lifts homeomorphically to a geometric end of the algebraic limit N%. Hence,
for every i=1, ..., r, (M ′, P ′) has a free side homeomorphic to Fi and N% has a convex
cocompact geometric end associated with this free side. Even more, the ends of the
manifolds Nn associated with Fi converge geometrically to this end. From here on, one
can repeat the proof in [Oh2], where it is shown that algebraic and geometric convergence
together imply convergence in the sense of Carathéodory. This immediately implies that
the conformal structure at infinity associated with the Fi-end of N% is X1

i .

5. Laminations, currents and train-tracks

In this section we recall some facts about laminations, currents and train-tracks on a
surface. We refer to [Th1], [CB], [FLP], [PH] and [Bo3] for more on these topics.
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5.1. Laminations and currents

Let S=H2/Γ be a complete hyperbolic surface with finite area. A geodesic lamination
λ is a closed subset of S which is foliated by complete geodesics. The path-connected
components of λ coincide with the leaves of the associated foliation; we refer to them as
the leaves of the lamination. We endow the set L(S) of geodesic laminations on S with
the Hausdorff topology on the set of compact subsets of S.

Suppose now that λ is a geodesic lamination on S and denote by λ̃ its lift to the
universal cover H2. We consider λ̃ as a Γ-invariant subset of the set G(H2) of all (unori-
ented) geodesics on H2. Endowing the set of closed subsets of G(H2) with the Hausdorff
topology, we have that the lifting map λ 7!λ̃ from L(S) is a homeomorphism onto its
image.

A (geodesic) current on S=H2/Γ is a non-trivial, locally finite, Γ-invariant, Borel
measure on G(H2). We endow the set C(S) of all currents on S with the weak∗-topology.
The group R+ acts on C(S) by scaling the measure. We endow the quotient, the space of
projective measured currents PC(S)=C(S)/R+, with the quotient topology. It is known
(cf. [Bo3, Corollary 5]) that PC(S) is Hausdorff and compact.

We may associate with each primitive closed geodesic γ in S a current as follows: the
measure of a subset K of G(H2) is the number of lifts of γ to H2 which belong to K. The
map which associates with any two geodesics in S their geometric intersection number
extends continuously to the geometric intersection form

ι: C(S)×C(S)−!R+.

The geometric intersection form is defined so that it is multiplicative under scaling any
of the two entries. In particular, it is unambiguous to write ι(λ, µ)=0 for λ, µ∈PC(S).

The support of a current µ is the smallest closed Γ-invariant subset of G(H2) whose
complement has 0-measure. We will write supp(µ) for the projection of the support to S

and, abusing terminology, also refer to it as the support of µ. A measured lamination is a
geodesic current λ with supp(λ)∈L(S). It is known that, as long as supp(λ) is compact, λ

is a measured lamination if and only if ι(λ, λ)=0. Denote by ML(S) the set of measured
laminations on S and by PML(S) its projectivization; PML(S) is compact.

A measured lamination λ∈PML(S) is filling if ι(λ, γ) 6=0 for every simple closed
geodesic γ in S. It is known that λ is filling if and only if every complementary component
of the support of λ is an ideal polygon or a once punctured ideal polygon.

The subset of PML(S) consisting of measured laminations which are supported
by a simple closed curve is dense. Before moving on, suppose now that {γn}∞n=1 is a
sequence of simple closed geodesics in S which converges in PML(S) to some measured
lamination λ. Passing to a subsequence, we may assume that {γn}∞n=1 converges in
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L(S) to some geodesic lamination λL as well. Clearly, supp(λ)⊂λL, but in general λL

may be larger than supp(λ); sometimes much larger. However, if λ is a filling measured
lamination, then any geodesic lamination λL which contains the support of λ is equal to
the union of supp(λ) and a finite collection of isolated non-compact leaves.

5.2. Independence of the hyperbolic structure

Suppose now that S=H2/Γ and S′=H2/Γ′ are two complete hyperbolic surfaces, f :S!S′

is a bi-Lipschitz homeomorphism and

f̃ : H2−!H2

is a lift of f . Since f̃ is also bi-Lipschitz, the restriction of f̃ to any geodesic in H2 is
a quasi-geodesic. Recall that if X is a metric space, a map α:R!X is a (K, A)-quasi-
geodesic if

|s−t|
K

−A 6 dX(α(s), α(t))6K|s−t|+A (5.1)

for all s, t∈R. It is known that the image of a quasi-geodesic α: R!H2 is at bounded
distance of a geodesic, where the bound depends only on the quasi-geodesic constants.
In particular, the bi-Lipschitz map f̃ : H2!H2 induces a homeomorphism

f̄ :G(H2)−!G(H2)

which conjugates the actions of the groups Γ and Γ′. It follows that f̄ induces homeomor-
phisms f̄∗ between the spaces of geodesic laminations, currents and measured laminations
associated with the surfaces S and S′.

5.3. Train-tracks

A train track on S=H2/Γ is an embedded 1-complex τ⊂S without dead-ends whose edges
(called branches) are smooth arcs with well-defined tangent vectors at the endpoints. At
any vertex (called a switch) the incident edges are mutually tangent. The branches
which are incident to a switch are divided into two non-empty subsets: “incoming” and
“outgoing” branches according to their inward pointing tangent at the switch. Moreover,
for each component R of Σ\τ , the double of R along the interiors of edges of ∂R must
have negative Euler characteristic.

A route of the train track τ is the image of a monotonic map h: R!τ parameterized
by arc-length and such that whenever it arrives at a vertex through an incoming (resp.
outgoing) branch, it leaves through an outgoing (resp. incoming) branch. It is important
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to observe that in our definitions the routes are neither parameterized nor have a preferred
direction.

A geodesic lamination λ is carried by the train track τ , if there is a map S!S

homotopic to the identity such that the image of any leaf of λ is a route in τ . It is an
observation of Thurston that if λ is carried by τ and {γn}∞n=1 is any sequence of curves
which converges in the Hausdorff topology to λ, then for all sufficiently large n, γn is
carried by τ as well.

Let τ⊂S be a train-track and denote by τ̃ the preimage of τ in H2. We denote by
R(τ) the set of all routes carried by τ . It is known that every route in R(τ) has two
distinct well-determined endpoints in ∂∞H2 and that two routes with the same endpoints
agree. In particular, we may associate with each route in R(τ) a geodesic in H2 and the
so-obtained map R(τ)!G(H2) is injective; we endow R(τ) with the subspace topology
of its image in G(H2). Observe that a lamination λ is carried by τ if and only if each leaf
of λ̃, the lift of λ to H2, is contained in the image of R(τ).

Continuing with the same notation, let C(R(τ))⊂C(S) be the closed set consisting
of currents supported on the image of R(τ) in G(H2). To conclude this section, we state
a technical lemma; the proof is identical to the proof of the fact that a map between
spaces of currents, induced by a bi-Lipschitz map, is a homeomorphism.

Lemma 5.1. Let S=H2/Γ and S′=H2/Γ′ be two hyperbolic surfaces, τ⊂S be a train-
track and f :S!S′ be continuous. Lift f to a map f̃ : H2!H2 and suppose that there
are A and K such that the restriction of f̃ to each route in R(τ) is an (A,K)-quasi-
isometry. Then the map f̄ :R(τ)!G(H2), which associates with each route α∈R(τ) the
unique geodesic in H2 which is at bounded distance of f̃(α), is continuous. Hence, the
induced map f̄∗: C(R(τ))!C(S′) is also continuous.

6. Masur domain and ending laminations

In this section we recall some facts about the Masur domain and on the ending lamina-
tions of degenerate ends of hyperbolic 3-manifolds.

6.1. Masur domain

Recall that the pared manifold C=(C,P ) is a pared compression body if there exists a
free side, called the distinguished free side and denoted by ∂eC=∂e(C,P ), so that the
induced homomorphism from π1(∂eC) to π1(C) is surjective. Also recall that C is a
trivial pared compression body if this homomorphism is also injective. Finally we say
that C is small if it contains a single separating, properly embedded essential disk; in
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particular, C is the connected sum along the boundary of two pieces where each of them is
either a trivial pared compression body or is a solid torus containing a single component
of P .

By M, we denote the set of isotopy classes of meridians, i.e. essential simple closed
curves on ∂eC which bound disks in C. We identify M with a subset of PML(∂eC), the
space of projective classes of measured laminations on ∂eC. Let M′ be the closure of M
in PML(∂eC).

If C is neither trivial nor small, then we define

O(C) = {λ∈PML(∂eC) : ι(λ, µ) > 0 for all µ∈M′},

where ι( · , ·) is the geometric intersection number. For a small compression body assume
that m is the unique separating meridian and define

M′′ = {λ∈PML(∂eC) : ι(λ, m) = 0},

and then
O(C) = {λ∈PML(∂eC) : ι(λ, µ) > 0 for all µ∈M′′}.

Finally, if (C,P ) is a trivial compression body, meaning that ∂eC is incompressible, then
M=∅ and we define O(C)=PML(∂eC). The set O(C) is the Masur domain of the
pared compression body C=(C,P ).

If F is a free side of a pared manifold (M,P ), then the Masur domain O(F ) is defined
to be the Masur domain of the relative compression body in (M,P ) with distinguished
free side F ; see §3.4 for the definition of relative compression bodies.

In this article we will only deal with filling Masur domain laminations. There is
a more straightforward characterization of filling laminations that do not belong to the
Masur domain which could in fact be considered as the definition. We state this charac-
terization in the following lemma.

Lemma 6.1. Assume that λ∈PML(∂eC) is filling. Either λ belongs to the Masur
domain or there is a sequence of meridians {mi}∞i=1 which converges in PML(∂eC) to a
measured lamination µ with the same support as λ. These two alternatives are mutually
exclusive.

Before going any further, a brief historical remark on the Masur domain. The Masur
domain was defined by Masur is [Masu] and then extensively studied by Otal [Ot1]. See
also Kerckhoff [Ke], Canary [Ca2], [Ca3] and Kleineidam–Souto [KS1], [KS2]. Recently,
Lecuire [L2] has defined and studied a certain extension of the Masur domain. Working
in the Masur domain is still technically simpler and it fully suffices for our purposes;
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it should be remarked that a filling lamination is contained in Lecuire’s domain if and
only if it is contained in the Masur domain. Previous authors have restricted themselves
to the study of the Masur domain in the case when the pared locus of (C,P ) is empty.
However, the proofs remain word-by-word the same in our slightly more general situation.
In particular, Masur and Otal proved that when C is a non-trivial compression body,
Mod(C) acts properly discontinuously on the Masur domain of C. This can be generalized
to show that if (C,P ) is a non-trivial pared compression body, Mod(C,P ) acts properly
discontinuously on O(∂eC). This is crucial in our generalizations of known facts about
the Masur domain.

6.2. Realizing laminations in O(C)

Still with the same notation as above, let (C,P ) be a pared compression body and
%∈AH(C,P ) be a discrete and faithful representation of π1(C) in PSL2(C) which maps
elements represented by curves in P to parabolic elements. Let N be the hyperbolic
manifold H3/%(π1(C)) and recall that the identification of π1(C) with π1(N)=%(π1(C))
determines a homotopy class of maps

j: (C,P )−! (Nε, ∂Nε)

which, after forgetting the pared locus, is a homotopy equivalence. We can extend the
restriction of j to ∂eC to a proper map from the interior of ∂eC to N by extending images
of annular neighborhoods of boundary components of ∂eC into cusps of N . With abuse
of notation, we still refer to this map as j: ∂eC!N . We will say that a map from the
interior of ∂eC to N is in the correct homotopy class if it is properly homotopic to the
restriction of j to ∂eC.

A geodesic lamination λ on ∂eC is realized in N if there exists a complete, finite-area
hyperbolic metric σ on ∂eC and a pleated map f : (∂eC, σ)!N in the correct homotopy
class which is totally geodesic on leaves of λ. Recall that a pleated map is a map f which
sends geodesic segments to rectifiable paths of the same length and also every point is
contained in a geodesic segment whose image under f is a geodesic segment; see [CEG]
for basic facts on pleated maps.

Remark. When working with pleated maps we will often drop any reference to the
underlying hyperbolic metric on the domain. Besides reducing the almost unbearable
burden of notation, this is justified by the fact that the metric is uniquely determined
by the map.

Assume that a lamination λ in the Masur domain O(C) is realized by a pleated
map f : ∂eC!N , identify H3 with the universal cover of N , let ∂eC

′ be the cover of ∂eC
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associated with the subgroup Ker(π1(∂eC)!π1(C)) and let f ′: ∂eC
′!H3 be a lift of f .

By definition, the map f ′ maps every leaf of the preimage of λ′ in ∂eC
′ to a geodesic in

H3. The following result of Otal [Ot1] asserts that the induced map is injective.

