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1. Introduction and statement of main results

Theorem 1.1, the main result of this paper, is a quantitative bi-Lipschitz non-embedding
theorem, in which the domain is a metric ball in the Heisenberg group, H, with its
Carnot–Carthéodory metric, dH, and the target is the space L1; for the definition of dH
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see §2.4. This result has consequences of a purely mathematical nature, as well as for
theoretical computer science.

Define cp(X, dX), the Lp distortion of the metric space (X, dX), to be the infimum
of those D>0 for which there exists a mapping f :X!Lp satisfying

‖f(x)−f(y)‖Lp

dX(x, y)
∈ [1, D]

for all distinct x, y∈X. The quantitative study of bi-Lipschitz embeddings of finite metric
spaces in Lp spaces goes back to [28] and [50]. The modern period begins with a result of
Bourgain [12] who answered a question of [39] by showing that for every fixed p, any n-
point metric space can be embedded in Lp with distortion .log n.(1) By [53], Bourgain’s
theorem is sharp for any fixed p<∞.

Since L1, equipped with the square root of its usual distance, is well known to be
isometric to a subset of L2 (see for example [63]) it follows that if (X, dX) isometrically
embeds in L1, then

(
X,
√
dX

)
isometrically embeds in L2. Metrics for which

(
X,
√
dX

)
isometrically embeds in L2 are said to be of negative type. Such metrics will play a
fundamental role in our discussion. On the other hand, it is also well known that L2

embeds isometrically in L1 (see for example [64]) which implies that

c1(X, dX) 6 c2(X, dX)

for all (X, dX). Recently, it was shown that for n-point metric spaces of negative type,
c2(X, dX).(log n)1/2+o(1), and in particular c1(X, dX).(log n)1/2+o(1); see [5], which
improves on a corresponding result in [15]. For embeddings in L2, the result of [5] is
sharp up to the term o(1); see [28].

As shown in [48], the Carnot–Carathéodory metric dH is bi-Lipschitz equivalent to
a metric of negative type. From this and Corollary 1.2 of Theorem 1.1 below, it follows
immediately that for all n, there exist n-point metric spaces of negative type with

c1(X, dX) & (log n)δ,

for some explicit δ>0. From the standpoint of such non-embedding theorems, the target
L1 presents certain challenges. Lipschitz functions f : R!L1 need not be differentiable
anywhere. Therefore, a tool which is useful for Lp targets with 1<p<∞ is not avail-
able. Moreover, the fact that L2 embeds isometrically in L1 implies that bi-Lipschitz
embedding in L1 is no harder than in L2 and might be strictly easier in cases of interest.

(1) In this paper, the symbols . and & denote the corresponding inequalities, up to a universal
multiplicative constant, which in all cases can be explicitly estimated from the corresponding proof.
Similarly, � denotes equivalence up to such a factor.
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The sparsest cut problem is a fundamental NP-hard problem in theoretical computer
science. This problem will be formally stated in Appendix A, where some additional
details of the discussion which follows will be given; see also our paper [24] (and the
references therein) which focuses on the computer science aspect of our work. A landmark
development took place in the 1990s, when it was realized that this optimization problem
for a certain functional defined on all subsets of an n-vertex weighted graph, is equivalent
to an optimization problem for a corresponding functional over all functions from an n-
vertex weighted graph to the space L1; see [9], [10] and [53]. This is a consequence
of the cut cone representation for metrics induced by maps to L1, which also plays a
fundamental role in this paper; see §2. Once this reformulation has been observed, one
can relax the problem to an optimization problem for the corresponding functional over
functions with values in any n-point metric space. The relaxed problem turns out to be
a linear program, and hence is solvable in polynomial time. Define the integrality gap
of this relaxation to be the supremum over all n-point weighted graphs of the ratio of
the solution of the original problem to the relaxed one. The integrality gap measures
the performance of the relaxation in the worst case. It is essentially immediate that the
integrality gap is less than or equal to the supremum of c1(X, dX) over all n-point metric
spaces (X, dX), and hence, by Bourgain’s theorem, it is .log n; see [53] and [9]. This
upper bound relies only on the form of the functional and not on any special properties
of L1. A duality argument based on the cut cone representation shows that the integrality
gap is actually equal to the supremum of c1(X, dX) over all n-point metric spaces.

Subsequently, Goemans [31] and Linial [51] observed that if in relaxing the sparsest
cut problem as above, one restricts to n-point metric spaces of negative type, one obtains
a semidefinite programming problem, which, by the ellipsoid algorithm, can still be solved
in polynomial time with arbitrarily good precision; see [34]. As above, by the duality
argument, the integrality gap for the Goemans–Linial semidefinite relaxation is actually
equal to the supremum of c1(X, dX) over all n-point metric spaces of negative type.
Based on certain known embedding results for particular metric spaces of negative type,
the hope was that this integrality gap might actually be bounded (the “Goemans–Linial
conjecture”) or in any case, bounded by a very slowly growing function of n. At present,
one knows the upper bound .(log n)1/2+o(1), which follows from [5]. This result makes
the Goemans–Linial semidefinite relaxation the most successful algorithm to date for
solving the sparsest cut problem to within a definite factor. In the opposite direction, it
was shown in [43] that the integrality gap for the Goemans–Linial semidefinite relaxation
is &log log n. The analysis of [43] improved upon that of the breakthrough result of [41],
which was the first to show that the Goemans–Linial semidefinite relaxation cannot
yield a constant factor approximation algorithm for the sparsest cut problem, and thus
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resolving the Goemans–Linial conjecture [31], [51], [52]. These lower bounds on the
integrality gap depend on its characterization as the supremum of c1(X, dX) over all
n-point metric spaces of negative type.

Motivated by the potential relevance to the sparsest cut problem, the question of
whether (H, dH) bi-Lipschitz embeds in L1 was raised in [48]. In response, it was shown
in [20] that if U⊂H is open and f :U!L1 is Lipschitz (or more generally of bounded
variation), then for almost all x∈U (with respect to Haar measure) and y varying in the
coset of the center of H containing x, one has

lim
y!x

‖f(y)−f(x)‖L1

dH(x, y)
= 0.

Thus, (H, dH) does not admit a bi-Lipschitz embedding into L1.

For further applications as discussed above, a quantitative version of this theorem of
[20] was required; see Theorem 1.1 below.(2) It follows from Corollary 1.2 of Theorem 1.1
that there exists a sequence of n-point metric spaces, (Xn, d

Xn), of negative type, such
that c1(Xn, d

Xn)&(log n)δ, and hence that the integrality gap for the Goemans–Linial
relaxation of sparsest cut is &(log n)δ for some explicit δ>0; compare Remark 1.3. This
represents an exponential improvement on the above mentioned lower bound &log log n;
compare also the upper bound 6(log n)1/2+o(1).

We also give a purely mathematical application of Theorem 1.1 to the behavior of
the L1 compression rate of the discrete Heisenberg group. The L1 compression rate is
a well-studied invariant of the asymptotic geometry of a finitely generated group, which
was defined by Gromov in [32]; see below for the definition.

In what follows, given p∈H and r>0, we denote the dH-open ball of radius r centered
at p by Br(p)={x∈H:dH(x, p)<r}. On cosets of the center of H (viewed as the z -axis
in R3) let L denote the 1-dimensional Lebesgue measure associated with the standard
Euclidean metric on R3. Thus, L×L denotes the corresponding measure on pairs of
points (x1, x2) which lie in the center.

Note that cosets of the center are parameterized by R2. Below, L2 denotes Lebesgue
measure on R2. Let F denote a subset of pairs (x1, x2), such that x1 and x2 lie on some
coset of the center L. Define a measure on such subsets by stipulating that the measure
of F is given by ∫

R2
(L×L)(F∩(L×L)) dL2(L).

(2) For purposes of exposition, in Theorem 1.1, we restrict our attention to the case of Lipschitz
maps, although everything we say has an analogous statement which apply to BV maps as well, sometimes
with minor variations.
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Theorem 1.1. (Quantitative central collapse) There is a universal constant δ∈(0, 1)
such that for every p∈H, every f :B1(p)!L1 with Lip(f)61 and every ε∈

(
0, 1

4

)
, there

exists r> 1
2ε such that, with respect to Haar measure, for at least half (3) of the points

x∈B1/2(p), at least half of the points (x1, x2)∈Br(x)×Br(x) which lie on the same coset
of the center, with dH(x1, x2)∈

[
1
2εr,

3
2εr

]
, we have

‖f(x1)−f(x2)‖L1

dH(x1, x2)
6

1
(log(1/ε))δ

. (1.1)

In particular, compression by a factor η∈
(
0, 1

2

)
is guaranteed to occur for a pair of

points whose distance is &e−2η−c

, where c=δ−1 (and δ is as in (1.1)).
The constant δ in Theorem 1.1 can be explicitly estimated from our proof; a crude

estimate is δ=2−60 in Theorem 1.1. At various points in the proof, we have sacrificed
sharpness in order to simplify the exposition; this is most prominent in Proposition 7.3
below, which must be iterated several times, thus magnifying the non-sharpness. Obtain-
ing the best possible δ in Theorem 1.1 remains an interesting open question, the solution
of which probably requires additional ideas beyond those contained in this paper.

Before discussing the consequences of Theorem 1.1, we briefly indicate the reason
for the form of the estimate (1.1); see also the discussion of §2. We will associate with
f a non-negative quantity, the total non-monotonicty, which can be written as a sum
over scales, and on each scale as an integral over locations. The assumption Lip(f)61
turns out to imply an a-priori bound on the total non-monotonicity. Since for ε∈(0, 1),
the total number of scales between 1 and ε is �log(1/ε), by the pigeonhole principle,
there exists a scale as in (1.1), such that at most locations, the total non-monotonicity is
.1/log(1/ε). We show using a stability theorem, Theorem 4.3, that for suitable δ, this
gives (1.1). This discussion fits very well with a quantitative result (and phenomenon) due
in a rather different context to Jones; see [40]. In particular, the proof of Theorem 1.1
actually gives a stronger result, namely, a Carleson measure estimate in the sense of
Semmes; see his appendix in [33]. As explained in Appendix B, the argument indicated
above can be viewed as a particular instance of a general argument which leads to a
Carleson measure estimate.

1.1. The discrete case

As we have indicated, Theorem 1.1 has implications in the context of finite metric spaces.
These are based on properties of the discrete version of the Heisenberg group H(Z)
(defined below) and its metric balls, which follow from Theorem 1.1.

(3) In Theorem 1.1, by suitably changing the constant δ, “at least half” can be replaced by any
definite fraction.
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We emphasize at the outset that our results in the discrete case are obtained (without
difficulty) directly from the corresponding statements in the continuous case, and not
by a “discretization” of their proofs. As in [20] and in [21], where a different proof of
the non-quantitative result of [20] is given, the proof of Theorem 1.1 is carried out in
the continuous case, because in that case the methods of real analysis are available.
Nonetheless, in the present instance, the quantitative issues remain highly non-trivial
and the proof requires new ideas beyond those of [20] and [21]; see the discussion at the
beginning of §2 and in particular Remark 2.1.

We will view H as R3 equipped with the non-commutative product

(a, b, c)·(a′, b′, c′) = (a+a′, b+b′, c+c′+ab′−ba′);

for further discussion of H, see §2. From the multiplication formula, it follows directly
that for R>0, the map AR: R3!R3 defined by

AR(a, b, c) = (Ra,Rb,R2c) (1.2)

is an automorphism of H. It is also a homothety of the metric dH. The discrete Heisenberg
group H(Z) is the integer lattice Z3, equipped with the above product. It is a discrete
co-compact subgroup of H. For further discussion of the Heisenberg group see §2.

Fix a finite set of generators T of a finitely generated group Γ. The word metric
dT on Γ is the left-invariant metric defined by stipulating that dT (g1, g2) is the length
of the shortest word in the elements of T and their inverses which expresses g−1

1 g2. Up
to bi-Lipschitz equivalence, the metric dT is independent of the choice of generating set.
For the case of H(Z), we can take T={(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. For definiteness,
from now on this choice will be understood. By an easy general lemma, given a free
co-compact action of a finitely generated group Γ acting freely and co-compactly on a
length space (X, dX), the metric on Γ induced by the restriction to any orbit of the
metric dX is bi-Lipschitz equivalent to dT ; see [14]. For the case of H(Z), we can take
(X, dX)=(H, dH).

Define %: R3×R3![0,∞) by

%((x, y, z), (t, u, v))

:=
([(

(t−x)2+(u−y)2

2

)2

+(v−z+xu−yt)2
]1/2

+
(t−x)2+(u−y)2

2

)1/2

.

It was shown in [48] that (H, %) is a metric of negative type, bi-Lipschitz equivalent to
(H, dH).

It follows from [20] that

lim
n!∞

c1({0, ..., n}3, %) =∞, (1.3)
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but no information can be deduced on the rate of blow up as n!∞. From Theorem 1.1
we get the following corollary, whose proof will be explained at the end of this subsection.

Corollary 1.2. For the constant δ>0 in Theorem 1.1 we have, for all n∈N, metric
spaces ({0, ..., n}3, %) of negative type satisfying

c1({0, ..., n}3, %) & (log n)δ. (1.4)

Remark 1.3. Since the metric spaces c1({0, ..., n}3, %) are of negative type, relation
(1.4) implies that the integrality gap of the Goemans–Linial relaxation of the sparsest
cut problem is &(log n)δ for δ>0 as Theorem 1.1.

Remark 1.4. A metric space is said to be doubling if a metric ball B2r(x) can be
covered by at most N<∞ metric balls of radius r, where N is independent of x and r.
For n-point metric spaces (X, d) which are doubling, the bound in Bourgain’s theorem
can be sharpened to

c1(X, d) 6 c2(X, d) .
√

log n,

which follows from the results of [8] and [58]; see the explanation in [35]. The metric
spaces (H, dH) and (H(Z), dT ) are doubling. (To see this, use for example the left invari-
ance of dH and the homotheties AR.) Before the bi-Lipschitz non-embeddability of H
into L1 was established in [20], there was no known example of a doubling metric space
which does not admit a bi-Lipschitz embedding into L1. Corollary 1.2 shows that there
is a sequence of n-point doubling metric spaces for which c1(X, d)&(log n)δ.

Remark 1.5. The behavior of the L2 distortion for n-point doubling metric spaces is
much easier to understand than the L1 distortion. Namely, for fixed doubling constant,
the above mentioned bound c2(X, d).

√
log n cannot be improved; see [46] and, for

dependence on the doubling constant, [42].

Let Γ be a finitely generated group and f : (Γ, dT )!L1 be a 1-Lipschitz function.
Gromov [32] defined the compression rate ωf : [1,∞)![0,∞) by

ωf (t) := inf{‖f(x)−f(y)‖L1 : dT (x, y) > t}.

Stated differently, ωf is the largest non-decreasing function for which

‖f(x)−f(y)‖L1 >ωf (dT (x, y)) for all x, y ∈Γ.

It follows from [20] that for any 1-Lipschitz map f : H(Z)!L1 we have

lim inf
t!∞

ωf (t)
t

=0,

but [20] does not give any information on the rate at which ωf (t)/t tends to zero. From
Theorem 1.1 we can obtain the following bound.



298 j. cheeger, b. kleiner and a. naor

Corollary 1.6. For every f : H(Z)!L1 which is 1-Lipschitz with respect to the
word metric dW we have, for arbitrarily large t,

ωf (t) .
t

(1+log t)δ
, (1.5)

where δ>0 is the constant in Theorem 1.1.

Remark 1.7. A general result from [62] (see Corollary 5 there) implies that if an
increasing function ω: [1,∞)![0,∞) satisfies∫ ∞

1

ω(t)2

t3
dt<∞,

then there exists a mapping f : H(Z)!L1 which is Lipschitz in the metric dT and such
that ωf&ω. In fact, f can be chosen to take values in the smaller space L2. By choosing

ω(t) =
t√

1+log t log log(2+t)
,

and bringing in Corollary 1.6, it follows that in the terminology of [7] the discrete Heisen-
berg group (H(Z), dT ) has L1 compression gap(

t√
1+log t log log(2+t)

,
t

(1+log t)δ

)
.

It would be of interest to evaluate the supremum of those δ>0 for which every Lipschitz
function f : H(Z)!L1 satisfies (1.5).

We close this subsection by explaining how Corollaries 1.6 and 1.2 are deduced from
Theorem 1.1. A key point is to pass from the discrete settings of these corollaries to
the continuous setting of Theorem 1.1 via a Lipschitz extension theorem. The basic idea
is simple and general (see [48, Remark 1.6]). Additionally, the homotheties AR defined
in (1.2) are used to convert information from Theorem 1.1 concerning small scales, into
information concerning large scales. The existence of these homotheties is, of course, a
special property of (H, dH).

We will give the details for Corollary 1.6; the case of Corollary 1.2 is entirely similar.

Proof of Corollary 1.6. Fix a map f : H(Z)!L1, which is 1-Lipschitz with respect
to the word metric dT . The map f can be extended to a map f̃ : H!L1 whose Lipschitz
constant with respect to dH satisfies Lip(f̃).1. This fact follows from the general result
of [47] which states that such an extension is possible for any Banach-space-valued map-
ping from any doubling subset of a metric space to the entire metric space, but in the
present simpler setting it also follows from a straightforward partition-of-unity argument.
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Fix R>1 and define gR:B1(0, 0, 0)!L1 by gR(x)=f̃(δR(x))/R. Since

dH(AR(x), AR(y))=RdH(x, y),

we have Lip(gR).1. For ε∈
(
0, 1

4

)
, an application of Theorem 1.1 shows that there exist

x, y∈H such that R&dH(x, y)&εR, and

‖f̃(x)−f̃(y)‖L1 .
dH(x, y)

(log(1/ε))δ
. (1.6)

Choose ε=1/
√
R. Since there exist a, b∈Z3 such that dH(a, x).1 and dH(b, y).1, and

since Lip(f̃).1, it follows from (1.6) that provided R is large enough,

ωf (dW (a, b))6 ‖f(a)−f(b)‖L1 .
dH(a, b)
(logR)δ

.
dH(a, b)

(log dH(a, b))δ
,

implying (1.5).

2. Proof of Theorem 1.1: overview and background

We begin with an informal overview of the proof of Theorem 1.1. We then proceed to a
more detailed discussion, including relevant background material.

Many known bi-Lipschitz non-embedding results are based in essence on a differen-
tiation argument. Roughly, one shows that at almost all points, in the infinitesimal limit,
a Lipschitz map converges to a map with a special structure. One then shows (which
typically is not difficult) that maps with this special structure cannot be bi-Lipschitz.
The term “special structure” means different things in different settings. When the do-
main and range are Carnot groups as in Pansu’s differentiation theorem [57], “special
structure” means a group homomorphism. As observed in [18] and [48], Pansu’s theorem
extends to the case where the domain is (H, dH) and the target is an infinite-dimensional
Banach space with the Radon–Nikodym property; in particular, the target can be Lp,
1<p<∞.

The above approach fails for embeddings into L1, since even when the domain is R,
Lipschitz maps need not be differentiable anywhere. A simple example is provided by
the map t 7!χ[0,t], where χ[0,t] denotes the characteristic function of [0, t]; see [4]. Nev-
ertheless, the result on central collapse proved in [20] can be viewed as following from
a differentiation theorem, provided one interprets this statement via a novel notion of
“infinitesimal regularity” of mappings introduced in [20].
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The approach of [20] starts out with the cut-cone representation of L1 metrics
(see [20] and [27]), which asserts that for every f : H!L1 we can write

‖f(x)−f(y)‖L1 =
∫

2H
|χE(x)−χE(y)| dΣf (E)

for all x and y, where Σf is a canonically defined measure on 2H (see the discussion
following (2.5) for precise formulations). The differentiation result of [20] can be viewed
as a description of the infinitesimal structure of the measure Σf . It asserts that at
most locations, in the infinitesimal limit, Σf is supported on vertical half spaces. This is
achieved by first showing that the Lipschitz condition on f implies that Σf is supported on
special subsets, those with finite perimeter. One then uses results on the local structure
of sets of finite perimeter in the Heisenberg group to complete the proof; the argument
is described in greater detail later in this section.

An alternative approach to this result on the infinitesimal behavior of Σf , which
does not require the introduction of sets of finite perimeter, was obtained in [21]. This
approach is based on the classification of monotone sets. A subset E⊂H is called mono-
tone if for every horizontal line L, up to a set of measure zero, E∩L is a subray of the
line. If we view H as R3, the horizontal lines are a certain codimension-1 subset of all the
lines; for details, see §2.4. The proof of [21] proceeds by showing that infinitesimally the
measure Σf is supported on monotone subsets, and a non-trivial classification theorem
which asserts that monotone subsets are half spaces. (The proof is recalled in §8.)

Our proof of Theorem 1.1 combines the methods of [20] and [21], with several sig-
nificant new ingredients. Inspired by the proof in [21], our argument is based on an
appropriately defined notion of almost monotonicity of subsets. But, unlike [21], we re-
quire the use of perimeter bounds as well. In our situation, perimeter bounds are used
in finding a controlled scale such that at most locations, apart from a certain collection
of cuts, the mass of Σf is supported on subsets which are sufficiently close to being
monotone. In actuality, the excluded cuts may have infinite measure with respect to Σf .
Nonetheless, using perimeter bounds and the isoperimetric inequality in H, we show that
their contribution to the metric is negligibly small.

A crucial, and by far the most complicated, new ingredient in this paper is a stability
version of the classification of monotone sets of [21], which asserts that sets which are
almost monotone are quantitatively close to half spaces. One of the inherent reasons for
the difficulty of proving such a stability result arises from the need to work locally, i.e.,
to consider almost monotone subsets inside a metric ball in H of finite radius. Here the
situation is fundamentally different from the corresponding classification result in [21]:
there are even precisely monotone subsets in such a ball which are not half spaces(4);

(4) In Rn, monotone subsets of a ball are necessarily the intersection of the ball with a half space.
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see Example 9.1. Inevitably, our classification result must take this complication into
account. We can only assert that on a (controllably) smaller ball, the given almost-
monotone subset is close to a half space.

