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1. Introduction

The study of the dynamical behavior of transcendental functions, initiated by Fatou in
1926 [F], has enjoyed increasing interest recently. Many intriguing phenomena discov-
ered in polynomial dynamics, relating to the behavior of high-order renormalizations of a
polynomial, occur naturally for transcendental maps. Compare, for example, Shishikura’s
proof that the boundary of the Mandelbrot set has Hausdorff dimension 2 [S] with Mc-
Mullen’s treatment of the Julia set of z 7!λ exp(z) [McM1]. A more recent example is pro-
vided by work of Avila and Lyubich [AL], who proved that a constant-type Feigenbaum
quadratic polynomial with positive measure Julia set would have hyperbolic dimension
less than 2. Work of Urbański and Zdunik [UZ] shows that a similar phenomenon occurs
for the simplest exponential maps.

In this note, we prove a structural theorem for the dynamics near a logarithmic
singularity. On the one hand, this result explains the observation that many Julia sets
of explicit entire transcendental functions bear striking similarities to each other, even
if they are very different from a function-theoretic point of view, compare Figure 1. On
the other hand, it provides a tool to better understand the Julia sets of these functions,
and results in some important rigidity statements required in the study of density of
hyperbolicity [RvS2].

The Eremenko–Lyubich class B is the class of transcendental entire functions for
which the set sing(f−1) of critical and asymptotic values is bounded. We say that two
functions f, g∈B are quasiconformally equivalent near ∞ if there exist quasiconformal
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(a) f1(z)=2(exp(z)−1) (b) f2(z)=(z+1) exp(z)−1 (c) f3(z)=λ sinh z

Figure 1. Images (a) and (b) show the Julia sets of the functions f1 and f2 (in black). Our

results imply that these two functions are quasiconformally conjugate in a neighborhood of
these sets. (Compare Theorem 3.1 and Observation 2.7.) In (c) the black set consists of

points whose orbits under f3 remain in a right half-plane. Again, restricted to this set, f3 is
quasiconformally conjugate to f1. (The Julia set of f3 is underlaid in gray.) Note that the

three maps are function-theoretically diverse: f1 has one asymptotic value, f2 has both an

asymptotic and a critical value, and f3 has two critical values. (In (c), λ=0.575.)

maps ϕ,ψ:C!C such that

ψ(f(z)) = g(ϕ(z)) (1.1)

whenever |f(z)| or |g(ϕ(z))| is large enough. (When (1.1) holds on all of C, the maps
are called quasiconformally equivalent ; compare §2. Quasiconformal equivalence classes
form the natural parameter spaces of entire functions.)

Theorem 1.1. (Conjugacy near infinity) Let f, g∈B be quasiconformally equivalent
near infinity. Then there exist R>0 and a quasiconformal map ϑ:C!C such that

ϑ�f = g�ϑ on JR(f) := {z ∈C : |fn(z)|>R for all n> 1}.

Furthermore, ϑ has zero dilatation on {z∈JR(f):|fn(z)|!∞}.

Remark 1. In fact, our methods are purely local and as such apply to any (not
necessarily globally defined) function that has only logarithmic singularities over infinity.
In particular, they apply to restrictions of certain entire (or meromorphic) functions that
themselves do not belong to class B. We refer the reader to §2 for the precise definition
of the class of functions that is treated.
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(a) f4(z)=exp(z)+� (b) f5(z)=exp(z)

Figure 2. Two functions that are quasiconformally equivalent to the map f1 from Figure 1,

but have very different dynamics: in (a), the Julia set (in gray) is a “pinched Cantor bouquet”,
while in (b) it is the entire complex plane. However, on the sets JR(fj) from Theorem 1.1 (in

black), they are quasiconformally conjugate to (a suitable restriction of) f1. (The parameter

in (a) is given by �=1.0038+2.8999i.)

Remark 2. For functions with non-logarithmic singularities over infinity, the dynam-
ics near infinity may vary dramatically within the same parameter space. For example,
for the function z 7!z−1−exp(z), all points with sufficiently negative real part tend to
−∞ under iteration: the function has a Baker domain containing a left half-plane. On
the other hand, the function z 7!z+1−exp(z) does not have any Baker domains: every
orbit in the Fatou set converges to an attracting fixed point; see [W, §5.3].