Theorem 6.2. (Otal) If two leaves l1 and l2 of λ′ are such that f ′(l1)=f ′(l2), then

l1 = l2.

Following Kleineidam–Souto [KS2], let O%(C) be the subset of O(C) consisting of
those Masur domain laminations λ which intersect every non-peripheral simple closed
curve α on ∂eC whose image under % is parabolic, ι(λ, α)>0. Note that a filling lamina-
tion in O(C) is always in O%(C).

Lemma 6.3. ([KS2, Lemma 4.5]) For every lamination λ in O%(C), there exists a
sequence of multicurves {γi}∞i=1⊂O%(C), where {γi}∞i=1 converges in PML(∂eC) to a
lamination that contains λ. Even more, when λ is not filling, we may assume that there
exists a multicurve γ with γ⊂γi for every i.

Let now λ be a lamination in O%(C) and {γi}∞i=1 be a sequence obtained from the
above lemma. The following lemma asserts that the curves γi are realized in N for all i.

Lemma 6.4. ([KS2, Lemma 4.1]) Every finite lamination which contains a multi-
curve in O%(C) is realized in N .

In fact, the proof of the above lemma in [KS2] proves more. It shows that if no
component of a multicurve α in O(C) is mapped by % to parabolics, then every geodesic
lamination which is a finite extension of α by non-compact leaves is realized. This we
will use in §12.3.

Continuing with the same notation, let fi: ∂eC!N be a sequence of pleated surfaces
realizing the curves γi. The following compactness result for pleated surfaces gives a
condition for the lamination λ to be realized in terms of the images fi(∂eC) of the
maps fi.

Proposition 6.5. A lamination λ∈O%(C) is realized in N if there is a sequence
γi of multicurves in O%(C) converging to λ in PML(∂eC) and a compact set K⊂N

such that each γi is realized by a pleated surface fi: ∂eC!N with fi(∂eC)∩K 6=∅. In
particular, every non-filling lamination λ∈O%(C) is realized in N .

The last statement is a consequence of the first part of the proposition and the fact
that, by Lemma 6.3, we may choose γi in such a way that they all contain a multicurve
γ. Proposition 6.5 is a version of Otal’s compactness theorem [Ot1] for pleated surfaces,
which is in turn an extension of Thurston’s compactness theorem for pleated surfaces (see
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[CEG]). The proof of Proposition 6.5 is, word-by-word, the same as the proof of [KS2,
Proposition 4.3], where the pared locus was assumed to be empty but where the image
of % was allowed to have parabolic elements. Before moving on, observe that Lemmas 6.3
and 6.4 and Proposition 6.5 imply the following result essentially due to Otal [Ot1].

Corollary 6.6. If N is geometrically finite, then every lamination which contains
the support of a filling Masur domain lamination is realized in N .

Besides the statement of Proposition 6.5, we will also need the following ingredient
of its proof. See [KS2, Lemmas 4.5 and 4.6] for details.

Lemma 6.7. Suppose that λ is a filling lamination in the Masur domain O(C),
let {γi}∞i=1 be a sequence of multicurves in O%(C) converging to λ and, for each i, let
fi:Xi!N be a pleated surface realizing γi. Then there is a constant ε>0 such that the
following holds for all i:

• for every meridian η in ∂eC we have lXi
(η)>ε;

• for every essential simple closed curve η in ∂eC, with %(η) parabolic, we have
lXi

(η)>ε, where lXi
( ·) denotes the length in the hyperbolic metric induced by fi on ∂eC.

6.3. More train-tracks

Suppose now that N is a hyperbolic 3-manifold and let L be large and δ small. We say
that a train-track τ⊂Σ is (L, δ)-realized by some map φ: Σ!N if

(i) φ maps monotonically each branch of τ to a geodesic segment of length >L;
(ii) if v1 and v2 are incoming and outgoing half-branches at x0, respectively, then

φ(v1) and φ(v2) have at least angle π−δ.
It is known that any path in the hyperbolic space, which consists of sufficiently long

geodesic segments meeting with a sufficiently large angle, is a (K, A)-quasi-geodesic,
where K and A depend only on the meaning of “sufficiently”. In particular, if a train-
track τ is (L, δ)-realized in N with L large and δ small, then routes go to quasi-geodesics.

Lemma 6.8. There are universal constants L, δ, K and A such that if Σ is a surface
of finite type, N is a hyperbolic 3-manifold and the train track τ⊂Σ is (L, δ)-realized by
some map f : Σ!N , then the restriction of f̃ : Σ̃!Ñ=H3 to any route of τ̃ is a (K, A)-
quasi-geodesic. Here Σ̃ and Ñ are the universal covers of Σ and N , τ̃ is the preimage
of τ in H2 and f̃ is a lift of f .

Suppose now that (M,P ) is a pared manifold and %∈AH(M,P ). Let also 	Σ be the
closure of a free side of (M,P ). Finally, let λ be a geodesic lamination in Σ=	Σ\∂	Σ which
contains the support of a filling Masur domain measured lamination. It is well known
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that if λ is realized in N%=H3/%(π1(M)) by some pleated map in the correct homotopy
class, then λ is carried by some train-track τ which is (L, δ)-realized in N with large L

and small δ. In fact, if N is the algebraic limit of a sequence of manifolds, then τ can
be chosen to be (L, δ)-realized in the approximates as well. More precisely, we have the
following result.

Lemma 6.9. Let (M,P ) be a pared manifold and 	Σ be a free side of (M,P ). Let
also λ be a lamination on Σ which contains the support of a filling Masur domain mea-
sured lamination. Assume that {%n}∞n=1 is a sequence in AH(M,P ) which converges
algebraically to some %∞ such that λ is realized in N%∞=H3/%∞(π1(M)) by a pleated
surface f : (Σ, σ)!N% in the correct homotopy class. Then, for all L and δ, there are n0

and a train-track τ⊂Σ carrying λ such that
• for all n=n0, ...,∞ the train-track τ is (L, δ)-realized in N%n

by some map

φn: Σ−!N%n

in the correct homotopy class;
• the pleated map f and the map φ∞ realizing λ and τ in N%∞ , respectively, are

homotopic to f by a homotopy whose tracks have at most length 1.

Combining Lemmas 6.8 and 6.9 we deduce the following result.

Proposition 6.10. Suppose that we are in the situation described in Lemma 6.9.
Then there is a constant L such that for any sequence {γn}∞n=1 of curves which converges
to λ in the Hausdorff topology and for any n>n0 we have

1
L

6
lH3(%n(γn))
l(Σ,σ)(γn)

6L.

Here lH3(%n(γn)) is the translation length in H3 of %n(γn) and l(Σ,σ)(γn) is the length
in (Σ, σ) of the geodesic freely homotopic to γn.

Proposition 6.10 holds when n=∞; in this case we also have the following easy
consequence of Lemma 6.9.

Corollary 6.11. Let %∈AH(M,P ) for a pared manifold (M,P ) and Σ be a free
side of (M,P ). Also assume that λ is lamination on Σ=	Σ\∂	Σ which contains the
support of a filling measured lamination and is realized by a pleated surface f : (Σ, σ)!N%

in the correct homotopy class for N%=H3/%(π1(M)). Given any sequence {γn}∞n=1 of
simple closed curves which converges to λ in the Hausdorff topology, there is n0 such that,
for any n>n0, f(γn) is homotopically non-trivial in N% and its geodesic representative
is in the 1-neighborhood of the image of f .
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See [Br1, §4] for a proof of Lemma 6.9 and Proposition 6.10; see also [Ot2]. It
should be remarked that we have chosen to state the results in this section only for filling
laminations because the statements in the more general case are slightly more involved.
Remark for instance that Lemma 6.9, as stated, does not hold if λ is a simple closed
curve.

6.4. Simply degenerate ends and ending laminations

Suppose now that N is a hyperbolic 3-manifold with associated pared manifold (M,P ),
and let F be a free side of (M,P ). Identify (M,P ) with a standard compact core of
(Nε, ∂Nε) in the correct homotopy class and let EF be the component of Nε\M facing F .
The component EF corresponds to a unique geometric end of N which we again denote
by EF . Suppose that EF is not convex cocompact. It follows from the tameness theorem
together with previous work by Bonahon [Bo2] and Canary [Ca3] that EF is simply
degenerate. This means that there is a sequence of homotopically essential simple closed
curves γi in F which cannot be homotoped into P and whose geodesic representatives γ∗i
in N exit the end EF and are homotopic to γi therein. Up to passing to a subsequence,
we may assume that the curves γi converge to a measured lamination λ∈PML(F ). It
is due to Thurston [Th1], Bonahon [Bo2] and Canary [Ca3] that λ is filling and that
any two so obtained measured laminations have the same support. In particular, the
support of λ, the ending lamination of the end EF , depends only on the manifold M .
The following result can be understood as a stronger version of the uniqueness of the
ending lamination [Bo2], [Ca3].

Proposition 6.12. Let N be a hyperbolic 3-manifold with the associated pared man-
ifold (M,P ) and F be a free side of (M,P ) facing a degenerate geometric end EF of
N . There exists a unique filling unmeasured lamination λ such that whenever {γ∗i }∞i=1

is a sequence of closed geodesics in EF ∩Nε, exiting EF and homotopic within EF to
(possibly non-simple) curves {γi}∞i=1 in F , then every convergent subsequence of the se-
quence {γi}∞i=1, in the space PC(F ) of projective geodesic currents, converges to a current
supported on λ.

The following result, due to Canary, asserts that the ending lamination of a degen-
erate end belongs to the Masur domain of the associated free side.

Theorem 6.13. ([Ca3, Corollary 10.2]) Let N be a hyperbolic 3-manifold with the
associated pared manifold (M,P ) and F be a free side of (M,P ) facing a degenerate geo-
metric end E of N . Then any measured lamination supported on the ending lamination
of the end E belongs to the Masur domain O(F ).
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Moreover, if (M,P ) is an interval bundle with base S and all the ends of N are
degenerate, then the projections of the ending laminations of the ends of N to S is not
a lamination.

In [Ca3], the first part of Theorem 6.13 was only proved in the absence of parabolics.
The proof in the pared setting is identical and, actually, the only fact on the Masur
domain needed in the proof is Lemma 6.1 above. The second statement in Theorem 6.13,
which is made uncomfortably cumbersome by the possibility that (M,P ) is a twisted
interval bundle, should probably be attributed to Thurston [Th1].

Note now that Proposition 6.12, together with Corollary 6.11, easily implies that
ending laminations are not realized. Before stating this fact as a corollary, we would
like to remark that our main technical result, Theorem 1.4, asserts that under suitable
conditions the converse is also true.

Corollary 6.14. Let N be a hyperbolic 3-manifold with associated pared manifold
(M,P ) and F be a free side of (M,P ) facing a degenerate geometric end with ending
lamination λ. Then λ is non-realizable in N .

Before moving on to other topics, we state here the following technical consequence
of Corollary 6.14, Theorem 6.13 and Proposition 6.5.

Proposition 6.15. Let N be a hyperbolic 3-manifold with associated pared manifold
(M,P ) and F be a free side facing a degenerate geometric end with ending lamination λ.
Let {γn}∞n=1 be a sequence of simple curves on F converging to a projective measured
lamination supported on λ. Then, for n sufficiently large, γn is homotopically non-trivial
in N and the geodesic representatives γ∗n of the curves γn exit the end EF as n!∞.

6.5. Two great theorems

In this section we recall the statements of the covering theorem and the ending lamination
theorem.

Covering theorem. (Thurston, Canary) Let N and N ′ be hyperbolic 3-manifolds
with finitely generated fundamental group and infinite volume, suppose that π:N!N ′ is
a Riemannian covering and let E be a degenerate end of N . Then, there are standard
compact cores (M,P ) and (M ′, P ′) of Nε and (N ′)ε such that, if F is the free side of
(M,P ) facing E , then the following hold :

• π(F )=F ′ is a free side of (M ′, P ′);
• the restriction of π to the component of Nε\M facing F is a finite-to-one cov-

ering map onto the component of (N ′)ε\M ′ facing F ′;
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• the end E ′ of N ′ facing F ′ is degenerate;
• the finite covering π|F :F!F ′ maps the ending lamination of E to the ending

lamination of E ′.

The covering theorem was proved by Thurston in [Th1] in the case where N is a
trivial interval bundle. From Thurston’s result it is standard how to deduce the gen-
eral case that the pared manifold associated with N has incompressible boundary. The
compressible case is due to Canary [Ca3].

The second important theorem that we mention here is the ending lamination the-
orem. This result will play a paramount role in this paper.