In order to make the above informal description precise, we will require some ad-
ditional preliminaries, which are explained in the remainder of this introduction. For a
discussion, in a wider context, of estimates whose form is equivalent to that of (1.1), and
which arise from our general mechanism, see Appendix B.

Remark 2.1. As we explained above, the present paper belongs to the general topic
of controlling the scale at which the infinitesimal “special structure” of a mapping (arising
from a differentiation theorem) appears in approximate form. However, it is important
to realize that it is impossible in general to obtain a quantitative estimate for the rate at
which the limiting situation is approached. To see this point, consider a model problem
associated with the sequence of functions

fn(x) =
sinnx
n

.

Although |f ′n(x)|61 for all n∈N and x∈R, it is not possible to control, independently
of n, the difference between fn and its first-order Taylor polynomial; note that f ′′n , which
controls the remainder term, is not bounded independently of n. Nonetheless, there is
an explicit uniform estimate for the scale above which any fn is approximated by some
linear function, which might not be equal to its first-order Taylor series. As far as we are
aware, the first instance of a result of this type is in [40]; see also for example [11], and
for additional information, the appendix by Semmes in [33].

2.1. PI spaces

A natural setting for a large part of our work is that of PI spaces: a certain class of
metric measure spaces, of which the Heisenberg group is a member. Together with the
key concept of “upper gradient” on which their definition is based, these spaces were
introduced in [38].

Let (X, dX) denote a metric space. If f :X!R, then a Borel measurable function
g:X![0,∞] is called an upper gradient of f if for all rectifiable curves c: [0, `]!X,
parameterized by arc length,

|f(c(`))−f(c(0))|6
∫ `

0

g(c(s)) ds. (2.1)

A complete metric measure space (X, dx, µ) is called a PI space if a doubling condition
and Poincaré inequality hold. That is, there exists p>1 and for all R>0 there exist
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β=β(R), τ=τ(R) and Λ=Λ(R) such that for all x∈X and r6R we have

µ(B2r(x))6βµ(Br(x)), (2.2)

−
∫
Br(x)×Br(x)

|f(x1)−f(x2)| d(µ×µ)(x1, x2) 6 τr

(
−
∫
BΛr(x)

gp dµ

)1/p

(2.3)

for all measurable f and upper gradients g of f , where we use the notation

−
∫
U

h dµ :=
1

µ(U)

∫
U

h dµ.

As shown in [36], (2.2) and (2.3) imply a strengthening of (2.3), which we will need.
Namely, for some χ=χ(β, τ)>1, τ ′=τ ′(β, τ), one has the Poincaré–Sobolev inequality

(
−
∫
Br(x)×Br(x)

|f(x1)−f(x2)|χp d(µ×µ)(x1, x2)
)1/χp

6 τ ′r

(
−
∫
BΛr(x)

gp dµ

)1/p

(2.4)

for all measurable f and upper gradients g of f .

It is important that for the case of the Heisenberg group of dimension 2n+1, relation
(2.4) holds with p=1 and χ=(2n+2)/(2n+1); in particular, if 2n+1=3, then χ= 4

3 .

Observe that (2.3), for fixed p, implies (2.3) for any p′>p. In this paper, without
further explicit mention, we will always assume that p=1, which is necessary for the
ensuing results on finite perimeter. Solely in order to have one fewer constant to list, we
will also make the innocuous assumption that Λ=1. For the cases of primary interest
here, X=Rn or X=H, relation (2.4) does hold with Λ=1 and, as noted above, with p=1.

2.2. Maps to L1: cut metrics and cut measures

Let X denote a set and let E⊂X denote a subset. In place of “subset”, we will also use
the term “cut”. Associated with E there is the so-called elementary cut metric on X,
defined by

dE(x1, x2) =
{

0, if either x1, x2 ∈E or x1, x2 ∈Ec,
1, otherwise

(here, and in what follows, we set Ec=X\E).

Remark 2.2. Clearly, dE=dEc . For this reason, it is common to define the space of
cuts of X as the quotient of the power set 2X by the involution E 7!Ec, although we do
not do this here.
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By definition, a cut metric dΣ is an integral of elementary cut metrics with respect
to some measure Σ on 2X . Thus,

dΣ(x1, x2) =
∫

2X

dE(x1, x2) dΣ(E). (2.5)

For f :U!L1, the pull-back metric induced by f is defined as

df (x1, x2) = ‖f(x1)−f(x2)‖1.

It follows from the “cut-cone characterization” of L1 metrics (see [20] and [27]) that there
is a canonically defined measure Σf on 2X (on an associated σ-algebra) such that (2.5)
holds with Σ=Σf .

Now let (X,µ) denote a σ -finite measure space. Let U⊂X denote a measurable
subset and f :U!L1(Y, ν) be a map which satisfies∫

U

‖f(x)‖1 dµ<∞.

There is a variant of the description of df in terms of Σf in the L1 framework; see [20].
In this context, 2U is replaced by a measure-theoretic version of the space of cuts. One
should regard a cut as an equivalence class of measurable sets E⊂U of finite µ-measure,
where two sets are considered equivalent if their symmetric difference has measure zero.
The collection of such cuts may be identified with the subset of L1(U) consisting of
characteristic functions. Hence it inherits a topology and a Borel structure from L1(U).
For our purposes, there is no harm in blurring the distinction between measurable sets
and their equivalence classes, which, for purposes of exposition, is done below.

Let Cut(U) denote the space of cuts. As above, we have

df (x1, x2) =
∫

Cut(U)

dE(x1, x2) dΣf (E), (2.6)

where Σf is a suitable σ -finite Borel measure on Cut(U). Here we view df as an ele-
ment of Lloc

1 (U×U), whose restriction to any subset V ⊂U , with finite measure, lies in
L1(V ×V ). Associated with two such L1-metrics d1, d2∈L1(V ×V ), there is a well-defined
L1-distance, given by

‖d1−d2‖L1(V×V ) =
∫
V×V

|d1(x1, x2)−d2(x1, x2)| d(µ×µ)(x1, x2). (2.7)

It is shown in [20] that if X is a PI space, U⊂B1(p)⊂X is an open set and f is
1-Lipschitz, or more generally 1-BV, then the cut measure Σf has finite total perimeter:∫

Cut(U)

Per(E)(U) dΣf (E) =
∫

Cut(U)

PER(E,U) dΣf (E)<c(β, τ). (2.8)
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Intuitively, for U open, the perimeter PER(E,U) is the codimension-1 measure of
the (measure-theoretic) boundary of E inside U . In actuality, U 7!PER(E,U) defines a
Borel measure Per(E). The restriction of this measure to Borel subsets of U is denoted
Per(E,U). The mass of Per(E,U) is denoted PER(E,U) and is equal to Per(E)(U);
for the definition, see (3.5). Moreover, there is a total perimeter measure λf , which is a
Radon measure on U , such that

λf =
∫

Cut(U)

Per(E,U) dΣf (E), (2.9)

Mass(λf ) =λf (U) =
∫

Cut(U)

PER(E,U) dΣf (E). (2.10)

In particular, if f has bounded variation (in short, f is BV), then Σf is supported on cuts
with finite perimeter. For the precise definitions and relevant properties of cut measures,
BV maps and perimeter measures, see [20].

2.3. The Heisenberg group as a Lie group

Recall that the 3-dimensional Heisenberg group H can be viewed as R3 equipped with
the group structure

(a, b, c)·(a′, b′, c′) = (a+a′, b+b′, c+c′+ab′−ba′). (2.11)

Note that the inverse of (a, b, c) is (−a,−b,−c). The center of H consists of the 1-dim-
ensional subgroup {0}×{0}×R. There is a natural projection

π: H−! H
Center(H)

= R2

and the cosets of the center are the vertical lines in R3, i.e., lines parallel to the z -axis.
Since the correction term ab′−a′b in (2.11), which measures the failure of the multi-

plication to be commutative, can be viewed as a determinant, we get the following very
useful geometric interpretation:

(∗) The correction term ab′−a′b is the signed area of the parallelogram spanned by
the vectors π(a, b, c) and π(a′, b′, c′).

(∗∗) Equivalently, if we regard R3 as R2×R, then ab′−a′b is the standard symplectic
form ω on R2.

Let K: R2!R2 be an invertible linear transformation and set

AK(a, b, c) := (K(a, b), c detK). (2.12)
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It is easily checked that AK is an automorphism of H.
Let Hg denote the affine plane passing through g∈H, which is the image under

left multiplication by g∈H, of the subspace R2×{0}⊂H. We call Hg the horizontal
2-plane at g∈H. Since the automorphism AK preserves the subspace R2×{0}⊂He,
where He denotes the tangent space at the identity e=(0, 0, 0), it follows that AK maps
horizontal subspaces to horizontal subspaces. The collection {Hg}g∈H defines a left-
invariant connection on the principle bundle R!H!R2, which in coordinates has the
following explicit description.

The plane H(0,0,0) is given by (u, v, 0), where u and v take arbitrary real values. In
general,

H(a,b,c) =(a, b, c)·(u′, v′, 0) = (a+u′, b+v′, c−bu′+av′),

so putting a+u′=u and b+v′=v, we get

H(a,b,c) =(u, v, c+av−bu). (2.13)

The affine 2-planes in R3 whose projections to R2 are surjective are just those which
admit a parameterization (u, v, c+av−bu). It follows that every such 2-plane arises as
the horizontal 2-plane associated with a unique point (a, b, c), and conversely that every
horizontal 2-plane associated with some point in R3 projects surjectively onto R2.

A line in R3 which passes through the point (a, b, c) and lies in the plane H(a,b,c)

can be written as
L=(a, b, c)+t(u, v,−bu+av), t∈R, (2.14)

where u and v are fixed and t varies. In discussing the Heisenberg case, unless otherwise
indicated, the term line will refer exclusively to such a horizontal line. The collection of
all such lines is denoted by lines(H).

Definition 2.3. A half-space P⊂H=R3 is the set of points lying on one side of some
2-plane P , including those points of the plane itself.

The half-space H is called horizontal if its associated 2-plane H is horizontal. Oth-
erwise it is called vertical. Thus, a vertical half-space is the inverse image under π of an
ordinary half-plane in R2.

2.4. The Heisenberg group as a PI space

Consider the left-invariant Riemannian metric 〈· , ·〉 on H which corresponds to the stan-
dard Euclidean metric at the tangent space to the identity. The Carnot–Carathéodory
distance dH(x1, x2) is defined to be the infimum of lengths of curves c: [0, `]!H, from
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x1 to x2, such that for all s the tangent vector c′(s) is horizontal, i.e., c′(s) lies in the
2-dimensional subspace of the tangent space corresponding to the affine plane Hc(s). The
length of c′(s) is calculated with respect to 〈· , ·〉. In particular, for all g1, g2∈H one has

dH(g1, g2) = dH(g−1
1 , g−1

2 ). (2.15)

A well-known consequence (see [56]) of the definition of dH, in combination with (∗) and
(∗∗) above, is that if p, q∈H, with π(p)=π(q), and c: [0, `]!R2 is a curve parameterized
by arc length such that its horizontal lift c̃ starts at p and ends at q, then the vertical
separation of p and q (in coordinates) is the signed area enclosed by the curve c.

Geodesics of dH can be characterized as those smooth horizontal curves which project
(locally) either to a circular arc or to a line segment in R2. Thus, the lines L∈lines(H)
are precisely those geodesics of dH which are affine lines in H=R3. Any two points of
H can be joined by a minimal geodesic of dH, although typically not by a horizonal line
L∈lines(H). Note that, when viewed as a curve in (H, dH), any affine line which is not
in lines(H) has the property that any of its finite subsegments has infinite length.

The distance dH((a, b, c), (a′, b′, c′)), is bounded above and below by a constant mul-
tiple of √

(a−a′)2+(b−b′)2+|c−c′+ab′−ba′|2. (2.16)

When restricted to any vertical line, it is just the square root of the coordinate distance.
Thus, there is a constant C>0 such that, for the metric dH, the metric ball centered at
e=(0, 0, 0) satisfies the box-ball principle:

BC−1r(e)⊂{(a, b, c) : |a|<r, |b|<r and |c|<
√
r}⊂BCr(e). (2.17)

Thus, in coordinates, Br(e) looks roughly like a cylinder whose base has radius r and
whose height is 2r2.

In this paper we will consider the PI space (H, dH,L3), where L3 denotes the Haar
measure on H, which coincides with the Lebesgue measure on R3.

Let rθ denote the rotation in R2 by an angle θ and let I denote the identity on R2.
From now on, we write Oθ for Arθ

. Since Oθ preserves horizontal subspaces and induces
an isometry on He=R2×{0}, it follows that Oθ is an isometry of (H, dH). Clearly, Oθ
preserves the measure L3 as well. Similarly, for ψ∈R, the automorphism AψI scales the
metric by a factor ψ and the measure L3 by a factor ψ4; see (2.12).

2.5. Behavior under blow up of finite-perimeter cuts of H

Let E⊂B1(e)⊂H be a finite-perimeter (FP) cut. Then at Per(E)-a.e. p∈E, asymptot-
ically under blow up, the measure of the symmetric difference of E and some vertical
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half-space V, goes to zero; see [29] and [30]. Equivalently, the indicator χE converges to
χV in the Lloc

1 sense. The corresponding theorem for Rn is due to De Giorgi [25], [26]. The
results of [29] and [30] depend essentially on those of [1] and [2], in which an asymptotic
doubling property for the perimeter measure is proved for arbitrary PI spaces.

If dV is an elementary cut metric associated with a vertical half-space then the
restriction of dV to a coset of the center is trivial. Thus, the results of [29] and [30],
together with (2.5), suggest that under blow up, at almost all points, a Lipschitz map
f : H!L1 becomes degenerate in the direction of (cosets of) the center. In particular,
there exists no bi-Lipschitz embedding of H in L1. This is the heuristic argument behind
the main result of [20].

In order to prove Theorem 1.1, we will take a different approach, leading to a quan-
titative version of a somewhat crude form of the blow-up results of [29] and [30] (and
the corresponding earlier results of [25] and [26]). Here, “crude” means that our argu-
ment does not give uniqueness of the blow up, nor in the Heisenberg case, does it show
that only vertical half-spaces arise [30]. For our purposes, neither of these properties is
needed. Our approach is based on the notion of monotone sets as introduced in [21];
the discussion there, while not quantitative, does recover the results on verticality and
uniqueness of blow ups.

2.6. Monotone sets and half-spaces

In the following definition and elsewhere in the paper, Ec denotes the complement of E.

Definition 2.4. Fix an open set U⊆H. We denote by lines(U) the space of unparam-
eterized oriented horizontal lines whose intersection with U is non-empty. Let NU de-
note the unique left-invariant measure on lines(H), normalized so that NU (lines(U))=1.
A subset E⊆U is monotone with respect to U if for NU -a.e. line L, both E∩L and
(U \E)∩L are essentially connected, in the sense that there exist connected subsets FL=
FL(E), F cL=F cL(E)⊆L (i.e., each of FL and F cL is either empty, equals L, or is an interval,
or a ray in L) such that the symmetric differences (E∩L)4FL and ((U \E)∩L)4F cL have
1-dimensional Hausdorff measure zero.

Monotone subsets of H were introduced in [21], where they were used to give a
relatively short proof of the non-embedding theorem of [20], which does not require the
introduction of FP sets, and hence does not depend on [29] and [30]. Instead, a blow-up
argument is used to directly reduce the non-embedding theorem to the special case in
which the cut measure Σf is supported on monotone cuts; compare the discussion in the
next subsection. For the case U=H, a non-trivial classification result asserts that if E is
monotone, then L3(E4P)=0 for some half-space P; see [21].
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Remark 2.5. If we regard H as R3, then horizontal lines in H are a particular
codimension-1 subset of the set of all affine lines in R3. A typical pair of points lies
on no horizontal line. However, the classification of monotone subsets of H is precisely
the same as for R3 with its standard metric. In the latter case the proof is trivial, while
in the former case it is not.

2.7. Degeneracy of cut metrics which are supported on half-spaces

Once monotone subsets are known to be half-spaces it follows (a posteriori) that the
connectedness condition in Definition 2.4 holds for almost every affine line L, i.e., not
just for horizontal ones. Thus, if a cut measure Σ is supported on monotone cuts, dΣ

has the property that if x1, x2, x3∈L and x2 lies between x1 and x3, then

dΣ(x1, x3) = dΣ(x1, x2)+dΣ(x2, x3).

But if L is not horizontal, i.e., not a coset of the center, then dH|L is comparable to the
square root of the coordinate distance, and it is trivial to verify that this metric is not
bi-Lipschitz equivalent to one with the property mentioned above; see (4.1).

In proving Theorem 1.1, we will show that on a definite scale, using Theorem 4.3, we
can reduce modulo a controlled error, to the case in which the cut measure is supported
on cuts which are close to half-spaces. The error term, though controlled, is larger than
the term which corresponds to the model case of monotone cuts.

2.8. δ -monotone sets

Theorem 4.3, which asserts that an approximately monotone set is close to some half-
space (in the sense that the symmetric difference has small measure) plays a key role
in the proof of Theorem 1.1. But unlike in [21], we cannot dispense with consideration
of FP sets. We use (2.8), the bound on the total perimeter, to obtain a bound on the
total non-monotonicity, and hence to get the estimate for a scale on which the total non-
monotonicity is so small that Theorem 4.3 applies; see the discussion after Theorem 1.1
and compare with Remark 2.6 below.

Remark 2.6. If one restricts the attention to 1-Lipschitz maps f :B!L1, rather than
more general BV maps, then using the fact that the 1-Lipschitz condition is preserved
under restriction to horizontal lines, it is possible to derive the above mentioned bound
on the total non-monotonicity without reference to FP sets. However, even for Lipschitz
maps, the introduction of FP sets cannot be avoided; see Lemma 4.1 which concerns
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an issue arising from the fact that the mass of the cut measure can be infinite; see also
Proposition 5.1.

We will need to consider subsets E⊂BR(p)⊂H, which are δ -monotone on BR(p); see
Definition 4.2. Here, small δ means approximately monotone, and δ=0 corresponds to
the case of monotone sets as in Definition 2.4. After rescaling, Theorem 4.3 states that
there exists a constant a<∞, such that if E⊂BR(p)⊂H is εa-monotone, and R>ε−3,
then L3((E∩B1(p))4(P∩B1(p))).ε for some half-space P.

Remark 2.7. Absent the assumption R>ε−3, the conclusion of Theorem 4.3 can fail,
even if “εa-monotone” is replaced by “monotone”; see Example 9.1. For the analogous
result in Rn, ε−3 can indeed be replaced by 1.

Remark 2.8. The discussion of monotone sets can be formulated for arbitrary PI
spaces; see [23]. But in general, monotone subsets need not be rigid. In [22], the flexibility
of monotone subsets of Laakso spaces [45] is used to construct bi-Lipschitz embeddings of
Laakso spaces into L1. This is of interest since these spaces do not admit a bi-Lipschitz
embedding into any Banach space with the Radon–Nikodym property, e.g., separable
dual spaces, such as Lp, 1<p<∞, or `1; see [19].

2.9. The kinematic formula; perimeter and non-monotonicity

To bound the total non-monotonicity in terms of the total perimeter, we use a kinematic
formula for the perimeter of an FP set. From now on, we will just refer to the kinematic
formula. In Rn, the kinematic formula expresses the perimeter of an FP set E, as an
integral with respect to the natural measure on the space of lines L, of the 1-dimensional
perimeter function PER(E∩L). In [55], a suitable kinematic formula has been proved
for Carnot groups; see (6.1). In that context, a line means a horizontal line L∈lines(H).

Up to a set of measure zero, an FP subset of R is a finite union of disjoint closed
intervals for any open interval I, the perimeter PER(E, I) is the number of endpoints of
these intervals which are contained in I; see [3]. On the other hand, the condition that
E is monotone can be reformulated as the requirement that for almost every line L, the
1-dimensional perimeter PER(E∩L) is either 0 or 1. Since our initial quantitative data
provides an integral bound on the mass of the total perimeter measure (see (2.8) and
(3.13)), it is not surprising that the kinematic formula plays a key role in our discussion.
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3. Preliminaries

In this section, X denotes a PI space. In particular, it could be Rn or H. Fix p∈X and
let f :Br(p)!L1 denote a Lipschitz map. In this paper we will often rescale this ball to
unit size and correspondingly rescale the map f , and hence the induced metric dΣf

, or
equivalently the cut measure. Finally, we rescale the measure µ, so that the rescaled ball
has unit measure.

We set

f̆ = r−1f, (3.1)

Σf̆ = r−1Σf , (3.2)

d̆X = r−1dX , (3.3)

µ̆( ·) =
µ( ·)

µ(Br(p))
. (3.4)

For the case of Lipschitz maps, we always use the full set of rescalings (3.1)–(3.4).
Note that, for U open, Per(E)(U) is defined by

Per(E)(U) = inf
{hi}

lim inf
i!∞

∫
U

Lip(hi) dµ, (3.5)

where the infimum is taken over all sequences of Lipschitz functions {hi}∞i=1, with

hi
Lloc

1−−−!χE .