Theorem 1.1 can be seen as an analog of a classical theorem of Böttcher which states
that any two polynomials of the same degree d>2 are conformally conjugate near ∞
[M, Theorem 18.10]. We find the generality of our theorem surprising for a number of
reasons. Not only can functions that are quasiconformally equivalent near infinity have
very different function-theoretic properties (recall Figure 1), but more significantly the
behavior near infinity can vary widely between different functions in B. Indeed, for the
function-theoretically simplest functions in this class, such as those shown in Figure 1,
and in fact all functions f∈B of finite order [RRRS, Theorem 1.2], the escaping set

I(f) := {z ∈C : fn(z)!∞} (1.2)

consists entirely of curves. On the other hand, it is is possible for the escaping set of a
hyperbolic function f∈B to contain no non-trivial curves at all [RRRS, Theorem 8.4].
Theorem 1.1 shows that, even for such a “pathological” function, the behavior near
infinity remains the same throughout its quasiconformal equivalence class.

Douady and Hubbard [DH1] used Böttcher’s theorem to introduce dynamic rays,
which have become the backbone of the successful theory of polynomial dynamics. We
believe that our result will likewise be useful in the study of families of transcendental
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functions, even those with such wild behavior as the example mentioned above. Indeed,
one corollary of Theorem 1.1 (Corollary A.1) is that any function that is quasiconformally
equivalent to this example also does not contain any curves in its escaping set.

Another aspect of the theorem’s generality that seems surprising is the statement
about dilatation. It is worth noting that two quasiconformally equivalent functions in
class B may have different orders of growth. (Whether this is possible for functions with
finitely many singular values is a difficult open problem.) Hence the map ϕ in the defi-
nition of quasiconformal equivalence cannot, in general, be chosen to be asymptotically
conformal near infinity. In such a situation, one could imagine that some of the dilata-
tion of the quasiconformal map ϑ would be supported on the escaping set I(f), but by
Theorem 1.1 this is not the case.

In fact, we will show that the map ϑ is essentially unique (more precisely, it is unique
up to an initial choice of isotopy class; compare Corollary 4.2); hence it follows that no
quasiconformal conjugacy between f and g can support dilatation on the set I(f).

Theorem 1.2. (No invariant line fields) A function f∈B supports no invariant line
fields on its escaping set.

Remark 1. This statement has content only in families where the set of escaping
points has positive measure. As far as we know, it is new even for the family

z 7−! a exp(z)+b exp(−z)

of cosine maps, whose escaping sets have positive measure by [McM1].

Remark 2. Showing that the Julia set of a polynomial cannot support an invariant
line field is a major open problem in complex dynamics. In contrast, it is known [EL2]
that there are entire functions with invariant line fields on their Julia sets. In fact, the
example from [EL2] has an invariant line field on I(f)∩J(f), showing that Theorem 1.2
becomes false if the assumption f∈B is dropped.

By the same reasoning, we also obtain further rigidity principles for the set I(f), of
which the following is an important special case.

Theorem 1.3. (Quasiconformal rigidity on escaping orbits) Suppose that f and g

are entire functions with finitely many singular values, and let π be a topological conju-
gacy betweeen f and g. If O={z0, f(z0), f2(z0), ... } is any escaping orbit of f , then the
restriction π|O extends to a quasiconformal self-map of the plane.

While the source of the rigidity here is much softer than in the famous rigidity
results for rational functions (as indicated by the absence of dynamical hypotheses), our
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results provide an essential step in transferring rigidity theorems from the rational to the
transcendental setting. For example, in [RvS1], Theorem 1.2 is used to obtain the absence
of invariant line fields on the Julia sets of a large class of “non-recurrent” transcendental
functions, extending the work of Graczyk, Kotus and Świ

‘
atek [GKŚ]. In [RvS2], our

results are used, together with the work of Kozlovski, Shen and van Strien [KSvS1],
[KSvS2] to establish density of hyperbolicity in certain families of real transcendental
entire functions (including the real cosine family a sinx+b cosx, a, b∈R).

In contrast to the polynomial case, the map ϑ from Theorem 1.1 will generally
not extend to a conjugacy between the escaping sets of f and g [R1, Proposition 2.1].
However, in the case of hyperbolic functions f∈B—i.e., those for which the postsingular
set is compactly contained in the Fatou set—we can do better.