Ending lamination theorem. (Minsky [Mi2], Brock–Canary–Minsky [BCM]) Let
N and N ′ be hyperbolic 3-manifolds with finitely generated fundamental groups. Let
also (M,P ) and (M ′, P ′) be standard compact cores of Nε and (N ′)ε and suppose that
φ: (M,P )!(M ′, P ′) is a homeomorphism satisfying the following conditions:

• if F⊂∂M \P faces a convex cocompact end of N , then φ(F ) also faces a convex
cocompact end E ′ of N ′; moreover, the induced map ∂cE!∂cE ′ between the conformal
boundaries is homotopic to a bi-holomorphic map;

• if F⊂∂M \P faces a degenerate end E of N with ending lamination λE , then
φ(F ) also faces a degenerate end E ′ of N ′ with ending lamination φ(λE).

Then, there is an isometry Φ: N!N ′ in the isotopy class determined by φ.

The origins of the ending lamination theorem can be found in the work of Ahlfors
and Bers (cf. Theorem 4.3) who proved it in the geometrically finite case. In its final
form, the ending lamination theorem was conjectured to be true. In [Mi1] Minsky proved
the ending lamination theorem for those hyperbolic 3-manifolds homeomorphic to the
interior of a trivial interval bundle and which have non-vanishing injectivity radius. From
this first work of Minsky, the general statement can be deduced if N is tame and has
non-vanishing injectivity radius. The assumption that N is tame was made superfluous
by the proof of the tameness theorem by Agol [Ag] and Calegari–Gabai [CG]. Following
work of Masur–Minsky [MM1], [MM2], Minsky [Mi2] completed the construction of a
Lipschitz model for the general hyperbolic 3-manifolds homeomorphic to the interior of
an interval bundle. Brock–Canary–Minsky [BCM] proved that the model was actually a
bi-Lipschitz model, concluding the proof of the ending lamination theorem for manifolds
homeomorphic to the interior of a trivial interval bundle. The general case can be treated
as in [BCM] and is promised in a forthcoming work of Brock, Canary and Minsky.
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7. Trees

By a real tree we understand a path metric space T such that every two points x, y∈T

are joined by a unique injective continuous path [x, y] isometric to an interval.

7.1. Dual trees

In order to give an example, and also for later use, we recall now briefly the construction
of the dual tree of a filling measured lamination. Suppose that λ is a filling measured
lamination on a hyperbolic surface Σ. Identify H2 with the universal cover of Σ and let λ̃

be the lift of λ to H2. For x, y∈H2 we define dλ(x, y) to be the λ-measure of the geodesic
segment [x, y]. Observe that the assumption that λ is filling implies that the function
(x, y) 7!dλ(x, y) is continuous. Moreover, dλ( · , ·) is symmetric and satisfies the triangle
inequality. In particular, if we consider the quotient Tλ of H2 under the equivalence
relation

x∼ y if dλ(x, y) = 0,

we obtain a metric space. The fibers of the projection H2!Tλ are the leaves and com-
plementary components of λ. It follows that Tλ is a real tree.

Lemma 7.1. Tλ is a real tree. Moreover, the action π1(Σ)yH2 descends to a free
isometric action π1(Σ)yTλ.

The tree Tλ is the dual tree to the lamination λ. See Skora [Sk1], [Sk2] and Otal
[Ot3] for details.

Remark. For the sake of simplicity, we have discussed only the dual tree associated
with a minimal measured lamination. It should be mentioned that one can modify the
construction given here and associate with every measured lamination λ on S a dual tree
Tλ which admits a small minimal action π1(S)yTλ; recall that an action of a group
on a tree is small if the stabilizers of non-degenerate segments are virtually abelian.
Conversely, it is a result of Skora [Sk2] that any tree admitting a small minimal action of
π1(S) is dual to a lamination. As stated, this last statement is only true if S is a closed
surface but it can be modified to allow for surfaces of finite topological type as well.

7.2. Morgan–Shalen theory

Suppose now that (M,P ) is a pared manifold and let {%n}∞n=1 be a sequence in AH(M,P ).
It is due to Morgan and Shalen [MS] (see also [P] and [Bes]) that, up to conjugation, the
sequence {%n}∞n=1 satisfies one of the following two alternatives:

(1) {%n}∞n=1 contains a subsequence which converges in AH(M,P );
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(2) there is a positive sequence εn!0 and a subsequence of {%n}∞n=1, say the whole
sequence, such that the actions π1(M)y%n

εnH3 converge in the pointed equivariant
Gromov–Hausdorff topology to an isometric action π1(M)yT on a real tree T such that

• any element represented by a curve in P has a fixed point in T ;
• the stabilizer of any non-degenerate arc in T is virtually abelian; in other words,

the action π1(M)yT is small;
• for all fixed γ∈π1(M) we have

lT (γ) = lim
n!∞

εnlH3(%n(γ)),

where lT ( ·) is the translation length in T ;
• the tree T is not reduced to a point and the action π1(M)yT is minimal, meaning

that T does not contain any proper invariant subtree.
It is known that groups which do not split as amalgamated products or HNN-

extensions over virtually abelian groups do not admit small actions on trees without
global fixed points. This, and other similarly powerful results, follow from the so-called
Rips machine. Bestvina and Feighn obtained a relative version of the Rips machine.
More precisely, it follows directly from [BF, Theorem 9.6] together with the definition of
pared manifolds, that in order to prove that a small minimal action π1(M)yT is trivial,
it suffices to show that each one of the boundary groups has a fixed point; compare also
with [Th2]. Since an action of a group in a tree has a global fixed point if and only if
lT (γ)=0 for all elements γ, we deduce the following result.

Theorem 7.2. Let (M,P ) be a pared manifold and π1(M)yT be a small action on
a real tree. Suppose that every element γ∈π1(M) represented by a curve in a free side
of (M,P ) is such that lT (γ)=0. Then the whole group π1(M) fixes some point in T .

Assume now that (M,P ) is a pared manifold such that each free side F is incom-
pressible. If (M,P ) is also acylindrical, then we know that every small action π1(M)yT

on a real tree such that the elements in P have fixed points in T , has a global fixed point.
If (M,P ) is not acylindrical this is no longer true. However we have the following fact
[Ka] relating the JSJ-splitting of (M,P ) and the possible small actions of π1(M) on real
trees.

Theorem 7.3. Let (M,P ) be a pared manifold and π1(M)yT be a small action
such that every element in π1(M) represented by a curve in P fixes a point in T . We
have lT (γ)=0 for every element γ∈π1(M) which is represented by a curve which can be
homotoped into either one of the annuli A provided by Theorem 3.2 or into one of the
acylindrical components of the complement of A.
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Note that if the tree T arises as a limit of representations in AH(M,P ), then Theo-
rem 7.3 follows from Thurston’s only windows break theorem [Th2].

7.3. Continuity

Continuing with the same notation, let (M,P ) be a pared manifold and π1(M)yT be
a small action without global fixed point on a real tree. Suppose that every element in
π1(M), which is represented by a curve in P , fixes a point in T . Finally let F be a free
side of (M,P ) and let λ be a measured lamination on F .

Denote by F̃ the universal cover of F and let λ̃ be the preimage of λ in F̃ . Composing
the homomorphism π1(F )!π1(N) with the action on T , we obtain an action π1(F )yT .
Following Otal [Ot1], [Ot3], we say that λ is realized in T if there is a continuous π1(F )-
equivariant map

φ: λ̃−!T

which is strictly monotonic when restricted to any leaf of λ̃. Note that, if λ is a sim-
ple closed curve, then this in particular means that lT (λ)>0, where lT (λ) denotes the
translation length of every element of π1(F ) whose conjugacy class is represented by λ.

This notion will be important for us because of the following theorem, which is due
to Otal [Ot1], [Ot3].

Theorem 7.4. (Continuity theorem) Let (M,P ) be a pared manifold and {%n}∞n=1

be a sequence of representations in AH(N,P ). Suppose that, after scaling, the actions
%n(π1(M))yH3 converge in the equivariant Gromov–Hausdorff topology to a small action
π1(M)yT without global fixed points. Suppose also that F is a free side of (M,P ) and
let λ∈O(F ) be a filling Masur domain lamination on F .

If λ is realized in T , then, for any sequence of simple closed curves {γn}∞n=1 in F

which converge to λ in PML(F ), we have

lim
n!∞

lH3(%n(γn))
lX(γ)

=∞,

where lH3( ·) is the translation length in H3 and lX( ·) is the length with respect to some
arbitrarily fixed finite-area hyperbolic metric on F .

Theorem 7.4 is useless unless one can ensure that in certain situations the lamination
λ is realized. Not surprisingly, the first of these realization results is due to Otal [Ot3].

Theorem 7.5. ([Ot3]) Suppose that F is a hyperbolic surface with finite area, λ, µ∈
PML(F ) and π1(F )yT is a small action without global fixed point on a real tree such
that every element in π1(F ) which is represented by peripheral curve in F fixes a point



density conjecture 365

in T . Suppose that λ is filling, that µ is not realized in T and that ι(λ, µ)>0. Then λ

is realized in T .

Theorem 7.5, a consequence of the result of Skora [Sk2] mentioned at the end of
§7.1, is stated in [Ot3] under the assumption that both λ and µ are filling; however, the
proof applies word-by-word. Before going any further, observe that the following is a
direct consequence of Theorem 7.5.

Corollary 7.6. Let (M,P ) be a twisted trivial interval bundle over a surface F and
let λ∈PML(∂M \P ) be a filling lamination whose projection to F is not a lamination
on F . If π1(M)yT is a small action without global fixed point on a real tree such that
every element in π1(M) which is represented by a curve in P fixes a point in T , then λ

is realized in T .

In [KS1] a version of Theorem 7.5 was proved for filling Masur domain laminations
on the distinguished free side of compression bodies with empty pared locus. The proof
in the general case is due to Lecuire [L1].

Theorem 7.7. ([KS1], [L1]) Let (C,P ) be a non-trivial pared compression body with
distinguished free side F and π1(C)yT be a small action without global fixed point on
a real tree such that every element in π1(C) which is represented by a curve in P fixes a
point in T . Then every filling Masur domain lamination λ∈O(C) is realized in T .

8. Compactness theorem

In the proof of the density conjecture in the next section, the existence of certain algebraic
limits will be crucial. The goal of this section is to ensure that such limits exist.

Fix some pared manifold (M,P ) and a discrete and faithful representation

%0:π1(M)−!PSL2(C)

such that the associated hyperbolic manifold N%0 is geometrically finite and has asso-
ciated pared manifold (M,P ). The existence of such a representation is ensured by
Thurston’s hyperbolization theorem. Label the free sides of (M,P ) by F1, ..., Fs and
suppose that we fix a tuple

I =(X1, ..., Xr, λr+1, ..., λs), (8.1)

where Xi∈T (Fi) is a point in the Teichmüller space of T (Fi) for i=1, ..., r and where
λi∈PML(Fi) is a filling measured lamination for i=r+1, ..., s. Fix also arbitrary hy-
perbolic metrics on the surfaces Fr+1, ..., Fs.



366 h. namazi and j. souto

Then we say that the tuple I is filling if the following two conditions are satisfied:
(*) if (M,P ) is an interval bundle over a surface S and r=0, then the union of the

projection of the laminations λ1, ..., λs to S is not a lamination;
(**) if i>r+1 and Fi is a compressible free side of (M,P ), then the lamination λi

is a Masur domain lamination.
Theorem 6.13 asserts that the ending invariants of a hyperbolic 3-manifold form a

filling tuple.
Continuing with the same notation, let πAB: T (∂M \P )!QH(%0) be the covering

provided by Theorem 4.3; in other words, πAB is the Ahlfors–Bers parametrization of
the subset QH(%0) of AH(M,P ) consisting of (conjugacy classes of) representations which
are quasi-conformally conjugated to %0. Observe that the Teichmüller space T (∂M \P )
is the cartesian product of the Teichmüller spaces of the free sides of (M,P ). We say
that a sequence

(Xn
1 , ..., Xn

s )∈T (F1)×...×T (Fs) = T (∂M \P )

is filling if, after possibly relabeling the free sides of (M,P ), there is an associated filling
tuple I as in (8.1) such that the following holds:

• for all n and all i6r we have Xn
i =Xi;

• for all i>r+1 there is a sequence of simple closed curves γn
i which converge to λi

in PML(Fi) such that

lim
n!∞

lXn
i
(γn)

lX1
i
(γn)

= 0,

where lXn
i
(γn) is the length of the geodesic freely homotopic to γn in Xn

i .

Remark. Thurston showed how the Teichmüller space of a surface of finite type F

can be compactified naturally by the space of projective measured laminations on F . It
follows (see [FLP]) that the second condition above is satisfied whenever the sequence
{Xn

i }∞n=1 converges to the point λi in Thurston’s compactification of T (Fi).

The main compactness result that we will need is the following.