Since a rescaling as in (3.3) has the effect

Lip(hi) 7−! r Lip(hi), (3.6)

it follows that (3.3) and (3.4) imply that

Per(E) 7−! r
1

µ(Br(p))
Per(E). (3.7)

Remark 3.1. When generalizing our considerations to BV functions, or in particular
sets of finite perimeter, it is of interest to consider as well the effect of a rescaling as in
(3.3) and (3.4), with (3.1) and (3.2) omitted. If (3.1) and (3.2) are omitted, then (3.7) is
a relevant rescaling. For the case of FP sets in particular, it is the relevant rescaling. It
can be used to give a quantitative analog of Theorem 1.1 for a single FP set E, in which
the set of points at which, on a controlled scale, E is not close to a half-space, has small
codimension-1 Hausdorff content, as measured with respect to coverings by balls of small
radius.
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If (3.1) and (3.2) are not omitted, then, by (3.2) and (3.7), the corresponding rescal-
ing factor for the total perimeter measure λf is

r
1

µ(Br(p))
r−1,

i.e.,

λf 7−!
1

µ(Br(p))
λf . (3.8)

3.1. Normalization

After rescaling f , Σf , dX and µ as in (3.1)–(3.4), we will often denote the rescaling of
the ball Br(x) as �Br(x). Thus,

�Br(x)⊂X, (3.9)

µ̆(�Br(x))= 1, (3.10)

f̆ : �Br(x)−!L1, (3.11)

Lip(f̆) = 1, (3.12)

or, more generally, ∫
Cut(�Br(x))

Per(E)(�Br(x)) dΣf̆ (E) 6 1. (3.13)

3.2. Standard inequalities

We will make repeated use of the trivial inequality (often called Markov’s inequality),
which states that for a measure space (Y, ν) and f∈L1(Y, ν), one has

ν({x : f(x) > t}) 6
1
t

∫
Y

|f | dν. (3.14)

We also use the weak-type-(1, 1) inequality for the maximal function, which is a
consequence of the doubling property of the measure; see, e.g., [61, Chapter 1]. We now
recall this basic estimate.

Let β denote the doubling constant of µ. Let ζ denote a Radon measure. Fix an
open subset U and let C denote the collection of closed balls Br(y) such that B5r(y)⊂U .
Given k, j∈N, define Bj,k=Bj,k(ζ)⊂C by

Bj,k := {Br(y)∈C : ζ(Br(y))> kr−jµ(Br(y))}, (3.15)
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and set

Bj,k =
⋃

Br(q)∈Bj,k

Br(q). (3.16)

By a standard covering argument (see [37] and [61]), there is a disjoint subcollection
{Bri(qi)}∞i=1⊂Bj,k such that

Bj,k ⊂
∞⋃
i=1

B5ri(qi), (3.17)

∞∑
i=1

(5ri)−jµ(B5ri(qi))6 5−jk−1β3ζ(U). (3.18)

Relations (3.17) and (3.18) imply that the codimension-j Hausdorff content of Bj,k (as
defined with respect to the measure µ) is bounded by 5−jk−1β3ζ(U). The codimension-0
Hausdorff content (j=0) is just the measure µ itself.

4. Reduction to the stability of individual monotone sets

In this section we reduce the proof of the main degeneration theorem (Theorem 1.1) to
Theorem 4.3, a stability theorem for individual monotone sets, which states roughly that
a set which is almost monotone is almost a half-space. The complete proof of Theorem 4.3
will occupy §§7–11.

The next few paragraphs contain an overview of this section. For definiteness, we
will restrict our attention to the Heisenberg group. Everything we say applies, mutadis
mutandis, to the simpler case of Rn as well.

We begin by considering an ideal case, the proof of which is given prior to the more
general Proposition 4.4. Then we explain how to reduce to the ideal case up to an error
which is controlled.

Let dP denote a cut metric for which the cut measure is supported on cuts P which
are half-spaces. Let ε>0. We will see by an easy argument that for every line L through
the identity e∈H, which makes an angle >θ>0 with the horizontal plane, for half(5) of
the pairs of points x1, x2∈L, with 1

2ε6d
H(x1, x2)6 3

2ε, we have

dP(x1, x2) .θ εd
H(x1, x2), (4.1)

where the implied constant in (4.1) depends only on θ.

(5) The measure on pairs (x1, x2), with 1
2
ε6dH(x1, x2)6 3

2
ε, is L×L, where L denotes the Lebesgue

measure associated with the Euclidean metric on L. Of course, in the statement, “half” can be replaced
by any definite fraction <1, provided .θ in (4.1) is allowed to depend on that fraction.
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In proving Theorem 1.1, we first find a scale such that at a typical location, the
support of the cut measure consists almost entirely of cuts which are almost half-spaces,
i.e., cuts which differ from half-spaces by sets of small measure. As explained below,
for this, it suffices to find a scale on which the total non-monotonicity is small. By the
pigeonhole principle, it is easy to find a scale on which the total perimeter is small. On
such a scale we apply Proposition 4.5, which asserts that the total non-monotonicity of
a cut metric can be bounded in terms of the total perimeter. Proposition 4.5 is proved
in §6.

On a scale on which the total non-monotonicity is small, the effect of cuts which
are not almost half-spaces can be absorbed into the error term, after which they can
be ignored. However, to get to a situation in which our conclusion can be obtained by
appying Theorem 4.3, we must further reduce to one in which there is a suitable bound
on the mass of the cut measure. Otherwise, the total effect of the small deviations of the
remaining individual cuts from being half-spaces could carry us uncontrollably far from
the ideal case considered in (4.1). This point is addressed in Lemma 4.1, which states
that the cuts can be decomposed into a subset which makes a contribution which can
be absorbed into the error term for the cut metric, and one for which the mass has a
definite bound. Lemma 4.1 is proved in §5.

4.1. Controlling the cut measure

The following lemma will be applied to rescaled balls, on a scale on which the total
non-monotonicity is sufficiently small. For f Lipschitz, relation (4.2) in the hypothesis of
Lemma 4.1 holds for all such balls. If more generally f is BV, then for most such balls,
it holds after suitably controlled rescaling.

Given metrics d and d′, define ‖d−d′‖L1 as in (2.7).

Lemma 4.1. Let f :B1(p)!L1 satisfy

λf (B1(p))6 1. (4.2)

Given η>0, the support of Σf can be written as a disjoint union D1∪D2, such that if
df=d1+d2 denotes the corresponding decomposition of the cut metric df , then

Σf (D1) 6
1
η3
, (4.3)

‖df−d1‖L1 . η. (4.4)

If f is 1-Lipschitz, then so are d1 and d2.

Lemma 4.1 is a consequence of the more general Proposition 5.1, which will be
proved in §5.
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4.2. Stability of monotone sets

Let lines(H) denote the space of unparameterized oriented horizontal lines, and let
lines(U) denote the collection of horizontal lines whose intersection with U is non-empty.
Let N denote the unique left-invariant measure on lines(H), normalized so that

N (lines(B1(e)))= 1. (4.5)

Let H1
L denote 1-dimensional Hausdorff measure on L∈lines(H) with respect to the

metric induced from dH. We note that if E⊂H is measurable, then L∩E is measurable
for N -a.e. L∈lines(H).

Given a ball Br(x)⊂H and L∈lines(Br(x)), we define the non-convexity of (E,L)
on Br(x), denoted NCBr(x)(E,L), by

NCBr(x)(E,L) := inf
I⊂L∩Br(x)

I subinterval

∫
L∩Br(x)

|χI−χE∩L∩Br(x)| dH1
L, (4.6)

where we allow the subinterval I to be empty in the infimum above. Similarly, we define
the non-monotonicity of (E,L) on Br(x) by

NMBr(x)(E,L) := NCBr(x)(E,L)+NCBr(x)(Ec, L). (4.7)

The total non-convexity and total non-monotonicity of E on Br(X) are defined to be the
following (scale-invariant) quantities:

NCBr(x)(E) :=
1
r4

∫
lines(Br(x))

NCBr(x)(E,L) dN (L), (4.8)

NMBr(x)(E) :=
1
r4

∫
lines(Br(x))

NMBr(x)(E,L) dN (L). (4.9)

Note that NMBr(x)(E)=0 if E is monotone, or more generally if the the symmetric
difference of E and some monotone subset has measure zero.

Definition 4.2. A cut E⊂Br(p)⊂H is said to be δ-monotone on Br(x) if

NMBr(x)(E)<δ. (4.10)

We have the following stability theorem.

Theorem 4.3. There exists a>0 (e.g., a=252 works here), such that if the cut
E⊂B1(x) is εa-monotone on B1(x), then there exists a half-space P⊆H such that

L3((E∩Bε3(x))4P)
L3(Bε3(x))

. ε.
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4.3. Cut measures supported on cuts which are almost half-spaces

In this subsection, we begin by verifying (4.1), which concerns the case of a cut measure
which is supported on half-spaces. Then, in Proposition 4.4, we consider the more general
case of a cut measure which is supported on cuts which are almost half-spaces, i.e., cuts
that satisfy the conclusion of Theorem 4.3. Of course, there is an error term in the
general case, which leads to a weaker estimate than in the ideal case.

Proof of (4.1). For simplicity, we consider pairs of points (x1, x2) with dH(x1, x2)=ε.
For dH(x1, x2)=t, with t∈[ 12ε,

3
2ε], the proof is the same.

Consider first an elementary cut metric dE on the real line, associated with a subset
E such that E and Ec are connected. Clearly, if x3 lies between x1 and x2, then

dE(x1, x3)+dE(x3, x2) = dE(x1, x2).

By linearity, this holds more generally for cut metrics on the line whose cut measures are
supported on such cuts.

Let ΣP denote a cut measure on B1(p)⊂H such that every cut in the support of
ΣP is of the form P∩B1(p), for some half-space P. Then for almost every affine (not
necessarily horizontal) line L, the restriction dP |L is a cut metric as in the previous
paragraph.

Consider a subinterval I⊂L∩B1(p) with endpoints y and z, such that dH(y, z)= 1
2 ,

say, and hence L(I)> 1
4 . Let ε be as in (4.1) and let ψ>0 be arbitrary. Let further α

index those intervals Jα⊂I whose endpoints x1,α and x2,α satisfy dH(x1,α, x2,α)=ε and
dP(x1,α, x2,α)>ψdH(x1,α, x2,α). Note that if L is as in (4.1) (i.e., it makes a definite
angle θ with the horizontal plane) then L(Jα)�θεdH(x1,α, x2,α)�θε2.

By a standard covering argument, there is a disjoint subcollection {Jα1 , ..., JαN
} of

{Jα}α, such that
⋃
α Jα⊂5Jα1∪...∪5JαN

, and by the length-space property of dP , we
have

Nψε6 dP(x1,1, x2,1)+...+dP(x1,N , x2,N ) 6 dP(y, z) = 1
2 .

Thus, N61/2ψε, and since L(Jα)�θε2,

L
(⋃
α

Jα

)
.θ

5ε2

2ψε
=

5ε
2ψ

.

By taking ψ to be a suitably large multiple (depending on θ) of ε, and incorporating
this multiple into the symbol .θ in (4.1), we get L(

⋃
α Jα)6 1

2L(I), which suffices to
prove (4.1).
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To simplify the statement of Proposition 4.4, we state it for unit balls. In the
application (to Lipschitz maps), we will set ε1=ε40 and consider the rescaling as in (3.1)–
(3.4) of Bε31(x) to unit size. Prior to stating the proposition, we give a few preliminaries.

Below, without loss of generality we may (and will) assume that p is the indentity
element of H. We consider only affine lines L such that L∩B1/2(p) 6=∅. Let x∈L be such
that dH(x, p) is minimal. Using left translation by x−1, we identify L with a line through
the identify and define the angle θ with the horizontal as in (4.1). If θ0 is sufficiently
small and L makes Euclidean angle 6θ0 with the vertical, then the angle θ with the
horizontal will be > 1

3π.(6)
Put

S= {L :L makes a Euclidean angle 6 θ0 with the vertical and L∩B1/2(p) 6= ∅}.

Let L denote the Euclidean 1-dimensional Lebesgue measure on L. Note that it
differs by a bounded factor from the 1-dimensional Lebesgue measure on L induced by
the above identification via x−1, so the distinction between these measures plays no
essential role and will be supressed below.

Recall that the space of all affine lines in H=R3 is a 4-dimensional homogeneous
manifold which carries a natural measure A. (The precise normalization plays no role
below.)

Proposition 4.4. Fix ψ∈(0, 1). Assume that h:B1(p)!L1 is such that Σh satisfies
the total perimeter bound (4.2), and assume that Σh is supported on cuts E⊂B1(p), such
that for some half-space PE ,

L3((PE∩B1(p))4E) . (ψε4)4. (4.11)

Let S0⊂S denote the subset of the affine lines L such that at least 2
3 of the pairs

(x1, x2)∈(L∩B1(p))×(L∩B1(p)) satisfy

2
3ε6 dH(x1, x2) 6 5

4ε, (4.12)

dh(x1, x2) 6 εdH(x1, x2). (4.13)

Then
A(S0) > (1−ψ)A(S). (4.14)

If h is 1-Lipschitz and for all E in the support of Σh,

L3((PE∩B1(p))4E) . ε80 (4.15)

(6) For the purposes of Proposition 4.4, 1
3
π can actually be replaced by any number < 1

2
π.
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for some small enough constant c>0, then for all L∈S and for at least 1
2 of the pairs

(x1, x2)∈L×L satisfying
2
3ε6 dH(x1, x2) 6 3

2ε, (4.16)

there holds

dh(x1, x2) . εdH(x1, x2). (4.17)

Proof. Assume first that (4.11) holds. Let D1, D2 and dh=d1+d2 be as in Lem-
ma 4.1, with η=ψε4. Hence, Σh(D1)6(ψε4)−3 and ‖dh−d1‖L1 .ψε4.

Using (4.11), it is straightforward to construct a half-space PE , which varies mea-
surably with respect to Σh (alternatively, one can use a measurable selection theorem as
in [44]), such that L3((PE∩B1(p))4E).(ψε4)4. Put

dP,1(x1, x2) =
∫
D1

dPE
(x1, x2) dΣ1(E). (4.18)

From Σh(D1)6(ψε4)−3 and L3((PE∩B1(p))4E).(ψε4)4, we obtain

‖d1−dP,1‖L1 .ψε4. (4.19)

This, together with ‖dh−d1‖L1 .ψε4, implies that

‖dh−dP,1‖L1 .ψε4. (4.20)

Write the integral in the definition of the L1 norm in (4.20) as an iterated integral,
integrating first over pairs of points lying on a given affine line L∈S, and then over the set
of lines L∈S, with respect to the measure A. It follows from Markov’s inequality (3.14)
that, for a fraction >1−ψ of affine lines L in S,

‖dh−dP,1‖L1(L×L,L×L) . ε4. (4.21)

On such a line L, consider the set of pairs satisfying (4.12) for which (4.1) holds
for the metric dP,1. By noting that the measure of the space of pairs of points on L

satisfying (4.12) is &ε2, and applying Markov’s inequality once more, on L×L in (4.21),
we find that for at least 1

2 of the pairs at which (4.1) holds for dP,1, the error term arising
from (4.21) is .ε2. This gives (4.13).

Finally, assume that h is Lipschitz. Let HausR
3

denote Hausdorff distance associated
with the Euclidean distance dR

3
. We define a metric %R

3
on S by setting, for L1, L2∈S,

%R
3
(L1, L2) =HausR

3
(L1∩B1(p), L2∩B1(p)).
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Clearly, with respect to the distance %R
3
, the restriction of the measure A to S is Ahlfors

4-regular. Thus, it follows from (4.14) that if we take ψ=ηε16=η(ε4)4, for a sufficiently
small universal constant η, then S0 is

(
1

100ε
)4-dense in S with respect to %R

3
. So, given

L∈S, we can choose L1∈S0 such that %R
3
(L,L1)6

(
1

100ε
)4.

Let P :L1∩B1(p)!L assign to each each x∈L1∩B1(p) the closest point on L. Thus,
dR

3
(x, P (x))6

(
1

100ε
)4. Also, at all points, the difference between the differential dP and

a Euclidean isometry is bounded by ε4. Finally, since on B1(p) we have dH6(10dR
3
)1/2,

for x∈L∩B1(p) we have
dH(x, P (x))6 ε2. (4.22)

We may assume without loss of genenerality that ε is so small that for at least
1
2 of the pairs (x1, x2)∈L×L satisfying (4.12) and (4.13), we will have (P (x1), P (x2))∈
B1(p)×B1(p) and (4.16) will hold. From (4.22) and the assumption that h is 1-Lipschitz,
it follows (using the triangle inequality) that for ε< 1

4 , say, such a pair satisfies (4.17).

4.4. Scale estimate; total perimeter and total non-monotonicity

Next, we show how to estimate from below a scale on which, apart from a collection of
cuts which contributes negligibly to the cut metric df , the hypothesis of Proposition 4.4
will be satisfied at most locations; see Proposition 4.6. It is from this estimate that the
logarithmic behavior in (1.1) of Theorem 1.1 arises.

Recall that the cut measure Σf is supported on cuts E with finite perimeter. Fix
δ>0. Using the structure of finite-perimeter subsets of H and the kinematic formula, in
§6 we will decompose the total perimeter measure λf as a sum

λf =
∞∑
j=0

ŵj , (4.23)

in such a way that the measure ŵj controls the total non-monotonicity on the scale δj

in the following sense.
For j>0 let, as usual, �Bδj/4(x) denote the standard rescaling of the ball Bδj/4(x)⊂

B1(p) as in (3.9)–(3.13).

Proposition 4.5. If for all r>0,

λf (Br(x)).L3(Br(x)), (4.24)

then ∫
Cut(�Bδj/4(x))

NM�Bδj/4(x)
(E) dΣf (E) .

ŵj(Bδj/4(x))
L3(Bδj/4(x))

+δ. (4.25)
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In order to apply Proposition 4.5, we need to find j such that ŵj(B1(p))6δ, and
hence, at most locations x, the term

ŵj(Bδj/4(x))
L3(Bδj/4(x))

is .δ.

Proposition 4.6. There exists j6δ−1 for which

Mass(ŵj) . δ. (4.26)

For such j and at least 1
2 of the points x in B1(p),∫
Cut(�Bδj/4(x))

NM�Bδj/4(x)
(E) dΣf (E) . δ. (4.27)

Proof. We have

1 &Mass(λf ) =
∞∑
j=0

Mass(ŵj). (4.28)

Thus the number of terms in the sum above for which Mass(ŵj)>δ is bounded
by .δ−1, and the claim follows. The conclusion follows from the weak-type-(1, 1) in-
equality for the maximal function applied to the measure ŵj , i.e., (3.18), together with
Proposition 4.5.

4.5. Proof of Theorem 1.1

Let a be as in Theorem 4.3. Fix ε>0 and let

δ= cε40(6+a)+2 (4.29)

for an appropriately small enough constant c>0. By Proposition 4.6, we can choose
j.δ−1, such that (4.27) holds for at least 1

2 of the points x in B1(p). Below we restrict
our attention to such a point x and rescale Bδj/4(x) to standard size, denoting this ball
as usual by �Bδj/4(x).

By (4.25), (4.27) and Markov’s inequality (3.14), we can write Cut(�Bδj/4(x)) as a
disjoint union

Cut(�Bδj/4(x))=D3∪D4,

with corresponding metric decomposition df=d3+d4, where

Σf (D3) 6 cε40·6+2, (4.30)

NM�Bδj/4(x)
(E) 6 ε40a for all E ∈D4. (4.31)
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By (4.30), we have d3(x1, x2)<cε40·6+2 for all x1 and x2. Therefore, if df is restricted to
Bε40·6(x)=B(ε80)3(x) and this ball is rescaled to unit size, we get

|df−d4|6 ε2, (4.32)

while, by (4.31) and Theorem 4.3, d4 is supported on cuts which satisfy the hypothesis
of Proposition 4.4. From Proposition 4.4, together with (4.32), Theorem 1.1 follows.

4.6. Preview of the proof of Theorem 4.3

After two preliminary technical results on δ -monotone subsets of H have been stated in
§7, and the classification of monontone subsets of H has been reviewed in §8, Theorem 4.3
is proved in §9. However, there is a technical step in the argument (the non-degeneracy
of the initial configuration) the proof of which, for reasons of exposition, is deferred until
§10. The proofs of the technical results, Lemma 7.2 and Proposition 7.3, are deferred
to §11 and §12. The proof of Proposition 7.3 is (by far) the most involved part of this
paper.

5. Cuts with small perimeter

In this section we prove Lemma 4.1, which shows that cuts with very small perimeter
make a negligible contribution to the cut metric df . It is most natural to argue here in
the context of general PI spaces. Thus, let X denote a PI space, for example Rn or H.
Fix p∈X and let f :B1(p)!L1 satisfy Lip(f)61.

Put

D1 = {E : Per(E)(B1(p))6 θ} and D2 = {E : Per(E)(B1(p))>θ}, (5.1)

and let df=d1+d2 denote the corresponding decomposition of the metric df . Let β
denote the doubling constant of X, and τ ′, χ>1 be the constants in the Poincaré–Sobolev
inequality (2.4).

Proposition 5.1. If f :B1(p)!L1 satisfies

λf (B1(p))6K, (5.2)

then, for all θ>0,

Σf (D2) 6
K

θ
, (5.3)

‖df−d2‖L1 6
2τ ′K

1−2χ−1
θχ−1. (5.4)
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Proof. From (5.2) and Markov’s inequality (3.14), we get (5.3). For n∈N put

D1,n = {E : θ2−(n+1) 6Per(E)(B1(p))6 θ2−n}.

Then D1=
⋃
n∈ND1,n. By (5.2) and Markov’s inequality once more, we have

Σf (D1,n) 6
K2n+1

θ
.

Moreover, if E∈D1,n then, by (2.4),(7)

−
∫
B1(p)×B1(p)

|χE(x1)−χE(x2)| dµ×dµ6 τ ′(θ2−n)χ. (5.5)

By summing over n, we get (5.4).

Note that when Lip(f)61, by virtue of (2.8), (5.2) holds with K=c(β, τ ′). To get
(4.3) and (4.4) from (5.3) and (5.4), we take θ to be a suitable multiple of η3 (noting
that for X=H, we have β=16 and χ= 4

3 ).

6. The kinematic formula and δ -monotone sets

In this section, using the kinematic formula, we decompose the total perimeter measure
as a sum of measures λf=w1+w2+... . Then we prove Proposition 4.5, which states that
wj controls the total non-monotonicity on the scale δj .

We rely on the simple structure of sets of finite perimeter in dimension 1 and on the
kinematic formula, which expresses the perimeter of an FP subset E of Rn or a Carnot
group, as an integral over the space of lines L of the perimeters of the 1-dimensional FP
sets E∩L.

6.1. FP sets in dimension 1

Let V denote an open subset of R and let F⊂V have finite perimeter, i.e., Per(F )(V )<∞.
Then there exists a unique collection of finitely many disjoint intervals, I1(F ), ..., IN (F ),
which are relatively closed in V , such that the symmetric difference of F and

I(F ) =
N⋃
i=1

Ii(F )

(7) It follows immediately from (3.5), the definition of perimeter, that if (2.4) holds for Lip-
schitz functions, then it holds for FP sets (in which case it becomes an isoperimetric inequality). A
corresponding statement is valid for more general BV functions.
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has measure zero. Moreover, the perimeter measure Per(F ) is a sum of delta functions
concentrated at the endpoints of these intervals, and the perimeter Per(F )(V ) is equal to
the number of endpoints; see [3, Proposition 3.52]. In what follows, we will often assume
without explicit mention that the set F⊂R has been replaced by its precise representative
I(F ). Note that I(F c∩V )=I(F )c and Per(F c)=Per(F ).

6.2. The kinematic formula

A kinematic formula exists for the PI space (H, dX ,L), and more generally for any Carnot
group, an in particular also for Rn; see [55, Proposition 3.13]. Below, the notation is as
introduced prior to (4.5).

Let U⊂H denote an open subset such that Per(E)(U)<∞. The kinematic formula
states that the function L 7!Per(E∩L)(U∩L) lies in L1(lines(U),N ), and in addition
(for some constant c=c(H)>0)

Per(E)(U) = c

∫
lines(U)

Per(E∩L)(U∩L) dN (L). (6.1)

6.3. Perimeter bounds non-monotonicity

Fix 0<δ<1. For all E and L as above and all j>0, let Cj(E,L) denote the collection of
intervals I(E,L) occuring in I(E∩L∩B1(x)) such that

δj+1 6 length(I(E,L))<δj . (6.2)

Let Ej(E,L) denote the collection of all endpoints of intervals in Cj(E,L). Let
card(S) denote the cardinality of the set S. For c(H) as in (6.1) and A⊂B1(x), put

wj(E,L)(A) = c(H) card({e∈Ej(E,L) : e∈A}), (6.3)

wj(E)(A) =
∫

lines(B1(x))

wj(E,L)(A) dN (L), (6.4)

ŵj(E)(A) = ŵj(Ec)(A) =
wj(E)(A)+wj(Ec)(A)

2
. (6.5)

Finally, set

ŵj(A) =
∫

Cut(B1(x))

ŵj(E)(A) dΣf (E). (6.6)
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By the kinematic formula (6.1), we get the decompositions of the perimeter measure
and of the total perimeter measure

Per(E) =
∞∑
j=0

ŵj(E), (6.7)

λf =
∞∑
j=0

ŵj , (6.8)

which is a restatement of (4.23).

Proof of Proposition 4.5. Fix E with finite perimeter. For N -a.e.

L∈ lines(Bδj/4(x)),

we may assume that L∩E∩Bδj/4(x) and L∩Ec∩Bδj/4(x) consist of finitely many inter-
vals I1, ..., IN , in the natural consecutive ordering. Note that all the intervals I2, ..., IN−1,
including both endpoints, are contained in Bδj/4(x). In particular, these intervals lie in
Ck(E,L) for various k>j.

Since the non-monotonicity NMBδj/4(x)
(E,L) is defined as an infimum over intervals

(see (4.7)), it can be bounded from above by employing any specific interval I. For
definiteness, assume that I1⊂E, where we allow I1=∅. Then put

I =
{
L∩Bδj/4(x), if IN ⊂E,
Ic1∩Bδj/4(x), if IN ⊂Ec.

Rescale the ball Bδj/4(x) to unit size as in (3.9)–(3.13). Then, by employing the
above chosen interval I, we get

NMBδj/4(x)
(E,L) .

∑
k>j

∑
I∈Ck(E,L)

length(I). (6.9)

Since an interval is determined by its endpoints, (6.9) implies that

NMBδj/4(x)
(E,L) .

∑
k>j

δk−j Mass(ŵk(E,L)), (6.10)

and by integrating over the space of lines, we get

NMBδj/4(x)
(E) .Mass(ŵj)+δMass(Per(E)), (6.11)

which completes the proof of Proposition 4.5.
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7. The quantitative interior and boundary

The proof (though not the statement) of Theorem 4.3 utilizes quantitative notions of
the interior and boundary of a measurable set E. In the present section, after defining
these notions, we state two key properties for δ -convex and δ -monotone subsets of H; see
Proposition 7.3 and Lemma 7.2, respectively. We also deduce two particular consequences
of Proposition 7.3 for the structure of the quantitative boundary of δ -monotone sets.
These are used in the proof of Theorem 4.3. Assuming Lemma 7.2 and Proposition 7.3,
the proof of Theorem 4.3 is given in §9. The proofs of Lemma 7.2 and Proposition 7.3,
which are the most technical parts of our discussion, are postponed until §11 and §12,
respectively.

Definition 7.1. Let (X, dX , µ) be a metric measure space and E⊂X be a measurable
subset. For α∈(0, 1) and u>0 define

intα,u(E) :=
{
x :

µ(E∩Bu(x))
µ(Bu(x))

> 1−α
}
, (7.1)

∂α,u(E) :=
{
x :α<

µ(E∩Bu(x))
µ(Bu(x))

< 1−α
}
. (7.2)

Observe that ∂α,u(E)=∅ for α> 1
2 . We note the following properties which are

trivial consequences of the definitions.

If β6α, then

intβ,u(E)⊂ intα,u(E) and ∂α,u(E)⊂ ∂β,u(E). (7.3)

For u26u1 and x∈X set

c(u1, u2, x) =
µ(Bu1(x))
µ(Bu2(x))

.

Then

x∈ intα,u1(E) =⇒ x∈ intc(u1,u2,x)α,u2(E),

x∈ ∂c(u1,u2,x)α,u2(E) =⇒ x∈ ∂α,u1(E).
(7.4)

If x∈∂α,u(E), then

x∈ int1−α,u(E)∩int1−α,u(Ec). (7.5)

Finally,

(∂α,u(E))c = intα,u(E)∪intα,u(Ec). (7.6)
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7.1. Quantitative interior of δ -monotone subsets

If a subset E of a ball B1(p) is close to a half-space, then it follows that there exists a
sub-ball of a definite size which is almost entirely contained in either E or Ec. Conversely,
proving that δ -monotone subsets have this property constitutes an important step in the
proof that such a set is close to a half-space. (It is the remainder of the argument, based
on Proposition 7.3 below, which requires that we shrink the size of the ball on which
the conclusion is obtained.) This is the content of Lemma 7.2, which constitutes both
Step A of the proof in the precisely monotone case, treated in §8, and more generally
Step A′ of the case δ>0, treated in §9.

Lemma 7.2. There exists 0<c< 1
2 such that if E⊂Br(p) is ε2-monotone on Br(p)

then there exists q∈Br/2(p) such that q /∈∂ε,cr(E), i.e., q∈intε,cr(E)∪intε,cr(Ec).

7.2. Quantitative convexity of δ -convex sets

If E⊂Rn is convex and L is a line passing through the points p∈E and q∈int(E), then
the segment of L lying between p and q also consists of interior points of E. Below, for
subsets of H which are almost convex, we give a quantitative version of this statement.

We say that E⊂Br(p) is δ-convex on Br(p) if, for NCBr(p)(E,L) as in (4.6),

NCBr(p)(E) =
∫

lines(�Br(x))

NCBr(p)(E,L) dN (L)<δ. (7.7)

Proposition 7.3. There exist universal constants c∈(0, 1) and C∈(1,∞) with the
following properties. Fix �, η, ξ, r, %∈(0, 1) such that

%6min
{

1
2�r

2, c
}
. (7.8)

Set

δ1 =
c�3η2ξ%3

r
, (7.9)

δ2 = c�6η3ξ2%3r6. (7.10)

Let L∈lines(H) be parameterized by arc length and assume that

L(0)∈ int1−η,%(E), (7.11)

L(1)∈ intδ1,Cr(E) (7.12)

and E⊂H is δ2-convex on B2C(L(0)). Then, for all s∈[�, 1], we have

L(s)∈ intξ,csr(E). (7.13)
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Remark 7.4. The importance of the proposition is the following: even if L(0) is
only in the very weak quantitative interior of E (η small), we can ensure that L(s) is
in the very strong quantitative interior of E (i.e., ξ small), provided that L(1) is in the
sufficiently strong quantitative interior of E (δ1 sufficiently small) and E is sufficiently
convex (δ2 sufficiently small).

Remark 7.5. The application to the proof of Theorem 4.3 requires some properties of
the quantitative boundary for δ -monotone sets which are derived in the next subsection
using Proposition 7.3. The assumption L(0)∈int1−η,%E is guaranteed by assuming that
L(0)∈∂η,%E; see (7.5).

Remark 7.6. Note that the constants 0<�, η, ξ, %61 can be chosen arbitrarily small,
provided r is chosen to satisfy (7.8). The particular form of (7.8) reflects the multiplica-
tive structure of H; compare Remark 12.4. In view of (7.4), by taking ξ a definite amount
smaller if necessary, we can replace csr in (7.13) by any smaller positive radius.

7.3. Lines in quantitative boundaries of δ -monotone sets

Given that any proper monotone subset E is a half-space, and hence that ∂E is a 2-plane,
any line L∈lines(H) intersecting ∂E in more than one point is entirely contained in ∂E.
Moreover, ∂E is a union of such lines L∈lines(H). Conversely, these statements form
two key substeps in the proof that monotone subsets H are half-spaces; see Steps B.1
and B.2 in §8.

Essentially, Corollaries 7.8 and 7.10 of Proposition 7.3 constitute the corresponding
substeps in the proof that δ -monotone subsets are close to half-spaces. Specifically,
if we quantify the hypotheses of the above two statements, then the conclusions hold
in a weaker quantitative sense. Prior to tackling these corollaries, whose statements are
somewhat complicated, the reader may wish to look at the proofs of the above mentioned
substeps given in §8. Here and in §8, the skeleton of the argument is precisely the same,
but in §8 the technical complications are absent.

Below, we have sacrificed some sharpness to avoid further complication in the rele-
vant expressions.

Corollary 7.7. Let C and c be the constants from Proposition 7.3. For every
�, α1, α2∈(0, 1), u1∈

(
0, 1

2�
3
)

and u2∈(0, c�2) define

γ=Cmax
{√

2u1

�
,
u2

c�

}
, (7.14)

β=
C5α2

1α2u
3
1u

4
2�

c3γ5
, (7.15)
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δ=
C2α3

1α
2
2u

3
1u

8
2�

c7γ2
. (7.16)

Fix L∈lines(H) which is parameterized by arc length and E⊂B2C(L(0)) which is
δ-monotone on B2C(L(0)). Assume that

x1 =L(0)∈ ∂α1,u1(E) and x2 =L(�)∈ ∂α2,u2(E),

so that in particular dH(x, y)=�. Then, for all t∈[�, 1], we have

L(t)∈ ∂β,γ(E).

Proof. Assume, for the sake of contradiction, that L(t) /∈∂β,γ(E). Thus, without
loss of generality, we may assume that, say, x1∈int1−α1,u1(E) and L(t)∈intβ,γ(E). In
order to apply Proposition 7.3, rescale the metric dH 7!dH/t, so that the rescaled distance
between x1 and L(t) is equal to 1. Let L′(s)=L(ts), so that L′ is parameterized by arc
length in the rescaled metric. We will apply Proposition 7.3 with the parameters

η=α1, %=
u1

t
, r=

γ

Ct
, s=

�

t
and ξ=α2

(
Ctu2

cγ�

)4

. (7.17)

Note that with this notation the parameter β, as defined in (7.15), is at most δ1 as given
in (7.9) (where we used the assumption t>�). Hence in the rescaled metric, and using the
notation in (7.17), we have x1=L′(0)∈int1−η,%(E) and L(t)=L′(1)∈intδ1,Cr(E). More-
over, after rescaling, E is δ -monotone on B2C/t(x1), and hence E is (δ/t4)-monotone on
B2C(x1). Observe that δ/t4, with δ given in (7.16), is at most δ2 as defined in (7.10)
(using the assumption t>�). We are therefore in position to apply Proposition 7.3,
provided that we check that with our definitions �, η, ξ, r, %∈(0, 1), s∈[�, 1] and (7.8)
is satisfied. These facts are ensured by the assumptions u1<

1
2�

3, u2<C�
2, t∈[�, 1]

and (7.14). So, the conclusion of Proposition 7.3 says that in the rescaled metric we have
x2=L′(s)∈intξ,csr(E).

Rescaling back to the original metric dH, we see that x2∈intξ,csrt(E)=intξ,cγ�/Ct(E).
In other words,

L3(Ec∩Bcγ�/Ct(x2))6 ξL3(Bcγ�/Ct(x2))

= ξ
( cγ�

Ctu2

)4
L3(Bu2(x2))

=α2L3(Bu2(x2)),

(7.18)

where the last equality follows by (7.17). Note that cγ�/Ct>u2, as ensured by (7.14)
(since t61), and hence Bcγ�/Ct(x2)⊃Bu2(x2). Moreover, the assumption x2∈∂α2,u2(E)
implies that

L3(Ec∩Bcγ�/Ct(x2))>L3(Ec∩Bu2(x2))>α2L3(Bu2(x2)). (7.19)

Inequalities (7.18) and (7.19) yield the desired contradiction.
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Corollary 7.8. Let C and c be the constants from Proposition 7.3. For every
�∈

(
0, 1

2

]
, α1, α2∈(0, 1), u1∈(0,�7/8C2) and u2∈(0, c�4/2C), define

γ∗ =C3/2

(
2
�

)1/2

max
{(

2u1

�

)1/4

,

(
u2

c�

)1/2}
, (7.20)

β∗ =
128C29α4

1α
3
2u

6
1u

12
2

�5γ19
∗

, (7.21)

δ∗ =
216C41α6

1α
5
2u

9
1u

20
2

81c16�8γ26
∗

. (7.22)

Fix L∈lines(H), parameterized by arc length, and a subset E⊂B3C(L(0)), which is
δ∗-monotone on B3C(L(0)). Assume that

x1 =L(0)∈ ∂α1,u1(E) and x2 =L(�)∈ ∂α2,u2(E),

so that in particular dH(x, y)=�. Then, for all t∈[0, 1], we have

L(t)∈ ∂β∗,γ∗(E). (7.23)

Proof. The case t∈[�, 1] is a simple consequence of Corollary 7.7. Indeed, since
E is δ∗-monotone on B3C(L(0)), it is also

(
3
2

)4
δ∗-monotone on B2C(L(0)). Note that(

3
2

)4
δ∗6δ, where δ is given in (7.16) (this follows immediately from the definitions and

our assumed upper bounds on u1 and u2). We can therefore apply Corollary 7.7 to
deduce that L(t)∈∂β,γ(E), where β and γ are given in (7.15) and (7.14), respectively.
Note that γ∗>γ, and hence, by (7.4), we have

L(t)∈ ∂(γ/γ∗)4β,γ∗(E). (7.24)

Since β∗6(γ/γ∗)4β, we can use (7.3) to deduce that L(t)∈∂β∗,γ∗(E), as required.
To deal with the case t∈[0,�], note that, since as explained above E is δ -monotone

on B2C(L(0)), by Corollary 7.7 we have L(2�)∈∂β,γ(E). We wish to apply Corollary 7.7
to the points L(2�), x2=L(�) and L(t), and to the geodesic L′(s)=L(−s+2�) (so
that L′(0)=L(2�), L′(�)=L(�) and L′(2�−t)=L(t), where 2�−t∈[�, 1]), with (α1, u1)
replaced by (β, γ) and (α2, u2) unchanged. It follows from (7.14) and (7.20) that

γ∗ =C

√
2γ
�

=Cmax
{√

2γ
�
,
u2

c�

}
, (7.25)

where in the last step above we used the fact that γ>Cu2/c�, which implies that√
2γ
�

>
u2

c�
,
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by our assumption on u2. We can restate (7.25) saying that γ∗ corresponds to the
quantity γ of Corollary 7.7, where we substitute our new choice of parameters. Moreover,
by substituting these values into (7.16) and (7.15), we see that for these new parameters(

3
2

)4
δ∗ is equal to the value of δ from (7.16), and β∗ is equal to the value of β from (7.21)

(we chose the values of β∗ and δ∗ precisely for this purpose). Note that since E is δ∗-
monotone on B3C(L(0))⊃B2C(L(2�)), it is also

(
3
2

)4
δ∗-monotone on B2C(L(2�)). In

order to apply Corollary 7.7, we also need to ensure that

γ=Cmax
{√

2u1

�
,
u2

c�

}
6
�

3

2
and β=

C5α2
1α2u

3
1u

4
2�

c3γ5
6 1,

which is indeed the case, as follows from the assumed upper bounds on u1 and u2. The
conclusion of Corollary 7.7 is precisely (7.23).

Corollary 7.9. Let C and c be the constants from Proposition 7.3. Fix α, u∈
(0, 1), t∈

(
0, 1

3

]
and d>0 such that

2C
c
u6 d6min

{
2C,

C2

2

}
t, (7.26)

αu4 6min
{
c3

2C7
d3t,

8c4

C5
dt3

}
. (7.27)

Set

φ=
C20

29c12
α4u16

d8t8
, (7.28)

ζ =
C17

212c16
α5u20

t11d5
. (7.29)

Assume that x∈H and E⊂B2C(x) are such that x∈∂α,u(E). Assume also that E
is ζ-monotone on B2C(x). Then there exists L∈lines(H), with L(0)=x, such that either
L(t) or L(−t) is in ∂φ,d(E).

Proof. Take any L∈lines(H) with L(0)=x. Note that (7.26)–(7.28) imply that φ6 1
2 .

Hence, we are done if either L(−t) or L(t) is in intφ,d(E) and the other is in intφ,d(Ec).
Indeed in this case, since the collection of all oriented lines through x is connected (it can
be identified with the unit circle), the required result follows from the intermediate-value
theorem.

Assume for the sake of contradiction that the assertion of Corollary 7.9 is false.
Then, by the above discussion, {L(−t), L(t)}⊂intφ,d(E) or {L(−t), L(t)}⊂intφ,d(Ec).
So, assume without loss of generality that {L(−t), L(t)}⊂intφ,d(E). In order to apply
Proposition 7.3 we rescale the metric dH 7!dH/2t. Set y1=L(−t) and y2=L(t), so that in
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the rescaled metric the distance between y1 and y2 is 1, and their distance from x is 1
2 .

The geodesic L′(s)=L(2ts−t) is parameterized by arc length in the rescaled metric with
L′(0)=y1, L′( 1

2 )=x and L′(1)=y2. We will apply Proposition 7.3 to the geodesic L′ with
the parameters

�= η= s=
1
2
, ξ=α

(
2Cu
cd

)4

, r=
d

2Ct
and %=

C5

8c3
αu4

dt3
. (7.30)

Note that (7.26) and (7.27) ensure that %6min
{

1
2�r

2, c
}

and r, ξ61. In the rescaled
metric y1, y2∈intφ,d/2t(E)=intφ,Cr(E). Since %6d/2t, we may conclude from (7.4) that

y2 ∈ int(d/2t%)4φ,%(E) = intη,%(E),

where the equality follows by (7.28) and (7.30).
In the rescaled metric E is ζ -monotone on BC/t(x). Since t6 1

3 , we have B2C(y1)⊂
BC/t(x), and therefore E is ζ/(2t)4-monotone on B2C(y1). Observe that with the pa-
rameters set as in (7.30), we have δ1=φ and δ2=ζ/(2t)4, where δ1 and δ2 are as in (7.9)
and (7.10). Therefore, we can apply Proposition 7.3, which implies that (in the rescaled
metric)

x∈ intξ,csr(E) = intα(2Cu/cd)4,cd/4Ct(E), (7.31)

where the equality follows by (7.30).
But, in the rescaled metric we know that x∈∂α,u/2t(E). It follows from (7.26) that

u/2t6cd/4Ct. Hence, by (7.4) and (7.6), we deduce from (7.31) that

x∈ intα,u/2t(E)⊂ ∂α,u/2t(E)c,

which yields the desired contradiction.

Corollary 7.10. There exist universal constants c̄, 
C>0 with the following prop-
erties. Fix α∈(0, 1) and u∈(0, c̄). Let x∈H and E⊂B	C(x) be δ-monotone on B	C(x),
where

δ= c̄α29u71. (7.32)

Assume also that x∈∂α,u(E). Then there exists L∈lines(H), parameterized by arc
length, such that x=L(0) and for all s∈

[
− 1

3 ,
1
3

]
we have

L(s)∈ ∂c̄α19u46,	Cu1/4(E). (7.33)

Proof. Below we will have 
C>4C, where C is the constant from Proposition 7.3. We
will first apply Corollary 7.9 with t= 1

3 and d�u, while noting that if d is a large enough
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multiple of u and c̄ is small enough (i.e., u is small enough), then the conditions (7.26)
and (7.27) are satisfied. For φ as in (7.28) we have φ�α4u8, and for ζ as in (7.29) we
have ζ�α5u15. Note that, since E is δ -monotone on B	C(x), it is also ζ -monotone on
B2C(x), provided c̄ is small enough. Hence, it follows from Corollary 7.9 that there exists
L∈lines(H) with L(0)=x and L

(
− 1

3

)
∈∂φ,d(E).

Next, we will apply Corollary 7.8 with x1=L
(
− 1

3

)
, x2=x, �= 1

3 , α1=φ, u1=d, α2=α
and u2=u. Provided c̄ is small enough, u1 and u2 satisfy the conditions of Corollary 7.8.
For γ∗ as in (7.20) we have γ∗�u1/4, for β∗ as in (7.21) we have β∗�α19u181/4, and for
δ∗ as in (7.22) we have δ∗�α29u141/2. Moreover, since E is δ -monotone on B	C(x), it
is also δ∗-monotone on B3C(x1), provided c̄ is small enough. Corollary 7.8 now implies
that L(s)∈∂β∗,γ∗(E) for all s∈

[
− 1

3 ,
1
3

]
, as required.