Theorem 8.1. Let (M,P ) be a pared manifold and %0:π1(M)!PSL2(C) be a dis-
crete and faithful representation such that the associated hyperbolic manifold N%0 is ge-
ometrically finite and has associated pared manifold (M,P ). Denote by

πAB: T (∂M \P )−!QH(%0)

the Ahlfors–Bers parametrization of QH(%0) and label F1, ..., Fs the free sides of (M,P ).
If (Xn

1 , ..., Xn
s ) is a filling sequence with associated filling tuple (X1, ..., Xr, λr+1, ..., λs)

then, up to passing to a subsequence, the sequence %n=πAB(Xn
1 , ..., Xn

s ) converges in
AH(M,P ) to some discrete and failthful representation %.
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Let N% be the hyperbolic 3-manifold associated with the limiting representation and
(M ′, P ′) be its associated pared manifold. There is a map φ: (M,P )!(M ′, P ′) in the
homotopy class determined by % such that

(1) φ maps Fi homeomorphically onto a free side of (M ′, P ′) for all i=1, ..., r;
moreover, for any such i, the end of N% associated with φ(Fi) is convex cocompact and
has conformal boundary φ∗(Xi);

(2) for i=r+1, ..., s, the lamination λi is not realized in N% by any map in the
homotopy class of the restriction of φ to Fi.

For the sake of simplicity, we will prove Theorem 8.1 in the case when (M,P ) is not
an interval bundle. The proof for interval bundles follows along the same lines, actually
allowing for some simplicifications; compare for example with [Ot3].

Before going any further we state two lemmas which play an important role in the
proof of Theorem 8.1. The assumption that the conformal structures on the compressible
components of ∂M \P are either fixed or tend to a Masur domain lamination implies the
following result.

Lemma 8.2. There is some ε>0 such that for every n∈N and i=1, ..., s, the merid-
ians in Xn

i have at least length ε.

See for example [KS1] for a proof of Lemma 8.2. Now, combining Lemma 8.2,
Proposition 4.1 and the assumption that for i=r+1, ..., s the conformal structures Xn

i

converge to λi, we deduce the following lemma.

Lemma 8.3. There is some K>0 such that the following holds:
• if γ is a non-peripheral curve in Fi for i=1, ..., r, then lH3(%n(γ))6KlXi

(γ);
• for i>r there is a sequence {γn

i }∞n=1 of simple closed curves in Fi converging in
PML(Fi) to λi and such that

lim
n!∞

lH3(%n(γn
i ))

lX1
i
(γn

i )
= 0.

We are now ready to launch the proof of Theorem 8.1.

Proof of Theorem 8.1. Suppose that we are in the situation described by Theo-
rem 8.1. We start proving that the sequence {%n}∞n=1 has a convergent subsequence.

Claim 1. Up to conjugacy, the sequence {%n}∞n=1 has a convergent subsequence.

Seeking a contradiction, assume that no subsequence of the sequence {%n}∞n=1 con-
verges after conjugacy. Then, by the results of Morgan and Shalen mentioned in the
previous section we may pass to a subsequence and conjugate so that there is a positive
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sequence εn!0 such that the actions %n(π1(M))yεnH3 converge in the pointed equi-
variant Gromov–Hausdorff topology to a small action π1(M)yT without global fixed
point on a real tree. Recall that any element in π1(M) represented by a curve in P has
a fixed point in T . We will obtain a contradiction showing that π1(M) has a global fixed
point in T . In the light of Theorem 7.2, it suffices to prove that every element in π1(M)
which is represented by a curve in a free side of (M,P ) has vanishing translation length
in T .

To begin with, consider those elements represented by curves γ⊂F1∪...∪Fr; say
γ⊂F1. By the first statement of Lemma 8.3, the elements %n(γ) have uniformly bounded
translation length lH3(%n(γ)). It follows that

lT (γ) = lim
n!∞

εnlH3(%n(γ))= 0.

In other words, γ has a fixed point in T .
Suppose now that i>r+1 and that Fi is compressible. Let (C,Q)⊂(M,P ) be the

relative pared compression body associated with the free side Fi and suppose that the
restriction of the action π1(M)yT to π1(C) does not have a global fixed point. By
Theorem 7.7, the lamination λi is realized in T . In particular, it follows from Theorem 7.4
that

lim
n!∞

lH3(%n(γn))
lX1

i
(γn)

=∞

for any sequence {γn}∞n=1 of simple closed curves on Fi which converges to λi. This
contradicts the second claim of Lemma 8.3.

It remains to consider the case where i>r+1 and Fi is incompressible. If Fi is a
free side of the relative compression body neighborhood (C,Q) associated with some
compressible side F ′

i , then the group π1(Fi) is a subgroup of π1(C) and hence, by the
cases treated so far, has a global fixed point in T . Suppose that Fi does not belong to the
union of the relative compression body neighborhoods associated with the compressible
free sides of (M,P ). In other words, Fi is a free side of the incompressible core (M ′′, P ′′)
of (M,P ). Since we are assuming that (M,P ) is not a trivial interval bundle (and that
Fi is a free side of both (M,P ) and (M ′′, P ′′)), it follows that (M ′′, P ′′) is not a trivial
interval bundle either. By Lemma 3.3, Fi is either large or at least can be homotoped
into a large free side of (M ′′, P ′′). Hence, we may assume that Fi is large itself. By
definition, this means that Fi contains some simple closed essential curve µ which is
either contained in one of the annuli in the JSJ-splitting in Theorem 3.2 or in one of the
acylindrical pieces. By Theorem 7.3, lT (µ)=0. Restrict the action of π1(M) on T to the
action π1(Fi)yT and suppose that the latter action is non-trivial. As lT (µ)=0, we have
that the curve µ is not realized in T . Since λi is filling, it follows from Theorem 7.5 that
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λi is realized in T . We can now obtain a contradiction as in the compressible case. This
concludes the proof of Claim 1.

Continuing with the proof of Theorem 8.1, let % be the limiting representation for
a convergent subsequence of the sequence {%n}∞n=1 and N% be the associated hyperbolic
3-manifold. Let also (M ′, P ′) be the pared manifold associated with N% and let

φ: (M,P )−! (M ′, P ′)

be a map in the homotopy class determined by %. By Proposition 4.4, we may assume that
φ maps, for i=1, ..., r, the free side Fi homeomorphically to a free side of (M ′, P ′) and
that the end of N% associated with φ(Fi) is convex cocompact with conformal boundary
φ∗(Xi). In other words, (1) holds.

It remains to prove that the laminations λr+1, ..., λs are not realized in N%.

Claim 2. For i=r+1, ..., s, the lamination λi is not realized in N% by any map in
the homotopy class of the restriction of φ to Fi.

Suppose that λi is realized in N%. Since λi fills Fi, every extension of λi is a union
of λi and finitely many non-compact leaves, and it follows that every such extension is
also realized. In particular, if {γn}∞n=1 is a sequence of simple closed curves in Fi which
converges to λi in PML(Fi), then every Hausdorff limit of {γn}∞n=1 is also realized.

Then, by Proposition 6.10, there is some ε with

lim inf
n!∞

lH3(%n(γn))
lX1

i
(γn)

> ε,

which contradicts Lemma 8.3.
This concludes the proof of Claim 2 and hence of Theorem 8.1.

Before moving on, we would like to observe that in [Oh3], Ohshika has given a proof
of Theorem 8.1 without using the Rips machine. Other sophisticated compactness results
can be found in [KLO].

9. The density conjecture

In this section we reduce the proof of the density conjecture to proving Theorem 1.4.

Theorem 1.1. (Density conjecture) If Γ is a finitely generated Kleinian group,
then the set of geometrically finite points in AH(Γ) is dense in the algebraic topology. In
other words, the density conjecture holds.
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Before moving on, we recall that, according to the convention we have followed so
far, Kleinian groups are automatically torsion free. In the final section of this paper we
will prove that Theorem 1.1 remains valid for groups with torsion.

Proof. From now on, let Γ be as in the statement of Theorem 1.1. Fix %̄∈AH(Γ),
consider the hyperbolic 3-manifold N=H3/%̄(Γ), let (M,P ) be the associated pared man-
ifold and identify (M,P ) with a standard compact core of (Nε, ∂Nε).

To begin with, fix a geometrically finite, minimally parabolic representation %0∈
AH(M,P ) such that the hyperbolic 3-manifold N%0 =H3/%0(Γ) has associated pared
manifold (M,P ); recall that the existence of %0 follows from Thurston’s hyperboliza-
tion theorem [Mo], [Ot4], [Ka]. We are going to find a sequence {%n}∞n=1⊂QH(%0) of
quasi-conformal deformations of %0 with

%̄ = lim
n!∞

%n.

We begin by labeling the free sides F1, ..., Fs. Up to relabeling, we may assume that
the ends of N associated with F1, ..., Fr are convex cocompact and those associated with
Fr+1, ..., Fs are degenerate. For i=1, ..., r let Xi∈T (Fi) be the point in the Teichmüller
space of Fi representing the conformal boundary of the end facing Fi. Similarly, for
i=r+1, ..., s let λi∈PML(Fi) be a measured lamination supported on the ending lami-
nation of the end facing Fi. Recall that, by Theorem 6.13, the measured lamination λi is
filling and belongs to the Masur domain O(Fi) of the free side Fi. In particular, the tuple
(X1, ..., Xr, λr+1, ..., λs) is filling. Let (Xn

1 , ..., Xn
s )∈T (∂M \P ) be a filling sequence with

associated filling tuple (X1, ..., Xr, λr+1, ..., λs) and let

%n =πAB(Xn
1 , ..., Xn

s ),

where πAB: T (∂M \P )!QH(%0) is the Ahlfors–Bers parametrization (Theorem 4.3). It
follows from Theorem 8.1 that, up to passing to a subsequence, the sequence {%n}∞n=1 con-
verges to some %∈AH(M,P ) such that the limiting hyperbolic 3-manifold N%=H3/%(Γ)
satisfies the following property:

(*) Let (M ′, P ′) be the pared manifold associated with N% which we again iden-
tify with a standard relative compact core of N%. There is a map φ: (M,P )!(M ′, P ′)
compatible with the the representation % such that

(1) φ maps Fi homeomorphically onto a free side of (M ′, P ′) for all i=1, ..., r; more-
over, for any such i, the end of N% associated with φ(Fi) is convex cocompact and has
conformal boundary φ∗(Xi);

(2) for i=r+1, ..., s the lamination λi is not realized in N% by any map in the
homotopy class of the restriction of φ to Fi.
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In this and the next two sections we will prove the following result.

Theorem 1.4 Let (M,P ) be a pared manifold and %∈AH(M,P ). Let also

(M ′, P ′)⊂ (Nε
% , ∂Nε

% )

be a standard relative compact core of the hyperbolic 3-manifold N%=H3/%(π1(M)), and
φ: (M,P )!(M ′, P ′) be in the homotopy class determined by %. Suppose that λ is a filling
Masur domain lamination on a free side F of (M,P ) which is not realized in N%. Then
φ is homotopic, relative to the complement of a regular neighborhood of F , to a map
φ1: (M,P )!(M ′, P ′) such that

• the restriction of φ1 to F is a homeomorphism to some free side F ′ of (M ′, P ′);
• the end of N% associated with F ′ is degenerate and has ending lamination φ1(λ).

We continue with the proof of Theorem 1.1. It follows from (*) and applying Theo-
rem 1.4 for every free side Fi of (M,P ), i=r+1, ..., s, that the following holds:

(**) Let (M ′, P ′) be the pared manifold associated with N%. There is a map
φ: (M,P )!(M ′, P ′) compatible with the isomorphism π1(M)!π1(M ′)=π1(N%) induced
by the representation % such that

(1) φ maps Fi homeomorphically onto a free side of (M ′, P ′) for all i=1, ..., r; more-
over, for any such i, the end of N% associated with φ(F ′

i ) is convex cocompact and has
conformal boundary φ∗(Xi);

(2) for i=r+1, ..., s the restriction of φ to Fi is a homeomorphism onto a free side
of (M ′, P ′) and the end of N associated with φ(Fi) is degenerate with ending lamination
φ(λi).

Observe now that the restriction of the map φ provided by (**) to any free side
of (M,P ) is a homeomorphism onto its image. In particular, we are not in case (1) of
Theorem 3.12. We claim that case (2) does not occur either because, unless %̄ is Fuchsian,
even if (M,P ) is a trivial interval bundle, the end invariants associated with the different
free sides are different. (Obviously a Fuchsian representation is geometrically finite.) We
then deduce from Theorem 3.12 that φ is homotopic, via maps which map boundary-to-
boundary, to a homeomorphism

φ1: (M,P )−! (M ′, P ′)

which maps ending laminations to ending laminations and is holomorphic on the confor-
mal boundary. It follows from the ending lamination theorem that there is an isometry
Ψ:N!N% in the isotopy class determined by φ1.

At this point, it is possible that Ψ is orientation reversing. However, if this is the case,
we can replace each geometrically finite representation %n by another one which provides
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the same geometrically finite hyperbolic 3-manifold with the opposite orientation. The
new sequence will still be convergent and the limiting representation provides a hyperbolic
3-manifold which is isometric to N with an orientation-preserving isometry.