8. Classification of monotone sets

It was shown in [21] that a proper non-empty monotone set E⊂H is, up to a set of measure
zero, a half-space P. In this section we recall the proof of this result, which is an essential
preliminary for the proof of Theorem 4.3, the stability version for δ -monotone sets, given
in §9. To give the key ideas, it suffices to consider the case of precisely monotone sets.
We call a set E precisely monotone if E∩L and Ec∩L are connected for all L (rather
than connected modulo subsets of measure zero).

There are two main steps:
Step A. For every r>0 and p∈H, either E∩Br(p) or E′∩Br(p) has non-empty in-

terior.
Step B. Either ∂E is contained in a 2-plane, in which case (by a trivial connectedness

argument) the theorem holds, or ∂E has non-empty interior.

Step A follows from the special case of Lemma 7.2 in which ε=0; the general case
of Lemma 7.2 is Step A′, the quantitative version of Step A, which is used in the proof
of Theorem 4.3. Below, we prove Step B.

8.1. Proof of Step B

It will suffice to assume that ∂E is non-empty.

The proof of Step B has the following substeps:
Step B1. If L∈lines(H) and L∩∂E contains at least two points, then L⊂∂E.
Step B2. ∂E is a union of lines.
Step B3. Steps B1 and B2 imply Step B.
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Steps B1 and B2 are special cases of Corollaries 7.8 and 7.10, respectively. But,
for clarity, we will repeat the proofs in the present simpler (non-quantitative) situation.
The proof of Step B3 requires some additional properties of pairs of lines, which are
established in the next subsection.

8.2. Properties of pairs of lines

Two lines L1, L2∈lines(H) are called parallel if L2=g ·L1, or equivalently L1=g−1 ·L2, for
some g∈H. This holds if and only if the projections π(L1) and π(L2) are either parallel
or coincide. Unless π(L1)=π(L2), the lines L1 and L2 are not parallel as lines in R3.

If L1 and L2 are not parallel, then their projections intersect in a unique point. If,
in addition, L1∩L2=∅, then the pair (L1, L2) is called skew. We put

F (L1, L2) =π−1(π(L1)∩π(L2)). (8.1)

Define the vertical distance between L1 and L2 by

dV (L1, L2) = dH(L1∩F (L1, L2), L2∩F (L1, L2)). (8.2)

The following lemmas describe the family of lines L which intersect both L1 and L2,
where L1 and L2 are either parallel lines with distinct projections, or skew. At this point,
the roles of L1 and L2 are symmetric and assertions about L1 should be understood as
applying to L2 as well.

Lemma 8.1. If L1, L2∈lines(H) are parallel and π(L1) 6=π(L2), then the following
properties hold :

(1) For x∈L1 there is a unique x∗∈L2 such that x and x∗ lie on a line L(x)∈
lines(H). Moreover, there is a unique shortest line segment b(L1, L2) from L1 to L2

which is orthogonal to both L1 and L2.
(2) There exists a unique point m=m(L1, L2)∈R2 lying halfway between π(L1) and

π(L2) such that, for all x∈L1, the line L(x) intersects the fiber π−1(m). Moreover, every
point on π−1(m) intersects some line L(x).

(3) The union of the lines {L(x)}x∈L1 is a smooth ruled surface X=X(L1, L2) de-
fined over R2\T , where T=T (L1, L2) denotes the line parallel to π(L1) and π(L2) which
passes through m(L1, L2). At no point x∈X is X tangent to the horizontal subspace Hx.

Proof. Let Oθ be as in §2.3. By applying Oθ for suitable θ, and then applying a
suitable left translation, we may assume that L1=(0, 0, 0)·(t, 0, 0). Next, after a suitable
translation (a′′, 0, 0) (which leaves L1 invariant), we may assume that L2 intersects the
plane (u, v, 0) along the v -axis, and hence can be written as (0, b′′, 0)·(s, 0, 0) (we are using
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here the fact that π(L1) 6=π(L2)). Finally, after a translation of the form
(
0,− 1

2b
′′, 0

)
,

we may assume that
L1 =(t, e,−et) and L2 =(s,−e, es) (8.3)

for some e∈R.
For this pair, if x=(t, e,−et), then

x∗ =(−t,−e,−et). (8.4)

To see this, observe that the line L(x) in R3 which joins these points, is parallel to the
plane (u, v, 0) and passes through the point (0, 0,−et). So L(x)∈lines(H); see (2.13).
The fiber π−1((0, 0)) is the unique fiber through which all of these lines pass as t varies
in (−∞,∞), and every point on π−1((0, 0)) arises in this way. Thus, for this pair,

m(L1, L2) = (0, 0). (8.5)

The unique shortest line segment joining L1 and L2 has length 2e and is contained in
the line

b(L1, L2) := (0, s, 0). (8.6)

The surface X is given by (
u, v,−e

2u

v

)
. (8.7)

From these facts, all the remaining statements are straightforward to verify.

Lemma 8.2. If L1, L2∈lines(H) are skew, then there is a hyperbola

Y =Y (L1, L2)⊂R2

with asymptotes π(L1) and π(L2), such that every tangent line of Y has a unique lift
L∈lines(H) which intersects both L1 and L2. Conversely, if L∈lines(H) and L∩Li 6=∅,
i=1, 2, then π(L) is tangent to Y . Except for the unique point L1∩F (L1, L2) (resp.
L2∩F (L1, L2)), every point x of L1 lies on a unique line L(x) intersecting L2 (resp.
every point x of L2 lies on a unique line L(x) intersecting L1).

Proof. By applying a suitable left translation and then an isometry Oθ, and af-
ter possibly interchanging the subscripts of L1 and L2, we may assume the canonical
normalization

L1 =(t, wt, c), L2 =(s,−ws,−c), w, c> 0 and π(L1)∩π(L2) = (0, 0). (8.8)

From the geometric interpretation of the correction term given after (2.11), it follows that
the points p=(t, wt, c)∈L1 and q=(s,−ws,−c)∈L2 lie on some L∈lines(H), precisely
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when there is parallelogram in R2 spanned by (s,−ws) and (t, wt), with oriented area
2c. Define θ(L1, L2)∈(0, π) by

tan 1
2θ(L1, L2) =w, (8.9)

or, equivalently,
ts tan 1

2θ(L1, L2) =wts= c. (8.10)

Then
(1+w2)ts sin θ(L1, L2) = 2c.

The envelope of the resulting family of lines is the hyperbola Y with equation

w2u2−v2 = cw.

Corollary 8.3. Let L1 and L2 be skew lines as in the proof of Lemma 8.2. Put
x=(t, wt, c) and x̂=(−t,−wt, c) (note that x, x̂∈L1). Then, as elements of lines(H), the
lines L(x) and L(x̂) are parallel, and

m(L(x), L(x̂))= (0, 0).

There are precisely two shortest horizontal segments joining L1 and L2. In the
notation of the proof of Lemma 8.2, these are the segments which project to the segments
that touch π(L1) and π(L2), and are tangent to the hyperbola Y at its focal points
±

√
c/w. Thus, these segments are contained in the lines

b+(L1, L2) :=
(√

c

w
, s, s

√
c

w

)
and b−(L1, L2) :=

(
−

√
c

w
, s,−s

√
c

w

)
. (8.11)

Remark 8.4. A pair of parallel lines L1, L2 with distinct projections, can be viewed
as a limiting case of a pair of skew lines L1,t, L2,t in which

lim
t!∞

θ(L1,t, L2,t) = 0

(where θ(L1,t, L2,t) is the angle between π(L1,t) and π(L2,t)) and, as t!∞, one of
b±(L1,t, L2,t) moves off to infinity, while the other converges to b(L1, L2); cf. (8.6).

Proof of Step B1. Let p∈∂E. Then the exists pi∈E, with pi!p. Let q∈int(E),
and assume that there is a line L∈lines(H) with L(0)=p and L(`)=q. If Li denotes the
line parallel to L passing through pi, then Li(`)!L(`), and hence Li(`)∈int(E) for i
sufficiently large. Since E is convex, by (the non-quantitative version of) Corollary 7.8,
we get Li(s)∈int(E) for 0<s6` and i sufficiently large, and, by passing to the limit,
L(s)∈int(E) for 0<s6`. Since Ec is also convex, the corresponding statement holds for
Ec as well. This completes the proof of Step B1.
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Proof of Step B2. Let p∈∂E and L∈lines(H) with p=L(0) and q=L(`) 6=p. We
need to show that q∈∂E. By Step B1, we may assume that L(`)∈int(E), say. Similarly,
L(−`)∈int(E) or L(−`)∈int(Ec). By the same argument as in the proof of Step B1, if
L(`)∈int(E) and L(−`)∈int(E), then p=L(0)∈int(E). Therefore, we may assume that
L(−`)∈int(Ec). Since the collection of unit tangent vectors to the horizontal geodesics
at p is a circle, and in particular connected, it follows by continuity that there exists a
horizontal geodesic L with L(0)=p and L(`)∈∂E. The conclusion of Step B2 now follows
from Step B1.

Proof of Step B3. By Step B2, ∂E is a union of lines. If ∂E contains only parallel
lines with the same projection, then it is contained in a vertical plane. Likewise, if
∂E contains only lines passing through some fixed point, then it is contained in the
horizontal 2-plane through that point. Thus, we may assume that ∂E contains either
a pair of parallel lines with distinct projections, or a pair of skew lines. By Lemma
8.1, if ∂E contains a pair of parallel lines L1, L2 with distinct projections, then distinct
members of the family of lines {L(x)}x∈L1 are skew lines which intersect π−1(m(L1, L2)).
So we may assume that ∂E contains a pair of skew lines L1, L2.

Claim. If L1 and L2 are skew lines, with L1∪L2⊂∂E, then

π−1(π(L1)∩π(L2))⊂ ∂E.

To see this, note that, by Corollary 8.3, for every line L3 intersecting L1 and L2,
there is a parallel line L4 intersecting L1 and L2, such that m(L3, L4)=π(L1)∩π(L2).
Since, by Step B1, L3∪L4⊂∂E, it follows from Lemma 8.1 that π−1(m(L3, L4))∈∂E.

Let Y =Y (L1, L2) be the hyperbola as in Lemma 8.2 and let U be the component of
R2\Y whose closure intersects both branches of Y . Every point of V =U \(π(L1)∪π(L2))
is the intersection of a pair of distinct tangent lines of Y . Each such pair of lines lifts to a
pair of skew lines L5, L6 in ∂E. By the claim, π−1(π(L5)∩π(L6))∈∂E, so π−1(V )⊂∂E.
Thus ∂E has non-empty interior, as required.

9. Proof of the stability of monotone sets

The proof of Theorem 4.3, that is, the stability of monotone sets, has two main steps,
Steps A′ and B′, which are quantitative versions of Steps A and B in the classification of
monotone subsets of H given in §8. In fact, Step A′ is just Lemma 7.2, which is proved
in §11. In this section, assuming some technical geometric preliminaries which are proved
in §10, we carry out Step B′, thereby completing the proof of Theorem 4.3.
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The proof of Step B′ has three substeps, Steps B1′–B3′, which correspond to Steps
B1–B3. Steps B1′ and B2′ are just Corollaries 7.8 and 7.10, specialized to our specific
context. Step B3′ requires a substantial preliminary discussion; see §10 and, in particular,
Lemma 10.1 and Corollaries 10.2 and 10.4. The point of the discussion in §10 is to
quantify the following statement which occurs at the end of the first paragraph of the
proof of Step B3: “Thus, we may assume that ∂E contains either a pair of parallel
lines with distinct projections, or a pair of skew lines”. Once this statement has been
quantified, the proof of Step B3′ is completed by repeating, mutadis mutandis, the proof
of Step B3.

The preliminaries to Step B3′, i.e., §10, constitute the part of the argument which
necessitates assuming that E is εa-monotone on Bε−3(x), rather than on B1(x). The
following example shows that such an assumption cannot be entirely avoided, even if
εa-monotonicity is strengthened to monotonicity.

Example 9.1. Consider the set

E= {(x, y, z) : z6xy and y > 0}. (9.1)

We claim that if Br(p)⊂{(x, y, z):y>0}, then E∩Br(p) is monotone. This is equivalent
to the statement that if a line L∈lines(H) passes through two points in

∂E= {(x, y, z) : z=xy and y > 0},

then L is contained in ∂E. Note that the horizontal line L=(a, t, at) passes through
(a, b, ab). If b>0, then L is contained in ∂E. Conversely, if (a, b, ab), (a′, b′, a′b′)∈∂E,
then b, b′>0. If these points lie on a horizontal line, since H(a,b,ab)=(x, y, ab−bx+ay),
we get

a′b′ = ab−ba′+ab′; (9.2)

see (2.13). The solutions of (9.2) are either a′=a and b′ arbitrary, which gives the above
line L, or a′ arbitrary and b′=−b, which contradicts the assumption b′>0.

Proof of Theorem 4.3. Recall that in Theorem 4.3, we are given E⊂B1(x) which is
εa-monotone on B1(x). Our goal is to find a half-space P⊆H such that

L3((E∩Bε3(x))4P)
L3(Bε3(x))

. ε.

For convenience of notation in the ensuing argument, we will rescale the ball B1(x) above
by ε−3. Thus our assumption is that E⊂Bε−3(x) is εa-monotone on Bε−3(x) and, for
the sake of contradiction, that for no half-space P we have

L3((E∩B1(x))4P) . ε.
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This contrapositive assumption will be used via the following simple lemma. In what
follows, for A⊂H and ε>0, the closed ε-tubular neighborhood of A is denoted by

Tε(A) = {x∈H : dH(x,A) 6 ε}. (9.3)

Lemma 9.2. Let Q⊂H be a 2-plane. Assume that, for some ε, r∈
(
0, 1

2

)
, a subset

E⊂H satisfies
∂ε,r(E)∩B1(x)⊂Tε(Q).

Then there exists a half-space P⊂H such that

L3((E∩B1(x))4P) . ε.

Proof. The set B1(x)\Tε(Q) has at most two connected components, say C1 and C2

(one of which might be empty). Since ε< 1
2 , by continuity, for j∈{1, 2} we have either

Cj⊂intε,r(E) or Cj⊂intε,r(Ec). For definiteness assume that C1⊂intε,r(E). Let N⊂C1

be an r-net in C1. Thus the balls {Br/2(y)}y∈N are disjoint, and the balls {Br(y)}y∈N

cover C1. Moreover, since for each y∈N we have y∈intε,r(E), we know that

L3(Br(y)∩Ec) 6 εL3(Br(y)).

Hence

L3(C1∩Ec) 6
∑
y∈N

L3(Br(y)∩Ec) 6
∑
y∈N

εL3(Br(y))= 16ε
∑
y∈N

L3(Br/2(y))

= 16εL3

( ⋃
y∈N

Br/2(y)
)

6 16εL3(B1+r/2(x)). ε.

This argument shows that for j∈{1, 2} either L3(Cj∩Ec).ε or L3(Cj∩E).ε. Thus we
can take P to be either one of the half-spaces bounded by Q, or a half space that contains
B1(x).

By virtue of Lemma 9.2, we may assume from now on that for every 2-plane P⊂H
we have

∂c1ε,εk1 (E)∩B1(x) 6⊂Tc1ε(P ), (9.4)

where k1>1 and c1>0 are constants which will be determined presently.
By rescaling the metric dH by a suitable multiple of ε−3, we may apply Corollary 7.10

with α�ε and u�εk1+3, and (after rescaling back to our present setting) deduce that,
provided

a> 29+71(k1+3) =242+71k1,

k2<
1
4 (k1+3),

h2> 19+46(k1+3) =157+46k1,

(9.5)
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and ε is smaller than a small enough universal constant, we may associate with every
point y∈∂ε,εk1 (E)∩B1(x) an open set Oy of lines through the origin of Hy, such that for
all L∈Oy we have

L([−c2ε−3, c2ε
−3])⊂ ∂εh2 ,εk2 (E) (9.6)

for some small enough constant c2>0. We have used here the fact that the definition of
the quantitative boundary in (7.2) is an open condition.

As we shall see in §10 (see Lemma 10.1 and Corollaries 10.2, 10.3 and 10.4), the
above discussion implies the following: if c1 in assumption (9.4) is a small enough uni-
versal constant, then there exists a pair of skew lines L,L′∈lines(H), with the following
properties:

• the distances of L and L′ from x are at most 1
10c2ε

−3;
• both L and L′ intersect ∂εh2 ,εk2 (E)∩Bc2ε−3/10(x);
• the angle θ(L,L′) between L and L′ (for the definition, see (8.9)) is bounded away

from 0 and π, say, tan θ(L,L′)∈
[
2
5 ,

5
2

]
;

• L and L′ have separation &ε3, i.e. dV (L,L′)&ε3, where the vertical distance
dV ( · , ·) is as in (8.2).

We now use the lines L and L′ to perform Step B3′, that is, to produce a quantitative
version of the argument in Step B3.

First of all, we will apply again Corollary 7.10 (rescaled, as before, by �ε−3) to
deduce, from the fact that L and L′ intersect ∂εh2 ,εk2 (E)∩Bc2ε−3/10(x), that

(L∪L′)∩Bc3ε−3(x)⊂ ∂εh3 ,εk3 (E), (9.7)

where c3>0 is a universal constant, provided that

a> 29h2+71(k2+3) =29h2+71k2+213,

k3<
1
4 (k2+3),

h3> 19h2+46(k2+3) =19h2+46k2+138.

(9.8)

Now, as in the non-quantitative proof, let Y =Y (L,L′)⊂R2 be the hyperbola from
Lemma 8.2, and let U be the component of R2\Y whose closure intersects both branches
of Y . Let c4 be a small enough constant, and take a point q∈U such that Bc4ε3(q)∩R2⊂U
and dH(q, π(L)∩π(L′))610ε3. As in the proof of Step B3, using Lemma 8.2, any point
z∈Bc4ε3(q)∩R2 is of the form z=π(L∗)∩π(L∗∗), where, provided c4 is small enough,
L∗ and L∗∗ are skew lines which intersect L∩Bc3ε−3(x) and L′∩Bc3ε−3(x), both of which
are contained in ∂εh3 ,εk3 (E). Another application of Corollary 7.10 implies that

(L∗∪L∗∗)∩Bc5ε−3(x)⊂ ∂εh4 ,εk4 (E), (9.9)



compression bounds 339

provided that

a> 29h3+71(k3+3) =29h3+71k3+213,

k4<
1
4 (k3+3),

h4> 19h3+46(k3+3) =19h3+46k3+138.

(9.10)

We continue to argue as in Step B3. We use Corollary 8.3 to deduce that z=
m(L∗, L∗∗), where (once more, provided c4 is small enough), L∗ and L∗∗ are parallel
lines which intersect the line segments L∗∩Bc5ε−3(x) and L∗∗∩Bc5ε−3(x), both of which
are contained in ∂εh4 ,εk4 (E). So, another application of Corollary 7.10 gives

(L∗∪L∗∗)∩Bc6ε−3(x)⊂ ∂εh5 ,εk5 (E), (9.11)

provided that

a> 29h4+71(k4+3) =29h4+71k4+213,

k5<
1
4 (k4+3),

h5> 19h4+46(k4+3) =19h4+46k4+138.

(9.12)

By Lemma 8.1, any point on the fiber π−1(z) lies on a line which touches both of
L∗ and L∗∗. Moreover (using the explicit formula for this line, which is contained in the
proof of Lemma 8.1), since the vertical separation between L and L′ is &ε3, and z is an
arbitrary point in Bc4ε3(q)∩R2, a (final) application of Corollary 7.10, together with the
box-ball principle, shows that there exists p∈H such that

Br(p)⊂ ∂εh6 ,εk6 (E)∩Bε−3(x), (9.13)

where r�ε3, provided that

a> 29h5+71(k5+3) =29h5+71k5+213,

k6<
1
4 (k5+3),

h6> 19h5+46(k5+3) =19h5+46k5+138.

(9.14)

Now, by choosing k1 sufficiently large, we will use (9.13) to contradict Lemma 7.2,
provided k1 is large enough. Modulo the proofs of technical lemmas which were postponed
to the following sections, this will conclude the proof of Theorem 4.3, Before doing so,
note that for the conditions (9.5), (9.8), (9.10), (9.12) and (9.14) to be satisfied, we can
ensure that (9.13) is satisfied for, say, a=240k1, k6=2−10k1 and h6=230k1. (In actuality,
these are big overestimates.)
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It remains to show how to choose k1 so that (9.13) will contradict Lemma 7.2. Since
E is εa-monotone on Bε−3(x), it is also �εa−24-monotone on Br(p) (recall that r�ε3).
By Lemma 7.2, we can find p′∈Br/2(p) such that p′ /∈∂α,r′(E), where α�ε(a−24)/2 and
r′�r�ε3. Without loss of generality, we may assume that p′∈intα,r′(E), so that

L3(Ec∩Br′(p′))6αL3(Br′(p′))� εa/2−12ε12 = εa/2. (9.15)

But, at the same time, p′∈∂εh6 ,εk6 (E), which means that

L3(Ec∩Bεk6 (p′))>εh6L3(Bεk6 (p′))� εh6+4k6 . (9.16)

In order for (9.16) to contradict (9.15), assume that εk6>r′, which would hold for
small enough ε if k6=k1/210>3. In this case, Bεk6 (p′)⊂Br′(p′), and the desired con-
tradiction would follow (for small enough ε) if 1

2a>h6+4k6. Choosing k1=212, and
thus a=252 and h6=242, yields the required contradiction, and completes the proof of
Theorem 4.3.

10. Non-degeneracy of the initial configuration.

In this section, we prove the assertion on non-degeneracy of the initial configuration,
which was used in the proof of Step B3′ given in §9; see the four items marked with bullets
in the paragraph following (9.6). Specifically under the assumptions of Lemma 10.1
below, we show that at distance .ε−3 from x, we can find a pair of skew lines in the
controlled quantitative boundary which make standard angle as in (10.48), and have
separation &ε3; see (10.4) and (10.49).

Given a pair of (unordered) skew lines L, L̃, define 0<θ(L, L̃)<π to be the angle
between π(L) and π(L̃) which faces the sector which contains the hyperbola Y (L, L̃)
from Lemma 8.2. The vertical distance dV (L, L̃) is defined as in (8.2). As in (8.11),
denote by b(L, L̃) the union of the (two) shortest horizontal segments joining L and L̃,
and denote the length of each of these segments by d(L, L̃). Then, with the geometric
interpretation of the multiplication in H, we get

1
2

(
cot 1

2θ(L, L̃)
)
d(L, L̃)2 = dV (L, L̃)2. (10.1)

Since tan 1
2θ>

1
2 sin θ for all θ∈[0, π], it follows from (10.1) that

d(L, L̃)2 & (sin θ(L, L̃))dV (L, L̃)2. (10.2)

In what follows, for A⊂H and ε>0, the closed ε-tubular neighborhood of A is

Tε(A) = {x∈H : dH(x,A) 6 ε}.
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The required non-degeneracy of the initial configuration, namely the existence of the
“quantitatively skew” lines L and L′ which are described in the paragraph preceding (9.7),
is a consequence of the following lemma. The hypothesis (10.3) below corresponds to
the assumption concerning 2-planes which we arrived at in (9.4), and the discussion
preceding (9.6).

Lemma 10.1. Fix x∈H, U⊂B1(x) and ε∈(0, 1). For all y∈U fix an open set Oy
of lines through the origin of Hy. Assume that for all 2-planes P we have

U 6⊂Tε(P ). (10.3)

Then there exist y, z∈U , Ly∈Oy and Lz∈Oz such that Ly and Lz are skew and

d(Ly, Lz)2 & (sin θ(Ly, Lz))dV (Ly, Lz)2 & ε6. (10.4)

Proof. Denote the Euclidean distance in R2 by d( · , ·). Fix y1∈U and let V denote
the unique vertical 2-plane containing Ly1 . It follows from (10.3), with P=V , that there
exists y2∈U such that

d(π(Ly1), π(y2))> ε. (10.5)

Let H=Hq denote the unique horizontal 2-plane containing the line Ly1 and the
point y2 /∈Ly1 . Note that q∈Ly1 . By (10.3), there exists y3 such that

dH(y3,Hq) > ε. (10.6)

For arbitrary q, y3∈H, we have

dH(q,Hy3) = dH(y3,Hq). (10.7)

In fact, by the left-invariance of dH, the left-hand side of (10.7) equals dH(y−1
3 ·q,H(0,0,0)),

whereas its right-hand side equals dH(q−1 ·y3,H(0,0,0)). If z∈H(0,0,0) is closest to y−1
3 ·q,

then z−1∈H(0,0,0) and, by (2.15), dH(y−1
3 ·q, z)=dH(q−1 ·y3, z−1). By symmetry, this gives

(10.6).
Since dH(q, Ly3)>d

H(q,Hy3), from (10.6) and (10.7) we get

dH(q, Ly3) > ε. (10.8)

Since Oy1 , Oy2 and Oy3 are open, we may assume that no two of Ly1 , Ly2 and Ly3
are parallel. By applying a translation, we may also assume that q=(0, 0, 0). Thus, after
applying a suitable rotation, we may assume that Ly1 is the x-axis and that y1=(a, 0, 0)



342 j. cheeger, b. kleiner and a. naor

and y2=(b, c, 0) for some a, b, c∈R. Set Ly1∩π(Ly2)=n3=(s, 0, 0) and let α∈(0, π) denote
the angle between Ly1 and π(Ly2).

It follows from (10.5) that |c|>ε. As |a−b|+|c|+
√
|ac|�dH(y1, y2)62, we have that

|a|. 1
ε

and |a−b|. 1. (10.9)

Note that
sinα=

c

d(π(y2), n3)
� c

c+|b−s|
>

ε

ε+|b|+|s|
(10.10)

and, by the geometric interpretation of the multiplication,

dV (Ly1 , Ly2)
2 = |c| |s|> ε|s|. (10.11)

Thus, by multiplying together (10.10) and (10.11), we may assume that ε+|b|>|s|, since
otherwise (10.4) holds with ε6 replaced by ε2. Using (10.9), we deduce that |b|, |s|.1/ε,
and therefore it follows from (10.10) that

sinα& ε2. (10.12)

By (10.11) and (10.12), we may assume that

d(n3, q) = |s|. ε3, (10.13)

since otherwise (10.4) holds.
Let S be the triangle with vertices π(Ly2)∩π(Ly3)=n1, Ly1∩π(Ly3)=n2 and n3. Let

αj denote the angle at the vertex nj (thus α3 is either α or π−α). Put `j=d(nj+1, nj+2).
(Here and in the rest of the proof of Lemma 10.1, indices are taken mod 3.) It follows
from (10.12) that there exists j∈{1, 2} such that

sinαj > 1
2cε

2. (10.14)

Write {k}={1, 2}\{j}. From (10.12) and (10.14), we may assume that

dV (Ly1 , Ly2)
2 . ε4, (10.15)

dV (Lyk
, Ly3)

2 . ε4, (10.16)

since otherwise (10.4) holds.
From the geometric interpretation of the multiplication, it follows that there exists

r∈{1, 2, 3} such that

dV (Lr+1, Lr+2)2 & area(S) = 1
2`1`2 sinα3. (10.17)
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By multiplying both sides of (10.17) by sinαr and using the law of sines to express sinαr
in terms of sinα3, we obtain, with (10.12) and the triangle inequality,

dV (Lr+1, Lr+2)2 sinαr & (sin2 α3) min{`21, `22}& ε4 min{`21, `22}. (10.18)

Arguing similarly with (10.14), we have

dV (Lr+1, Lr+2)2 sinαr & ε4 min{`2k, `23}. (10.19)

We may therefore assume that min{`21, `22}6 1
16ε

2 and min{`2k, `23}6 1
16ε

2, since otherwise
(10.4) holds. By the triangle inequality, `k6`j+`3, and therefore

`k 6 1
2ε. (10.20)

By adding (10.13), (10.15), (10.16) and (10.20), we get dH(Ly3 , q)6
1
2ε+O(ε2), which

contradicts (10.8) for ε small enough. This contradiction completes the proof.

In deriving the consequences of Lemma 10.1, we will work in coordinates. Thus, we
write L1 and L2 for Ly and Lz, respectively. As in (8.8), we may canonically assume
that

L1 =(t, wt, c) and L2 =(s,−ws,−c).

As in (8.9), the angle 0<θ(L1, L2)<π is determined by tan 1
2θ(L1, L2)=w. Let b+(L, L̃)

and b−(L, L̃) contain the shortest line joining L1 and L2; see (8.11). Thus,

b±(L1, L2) =
(
±

√
c

w
, u,±

√
c

w
u

)
,

and so

dH(b+(L1, L2), b−(L1, L2))= 2
√
c

w
. (10.21)

Put
ei,±(L1, L2) =Li∩b±(L1, L2), (10.22)

or, equivalently,

e1,+(L1, L2) =
(√

c

w
,
√
cw, c

)
,

e2,+(L1, L2) =
(√

c

w
,−
√
cw,−c

)
.

(10.23)

Then, with the geometric interpretation of the multiplication in H, dV (L1, L2)2 is twice
the area of the triangle with vertices π(L1)∩π(L2), π(e1,+(L1, L2)) and π(e2,+(L1, L2)).
It follows that dV (L1, L2)2=2c. Note that

d(L1, L2) = dH(e1,±(L1, L2), e2,±(L1, L2)).
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Therefore,
d(L1, L2) = 2

√
cw. (10.24)

Equation (10.1) now becomes

d(L1, L2)2 =2wdV (L1, L2)2. (10.25)

Corollary 10.2 below will be derived directly from Lemma 10.1 without further ref-
erence to the assumption on 2-planes. The proof will rely on the following additional
information. Write o1=y and o2=z. Since o1, o2∈B1(x), we have dH(o1, o2)<2, which
implies that dV (o1, o2)<2 and d(π(o1), π(o2))<2.

We put
o1 =(t1, wt1, c) and o2 =(s2,−ws2,−c),

where, without loss of generality, we may assume that either (i) t1>0 and s260, or
(ii) t1>0 and s2>0.

Below, to avoid confusion, we will write Ω for the constant c, in (10.4). We also
assume that ε61.

Corollary 10.2. We have the bound

c
w

1+w2
& ε6. (10.26)

Moreover,
(i) If t1>0 and s260, then

ε6 .w. ε−6, (10.27)

ε3
√

1+w2 . d(L1, L2) .
√
w, (10.28)

dH(o1, e1,+(L1, L2)).
√
w+

1√
w
, (10.29)

ε6 . c. 1, (10.30)

|t1|+|s2|. 1, (10.31)

|t1+s2|.
1
w
, (10.32)

w|t1| |s2|. 1. (10.33)

(ii) If t1>0 and s2>0, then

w. ε−6, (10.34)

ε3
√

1+w2 . d(L1, L2) .
√

1+w, (10.35)
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dH(o1, e1,+(L1, L2)). ε−3, (10.36)

ε6 . c. 1+
1
w
, (10.37)

|t1−s2|. 1, (10.38)

t1+s2 .
1
w
, (10.39)

|c−wt1s2|. 1. (10.40)

Proof. As sin θ(L1, L2)=2w/(1+w2) and dV (L1, L2)2=2c, (10.26) is just a rewriting
of (10.4). The lower bounds in (10.28) and (10.35) follow from (10.26) and (10.24).

Next note that, since dH(o1, o2)62, from the box-ball principle we have

|t1−s2|+w|t1+s2|+
√
|2c−2wt1s2|. 1. (10.41)

Case (i). Since the inequalities t1>0 and s260 imply that in the third term of the
left-hand side of (10.41) we have −wt1s2>0, we get c.1, which gives the upper bound in
(10.30) and, since d(L1, L2)=2

√
cw, the upper bound in (10.27) as well. Using c.1 and

multiplying both sides of (10.26) by (1+w2)/w gives (10.27). Relations (10.31)–(10.33)
follow immediately from (10.41), t1>0 and s260.

To prove (10.29), by considering the cases w61 and w>1, and using the box-ball
principle (10.41), it suffices to show that

t1+
√
c

w
.

1√
w
.

Since c.1, we get
√
c/w.1/

√
w. From (10.31), we get t1.1, which gives the case w61.

For w>1, relations (10.32) and (10.33) imply that t1.1/
√
w, which completes the proof.

Case (ii). Relation (10.37) was already shown in the proof of case (i). By using
t1>0 and s2>0, relations (10.38)–(10.40) follow directly from (10.41). From (10.39),

c. 1+wt1s2 . 1+w(t1+s2)2,

which, by (10.39), gives the upper bound for c in (10.37). From this, the upper bound
in (10.35) follows immediately, as does the implication c65 if w>1. This, together with
(10.26), gives the upper bound for w in (10.34).

To prove (10.36), note that, from (10.40), by dividing through by w and factoring,
we get ∣∣∣∣√ c

w
−
√
t1s2

∣∣∣∣ ∣∣∣∣√ c

w
+
√
t1s2

∣∣∣∣ .
1
w
,
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which, together with (10.39), gives

(1+w)
∣∣∣∣√ c

w
−t1

∣∣∣∣ . (1+w)
1√
wc

+(1+w)|
√
t1s2−t1|.

From (10.38), in case w61, and (10.39), in case w>1, it follows that the second term of
the right-hand side is .1. By using the lower bound in (10.28) to bound the first term
of the right-hand side, the proof is complete.

In the next corollary, by considering separately the cases 0<w61 and 16w<∞, we
obtain estimates which depend only on ε.

Corollary 10.3. (1) If 0<w61, then

ε3 . d(L1, L2) . 1, (10.42)

dH(o1, e1,+(L1, L2)). ε−3. (10.43)

(2) If 16w<∞, then

ε3 . dH(b+(L1, L2), b−(L1, L2)). 1, (10.44)

ε3 . d(L1, L2) . ε−3, (10.45)

dH(o1, e1,+(L1, L2)). ε−3. (10.46)

Proof. Relation (10.44), i.e., the bound on 2
√
c/w for w>1, is a direct consequence

of (10.27), (10.30), (10.34) and (10.37). The remaining relations can be read off from
Corollary 10.4.

If w>1, as a consequence of (10.44) we obtain a pair of parallel lines b±(L1, L2)
whose separation 2

√
c/w is bounded below by &ε3 and above by a universal constant,

and with a transversal L1 such that (10.45) and (10.46) hold. This will suffice for our
application.

If w61, although 2
√
c/w is not bounded above, d(L1, L2) is bounded above by a

universal constant and below by &ε3, and dH(o1, e1,+(L1, L2)) is bounded by a definite
multiple of ε−3. In this case, we obtain a pair of skew lines making a standard angle and
a controlled separation as follows.

Let

r=
√

1+w2

√
c

w

denote the distance from the origin in R2 to (
√
c/w,±

√
cw )=π(e1,±(L1, L2)). The points

d(L1, L2)+r
r

(√
c

w
,
√
cw

)
and

r

d(L1, L2)+r

(√
c

w
,
√
cw

)
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lie on the projection of a line L∈lines(H), with zi=L∩Li, where

dH(z1, e1,+(L1, L2))= d(L1, L2),

dH(z2, e2,+(L1, L2))=
r

r+d(L1, L2)
d(L1, L2).

By direct computation, the slope m(L) of π(L) satisfies

2
3 6m(L) 6 5

2 . (10.47)

From this, we get the following result.

Corollary 10.4. The lines L and b+(L1, L2) are skew. The point

π(L)∩π(b+(L1, L2))

lies on the line segment from π(e1,+(L1, L2)) to π(e2,+(L1, L2)). Moreover,

2
5 6 tan θ(L, b+(L1, L2))6 3

2 (10.48)

and

d(L1, L2)
√

2
3 6 dV (L, b+(L1, L2))6 d(L1, L2). (10.49)

Proof. Relation (10.48) follows directly from (10.47). By the discussion above, the
triangle with vertices (0, 0), π(e1,+(L1, L2)) and π(e2,+(L1, L2)), and the triangle with
vertices (0, 0), π(z1) and π(z2) have equal areas. It follows that the triangle with vertices
π(e1,+(L1, L2)), π(z1) and π(L)∩π(b+(L1, L2)), and that with vertices π(e2,+(L1, L2)),
π(z2) and π(L)∩π(b+(L1, L2)) (whose union is the symmetric difference of the previous
ones), have equal areas as well. From this and the geometric interpretation of multipli-
cation, we get (10.49).

11. Proof of Lemma 7.2

In this section we prove Lemma 7.2. We begin with some measure-theoretic preliminaries
which play a role here and in §12. Then we give the proof for the case of precisely
monotone sets (for which the preliminaries are not required); compare also the proof
in [21]. Finally, we show how to modify the argument to obtain the general case of
Lemma 7.2.
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11.1. Measure-theoretic preliminaries

Recall that L3 denotes the Lebesgue measure on H=R3, which is a Haar measure of
H. Given L∈lines(H), we denote by H1

L the Hausdorff measure induced by the metric
dH on L. Recall that N denotes the unique left-invariant measure on lines(H) which
is normalized so that N (lines(B1(p)))=1. Given L∈lines(H), we denote its Heisenberg
parallelism class by [L], i.e., [L]={gL:g∈H}. H acts transitively on [L]. Therefore there
exists a left-invariant measure µ[L] on [L], normalized so that for every measurable A⊂H
we have ∫

[L]

H1
L′(L

′∩A) dµ[L](L′) =L3(A). (11.1)

The space of all parallelism classes will be denoted by P={[L]:L∈lines(H)}. Each
such parallelism class [L] is uniquely determined by an angle θ∈[0, 2π), corresponding to
the angle of π(L)⊂R2 (recall that the lines L∈lines(H) are oriented). Thus, there is an
induced measure dθ on P which corresponds to the standard measure on the circle S1.
By uniqueness, there exists a constant c>0 such that for all integrable f : lines(H)!R
we have ∫

lines(H)

f dN = c

∫
P

∫
L′∈[L]

f(L′) dµ[L](L′) dθ([L]). (11.2)

Let P⊂lines(H)×H denote the space of oriented pointed lines, i.e., P={(L, x):x∈L}.
We shall use below the measure ν on P, which is defined by setting, for every compactly
supported continuous f : P!R,∫

P
f dν=

∫
lines(H)

∫
L

f(L, x) dH1
L(x) dN (L). (11.3)

In the proof of Lemma 7.2 we shall use the space C of configurations, where a
configuration is a quadruple (L, x1, x2, [L′]), where L∈lines(H), x1, x2∈L and [L′]∈P

(i.e., a doubly pointed line and a parallelism class). The space C carries two measures σ1

and σ2, which are defined as follows. Given f : C!R, which is continuous and compactly
supported, let∫

C
f dσ1 =

∫
lines(H)

∫
P

∫
L×L

f(L, x1, x2, [L′]) d(H1
L×H1

L)(x1, x2) dθ([L′]) dN (L), (11.4)

and∫
C
f dσ2 (11.5)

=
∫

P

∫
[L′]×[L′]

∫
L1

f(L(x), x, L(x)∩L2, [L′]) dH1
L1

(x) d(µ[L′]×µ[L′])(L1, L2) dθ([L′]),
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where in (11.5), as in §8, given two parallel lines L1, L2∈[L′] with distinct projections
and x∈L1, L(x) denotes the unique element of lines(H) which passes through x and
intersects L2. (In §8, L(x)∩L2 was denoted x∗.)

The measures σ1 and σ2 are mutually absolutely continuous. Moreover, given a
compact subset K⊂H of the Heisenberg group and a>0, let C(K, a) denote the set of
configurations (L, x1, x2, [L′])∈C with x1, x2∈K and

d(π(x1L
′(0)−1L′), π(x2L

′(0)−1L′))> a,

i.e., the unique lines in [L′] which pass through x1 and x2 have projections of distance at
least a, and x1 and x2 are in the compact set K. One checks from the definitions that,
on the compact set C(K, a), the Radon–Nikodym derivatives dσ1/dσ2 and dσ2/dσ1 are
continuous. Hence, for every measurable A⊂C(K, a), we have

σ1(A)�σ2(A), (11.6)

where the implied constants depend only on K and a. This observation will be used in
the proof of Lemma 7.2 below.

11.2. A consequence of small non-convexity

Recall that the non-convexity NCBr(x)(E,L) was defined in (4.6). The following conse-
quence of small non-convexity will be used in the present section and repeatedly in §12
(where the main result concerns δ -convex sets, which are more general than δ -monotone
sets).

Lemma 11.1. Fix p∈H and E⊂H. Let L∈lines(H) be such that NCB1(p)(E,L)<δ.
Assume that [c, d]⊂[a, b]⊂L∩B1(p) and that

H1
L([a, c]∩E)>δ and H1

L([d, b]∩E)>δ. (11.7)

Then

H1
L([c, d]∩Ec) 6 δ.

Proof. For all sufficiently small η>0, we have H1
L([a, c]∩E),H1

L([d, b]∩E)>δ+η. If
I⊂L∩B1(p) is an interval which exceeds the infimum on the right-hand side of (4.6) by
at most 1

2η, then the intersection of I with both [a, c] and [d, b] must have positive H1
L

measure. Thus, I=[e, f ]⊃[c, d]. By the choice of I, we also have H1
L([e, f ]∩Ec)<δ+ 1

2η,
which implies that H1

L([c, d]∩Ec)<δ+ 1
2η. Letting η tend to 0 completes the proof.
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11.3. The case of precisely monotone sets

We call a set E⊂B1(p) precisely monotone if E∩L and Ec∩L are connected for all
L∈lines(H). Therefore, given such a pair (E,L), either L∩B1(p)⊂E, L∩B1(p)⊂Ec, or
there exists a unique qL,E∈L such that (L\{qL,E})∩B1(p) consists of two open intervals,
one of which is contained in E and the other in Ec.

Choose a pair of parallel lines L1 and L2 with distinct projections, and recall that
X=X(L1, L2) denotes the ruled surface which is the union of lines L(x) passing through
L1 and L2. Here, {x}=L(x)∩L1. Note that H acts on L1, L2 and X(L1, L2) by left
translation.

Lemma 11.2. Fix p∈H. There is a left-invariant function defined on pairs L1, L2

of parallel lines with distinct projections and taking values in 6-tuples of relatively open
subsets of the surface X(L1, L2)∩B1(p), {Wj(L1, L2)}6j=1, such that if E is a precisely
monotone subset of B1(p) then for some j(L1, L2, E)∈{1, ..., 6},

W (L1, L2, E) :=Wj(L1,L2,E)(L1, L2)

consists either entirely of points of E, or entirely of points of Ec.

Proof. We may assume that, say, L1=(t, b,−bt) and L2=(s,−b,−bs), with 1
2 6b61.

Then, in the notation of Lemma 8.1, for x=(t, b,−bt)∈L1 we have x∗=(−t,−b, bt) and
L(x)=(r, r/b,−bt).

Consider the intervals

I1 :=
(
0, 1

6

)
, I2 :=

(
1
6 ,

1
3

)
and I3 :=

(
1
3 ,

1
2

)
,

and let −Ij={t:−t∈Ij}. Define W1(L1, L2) to be B1(p) intersected with the union
of those segments of the lines L(x) which join x∈L1(I1) to x∗∈L2(−I1). Also, define
W2(L1, L2) to be B1(p) intersected with the union of those subrays of the lines L(x)
for which x∈L1(I1) and x∗∈L2(−I1), whose endpoint is x and which are disjoint to the
segment [x, x∗]. Define W3(L1, L2), W4(L1, L2) and W5(L1, L2), W6(L1, L2) analogously,
corresponding to j=2, 3, respectively.

There exists some i(L1, L2, E)∈{1, 2, 3} such that qE,L1 /∈L1(Ii) and qE,L2 /∈L2(−Ii)
(where possibly, one or both of qE,L1 and qE,L1 do not exist at all).

Fix i=i(L1, L2, E) as above. There are four possibilities:
(1a) L1(Ii)⊂E and L1(−Ii)⊂E,
(1b) L1(Ii)⊂Ec and L1(−Ii)⊂Ec,
(2a) L1(Ii)⊂E and L2(−Ii)⊂Ec,
(2b) L1(Ii)⊂Ec and L2(−Ii)⊂E.
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In cases (1a) and (1b) we can take j(L1, L2, E)=2i−1, while in cases (2a) and (2b)
we can take j(L1, L2, E)=2i.