Hence, we may assume that Ψ:N!N% is an orientation-preserving isometry in the
isotopy class determined by φ1. In other words, the representations %̄ and % are conju-
gated in PSL2(C). Since by construction % is the limit of a sequence of the geometrically
finite representations {%n}∞n=1, it follows that after suitably conjugating {%n}∞n=1 we
obtain a geometrically finite sequence converging to %̄.

As %̄ was arbitrary, this proves that every point in AH(Γ) is an algebraic limit of
geometrically finite representations and hence ends the proof of Theorem 1.1.

The remaining part of the paper , but for the last section, is devoted to the proof of
Theorem 1.4. Before going any further, we reduce it to a more concrete problem about
compression bodies. In the course of the next two sections we are going to prove the
following theorem.

Theorem 9.1. Let C=(C,P ) be a non-trivial pared compression body with distin-
guished free side ∂eC. Suppose that %∈AH(C,P ) is such that there is no non-peripheral
simple closed curve γ on a constituent of (C,P ), with %(γ) parabolic, and let

N% = H3/%(π1(C))

be the associated hyperbolic 3-manifold. Also assume that (M,Q)⊂(Nε
% , ∂Nε

% ) is a stan-
dard compact core of N% and that λ is a filling Masur domain lamination on ∂eC which
is not realized in N%. Then the following hold :

• there is a pared homeomorphism G: (C,P )!(M,Q) in the proper homotopy class
determined by %; in particular, (M,Q) is a pared compression body ;

• the image of λ under G is supported on the ending lamination of the end of N%

associated with the distinguished free side of (M,Q).

Assuming Theorem 9.1, we prove Theorem 1.4.

Proof of Theorem 1.4. First we use Theorem 9.1 to show that φ is homotopic, rela-
tive to the complement of a regular neighborhood of F , to a map φ1: (M,P )!(M ′, P ′)
such that the restriction of φ1 to F is a finite sheeted covering to a free side F ′ of
(M ′, P ′), and also that the end of N associated with F ′ must be degenerate with ending
lamination φ1(λ). Then we use the fact that φ1 is a homotopy equivalence to prove that
the restriction to F must indeed be a homeomorphism.

If F is incompressible, then the restriction of % to π1(F ) induces an element of
AH(F, ∂F ). The hyperbolic manifold Ñ=H3/%(π1(F )) covers N%. Note that λ cannot be
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realized in this cover, otherwise the projection to N% would give a realization of λ in N .
Work of Bonahon [Bo2] shows that Ñ is homeomorphic to a trivial interval bundle over
the interior of F . Thurston [Th1] showed that for hyperbolic 3-manifolds homeomorphic
to a trivial interval bundle over the interior of a surface F , a filling lamination is not
realized if and only if it is the ending lamination of a geometric end of the hyperbolic
manifold. Hence the relative compact core of Ñ has a free side that can be identified
with F in such a way that the induced map from the inclusion of this side to Ñ is in the
homotopy class determined by %. Furthermore, the end of Ñ associated with this free
side is degenerate with ending lamination λ. Once we know this, the covering theorem
shows that the covering map Ñ!N% is finite-to-one restricted to this end and projects
to a degenerate end of N%. In particular, if F ′ is the free side of (M ′, P ′) associated
with this end, we can homotope the restriction of φ to (F, ∂F ), through maps of pairs
(F, ∂F )!(M ′, P ′), to a covering map onto (F ′, ∂F ′). Moreover, the ending lamination
for the considered end of Ñ projects to the ending lamination for the considered end of
N%, and therefore it is the projection of λ under the covering map.

If F is compressible, then the relative pared compression body C=(C,P ) associated
with F is non-trivial. The representation % induces a representation in AH(C,P ) which
we call %′. Let γ1, ..., γl be a maximal collection of pairwise disjoint non-parallel and
non-peripheral simple closed curves in the constituents of (C,P ) with %′(γi) parabolic
for each i. Let then P ′ be the union of P with a regular neighborhood of γ1∪...∪γl in
∂C\P . Observe that the representation %′ belongs not only to AH(C,P ), but also to
AH(C,P ′). As a representation in AH(C,P ′), the representation %′ satisfies the hypoth-
esis of Theorem 9.1.

Let Ñ be the cover of N% associated with the image of %′. Theorem 9.1 shows that
there is a pared homeomorphism from (C,P ′) to the relative compact core of Ñ in the
homotopy class determined by %′ and that the end of Ñ associated with F is degenerate
with ending lamination λ. From here on, the argument is similar to the previous case.
Using Canary’s covering theorem, the projection Ñ!N% is finite-to-one restricted to this
end, and maps this end to a degenerate end of N% which is associated with a free side F ′

of (M ′, P ′). This immediately implies again that the restriction of φ to (F, ∂F ) (through
maps of pairs (F, ∂F )!(M ′, P ′)) is homotopic to a covering map onto (F ′, ∂F ′) and
that the ending lamination of the end associated with F ′ is the image of λ.

At this stage, we are almost done with the proof of Theorem 1.4. We have namely
constructed φ1: (M,P )!(M ′, P ′) satisfying the conclusion of the theorem except that
the restriction of φ1 to F may be a non-trivial covering map to the free side F ′ of (M ′, P ′).
We claim that this is impossible knowing that φ1 is a homotopy equivalence.

First consider the case where F is not closed and meets the pared locus P . It follows
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from Lemma 3.7 that, if E1 and E2 are distinct components of ∂F , their images by a
homotopy equivalence have to be distinct, unless E1 and E2 bound an annular component
of P . Even more, if the homotopy equivalence identifies E1 and E2, the induced map
from E1 to E2 is orientation reversing with respect to the orientations induced by F on
E1 and E2. This shows that such a map cannot be a covering map and the cover F!F ′

has to be trivial outside of a compact set in F ; clearly, this implies that the whole cover
is trivial.

Suppose now that F , and hence F ′, are closed surfaces. It is well known that the
kernels of the maps

H1(F, R)−!H1(M, R) and H1(F ′, R)!H1(M ′, R)

are Lagrangian subspaces of the symplectic vector spaces H1(F, R) and H1(F ′, R). On
the other hand, the kernel of the homomorphism

H1(F, R)−!H1(F ′, R)

induced by a non-trivial cover is a non-trivial symplectic subspace. This implies that,
if the cover F!F ′ is non-trivial, then there is [α]∈Ker(H1(F, R)!H1(F ′, R)) with
[α] /∈Ker(H1(F, R)!H1(M, R)). Hence, the homomorphism

H1(M, R)−!H1(M ′, R)

induced by φ has non-trivial kernel, contradicting the assumption that φ is a homotopy
equivalence.

10. Reducing Theorem 9.1 to a topological problem

From now on, assume that we are in the setting of Theorem 9.1. In other words, we have
a pared compression body C=(C,P ) with distinguished free side ∂eC=∂e(C,P ), a dis-
crete and faithful representation %:π1(C)!PSL2(C) mapping elements in P to parabolic
elements and a filling Masur domain lamination λ∈O(∂eC) which is not realized in the
hyperbolic 3-manifold N%=H3/%(π1(C)) associated with %. We also assume that there is
no simple closed non-peripheral curve γ contained in a constituent of (C,P ) with %(γ)
parabolic.

In order to save notation, set N=N%.
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10.1. A proper map

Our first goal is to approximate λ by a sequence of multicurves which are realized in
a controlled way. It follows from the work of Klarreich [Kl] that the lamination λ rep-
resents a point in the Gromov boundary of the curve complex of ∂eC. With the curve
complex in mind (compare with for example [Br2]), we can now find a sequence of pants
decompositions γn of ∂eC converging to λ in the curve complex, and such that, for all n,
the pants decompositions γn and γn+1 are at distance 1 in the pants complex. In more
concrete terms, this last condition means that, for all n, there are two curves α and β

with
γn =α∪(γn∩γn+1) and γn+1 =β∪(γn∩γn+1)

and such that α and β intersect minimally; this means that ι(α, β)=2 if α is separating in
∂eC\(γn∩γn+1) and ι(α, β)=1 otherwise. Fix from now on such a sequence γn of pants
decompositions and choose for all n a lamination µn that contains γn and is maximal, i.e.
all the complementary regions are ideal triangles. Note that such a lamination consist of
components of γn and a finite number of non-compact leaves spiraling about a component
of γn.

It follows from the work of Klarreich [Kl] that any accumulation point of the sequence
{γn}∞n=1 in PML(∂eC) has the same support as λ, and hence belongs to O%(C) by
Lemma 6.1. Lemma 6.3 implies now that for all sufficiently large n, say for all n, γn

belongs to O%(C) as well. In particular, it follows from Lemma 6.4 that the laminations
µn are realized in N by pleated surfaces fn: (∂eC, σn)!N in the correct homotopy class.
Moreover, Lemma 6.7 implies that the surfaces (∂eC, σn) do not contain short essential
curves which are either compressible in C or homotopic into P . Finally, it follows from
Proposition 6.5 and the assumption that λ is not realized, that for every compact set K

there is some nK such that fn(∂eC)∩K 6=∅ for all n>nK . We summarize all this in the
following lemma.

Lemma 10.1. There is n0 such that for every n>n0 the lamination µn is realized
by some pleated surface fn: (∂eC, σn)!N in the correct homotopy class. Moreover, there
is ε such that for all n>n0 every essential non-peripheral curve η⊂∂eC which either
bounds a disk in C or whose image under % is parabolic has at least length lσn

(η)>ε.
Finally, if K⊂N is a compact set, then there is nK with K∩fn(∂eC)=∅ for all n>nK .

Forgetting the first terms of the sequence, we may assume that n0=0. Below we are
going to prove the following result.

Lemma 10.2. There is a constant d such that for all n the maps fn and fn+1

are homotopic by a homotopy whose image is contained in the radius-d neighborhood of
fn(∂eC)∪fn+1(∂eC).
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Assuming Lemma 10.2, let

F : ∂eC×[0,∞)−!N (10.1)

be the map with F (x, n)=fn(x) for all n∈N and x∈∂eC, and whose restriction to

∂eC×[n, n+1]

is the homotopy provided by Lemma 10.2.
As in the statement of Theorem 9.1, let (M,Q) be the pared manifold associated

with the hyperbolic manifold N and identify (M,Q) with a standard relative compact
core of (Nε, ∂Nε). It follows from Lemma 10.1 that there is n1 such that fn(∂eC) does
not intersect the radius-d neighborhood of M for all n>n1. In particular,

F (∂eC×[n1,∞))∩M = ∅.

The collar lemma and the fact that there are no short compressible or parabolic curves in
(∂eC, σn) imply that there is n2 such that Nε∩(F (∂eC×[n2,∞)) is contained in a single
connected component of Nε\M . Assuming Lemma 10.2, we have proved the following
result.

Proposition 10.3. There is some n0 such that the map F : ∂eC×[0,∞)!N defined
in (10.1) satisfies the following properties:

• F (x, n)=fn(x) for all n∈N and x∈∂eC;
• F (∂eC×[n0,∞))∩M=∅;
• Nε∩F (∂eC×[n0,∞)) is contained in a single connected component of Nε\M .

Now we prove Lemma 10.2.

Proof of Lemma 10.2. In the argument below it will be important to differentiate
between the open distinguished free side ∂eC and the compact free side ∂eC. Suppose that
γn=α∪(γn∩γn+1) and γn+1=β∪(γn∩γn+1), and let Y ⊂∂eC be the compact surface,
obtained by cutting ∂eC along γn∩γn+1, that contains α and β. We know that Y is
either a 4-holed sphere or a 1-holed torus. First we construct a triangulation T on ∂eC

as follows. Restricted to Y , we assume that T is one of the triangulations in Figure 1.
Then extend this to a triangulation of the entire surface ∂eC in such a way that all the
vertices are on components of γn∩γn+1 or on components of ∂∂eC. What is important
for us about this triangulation is that γn and γn+1 are homotopic to subgraphs of the
1-skeleton of T and every triangle on Y has at least one vertex on ∂Y .

For any choice for images of vertices of T on geodesic representative of %(γn) (resp.
%(γn+1)) that preserves their ordering, we can construct a simplicial hyperbolic map
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α

β α

β

Figure 1. The triangulation on Y .

∂eC!N with associated triangulation T that realizes γn (resp. γn+1) and maps every
simplex of T contained in ∂eC to a totally geodesic simplex in N . Intuitively, vertices
and edges contained in the boundary of ∂eC are mapped to cusps. The construction is
standard; see [Ca3] for details.