Take a small interval [0, d] in the center of H and consider all left translates

g(X(L1, L2))=X(g(L1), g(L2)),

where g∈[0, d]. Clearly, for some subset S=S(L1, L2, E)⊂[0, d] of measure > 1
12d, if g∈S

then the integers j(g(L1), g(L2), E) will all coincide and either W (g(L1), g(L2), E)⊂E
for all g∈S, or W (g(L1), g(L2), E)⊂E′ for all g∈S. Without essential loss of generality,
we may assume that 0∈S and, say, W (L1, L2, E)⊂E. Hence, for all g∈S we have

W (g(L1), g(L2), E) = g(W (L1, L2, E))⊂E.

Choose an interior point y∈W (L1, L2, E)∩B1(p), lying at a definite distance from
the boundary, choose a line L(x) such that y∈L(x) and choose L∈lines(H) making a
definite angle with L(x). Let [L] denote the collection of lines parallel to L. By Lemma 8.1
(and continuity) we may assume that d has been chosen so small that if g∈[0, d], we have
L′∈[L] and L′∩g(X(L1, L2))∩B10d(y) 6=∅. Then L′ intersects g(X(L1, L2)) transversely.
Parameterize each such L′ so that L′(0)=L′∩W (L1, L2, E). Let J denote the smallest
interval containing S. Then the length of J is > 1

12d and, by the monotonicity of E, we
have L′(J)⊂E. This completes the proof in the precisely monotone case.

11.4. Proof of Lemma 7.2

Suppose now that E⊂B1(p) is ε2-monotone on B1(p). Choose a measurable mapping
L 7!IL,E⊂L (e.g., via an application of the measurable selection theorem in [44]) such
that IL,E∩B1(p) and IcL,E∩B1(p) are intervals and, for almost all L,

H1
L(IL,E4(E∩L∩B1(p)))6 2 NMB1(p)(L,E). (11.8)

Let q̄L,E denote the common boundary point of IL,E and IcL,E .
Define I1, I2 and I3 as above. Given a pair of parallel lines L1, L2 with distinct

projections, define i(L1, L2, E) as above, replacing qL,E by q̄L,E . Then, mutatis mutandis,
define cases (1a)–(2b), {Wj(L1, L2)}6j=1, j(L1, L2, E) and W (L1, L2, E) as above.

In the claim below, Center(H) is equipped with its natural measure L and

W (L1, L2, E)⊂X(L1, L2)

is equipped with the natural surface measure M on X(L1, L2).
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Claim. There exists a universal constant c>0 with the following properties. Assume
that E⊂B1(p) is ε2-monotone on B1(p). Then there exists a pair of parallel lines L1, L2

whose projections lie at distance >c, such that for a fraction >c of g∈Center(H)∩B1(p)
the surface W (g(L1), g(L2), E) has measure >c and, apart from a subset of measure
6ε/c, it consists either entirely of points of E or entirely of points in E′.

Assume for the moment that the claim holds. Since E⊂B1(p) is ε2-monotone,
by (11.2) with f(L)=NMB1(p)(E,L) and Markov’s inequality (3.14), we can choose a
parallelism class [L] of lines which are all a definite amount transverse to X(L1, L2)
(i.e., the angle between these lines and the surface X(L1, L2) is larger than a universal
constant), such that apart from a subset of measure .ε of lines in [L], the remaining lines
are all .ε-monotone. From this, together with the claim and Lemma 11.1, we directly
obtain Lemma 7.2.

Proof of the claim. Rather than studying the space of surfaces X(L1, L2) directly, it
is convenient to decompose each such X(L1, L2) into its collection of ruling lines L, and
then to lift considerations to the space of all triples (L1, L2, L), where a triple (L1, L2, L)
is a set of lines L1, L2, L∈lines(B1(p)) such that L1 and L2 are parallel in the Heisenberg
sense, and L1∩L={x1} and L2∩L={x2} are non-empty and lie in B1(p). Recall the set
of configurations C that was defined in the paragraph following (11.3). Each configura-
tion (L, x1, x2, [L′])∈C with x1, x2∈B1(p) determines, and is determined by, the triple
(L1, L2, L), where L1=x1L

′(0)−1L′ and L2=x2L
′(0)−1L′ (thus, using previous notation,

L=L(x1) and x2=x∗1). Let C1 denote the set of configurations (L, x1, x2, [L′])∈C with
x1, x2∈B1(p).

Definition 11.3. A pointed line (L, x) is called consistent if either x∈IL,E and x∈E,
or x∈IcL,E∩B1(p) and x∈Ec. A configuration (L, x1, x2, [L′]) is called consistent if the
pointed lines (L1, x1), (L2, x2), (L, x1) and (L, x2) are all consistent, where

L1 =x1L
′(0)−1L′ and L2 =x2L

′(0)−1L′.

Such a configuration is called ε-monotone on B1(p) with respect to E if L1, L2 and L

are all ε-monotone on B1(p) with respect to E.

Let Gε denote the set of configurations which are consistent and ε-monotone on
B1(p) and let G′ε=C1\Gε. By using Lemma 11.1, it is immediate to verify from the
definitions that if for some parallel lines L1, L2∈lines(B1(p)) we have

H1
L1

(x∈L1(Ij(L1,L2,E)) : (L(x), x, x∗, [L1])∈G′ε) . ε, (11.9)

then, apart from a set of measure .ε, the set W (L1, L2, E) consists either entirely of
points of E or entirely of points in Ec.
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Lemma 11.4. If E is ε2-monotone on B1(p) then

σ1(G′ε) . ε, (11.10)

where σ1 is defined as in (11.4).

Proof. We use the notation introduced in our discussion of measure-theoretical pre-
liminaries at the beginning of this section. Fix L∈lines(B1(p)) and let G′(L,E) denote
the set of x∈L∩B1(p) such that (L, x) is not consistent. By definition, we have

H1
L(G′(L,E))6 2 NMB1(p)(L,E), (11.11)

so ∫
lines(B1(p))

H1
L(G′(L,E)) dN (L) 6 2 NMB1(p)(E) 6 ε2. (11.12)

For x∈B1(p), denote by m(x) the measure (with respect to dθ) of the set of those
[L]∈P such that, for the unique L′∈[L] such that x∈L′, the pointed line (L′, x) is not
consistent. Then, by (11.1) and (11.2), we deduce from (11.12) that∫

B1(p)

m(x) dL3(x) . ε2. (11.13)

For x1, x2∈L, define F (x1, x2) by

F (x1, x2) =m(x1)+m(x2)+χIL,E4(E∩L∩B1(p))(x1)+χIL,E4(E∩L∩B1(p))(x2). (11.14)

Then, ∫
lines(B1(p))

∫
x1,x2∈L∩B1(p)

F (x1, x2) d(H1
L×H1

L)(x1, x2) dN (L)

(11.13)

. ε2+
∫

lines(B1(p))

H1
L(IL,E4(E∩L∩B1(p)) dN (L)

(11.8)

. ε2+NMB1(p)(E)

. ε2.

(11.15)

It follows from (11.15) and (11.4) that, if we denote by A⊆C the set of configurations
(L, x1, x2, [L′]) which are not consistent, then σ1(A).ε2.

Let B⊂C denote the set of configurations (L, x1, x2, [L′]) which are not ε-monotone
on B1(p) with respect to E. This implies that, for (L, x1, x2, [L′])∈B, we have

NMB1(p)(L,E)+NMB1(p)(x1L
′(0)−1L′, E)+NMB1(p)(x2L

′(0)−1L′, E) > ε.

Hence, using Markov’s inequality (3.14), combined with the identities (11.4) and (11.2),
we deduce that

σ1(B) .
NMB1(p)(E)

ε
6 ε.

Since, by definition, σ1(G′ε)6σ1(A)+σ1(B), the proof of (11.10) is complete.
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Set a= 1
100 and recall that, as defined before (11.6), C̃=C(B1(p), a) is the set of

all configurations (L, x1, x2, [L′])∈C such that x1, x2∈B1(p) and the projections of the
parallel lines x1L

′(0)−1L′ and x2L
′(0)−1L′ have distance at least a. It follows from (11.6)

and (11.10) that σ2(G′ε∩C̃).ε, where the measure σ2 is as in (11.5). It follows from (11.5)
that there exists a parallelism class [L′]∈P such that, if we define

F = {L1, L2 ∈ [L′] : d(π(L1), π(L2))> a},

then∫
F

H1
L1

({x∈L1∩B1(p) : (L(x), x, x∗, [L′])∈G′ε}) d(µ[L′]×µ[L′])(L1, L2) . ε. (11.16)

Partition the set of all (L1, L2)∈F×F into equivalence classes, where (L1, L2) and
(L′1, L

′
2) are equivalent if there exists g∈Center(H) such that L′1=g(L1) and L′2=g(L2).

We deduce from (11.16) that there exist L1, L2∈F , an index j∈{1, ..., 6} and a subset
D⊂Center(H)∩B1(p) of measure &1 such that for all g∈D we have j(g(L1), g(L2), E)=j,
the surface W (g(L1), g(L2), E) has measure &1 and, by another application of Markov’s
inequality (3.14),

H1
L1

({x∈L1(Ij) : (L(x), x, x∗, [L1])∈G′ε}) . ε.

The claim now follows from the discussion following (11.9), and hence the proof of
Lemma 7.2 is complete.

12. Proof of Proposition 7.3

In this section we will consider both lines in R2 and their horizontal lifts to H. It will
be convenient to use a notation which differs somewhat from that employed elsewhere in
the paper. This change will also prevent an undesirable proliferation of subscripts, which
would result if we continued to write L (exclusively) for horizontal lines in H.

Let π: H!R2 be the canonical map. Given a line segment τ1⊂R2 with τ1(0)=(0, 0),
denote by τ̃1 its unique lift to a segment of a horizontal line in H emanating from the
origin. Similarly, consider a once-broken line segment τ1∪τ2, i.e., a pair of line segments
such that the initial point of the line segment τ2 is the final point of τ1. Again, we assume
that τ1(0)=(0, 0). Denote by τ̃1∪τ2 the lift of τ1∪τ2 to a continuous broken horizontal
line in H=R3, emanating from the origin.

In place of the line L in Proposition 7.3, we will write γ̃. Since both the statement
and proof are somewhat technical, for purposes of exposition, we first consider the model
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case in which γ̃(0)∈E, BCr(γ̃(1))⊂E and E is precisely convex. In this case, we will show
that for a large enough universal constant C, there exists c>0 such that Bcsr(γ̃(s))⊂E
for all 06s61.

Recall that in Proposition 7.3 we are given parameters �, η, ξ, r, %∈(0, 1) such that
%6 1

2�r
2 and %6c, where c∈(0, 1) will be a small enough universal constant to be de-

termined below. For the reader’s convenience, we recall here the values of δ1 and δ2 in
Proposition 7.3, namely (7.9) and (7.10):

δ1 =
c�3η2ξ%3

r
, (12.1)

δ2 = c�6η3ξ2%3r6. (12.2)

In the proof we will also use an auxiliary parameter ω>0, which will be given by

ω= c̄�3ηξr2, (12.3)

where c̄>
√
c will be an appropriately chosen universal constant.

12.1. Values of constants

For the reader’s convenience, we include here a summary of the steps of the proof of
Proposition 7.3, in which the particular values of the constants enter explicitly. For the
constraint %6 1

2�r
2, (12.15), (12.45) and (12.61); for ω, (12.25), (12.33) and (12.53);

for δ1, (12.25) and (12.59); and for δ2, (12.33) and (12.55).

12.2. Proof of model case

For reasons of exposition, we begin with the proof of the model case described above.

Remark 12.1. Even though the statement of Proposition 7.3 pertains to balls, the
multiplicative structure of H and its relation to the geometry will necessitate the introduc-
tion of certain product cylinders, where the product structure corresponds to H=R2×R.
In fact, our argument will show that if a cylinder centered at γ̃(1) with base radius r2

and height r is contained in E, then a cylinder with base radius &sr2 and height sr
centered at γ̃(s) will be contained in E. Here, both heights are measured with respect
to the metric dH.

Remark 12.2. Let Oθ be as in §2.4. By applying a suitable left translation and
action by Oθ, we may assume that γ̃ is the line (s, 0, 0). In the present subsection and
in the proof of Proposition 7.3, we consider only points (ā, b̄, c̄)∈Bcsr(γ̃(s)) with c̄>0.
Points with c̄60 are handled by the symmetric argument, i.e., by interchanging the roles
of φ and ψ below.
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Let Θ⊂R2 denote the angular sector which is the union of rays τ such that τ(0)=
γ(0)=(0, 0) and τ(1)∈Br/2(γ(1)), where here Br/2(γ(1)) denotes the Euclidean disk
in R2. Let Θ̃ denote the union of the lifts of the rays τ⊂Θ. By the convexity of E,
it follows that τ⊂Θ implies that τ̃(s)∈E for 06s61, where s denotes arc length. To
prove the non-quantititative version of (7.13), it suffices to show that for any τ⊂Θ,

π−1(τ(s))∩Bcsr(τ̃(s))⊂E. (12.4)

Set
λ=arctan r2, (12.5)

and let φ and ψ denote the rays in Θ which make an angle λ with τ . For the sake
of proving (12.4), by applying a suitable rotation, assume that τ is the x-axis, so that
we have τ̃(s)=(s, 0, 0). Choose the parameterization u such that φ̃(u)=(u,−ur2, 0) and
ψ̃(u)=(u, ur2, 0).

Fix s0∈[0, 1] and let u0 be the unique value of u such that the line segment χ, from
φ(u0) to ψ(1), intersects τ at τ(s0), where χ(0)=φ(u0). Thus

u0 =
s0

2−s0
. (12.6)

Let φ1 denote the segment of φ from τ(0)=φ(0) to φ(u0). Let χ̃ denote the segment of
φ̃1∪χ which lifts χ. Choose the parameterization t such that

χ̃(t) =u0(1,−r2, 0)·t((1, r2, 0)−u0(1,−r2, 0)), (12.7)

where above, as usual, “ ·” denotes multiplication in H. If we define d0 by χ(d0)=τ(s0),
then from (12.7) it follows that

d0 =
s0
2
, (12.8)

χ̃(d0) =
(
s0, 0,

2s20r
2

2−s0

)
. (12.9)

By the assumed convexity of E, we have φ̃(u)⊂E for all 06u61. From (12.7) for t=1,
and the box-ball principle (2.17), we may assume that C has been chosen such that
χ̃(1)∈BCr(γ̃(1))⊂E. Since E is convex, this gives χ̃(d0)∈E. Similarly, by (2.17), for

0 6 v6
2s20r

2

2−s0

the line (0, 0,−v)·χ̃ intersects Θ̃∩E and satisfies (0, 0,−v)·χ̃(1)∈BCr(γ̃(1))⊂E. Again,
by convexity of E, we get (0, 0,−v)·χ̃(d0)∈E. It is straightforward to check that this
implies that Bcrs0(τ̃(s0))⊂E for some universal constant c>0, as required.
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Remark 12.3. In our proof of Proposition 7.3, it is necessary to replace χ̃ by a 1-
parameter family of lines χ̃θ, to be defined below. To this end, we observe that there is
some flexibility in the definition of χ̃. First note that, from (12.5), (12.6) and (12.8) and
the law of sines, it follows that for some universal constant c1>0 we have

c1r
2 6∠(τ̃ ′(s0), χ̃′(d0)). (12.10)

For all
0 6 θ6 c2r

2, (12.11)

with a small constant c2>0, let χ̃θ denote the horizontal line through χ̃(d0)=τ̃(s0) ob-
tained by rotating χ̃ by an angle θ about the point χ̃(d0), in the clockwise direction. The
constant C can be chosen such that χ̃θ intersects BCr(γ̃(1)). It will also intersect Θ̃∩E.
In fact, if q=g(τ̃(s0))∈Bcs0r2(τ̃(s0)), then g(χ̃θ) intersects both Θ∩E and BCr(γ̃(1)). It
follows that for any q∈Bcs0r2(τ̃(s0)) and any χ̃θ with θ as in (12.11), in verifying that
π−1(π(q))∩Bcrs0(τ̃(s0))⊂E, we can use only the lines which are parallel to some χ̃θ.

12.3. Intermediate case and proof

Before going to the proof of Proposition 7.3, we consider a slight generalization of the
model case. As before, assume that BCr(γ̃(0))∈E and that E is convex. Assume in
addition that g(γ̃(0))∈E for some g, with

dH(g(γ̃(0)), γ̃(0))6 %, (12.12)

where we recall that we are assuming that %6�r2. The box-ball principle (2.17), together
with (12.12), implies that for all s>0 we have

dH(γ̃(s), g(γ̃(s)).max{%,√s%}. (12.13)

Since %6r2, it follows from (12.13) that, provided C is large enough, the assumption
BCr(γ̃(1))⊆E implies that BCr/2(gγ̃(1))⊆E. Now, a computation like those above shows
that for all 06s61 we have

Bcsr(gγ̃(s))⊂E for all s∈ [0, 1], (12.14)

where c>0 is a universal constant. It follows from (12.12), the bound %6�r2 and (12.14),
that there exists a constant c′>0 such that

Bcsr/2(γ̃(s))⊂E for all s∈ [c′�, 1]. (12.15)
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Remark 12.4. Here it is worthwhile to emphasize that, in order to obtain (12.15),
we must take % proportional to r2 (rather than to r); compare also the use of cylinders
Bcsr2(τ(0))×[−(sr)2, (sr)2] in the model case above and below.

Proof of Proposition 7.3. The arguments in the model and intermediate cases use
Θ̃⊂E and g(Θ̃)∩B1(γ̃(0))⊂E, respectively. Since in the general case our hypotheses
are measure theoretic, we will employ integral geometry and, in particular, the measure-
theoretical preliminaries given in §11.

The first (and most involved) step is to show the existence of a thickened version S
of the angular sector g(Θ̃)⊂E of the intermediate case:

S =
⋃
ζ∈A

gζ(Θ̃) (12.16)

for some g∈H, where A is a suitably chosen subset of the center of H such that

gζ(γ̃(0))∈B%(γ̃(0))∩E

for all ζ∈A. We think of S as a “thin slab”.
The slices gζ(Θ̃) of S will be shown to consist almost entirely of points of E. Hence,

the vertical structure exhibited in (12.16) implies that the mass of E∩S is very evenly
distributed. In the presence of sufficiently small non-convexity of E, this compensates
for the fact that the mass of E∩S, while subject to a definite lower bound depending on
η (see (12.19)) might still be very small, which might otherwise prevent S from serving
as an adequate substitute for Θ̃.

The following lemma summarizes the essential properties of S. Eventually, we will
be interested in the behavior of the intersection of S with the cylinder (with coordinate
description)

Bcsr2(τ(s))×[−c(sr)2, c(sr)2],

whose intrinsic height is 2sr and whose measure is �(sr2)2(sr)2. This may help to
explain the right-hand sides of (12.17)–(12.20).

Lemma 12.5. There exist g∈H satisfying (12.12) and A⊂Center(H) such that, for
S as in (12.16), the following properties hold :

(a)
S⊂ g(R2×I) (12.17)

for some I⊂[−%2, %2]⊂Center(H), with

L(I)� ξ%2, (12.18)
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where L denotes the Hausdorff measure on the center of H, with its induced 1
2 -snowflake

metric;
(b) S has a definite thickness:

L(A) & ηξ%2; (12.19)

(c) S consists almost entirely of points of E, i.e., for all ζ∈A,

L2((gζ(Θ̃)\(B%(γ̃(0))∪Br(γ̃(1))))∩Ec) .ωr2. (12.20)

Granted Lemma 12.5, the proof of Proposition 7.3 is not difficult to complete. We
will now give a brief overview of the argument to come. Since E is δ2-convex, we can
chose χ̃θ, as in Remark 12.3, such that for a fraction very close to 1 of lines L∈[χ̃θ], the
non-convexity NCBCr(γ̃(0))(E,L) is very small. By a quantitative version of the proofs of
the previously considered model and intermediate cases, it follows that such lines consist
almost entirely of points of E. The argument uses (12.19), (12.20) and Lemma 11.1
below. In fact, Lemma 11.1 enters, in a similar fashion, in the proof of Lemma 12.5.

Proof of Lemma 12.5. In the next few subsections we will show that for most points
g(γ̃(0))∈E∩B%(γ̃(0)), the sector g(Θ̃) consists almost entirely of points of E. The re-
mainder of the construction will be a simple consequence of this fact.

12.4. Implication of almost full measure of E in BCr(γ̃(1))

By the assumption (7.11), we have

L3(E∩B%(γ̃(0)))> ηL3(B%(γ̃(0)))& η%4. (12.21)

Let C>0 be the (large enough, but fixed) constant that was chosen in the intermediate
case of the proof. Assume, as in (7.12), that L(1)∈intδ1,Cr(E). Recall that the parameter
ω was defined in (12.3). At the end of the proof, it will become clear why it is necessary
to choose this value of ω; see (12.25), (12.33) and (12.53).

For τ⊂Θ, set

S[τ̃ ] = {τ̂ ∈ [τ̃ ] : 0<H1
τ̂ (τ̂∩E∩B%(γ̃(0)))6ωη%}, (12.22)

T[τ̃ ] =
{
τ̂ ∈ [τ̃ ] : 0<H1

τ̂ (τ̂∩E∩B%(γ̃(0))) and H1
τ̂ (τ̂∩E∩Br/2(γ̃(1)))6 1

2r
}
. (12.23)

Without loss of generality, we may assume that � is small enough that if τ̂∈S[τ̃ ]

then τ̂(1)∈Br/2(γ̃(1)); see (12.13). From (7.12), (7.9) and (11.1), we get

µ[τ̃ ](T[τ̃ ]) . δ1r
3 6ωη%3, (12.24)
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provided that the lower bound

ω>
δ1
η

(
r

%

)3

(12.25)

holds. An inspection of our choice of parameters in (12.1) and (12.3) shows that (12.25)
does indeed hold in our setting. (Note that here we used the requirement c̄>

√
c>c.)

12.5. Estimates in the space of pointed lines

Recall that ν denotes the measure on P, the space of pointed lines, as in (11.3). Let

U# = {(τ̂ , τ̂(0)) : τ̂(0)∈E∩B%(γ̃(0)) and τ̂ ⊂ τ̂(0)γ̃(0)−1(Θ̃)},

S# = {(τ̂ , τ̂(0)) : τ̂ ∈S∩g(Θ̃) and τ̂(0)= g(γ̃(0))∈E∩B%(γ̃(0))},

T# = {(τ̂ , τ̂(0)) : τ̂(0)∈E∩B%(γ̃(0)), τ̂ ∈T[τ̂ ] and τ̂ ⊂ τ̂(0)γ̃(0)−1(Θ̃)}.

(12.26)

Then

ν(U#)� r2L3(E∩B%(γ̃(0)))& ηr2%4, (12.27)

ν(S#) .ωηr2%4, (12.28)

ν(T#) .ωηr2%4. (12.29)

Relation (12.27) follows from (11.1)–(11.3), (12.5) and (12.21). Relations (12.28)
and (12.29) follow similarly, using (12.22) and (12.24), respectively.

Recall that E is δ2-convex on B2C(γ̃(0)), for δ2 as in (7.10). Define

V =
{
L∈ lines(B2C(γ̃(0))) : NCB2C(γ̃(0))(E,L) > 1

2ω
}
, (12.30)

V # = {(L, x)∈P :L∈V and x∈E∩B%(γ̃(0))}. (12.31)

By (4.6), Markov’s inequality (3.14) and (11.3), we have

ν(V #) .
δ2
ω
%6ωηr2%4, (12.32)

provided that, in addition to (12.25), we also assume that

ω>

√
δ2

ηr2%3
. (12.33)

An inspection of our choice of parameters in (12.2) and (12.3) shows that (12.33) holds
in our setting (note that we used here the requirement c̄>

√
c ).
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It follows from (12.27)–(12.29) and (12.32) that

ν(S#∪T#∪V #) .ων(U#). (12.34)

Define
W# =U#\(S#∪T#∪V #). (12.35)

Then, for (τ̂ , τ̂(0))∈W#, the definitions (12.26) and (12.31), together with Lemma 11.1,
imply that if we set

J =
[
%+ 1

2ω, 1−
1
2r−

1
2ω

]
,

then
H1
τ̂ (E

c∩τ̂(J))6 1
2ω. (12.36)

For x∈E∩B%(γ̃(0)), x=g(γ̃(0)), put

G(x) = {τ̂ ⊂ g(Θ̃) : (τ̂ , x)∈W#}. (12.37)

Note that, using the above notation, the set of all τ̂⊂g(Θ̃) with τ̂(0)=x is parameterized
by the corresponding angle φ in the sector given by (12.5). It follows from (12.34), (12.27)
and (12.21) that there exists a large enough universal constant c>0 such that, if we put

E1 = {x∈E∩B%(γ̃(0)) : dφ(G(x))6 cωr2}, (12.38)

then
L3(E1) > 1

2L3(E∩B%(γ̃(0)))& η%4. (12.39)

In the following corollary and below, we consider the splitting of the measure

L3 =L×L2 =H2×L2, (12.40)

relative to the product structure on H=R3, where L=H2 corresponds to the center of H
(with its induced 1

2 -snowflake metric) and L2 to the plane (x, y, 0)⊂R3. In connection
with (12.41) below, recall that L3(B%(γ̃(0)))�%4=%2×%2, where the product corresponds
to the decomposition in (12.40).

Corollary 12.6. There exists q∈π(E1) such that

η%2 .L(π−1(q)∩E1) . %2. (12.41)

If g(γ̃(0))∈π−1(q)∩E1 then

L2(Ec∩(g(Θ̃)\(B%(γ̃(0))∪Br(γ̃(1))))) .ωr2. (12.42)

Proof. Relation (12.41) follows from the splitting of the measure in (12.40) and
(12.39), whereas relation (12.42) follows from the definitions of U#, S#, T#, V # and
W#, together with (12.36)–(12.38).



362 j. cheeger, b. kleiner and a. naor

12.6. Construction of S and completion of the proof of Lemma 12.5

By virtue of (12.41), we can choose an interval I⊂[−%2, %2] such that

L(I)� ξ%2, (12.43)

L(π−1(q)∩E1∩q(I))& ηξ%2. (12.44)

Define a subset A of the center of H by

A=π−1(0, 0)∩q−1(π(E1))∩I.

Choose g=qγ̃(0)−1. Then g satisfies (12.12) and, by (12.43) and (12.44), statements
(a) and (b) of Lemma 12.5 hold. Since, by the definition of q, for all ζ∈A we have
gζγ̃(0)∈π−1(q)∩E1, Corollary 12.6 implies that part (c) holds as well.

12.7. Completion of the proof of Proposition 7.3

By choosing c in Proposition 7.3 sufficiently small, we may assume without essential loss
of generality that g of Lemma 12.5 is the point (0, 0, 0) and that I is symmetric about
the origin. Fix s∈[�, 1] and let τ and χ̃θ be as in Remark 12.3, with 06θ6 1

100r
2 to be

determined below.
Let S denote the square with center τ(s) and side length csr2, with one side parallel

to χθ. Of the two sides of S which are orthogonal to χθ, let α denote the one which is
furthest from the origin (0, 0)∈R2. Let R denote the rectangle with one side parallel to
χθ and of length 2sr2+ 1

2s, and such that of the two sides which are orthogonal to χθ the
one furthest from (0, 0)∈R2 is α. In particular, S⊂R. By a standard covering argument,
it will suffice to show that at most a fraction ξ of points of S×[0, (csr)2] lie in Ec; see
(7.13). Since, by our assumptions %6 1

2�r
2 and s>�, we have

ξ%2 6 1
2ξ(sr)

2, (12.45)

it suffices to show that at most a fraction ξ of the points of S×([0, (csr)2]\I) lie in Ec.
Let

Fθ = {L∈ [χ̃θ] :L∩(α×([0, (csr)2]\I)) 6= ∅}.

Note that F can (essentially) be described alternatively as consisting of those lines in [χ̃θ]
which intersect R. If follows from (11.1) that

µ[χ̃θ](Fθ) & (sr2)(sr)2 = s3r4. (12.46)
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Moreover, since E is δ2-convex on B2C(γ̃(0)), there exists θ∈
(
0, 1

100r
2
)

such that∫
L∈Fθ

NCB2C(γ̃(0))(E,L) dµ[χ̃θ](L) 6
100δ2
r2

. (12.47)

We shall fix θ as in (12.47) from now on. It follows from (12.46) and (12.47) that there
exists a universal constant c′′>0 such that, if we define

F∗θ =
{
L∈Fθ : NCB2C(γ̃(0))(E,L) 6

c′′δ2
ξs3r6

}
, (12.48)

then
µ[χ̃θ](F∗θ) >

(
1− 1

8ξ
)
µ[χ̃θ](Fθ). (12.49)

Lemma 12.5 implies that

L3((S\(B%(γ̃(0))∪Br(γ̃(1))))∩Ec) .ωr2ξ%2,

and hence, using (11.1) and Markov’s inequality (3.14), we see that there exists a universal
constant c′′′>0 such that, if we define

F∗∗θ =
{
L∈F∗θ :H1

L((S\(B%(γ̃(0))∪Br(γ̃(1))))∩Ec∩L) 6
c′′′ω%2

s3r2

}
, (12.50)

then
µ[χ̃θ](F∗∗θ ) >

(
1− 1

4ξ
)
µ[χ̃θ](Fθ). (12.51)

Note that the definitions of Fθ and S, together with (12.18) and (12.19), imply that for
all L∈Fθ we have

H1
L((S\(B%(γ̃(0))∪Br(γ̃(1))))∩Bs(1−r/8)(γ̃(0))∩L) & ηξ%2. (12.52)

Thus, by the definition of F∗∗θ , and recalling that s>�, we see that provided that

ω6 c∗ηξ�3r2, (12.53)

where c∗>0 is a small enough absolute constant, we have for all L∈F∗∗θ ,

H1
L(E∩Bs(1−r/8)(γ̃(0))∩L) & ηξ%2. (12.54)

We shall choose c̄=c∗ in (12.3), and thus completing our choice of ω.
Assuming also that for a small enough constant c∗∗>0 we have

δ2 6 c∗∗ηξ2�3r6%2, (12.55)
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which follows from our choice of δ2 in (12.2), provided c is small enough, we conclude
from the definition of F∗θ, together with (12.52), that for all L∈F∗∗θ ,

NCB2C(γ̃(0))(E,L) 6 1
4ηξ%

2 (12.56)

and

H1
L(E∩Bs(1−r/8)(γ̃(0))∩L) >NCB2C(γ̃(0))(E,L). (12.57)

Recall also assumption (7.12), which implies that

L3(Ec∩Br(γ̃(1))). δ1r
4.

Moreover, by the definition of Fθ, we have H1
L(L∩Br(γ̃(1)))&r for all L∈Fθ.

For a sufficiently small universal constant c′′′′>0 (see below) define

F∗∗∗θ = {L∈F∗∗θ :H1
L(L∩Br(γ̃(1))∩E) > c′′′′r}. (12.58)

By Markov’s inequality, we have

µ[χ̃θ](F∗∗θ \F∗∗∗θ ) .
δ1r

4

r
.

Therefore, if for a sufficently small universal constant c∗∗∗>0 we have

δ1 6 c∗∗∗�3ξr, (12.59)

it follows that

µ[χ̃θ](F∗∗∗θ ) >
(
1− 1

2ξ
)
µ[χ̃θ](Fθ). (12.60)

Note that our assumption (12.1), together with %6 1
2�r

2, implies that (12.59) holds,
provided c is small enough.

For every L∈F∗∗∗θ we know that

H1
L(L∩Br(γ̃(1))∩E) > c′′′r

(12.56)

> NCB2C(γ̃(0))(E,L),

provided that

ηξ%2 6 4c′′′r, (12.61)

which holds if c is small enough. In combination with (12.54), (12.56), (12.57), (12.60)
and Lemma 11.1, we obtain the required result.
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Appendix A. The sparsest cut problem

As mentioned in §1, Theorem 1.1 and, in particular, Corollary 1.2, leads to an exponential
improvement of the previously best known [43] lower bound on the integrality gap of
the Goemans–Linial semidefinite relaxation of the sparsest cut problem with general
demands. We now add some additional details to the discussion of §1; for further details,
we refer also to our paper [24], and the references therein.

The sparsest cut problem with general demands (and capacities) asks for an efficient
proceedure to partition a weighted graph into two parts, so as to minimize the interface
between them. Formally, we are given an n-vertex graph G=(V,E), with a positive
weight (called capacity) c(e) associated with each edge e∈E, and a non-negative weight
(called demand) D(u, v) associated with each pair of vertices u, v∈V . The goal is to
evaluate in polynomial time (and in particular, while examining only a negligible fraction
of the subsets of V ) the quantity

Φ∗(c,D) = min
∅6=S V

∑
uv∈E c(uv)|χS(u)−χS(v)|∑

u,v∈V D(u, v)|χS(u)−χS(v)|
. (A.1)

To get a feeling for the meaning of Φ∗, consider the case c(e)=D(u, v)=1 for all
e∈E and u, v∈V . This is an important instance of the sparsest cut problem which is
called “sparsest cut with uniform demands”. In this case Φ∗ becomes

Φ∗ = min
∅6=S V

#{edges joining S and V \S}
|S| |V \S|

. (A.2)

Thus, in the case of uniform demands, the sparsest cut problem essentially amounts to
solving efficiently the combinatorial isoperimetric problem on G: determining the subset
of the graph whose ratio of edge boundary to its size is as small as possible.

From now on, the sparsest cut problem will be understood to be with general ca-
pacities and demands. These allow one to tune the notion of “interface” between S and
V \S to a wide variety of combinatorial optimization problems, which is one of the rea-
sons why the sparsest cut problem is one of the most important problems in the field of
approximation algorithms. It is used as a subroutine in many approximation algorithms
for NP-hard problems; see the survey article [60], as well as the references in [49], [6], [5]
and [24] for some of the (vast) literature on this topic.

The problem of computing Φ∗(c,D) in polynomial time is known to be NP-hard
[59]. The most fruitful approach to finding an approximate solution has been to consider
relaxations of the problem. Observe that the term

dS := |χS(u)−χS(v)|
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occurring in (A.1) is just the distance from u to v in the elementary cut metric associated
with S; see §2. One is therefore led to consider the minimization of the functional

Φ(c,D, d) =
∑
uv∈E c(uv)d(u, v)∑

u,v∈V D(u, v)d(u, v)
, (A.3)

where d varies over an enlarged class of metrics. The following successively larger classes
of metrics have played a key role: elementary cut metrics (as in (A.1)), L1 metrics
(equivalently, cut metrics), metrics of negative type, arbitrary metrics. Denote the last
two collections of metrics by NEG and MET, respectively, and denote the corresponding
minima by

Φ∗(c,D) >Φ∗L1
(c,D) >Φ∗NEG(c,D) >Φ∗MET(c,D).

From the standpoint of theoretical computer science, a key point is that Φ∗MET(c,D) is
a linear program (since the triangle inequality is a linear condition) and Φ∗NEG(c,D) can
be computed by the ellipsoid algorithm. Thus, both are computable in polynomial time
with arbitrarily good precision.

Let d denote an L1 metric and let Σd denote the cut measure occuring in the cut
metric representation

d=
∑
S⊂V

Σd(S)dS

of d; see (2.5). By substituting the cut metric representation into (A.3), it follows directly
that in fact Φ∗(c,D)=Φ∗L1

(c,D) for all c and D; [10], [53], [9]. The key point is that L1

metrics are the convex cone generated by elementary cut metrics (and a corresponding
statement would hold for any such convex cone and its generators).

If d1 and d2 are any two metrics on V , define their distortion by

dist(d1, d2) =
(

max
u,v∈V

d1(u, v)
d2(u, v)

)(
max
u,v∈V

d2(u, v)
d1(u, v)

)
.

It follows immediately that for all c and D,

max
{

Φ(c,D, d1)
Φ(c,D, d2)

,
Φ(c,D, d2)
Φ(c,D, d1)

}
6dist(d1, d2). (A.4)

Thus,

sup
c,D

Φ∗L1
(c,D)

Φ∗NEG(c,D)
6 sup
d∈NEG

c1(V, d), (A.5)

sup
c,D

Φ∗L1
(c,D)

Φ∗MET(c,D)
6 sup
d∈MET

c1(V, d). (A.6)
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Recall that by definition, the left-hand sides in (A.5) and (A.6) are the integrality
gaps for the corresponding relaxations. Since Φ∗(c,D)=Φ∗L1

(c,D), Bourgain’s embedding
theorem implies that the first of these integrality gaps is .log n; [53], [9]. Similarly, for the
Goemans–Linial semidefinite relaxation, the embedding theorem for metrics of negative
type given in [5] implies that the integrality gap is .(log n)1/2+o(1). (Of course, the
upper bound in terms of distortion also applies if L1 metrics are replaced by the original
elementary cut metrics, but since these metrics are so highly degenerate, it does not
provide useful information. This illustrates the power of the observation of [53] and [9].)

From now on we restrict our attention to the Goemans–Linial semidefinite relaxation.
(What we say also applies mutadis mutandis to the relaxation to MET.) As in (A.5), for
all c and D, and all d2∈NEG,

Φ∗L1
(c,D)

Φ∗NEG(c,D)
6 c1(V, d2). (A.7)

A duality argument (sketched below) shows that for all d2 there exist c and D for which
(A.7) becomes an equality. Therefore, the integrality gap is actually equal to

sup
d∈NEG

c1(V, d).

Thus, by Corollary 1.2 (see also Remark 1.3) the integrality gap is &(log n)δ for
some explicit δ>0. Recall that the previous best bound was &log log n; see [43] and [41].

Here is a sketch of the duality argument; for further discussion, see [54, Proposi-
tion 15.5.2]. Consider a set V of cardinality n, the vertices of our graph (whose edge
structure will be determined below). Define an embedding F of the metrics on V into
Rn(n−1)/2 as follows: the coordinates xu,v correspond to unordered pairs u, v of distinct
vertices in V , and xu,v(F (d))=d(u, v). The image of the L1 metrics on V is a convex
cone L⊂Rn(n−1)/2 generated by the images of the elementary cut metrics dS . Let d2

satisfy F (d2) /∈L. By an easy compactness argument, the distortion dist(d, d2), for d
with F (d)∈L, is minimized by some d1, with F (d1)∈L. Minimality implies that in fact
F (d1)∈∂L. Take a supporting hyperplane P for L which passes through F (d1). Let `
denote a linear functional satisfying `|P≡0, `|L60 and `(F (d2))>0. Let∑

(u,v)

`u,vx
∗
(u,v)

denote the coordinate representation of `. Define capacities and demands by

c(uv) =
{
`u,v, if `u,v > 0,
0, otherwise

and D(u, v) =
{
−`u,v, if `u,v < 0,
0, otherwise.
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Define a graph structure with vertices V , by stipulating that uv∈E if and only if c(uv)>0.
It is trivial to check that for the above c and D we have Φ(c,D, d)>1 for all d with
F (d)∈L. Also, Φ(d1)=1 and

Φ(c,D, d2) 6
1

dist(d1, d2)
=

1
c1(V, d2)

.

These relations imply that for these c and D, (A.7) is an equality. By choosing d2∈NEG
such that c1(V, d2) is maximal, it follows that (A.5) is also an equality. (If F (d2)∈L, this
is trivial.)

Appendix B. Quantitative bounds, coercivity and monotonicity

In this appendix, we briefly discuss from a more general standpoint, the structure of
our argument, as outlined after the statement of Theorem 1.1 and in §4. We point out
that, in essence, what we have done follows the general scheme of other arguments in
geometric analysis and non-linear partial differential equations; compare Example B.1
below. Typically, the results are not stated explicitly in quantitative form. Here, we
wish to emphasize that the possibility of an estimate of the form of (1.1) is actually
implicit in the arguments. In fact, more is true. For any ε>0, there is an explicit bound
c(ε)<∞ on the Carleson measure (in the sense of Semmes) of the set of “ε-bad” balls
Br(x)⊂B1(p). Note that the Carleson measure r−1 dr×L of the set of all Br(x)⊂B1(p)
is infinite, since ∫ 1

0

dr

r
=∞;

for further discussion, see the appendix by Semmes in [33].
The crucial ingredient for obtaining estimates as in (1.1), as well as the more precise

Carleson measure estimates, is the existence of a quantity which is coercive, monotone
and bounded. The sense in which these terms are to be understood is explained below.

B.1. Coercivity and almost rigidity

The term rigid connotes special (i.e. highly constrained) structure. A standard feature of
(the statment and proof of) rigidity theorems is the existence of a numerical measurement
Q>0 which is coercive in the sense that if Q=0, then the desired rigidity holds, and
more generally (and often much harder to prove) if Q<εa, for some a<∞, then in a
suitable sense the structure is ε-close to the one which is obtained in the rigid case.
Statments of this type are known as stability theorems, ε-regularity theorems or almost
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rigidity theorems. A classical example from Riemannian geometry is the sphere theorem,
in which the coercive quantity is minus the logarithm of the pinching; see [13] and the
references therein.

In our case, we are given E⊂H, and the coercive quantity is

Q(E) =NMBr(x)(E),

the non-monotonicity of E on Br(x). Coercivity is the statement that monotone subsets
are half-spaces, or more generally, that almost monontone subsets are close to half-spaces;
see Theorem 4.3.

B.2. Bounded monotone quantities and existence of a good scale

As in §1 and §2, we point out the general character of the estimate in Proposition 4.6 for
the scale on which Theorem 4.3 can be applied. Namely, by Markov’s inequality (3.14)
(which in this case amounts to the pigeonhole principle), such an estimate for the scale
will appear whenever we are dealing with an a-priori bounded non-negative quantity,
which can be written as a sum of non-negative terms, which correspond to the various
scales, such that each term is coercive on its own scale (in the suitably scaled sense).
Such a quantity is monotone in the sense that the sum is non-decreasing as we include
more and more scales; compare (4.28) and (6.11).

Quantities which are coercive and monotone are well known to play a key role in
geometric analysis and in partial differential equations. In the latter case, for evolution
equations, monotonicity is defined with respect to the time parameter, rather than the
scale.

We include below the following illustrative example, which requires familiarity with
Riemannian geometry. Numerous other choices from diverse areas would serve equally
well; compare Remark 2.1.

Example B.1. A theorem from Riemannian geometry states that for non-collapsed
Gromov–Hausdorff limit spaces

Mn
i

dGH−−−!Y n,

such that
Ric
Mn

i

>−(n−1)

for all i, every tangent cone Yy is a metric cone; see [16] and [17, Remark 4.99]. In this
case, the rigid objects are metric cones and the relevant coercive quantity Q is derived
from the volume ratio,

Vol(Br(p))
Vol(Br(p))

, (B.1)
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where p∈Mn and Mn denotes the hyperbolic n-space with curvature identically −1.
The coercivity of Q is guaranteed by the fact that “volume cone implies metric cone”
and its corresponding almost rigidity theorem, which states that almost volume cones
are close in the Gromov–Hausdorff sense to being almost metric cones; see [16] and [17].
The monotonicity of Q is a consequence of the Bishop–Gromov inequality, which asserts
that the volume ratio in (B.1) is a monotone non-increasing function of r.
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[54] Matoušek, J., Lectures on Discrete Geometry. Graduate Texts in Mathematics, 212.
Springer, New York, 2002.

[55] Montefalcone, F., Some relations among volume, intrinsic perimeter and one-
dimensional restrictions of BV functions in Carnot groups. Ann. Sc. Norm. Super.
Pisa Cl. Sci., 4 (2005), 79–128.

[56] Montgomery, R., A Tour of Subriemannian Geometries, their Geodesics and Applica-
tions. Mathematical Surveys and Monographs, 91. Amer. Math. Soc., Providence, RI,
2002.
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