Using an idea of Thurston, we can construct a continuous family gt
n (resp. gt

n+1 of
simplicial hyperbolic surfaces as above that converge to fn (resp. fn+1) uniformly on
compact subsets of ∂eC. This is possible by starting from one such map g0

n (resp. g0
n+1)

and for each component γ of γn (resp. γn+1) continuously twist the images of vertices
on γ about the geodesic representative of γ in the direction that non-compact leaves of
µn (resp. µn+1) spiral about γ when approaching γ, and then construct the simplicial
hyperbolic surface gt

n (resp. gt
n+1) as above. (Here we are assuming that the image of

γn (resp. γn+1) is fixed and we are twisting the vertices of the triangulation about the
components.) The maps gt

n (resp. gt
n+1) converge uniformly on every compact set, as

t!∞, and obviously the limit is a map ∂eC!N that realizes µn (resp. µn+1). However
µn (resp. µn+1) is maximal and therefore every two realizations of µn (resp. µn+1) are
the same up to precomposition with a self-homeomorphism of ∂eC that is isotopic to the
identity. After such a precomposition, we have that gt

n (resp. gt
n+1) converges uniformly

to fn (resp. fn+1) when t!∞. In particular given ε>0, we can choose t large enough
so that the homotopy between fn and gt

n (resp. fn+1 and gt
n+1) has tracks 61 for all

x∈∂eC.
Let hn=gt

n and hn+1=gt
n+1. It will be enough to show the existence of a homotopy

between hn and hn+1 whose image is contained in a uniformly bounded neighborhood of
hn(∂eC)∪hn+1(∂eC). First of all, we precompose hn or hn+1 with a self-homeomorphism
of ∂eC isotopic to the identity to make hn and hn+1 identical restricted to γn∩γn+1. We
know that there is a homotopy between hn and hn+1 and we can consider this as a
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e

D

Q

D′

v

h(D)

h′(D′)

//

Figure 2. The image of a prism.

proper map from ∂eC×[0, 1]!N , where restricted to ∂eC×{0} and ∂eC×{1} the map
induces hn and hn+1. Similar to our construction of the simplicial hyperbolic surfaces,
we consider the maps hn and hn+1 as maps of ∂eC with the triangulation T .

The simplicial structure of hn and hn+1 makes ∂eC×{0, 1} triangulated with two tri-
angulations which are isotopic to T on ∂eC. Extend this to a triangulation of ∂eC×[0, 1],
first connecting every vertex on ∂eC×{0} to the corresponding vertex on ∂eC×{1}. Then
add faces homeomorphic to rectangles, where two opposite sides of the rectangle are cor-
responding edges of the triangulations on ∂eC×{0} and ∂eC×{1}. Finally, we are left
with regions that are homeomorphic to a triangle times an interval, we call them prisms,
and simply divide each of these into three tetrahedrons arbitrarily. Now we may assume
that the homotopy is totally geodesic restricted to the 1-skeleton and 2-skeleton of the
constructed triangulation and extend it to the 3-skeleton (the prisms) by coning off from
a vertex of each tetrahedron and map every line segment geodesically.

It will be enough to show that the image of every prism stays in a bounded diameter
neighborhood of hn(∂eC)∪hn+1(∂eC). In fact, it is enough to do this for faces of the
prisms. Every prism Q has two triangular faces D and D′ which we call horizontal, and
we call the other faces and edges that connect these horizontal faces vertical. The image
of horizontal faces are contained in hn(∂eC)∪hn+1(∂eC). In our construction of the
triangulation T , each triangle has at least one vertex on either γn, γn+1 or the boundary
of ∂eC, and the image of the vertical edge e associated with this vertex will be a single
point v on the geodesic representative of γn∩γn+1 or an ideal point. A picture of the
image of a prism is suggested in Figure 2.
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Every point in the image of the prism is contained in a triangle with a vertex v

and two sides on hn(D) and hn+1(D′), and from this and hyperbolicity of N we can
see that it has to have bounded distance from hn(D)∪hn+1(D′), and therefore from
hn(∂eC)∪hn+1(∂eC). This concludes the proof of Lemma 10.2.

We should remark that Brock [Br2] used a very similar construction of triangulations
and interpolations between pleated surfaces to control volume. In the above lemma we
also need to control the homotopy tracks and therefore we have explained the construction
of the interpolations, otherwise this is just the same construction.

10.2. Proof of Theorem 9.1

Continuing with the same notation as above, let F : ∂eC×[0,∞)!N be the map defined
in (10.1). Recall also that (M,Q) is the pared manifold associated with N and that we
have identified (M,Q) with a standard relative compact core of (Nε, ∂Nε).

Up to replacing t by t+n0, where n0 is the constant provided by Proposition 10.3,
we may assume that the image of F is disjoint from M , and that the image of F intersects
a single connected component E of Nε\M . Denote the free side of (M,Q) facing E by
R and, from now on, consider E as a geometric end of N . The assumption that (M,Q)
is a standard relative compact core implies that E is homeomorphic to R×[0,∞). Even
more, the sequence fn(γn)=F (γn, n) is a sequence of closed geodesics in E that leave
every compact set. So the geometric end E has to be simply degenerate; let µE be the
unmeasured lamination on R which is the ending lamination of E . Also let

π: E −!R

be the projection induced by such a product structure. We denote by F0 the restriction
of F to ∂eC×{0}'∂eC and set

g =π�F0: ∂eC −!R.

In particular, for every n, the closed geodesic F (γn, n) is homotopic to g(γn) within the
end E . By Proposition 6.12, every accumulation point of the sequence {g(γn)}∞n=1 in the
space PC(R) of projective currents is a current supported on µE . Since this fact is going
to play a crucial role, we state it as a lemma.

Lemma 10.4. Every accumulation point of the sequence {g(γn)}∞n=1 in the space
PC(R) of projective currents is a current µ supported on the ending lamination µE of
the end of N facing R.



380 h. namazi and j. souto

The map F0: ∂eC!N is in the homotopy class determined by the composition of %

and the induced map by the inclusion ∂eC↪!C, and hence it extends to a proper map
(C,P )!(Nε, ∂Nε) which induces % after identifying π1(M) with π1(N)=%(π1(C)) and
choosing suitable base points. Since π is a homotopy equivalence, the same argument
applies again showing that g extends to a map G: (C,P )!(M,Q) which induces an
isomorphism on fundamental groups. Being a compression body, π1(∂eC) surjects onto
π1(C). In particular g∗(π1(∂eC))⊂π1(R) surjects onto π1(M). This proves that (M,Q)
is a pared compression body with exterior boundary R=∂e(M,Q).

We denote by Q′ the union of those components of Q which contain the image
under G of a component of P . Clearly, (M,Q′) is a pared compression body and we
can consider g and G as maps g: ∂eC!∂e(M,Q′) and G: (C,P )!(M,Q′), respectively.
Observe that, because G is a homotopy equivalence and because of the choice of Q′,
no essential non-peripheral curve in a constituent of C=(C,P ) is mapped under G to a
curve which can be homotoped within M to a curve in Q′. In particular, if (C,P ) has
constituents then we can apply Lemma 3.15 and deduce that G is homotopic, through
maps mapping ∂eC to ∂e(M,Q′), to a homeomorphism (C,P )!(M,Q′). In the case
where (C,P ) has no constituents, it follows from Lemma 3.5 that G is again homotopic
to a homeomorphism (C,P )!(M,Q′). However, it should be recalled that this time and
at this point, we still have to face the possibility that perhaps the homotopy cannot be
chosen to take place through maps mapping ∂eC to ∂e(M,Q′); by Lemma 3.15, this is
only the case if g: ∂eC!R is not π1-injective (compare with Example 3.10).

Once we know that G is pared homotopic to a homeomorphism between (C,P ) and
(M,Q′) through maps that take ∂eC to ∂e(M,Q′), it follows from the assumption in
Theorem 9.1 that there is no non-peripheral simple closed curve γ on a constituent of
(C,P ) with %(γ) parabolic and that Q′=Q, and therefore ∂e(M,Q′)=R. Keeping the
same notation, we can sum up what we have as follows.

Lemma 10.5. The map g: ∂eC!R extends to a map of pairs G: (C,P )!(M,Q′)
homotopic to a homeomorphism. Moreover, the homotopy can be chosen to be through
maps mapping ∂eC to R if either (C,P ) has constituents or if g is π1-injective.

In the light of Lemma 10.5, we can identify (C,P ) and (M,Q′). Hence, we consider
g and G as self maps of ∂eC and (C,P ), respectively; observe that G is then homotopic
to the identity. Since R is an essential subsurface of ∂e(M,Q′), the natural map from the
space PC(R) of projective currents to PC(∂e(M,Q′)) is an embedding. In particular, we
can consider µE , the ending lamination associated with the geometric end of N facing R,
as an unmeasured lamination µ on ∂eC, which may be supported on a proper subsurface
of ∂eC. Even more, Lemma 10.4 can be restated as asserting that every accumulation
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point of the sequence {g(γn)}∞n=1 in PC(∂eC) is a current supported on µ. On the other
hand, recall that, by construction, the curves γn converge in PML(∂eC) to the filling
Masur domain lamination λ. Below we are going to prove the following result.

Proposition 10.6. Let λ∈O(C,P ) be a filling Masur domain lamination on the
distinguished free side ∂eC of the pared compression body (C,P ) and g: ∂eC!∂eC be a
continuous map which extends to a self-map of (C,P ) that is homotopic to the identity
through maps (C,P )!(C,P ). Let {γn}∞n=1 be a sequence of simple closed curves on ∂eC

converging to λ in PML(∂eC). If the sequence of closed curves {g(γn)}∞n=1 converges
(in the space of projective currents) to a projective current supported on a lamination µ,
then g is homotopic to a homeomorphism.

Assuming Proposition 10.6, observe that since g is homotopic to a homeomorphism,
it is in particular π1-injective. Hence, by Lemma 10.5, it follows that the map G is in all
cases homotopic to a homeomorphism via maps which map the distinguished free side
∂eC of C=(C,P ) to the distinguished free side R of (M,Q). This proves the first claim
of Theorem 9.1.

In order to prove the second one, we observe that a homeomorphism between sur-
faces induces a homeomorphism between the associated spaces of projective measure
laminations. In particular,

lim
n!∞

g(γn) = g
(

lim
n!∞

γn

)
= g(λ)

is supported on the ending lamination µE associated with the distinguished free side of
(M,Q). Up to proving Proposition 10.6, this concludes the proof of Theorem 9.1.

11. Proof of Proposition 10.6

Before launching the proof of Proposition 10.6, we describe briefly the strategy. To
begin with we may assume, passing to a subsequence, that the curves γn converge in the
Hausdorff topology to some lamination on ∂eC; for typographical reasons, we will abuse
notation and denote this lamination by λ as well. Fixing some hyperbolic metric on ∂eC,
we will first find a train-track τ carrying λ and such that the restriction of g to all the
routes in τ is a quasi-geodesic with constants independent of the particular route. In
particular, g induces a continuous map from the set of currents whose support is carried
by τ to the set of currents on ∂eC. Hence, the image of λ under this map is carried by
the support of µ. This implies that, up to homotopy, g maps leaves of λ to leaves of µ.
We are going to show that g also maps complementary regions of λ to complementary
regions of µ. At this point we see that g induces an equivariant map from the tree Tλ
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dual to λ to the tree Tµ dual to µ. This map is continuous and we will show that it is
injective. This implies that g induces an isomorphism

g∗:π1(∂eC)!π1(∂eC),

and hence that it is properly homotopic to a homeomorphism.

Assume from now on that we are in the situation described in the statement of
Proposition 10.6. Let also N be a geometrically finite hyperbolic manifold with associated
pared manifold (C,P ). From now on, we identify C\P with the convex core CC(N).
Hence we have a topological identification between ∂eC and the compressible component
of ∂CC(N).

Recall that, by Corollary 6.6, the lamination λ is realized in N by some pleated
surface

f : (∂eC, σ)!CC(N).

From now on, we consider ∂eC to be endowed with the metric σ.

Since λ is realized, it follows from Lemmas 6.8 and 6.9 that λ is carried by some
train-track τ⊂∂eC which admits a realization

φ: τ −!CC(N)

homotopic to the inclusion τ ↪!∂eC⊂∂CC(N) and such that the induced map between
universal covers is uniformly quasi-geodesic on each route.

11.1. Routes go to quasi-geodesics

Let C ′ be the universal cover of C, P ′ be the preimage of P under the covering map and
∂eC

′ be the preimage of ∂eC. Here we use ∂eC to denote the interior of the distinguished
free side of (C,P ). The identification of C\P with the convex core of N yields an
embedding C ′ ↪!H3. The image of C ′ is the convex hull of the limit set of the Kleinian
group π1(N) and, from this point of view, ∂eC

′ is the compressible boundary component
of the convex hull. Observe that ∂eC

′ covers ∂eC but is not simply connected. We
identify the universal cover of ∂eC with H2. The extension G: (C,P )!(C,P ) of g lifts
to G′: (C ′, P ′)!(C ′, P ′). In particular, g lifts to g′: ∂eC

′!∂eC
′. Denote by g̃: H2!H2

a lift to the universal cover. Denote by τ ′ the preimage of the train-track τ in ∂eC
′ and

by τ̃ the preimage in H2. The realization φ of τ lifts to a map φ′: τ ′!C ′\P ′. Putting
together all these covers and maps, we obtain the following diagram which commutes,
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up to homotopy, with tracks of uniformly bounded length:

τ̃ //

��

H2 //

��

H2

��

τ ′ //

��

**UUUUUUUUUUUUUUUU ∂eC
′

��

g′
//

$$III
III

∂eC
′

��

$$III
III

C ′\P ′

��

// C ′\P ′

��

τ //

φ **UUUUUUUUUUUUUUUUU ∂eC

$ $JJJ
JJJ

// ∂eC

$ $JJJ
JJJ

C\P G // C\P.

(11.1)

For the convenience of the reader we have only labeled some of the arrows in diagram
(11.1). The dotted vertical arrows are all coverings. Two arrows which differ by a vertical
translation are related by a covering and all the other arrows are either inclusions or are
maps induced by g. We also remind the reader that we have identified C\P with the
convex core of some fixed geometrically finite hyperbolic 3-manifold N .

The map G is homotopic to the identity and it is elementary to change the homotopy
in such a way that its restriction to C\P has bounded tracks (with respect to the metric
induced by the identification of C\P and the convex core of N). We deduce that the lift
G′:C ′!C ′ restricts to a quasi-isometry C ′\P ′!C ′\P ′. In particular, there are K ′ and
A′ such that the restriction of the composition G′

�φ′ to any route of τ ′ is a (K ′, A′)-quasi-
geodesic. The restrictions of g′ and G′

�φ′ to τ ′ are homotopic in C ′\P ′ by a homotopy
with tracks of bounded length. Hence, there are K ′′ and A′′ such that the g′-image of
any route of τ ′ is a (K ′′, A′′)-quasi-geodesic in C ′\P ′. Obviously this implies that the
restriction of the lift g̃ of g′ to any route of τ̃ is a quasi-geodesic with uniform constants.
We have proved the following lemma.

Lemma 11.1. There exist constants A and K such that the restriction of g̃ to any
route of τ̃ is a (K, A)-quasi-geodesic in H2.

Remark. At this point we would like to point out that it is due to Lecuire [L1] that
there is some geometrically finite hyperbolic manifold N with CC(N) homeomorphic to
C\P and with the property that the boundary ∂CC(N) of the convex core is a pleated
surface realizing λ. Using this result, the proof of Lemma 11.1 becomes marginally
simpler. Since however the basic idea does not change, we decided to use the much
simpler realization result stated in Corollary 6.6.
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Recall that the train-track τ carries λ, assume that l1 and l2 are leaves of the
preimage λ̃ of λ to H2 with projections l′1 and l′2 in ∂eC

′, and let l̂1 and l̂2 be the
corresponding routes of τ̃ . If l̂1 and l̂2 are mapped by g̃ at bounded distance, then the
images of the corresponding routes of τ ′ under g′ are also at bounded distance from each
other. In particular, the images of l′1 and l′2 under the lift f ′: ∂eC

′!C ′\P ′ of the pleated
map realizing λ′ are also close to each other. Theorem 6.2 implies that we must have
l′1=l′2. In other terms, we have the following result.

Corollary 11.2. Let l1 and l2 be two leaves of λ̃ and let l̂1 and l̂2 be the associated
routes of τ̃ . If g̃(l̂1) and g̃(l̂2) are at bounded distance from each other, then there is
γ∈Ker(π1(∂eC)!π1(C)) with γl1=l2.

Note that in the above corollary we are using the fact that ∂eC
′ is the cover of ∂eC

associated with the subgroup Ker(π1(∂eC)!π1(C)) of π1(∂eC).
Let R(τ̃) be the set of routes of τ̃ and G(H2) the set of geodesics in H2. Since

the map g̃: τ̃!H2 maps routes to quasi-geodesics, we deduce from Lemma 5.1 that the
induced map

ḡ:R(τ̃)−!G(H2)

is continuous. As in §5, denote by CR(τ̃) and C(H2) the sets of (projectiviced) currents
supported by R(τ̃) and G(H2), respectively. Again, by Lemma 5.1, the induced map

ḡ∗: CR(τ̃)−! C(H2)

is continuous. The continuity of this map and the assumption that every limit (in
PC(∂eC)) of a subsequence of {g(γn)}∞n=1 is supported on the unmeasured lamination µ

implies that ḡ∗(λ) is supported on µ. In particular ḡ maps (routes of τ corresponding
to) leaves of λ̃ to leaves of µ̃.

Observe also that g̃ maps half-routes of τ̃ to quasi-geodesic rays in H2 and that this
map from the set of half-routes to the set of (K, A)-quasi-geodesic rays is continuous. In
particular, ḡ maps asymptotic half-leaves of λ̃ to asymptotic half-leaves of µ̃. Hence, ḡ

induces a map from the set of all complementary regions of λ̃ to the set of complementary
regions of µ̃. Moreover, the fact that every half-leaf of λ is dense implies that the support
of µ is connected. Also, µ is not a closed curve since otherwise the image of λ under
the pleated map f : ∂eC!N would be contained in a single closed geodesic contradicting
Theorem 6.2. We summarize our findings in the following lemma.

Lemma 11.3. The measured lamination µ has connected support and is not a closed
geodesic. Moreover, the map ḡ maps leaves and complementary regions of λ̃ to leaves
and complementary regions of µ̃.
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Before going further, observe that we do not yet know that µ is filling. In particular,
we do not know if µ̃ is connected.

11.2. The induced map between dual trees

We recall now briefly the definition of the dual tree of a lamination. So far we have con-
sidered µ as an unmeasured lamination. From now on we consider a measured lamination
which is supported on this unmeasured lamination and with abuse of notation denote
it by µ. Suppose that ν is either λ̃ or µ̃ and recall that none of these two laminations
has closed leaves. For x, y∈H2 we define dν(x, y) to be the ν-measure of the geodesic
segment [x, y]; dν( · , ·) is symmetric and satisfies the triangle inequality. In particular, if
we consider the quotient Tν of H2 under the equivalence relation

x∼ y if dν(x, y) = 0,

we obtain a metric space. The fibers of the projection H2!Tν are the leaves and closures
of the complementary components of ν. It follows that Tν is a real tree. See Skora [Sk1],
[Sk2] and Otal [Ot3] for details.

By Lemma 11.3, the map ḡ maps leaves and complementary regions of λ̃ to leaves
and complementary regions of µ̃. In particular, we obtain an equivariant map

ĝ:Tλ−!Tµ.

Observe that the continuity of ĝ follows, as everything else, from the continuity of

ḡ:R(τ̃)−!G(H2),

together with the fact that µ does not contain closed leaves.

Lemma 11.4. ĝ is continuous.

We claim now that ĝ is locally injective.

Lemma 11.5. There is ε such that for any two distinct leaves l1 and l2 of λ̃ with
dTλ

(l1, l2)6ε we have ḡ(l1) 6=ḡ(l2).

Proof. Seeking a contradiction, assume there are sequences {ln1 }∞n=1 and {ln2 }∞n=1 of
leaves of λ̃, with dTλ

(ln1 , ln2 )!0 and with ln1 6=ln2 , but such that ḡ(ln1 )=ḡ(ln2 ) for all n.
Up to conjugating by an element of the fundamental group, we may assume that the
sequences {ln1 }∞n=1 and {ln2 }∞n=1 converge to leaves l1 and l2, respectively. Observe that
either l1=l2 or that l1 and l2 are contained in the boundary of some fixed complementary
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region. We first assume that we are in the first case; the second case being treated in a
similar way at the end; let l=l1=l2.

By Corollary 11.2, we have for every n some φn∈Ker(π1(∂eC)!π1(C)) such that

φn(ln2 ) = ln1 . (11.2)

Let � be a small transversal arc to l. After passing to a subsequence, we assume that
for every n, ln1 and ln2 intersect � in xn

1 and xn
2 , respectively. We also denote by [xn

1 , xn
2 ]

the subarc of � with endpoints xn
1 and xn

2 . Obviously as n!∞ the points xn
1 and xn

2

converge to x0=�∩l and the transverse measure left on �n by λ̃, i.e. ι(�n, λ̃), converges
to zero.

By (11.2) we know that φn(xn
2 )∈ln1 and therefore the curve [xn

1 , xn
2 ]∪[xn

1 , φn(xn
2 )],

which is the result of the concatenation of [xn
1 , xn

2 ] and the subarc of ln1 enclosed by xn
1

and φn(xn
2 ), projects to a homotopically essential closed curve γn on F . Furthermore,

γn is a representative of the conjugacy class of φn, and hence it is homotopically trivial
in C (since φn∈Ker(π1(∂eC)!π1(C))). Also note that

i(γn, λ) 6 i([xn
1 , xn

2 ], λ̃)! 0

as n!∞.
If γn is simple for infinitely many n, we already have a contradiction; because every

limit of the sequence of these meridians in PML would have zero intersection with λ,
and this contradicts the fact that λ is in O(C,P ).

Even when γn is not simple for n sufficiently large, by using the loop theorem, we
know that there exists an essential simple closed curve γ′n obtained by doing some surgery
on γn and such that γ′n is also homotopically trivial in C. Since γ′n is obtained by surgery
on γn, we see that

i(γ′n, λ) 6 i(γn, λ)! 0

as n!∞, and in a similar way to the above we have a contradiction.
If l1 6=l2 are distinct sides of a complementary region, we choose an arc � that is

transversal to both l1 and l2. Let xn
1 and xn

2 be intersections of � with ln1 and ln2 ,
respectively, and γn be the closed curve that is the projection of the concatenation
[xn

1 , xn
2 ]∪[xn

1 , φn(xn
2 )] similar to the above construction. A similar observation shows

that i(γn, λ)!0 as n!∞, and we get a contradiction in the same way as above.

The above lemma immediately implies the following result.

Corollary 11.6. The map ĝ: Tλ!Tµ is locally injective.

The intermediate-value theorem shows that any continuous locally injective map
between real trees is injective. We have proved the following result.
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Proposition 11.7. The map ĝ: Tλ!Tµ is injective.

As an immediate consequence of Proposition 11.7, we obtain the following result.

Lemma 11.8. The homomorphism g∗:π1(∂eC)!π1(∂eC) is injective.

Proof. Assume that g∗ is not injective and let γ be a non-trivial element in the
kernel. Note that γ cannot be peripheral since the g -image of every component of the
boundary of ∂eC is homotopically non-trivial.

We claim that a non-trivial element γ∈π1(∂eC) has no fixed point on Tλ unless γ

is peripheral. Assume that γx=x for x∈Tλ. The point x cannot represent a leaf of λ,
since λ does not have any closed leaves. The point x cannot represent a finite-sided
complementary component of λ either, because only elliptic isometries of H2 preserve
such a polygon. Finally if x represents an infinite-sided complementary component of λ,
one can see that it is associated with a fixed point of a parabolic element of π1(∂eC) and
γ must be peripheral.

Hence, if γ is in the kernel of g∗, it is non-peripheral and has no fixed point on Tλ.
The equivariance of ĝ shows that

ĝ(γx) = g∗(γ)ĝ(x) = ĝ(x),

contradicting Proposition 11.7.

Recall now that a proper π1-injective map between two surfaces is properly homo-
topic to a homeomorphism. Hence, it follows from Lemma 11.8 that the proper map
g: ∂eC!∂eC is homotopic to a homeomorphism. This concludes the proof of Proposi-
tion 10.6.

12. Some remarks

In this final section we add a few remarks on other density results which either follow
directly from Theorem 1.1 or from its proof.

12.1. Groups with torsion

We extend now Theorem 1.1 to the case of finitely generated groups with torsion and
prove the general form of the density conjecture. As in the case of torsion-free groups, we
define AH(Γ) to be the set of all conjugacy classes of discrete and faithful representations
of a finitely generated group Γ possibly with torsion. We define the topology on AH(Γ)
as in the introduction and we say that a representation %: Γ!PSL2(C) is geometrically
finite if it has a fundamental domain with finitely many sides.
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Theorem 12.1. Every finitely generated discrete subgroup of PSL2(C) is an alge-
braic limit of geometrically finite groups.

Proof. Let %∈AH(Γ) be given. It follows from Selberg’s lemma that Γ contains a
finite-index, torsion-free, normal subgroup Γ′. Observe that the finite group G=Γ/Γ′

acts by isometries on the 3-manifold N ′=H3/%(Γ′). In particular, G acts on the set of
ending invariants of N ′. As in the beginning of the proof of Theorem 1.1, we choose a
sequence %′n of geometrically finite representations of Γ′ converging algebraically to the
representation %′ which is the restriction of % to Γ′. The G-equivariance of the ending
invariants of N ′ imply that we can choose %′n in such a way that the ending invariants
of N ′

n=H3/%′n(Γ′) are also G-equivariant. We can use this to extend %′n by G to an
action of Γ on H3 which extends to a conformal action on the domain of discontinuity
of %′n(Γ′). It is standard to see that this is in fact a representation of Γ into PSL2(C),
the group of isometries of H3. In other words, the representations %′n extend to faithful
and discrete representations %n of Γ in AH(Γ). It is elementary to see that every finite
extension of a geometrically finite Kleinian group is geometrically finite and therefore %n

is geometrically finite for every n.

For every element α∈Γ, there is an integer k>0 such that αk∈Γ′ and therefore
the sequence %′n(αk)=%n(αk)=[%n(α)]k converges to %′(αk)=%(αk)=[%(α)]k as n!∞.
Since the kth roots of isometries of H3 are unique, this immediately implies that the
sequence {%n(α)}∞n=1 converges to %(α) and we have shown that the representations
{%n}∞n=1 converge algebraically to %.

This proves the theorem.

From now on we return to the realm of torsion-free groups.

12.2. Strong topology

Recall that a representation %: Γ!PSL2(C) is type preserving if for all γ∈Γ we have that
%(γ) is parabolic if and only if γ is parabolic. Observe that the approximating sequence
constructed in the proof of Theorem 1.1 is type preserving. Hence we have the following
result.

Corollary 12.2. Every finitely generated Kleinian group Γ is the algebraic limit
of a type-preserving sequence of discrete and faithful geometrically finite representations.

An algebraically convergent sequence of discrete and faithful representations %iΓ
into PSL2(C) with algebraic limit % converges strongly if the associated groups %i(Γ)
converge in the Chabauty topology to %(Γ). Anderson–Canary [AC2] proved that every
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algebraically convergent and type-preserving sequence converges strongly. Hence, from
Corollary 12.2, we deduce directly the following result.

Corollary 12.3. Every finitely generated Kleinian group Γ is the algebraic limit
of a sequence of discrete and faithful geometrically finite representations whose images
converge also in the Chabauty topology to Γ. In other words, the geometrically finite
representations are dense in the strong topology.

12.3. Length function and realizability

In Thurston’s original work on hyperbolic manifolds homotopy equivalent to a surface,
the notion of non-realizability was very closely related to having zero length. In fact, if a
minimal measured lamination is realizable, then one can use a pleated surface that realizes
it to define the length. In this case one can define the length to be zero for a minimal
lamination which is not realized and define the length for a general measured lamination
to be the sum of the lengths of its components. It was conjectured by Thurston that
this length function is continuous with respect to the algebraic topology. The proof of
this by Brock [Br1] uses delicate arguments that require a careful analysis of geometric
limits and appearance of new parabolics in the limit.

An important feature of this length function in the case of surface groups is that by
work of Thurston and Bonahon, a lamination has zero length if and only if it is a union
of ending laminations and accidental parabolics.

In the more general case of %∈AH(M,P ) for a pared manifold (M,P ), one can again
define the length for minimal laminations which are realized. Then one can ask how this
function can be extended continuously and what the zero-locus of the length function
represents. Obviously the zero-locus will be a subset of non-realizable laminations. The
statements for the case of surface groups easily generalize to the case where (M,P ) is a
pared manifold with incompressible free sides. In the more general case, things are more
difficult for laminations outside of the Masur domain and in fact the above definition may
not be the correct way of defining the length. Still one expect similar results when one
restricts the length to the Masur domain, by which we mean the union of Masur domains
of the free sides of (M,P ). In particular the next theorem shows that non-realizable or
zero-length laminations will consist of accidental parabolics and ending laminations. We
point out that a similar statement should hold for a slightly larger domain (cf. Lecuire
[L2]). Let O(F )=O(CF ) denote the Masur domain of the relative compression body
associated with F . Also note that λ⊂F is realized for %∈AH(M,P ) if and only if it is
realized for the restriction of % to the subgroup associated with CF .
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Theorem 12.4. Let (M,P ) be a pared manifold, %∈AH(M,P ) and λ∈O(F ) be a
minimal measured lamination in the Masur domain of a free side F of (M,P ). If λ is
non-realizable in N% then either

(1) λ is a closed curve which is mapped by % to a parabolic, or
(2) there exist a pared locus Q⊃P , a free side E⊂F of (M,Q) and a map

φ: (M,Q)−! (M ′, P )

in the homotopy class of %, where (M ′, P ′) is a relative compact core for (Nε
% , ∂Nε

% ),
such that restricted to E, φ is a homeomorphism to a free side F ′ of (M ′, Q′) and φ(λ)
is the ending lamination for the end of N% corresponding to F ′.

Note that the second case in particular implies that λ fills F ′ and every component
of F ′ is mapped to a parabolic by %.

Proof. First note that, when λ is a simple loop, it follows from our remark after
Lemma 6.4 that if the %-image of λ is not parabolic, then it is realizable. So the statement
follows in that case, and therefore we assume that λ is infinite.

Let E⊂F be the smallest essential subsurface that contains λ. In particular E=F if
λ is filling. Assuming that λ is not realizable, we first show that every component of ∂E

is mapped to a parabolic. Otherwise let γ⊂∂E be a component whose %-image is not a
parabolic. Obviously γ is not parallel to P and therefore it is a non-peripheral loop on F .
Choose a sequence {αi}∞i=1 in F \γ that converges in PML(F ) to λ. Since O(F ) is open,
we may assume that αi, and therefore αi∪γ, is in O(F ) for every i. It is a consequence
of Sullivan’s finiteness theorem of cusps and properties of the Masur domain that %(αi)
is not parabolic for i sufficiently large (cf. [KS2, Lemma 4.5]). Then again we can use
our remark after Lemma 6.4 to show that, for i sufficiently large, there exists a pleated
surface fi:F!N% which realizes αi∪γ. Note that the sequence {αi∪γ}∞i=1 converges in
PML(F ) to a lamination which is supported on λ∪γ. Since all these pleated surfaces
realize γ, they intersect a compact set K⊂N% and, by Proposition 6.5, λ∪γ and therefore
λ is realized.

So we may assume that % maps every component of ∂E to a parabolic. We can add
annular neighborhoods of those to P , to obtain a new pared locus Q⊃P , and consider %

as an element of AH(M,Q). If we prove the theorem for %∈AH(M,Q) and λ, then the
theorem for the case of (M,P ) also follows. So it suffices to prove the theorem in the
case where λ fills F . But in that case the theorem is nothing but Theorem 1.4 and we
have proved the theorem.

We expect the length function to be continuous restricted to

AH(M,P )×O(M,P ),



density conjecture 391

where O(M,P ) is the union of Masur domains of the free sides of (M,P ).

12.4. Service

As we mentioned in the introduction, Bromberg and Souto have announced a proof of
the density conjecture which completely avoids using the ending lamination theorem. As
we also mentioned in the introduction, their work relies partly on a consequence of the
main result of this paper. We discuss this consequence here.

Corollary 12.5. Let (M,P ) be a pared manifold and %0:π1(M)!PSL2(C) be a
discrete and faithful representation such that the associated hyperbolic manifold N%0 is
geometrically finite and has associated pared manifold (M,P ). Denote the Ahlfors–Bers
parametrization of QH(%0) by

πAB: T (∂M \P )−!QH(%0)

and label the free sides of (M,P ) by F1, ..., Fs. If (Xn
1 , ..., Xn

s ) is a filling sequence with
associated filling tuple (X1, ..., Xr, λr+1, ..., λs), then the following holds:

(1) up to passing to a subsequence, the sequence %n=πAB(Xn
1 , ..., Xn

s ) converges
strongly to some discrete and failthful representation %;

(2) if (M ′, P ′) is the pared manifold associated with the hyperbolic 3-manifold N%

corresponding to the limiting representation %, then there is a homeomorphism

φ: (M,P )−! (M ′, P ′)

in the homotopy class determined by % which maps the filling tuple

(X1, ..., Xr, λr+1, ..., λs)

to the ending invariants of N%.

In some sense, the proof of Corollary 12.5 summarizes this whole paper. Also, Corol-
lary 12.5 implies directly Theorem 1.1 if we allow ourselves to use the ending lamination
theorem, as we have done in this paper.

Proof. From Theorem 8.1 we know that the sequence {%i}∞i=1 converges algebraically,
up to passing to a subsequence, to some representation %, and that the limiting hyperbolic
3-manifold N% satisfies (*) in §9. In particular, N% has the expected conformal boundary.
At this point we argue as in the proof of Theorem 1.1 in §9 and deduce from Theorem 1.4
that the limiting manifold N% must also satisfy (**). Finally our argument at the end
of the proof of Theorem 1.1 prove that the pared manifold (M ′, P ′) associated with N%
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is homeomorphic to (M,P ) and that there is a homeomorphism φ: (M,P )!(M ′, P ′) in
the homotopy class determined by % which maps the filling tuple (X1, ..., Xr, λr+1, ..., λs)
to the ending invariants of N%.

This implies that the only curves in N% which are homotopic to parabolic elements
are those which can be homotoped into P . In other words, the convergence of %i to %

is type preserving. As above, we deduce from this fact and from the work of Anderson–
Canary [AC2] that the sequence {%i}∞i=1 actually converges strongly to %. This concludes
the proof of Corollary 12.5.
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Invent. Math., 94 (1988), 53–80.
[PH] Penner, R.C. & Harer, J. L., Combinatorics of Train Tracks. Annals of Mathematics

Studies, 125. Princeton University Press, Princeton, NJ, 1992.
[SU] Sacks, J. & Uhlenbeck, K., Minimal immersions of closed Riemann surfaces. Trans.

Amer. Math. Soc., 271 (1982), 639–652.
[Sk1] Skora, R.K., Splittings of surfaces. Bull. Amer. Math. Soc., 23 (1990), 85–90.
[Sk2] — Splittings of surfaces. J. Amer. Math. Soc., 9 (1996), 605–616.
[Su1] Sullivan, D., A finiteness theorem for cusps. Acta Math., 147 (1981), 289–299.
[Su2] — Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hy-

perbolicity for Kleinian groups. Acta Math., 155 (1985), 243–260.



density conjecture 395

[Th1] Thurston, W.P., The geometry and topology of 3-manifolds. Unpublished lecture
notes, 1979.

[Th2] — Hyperbolic structures on 3-manifolds, III: Deformations of 3-manifolds with incom-
pressible boundary. Preprint, 1998. arXiv:math/9801058 [math.GT].

[Tu] Tucker, T.W., Boundary-reducible 3-manifolds and Waldhausen’s theorem. Michigan
Math. J., 20 (1973), 321–327.

Hossein Namazi
Department of Mathematics
University of Texas at Austin
2515 Speedway, Stop C1200
Austin, TX 78712
U.S.A.
hossein@math.utexas.edu

Juan Souto
Department of Mathematics
University of British Columbia
1984 Mathematics Road
Vancouver, BC V6T 1Z2
Canada
jsouto@math.ubc.ca

Received April 17, 2010
Received in revised form May 8, 2012

http://arxiv.org/abs/math/9801058
mailto:Hossein Namazi <hossein@math.utexas.edu>
mailto:Juan Souto <jsouto@math.ubc.ca>

	1 Introduction
	Who has proved the density conjecture?
	Alternative approach
	Plan of the paper
	Acknowledgements

	2 Outline of the proof of Theorem 1.1
	3 Pared manifolds
	3.1 Pared manifolds
	3.2 JSJ-splitting
	3.3 Pared compression bodies
	3.4 Relative compression bodies
	3.5 Homeomorphisms and homotopy equivalences between pared manifolds
	3.6 Mapping class group

	4 Hyperbolic manifolds
	4.1 Thick-thin decomposition
	4.2 Pared manifold associated with a hyperbolic 3-manifold
	4.3 Convex core and conformal boundary
	4.4 Ends
	4.5 AH(M,P)
	4.6 Quasi-conformal deformations of Kleinian groups

	5 Laminations, currents and train-tracks
	5.1 Laminations and currents
	5.2 Independence of the hyperbolic structure
	5.3 Train-tracks

	6 Masur domain and ending laminations
	6.1 Masur domain
	6.2 Realizing laminations in O(C)
	6.3 More train-tracks
	6.4 Simply degenerate ends and ending laminations
	6.5 Two great theorems

	7 Trees
	7.1 Dual trees
	7.2 Morgan-Shalen theory
	7.3 Continuity

	8 Compactness theorem
	9 The density conjecture
	10 Reducing Theorem 9.1 to a topological problem
	10.1 A proper map
	10.2 Proof of Theorem 9.1

	11 Proof of Proposition 10.6
	11.1 Routes go to quasi-geodesics
	11.2 The induced map between dual trees

	12 Some remarks
	12.1 Groups with torsion
	12.2 Strong topology
	12.3 Length function and realizability
	12.4 Service

	References