Theorem 1.4. (Conjugacy for hyperbolic maps) Let f, g∈B be quasiconformally
equivalent near infinity , and suppose that f and g are hyperbolic.

Then f and g are conjugate on their sets of escaping points.

Together with recent results of Barański [Ba], our proof of Theorem 1.4 also shows
that, for hyperbolic f∈B of finite order, J(f) can be described as a pinched Cantor
Bouquet ; i.e., as the quotient of a Cantor Bouquet (or “straight brush”) by a closed
equivalence relation on the endpoints. Recently, Mihaljević-Brandt [M-B] has generalized
Theorem 1.4 to a large class of “subhyperbolic” entire functions. In particular, her result
applies to all postcritically finite functions f∈B with no asymptotic values for which
there is some ∆ such that all critical points of f have degree at most ∆.

Structure of the article and ideas of the proofs

We begin in §2 by reviewing some basic properties of Eremenko–Lyubich functions and
introducing the local class Blog. §3 is devoted to the proof of Theorem 1.1, which has
two main ingredients. The first of these is the well-known fact that functions in B are
expanding inside their logarithmic tracts. The second is that the quasiconformal maps
ϕ and ψ do not move points near infinity more than a finite distance with respect to
the hyperbolic metric in a punctured neighborhood of infinity. With these two facts,
most of the theorem can be considered to be a variant of standard conjugacy results for
expanding maps.

However, in order to obtain the statement on dilatation, we need to break the proof
down into two cases: one where both maps f and g are dynamically simple (“disjoint-
type”) functions, and one where the quasiconformal maps ϕ and ψ are in fact affine. (In
the latter case, the quasiconformality of the function ϑ, and the dilatation estimate, will
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be obtained via the “λ-lemma” of [MSS].) Together, these two cases combine to give the
full theorem; compare also the discussion at the end of §3.

The proofs of Theorems 1.2 and 1.3 are given in §4. As already mentioned, they
rely on the fact that the map ϑ is unique in a certain sense (Corollary 4.2). The idea
of the proof can be traced back to the argument of Douady and Goldberg [DG], who
proved that two topologically conjugate real exponential maps with escaping singular
orbits must be conformally conjugate.

To prove Theorem 1.4 in §5, we show that hyperbolic entire functions are expanding
with respect to the hyperbolic metric; the construction of a semi-conjugacy then proceeds
as usual for expanding maps.

In Appendix A, we discuss the relation of our results with some well-known questions
regarding escaping sets posed by Fatou [F] and Eremenko [Er].
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Background and notation

We refer the reader to [M], [Berg], [H] and [LV] for introductions to holomorphic dynam-
ics, plane hyperbolic geometry and quasiconformal mappings.

We denote the complex plane by C and the Riemann sphere by Ĉ=C∪{∞}. All
closures and boundaries will be understood to be taken in C, unless explicitly stated
otherwise. We denote the right half-plane by H:={z∈C:Re z>0} ({Re z>0}, in short)
and the unit disk by D:={|z|<1}; more generally, we write

HQ := {Re z >Q} and DR(z0) := {|z−z0|<R}.

If f :C!C is an entire function, we denote its Julia and Fatou sets by J(f) and
F (f), respectively. Recall that the escaping set I(f) was defined in (1.2).

The set of singular values, S(f), is the closure of the set sing(f−1) of critical and
asymptotic values of f . The Speiser class S and the Eremenko–Lyubich class B⊃S are
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defined as

S := {f :C!C transcendental entire :S(f) finite} and

B := {f :C!C transcendental entire :S(f) bounded}.

2. Preliminaries

The hyperbolic metric

If U⊂C is open and C\U contains at least two points, we denote the density of the
hyperbolic metric in U by %U . We denote the hyperbolic distance and the length in U

by distU and `U , respectively. The derivative of a holomorphic function f with respect
to the hyperbolic metric of U (where defined) will be denoted by

‖Df(z)‖U := |f ′(z)|%U (f(z))
%U (z)

.

Recall [M, Corollary A.8] that, if U is simply connected, then

1
2 dist(z, ∂U)

6 %U (z) 6
2

dist(z, ∂U)
(2.1)

for all z∈U ; we refer to this as the standard estimate on the hyperbolic metric. We also
remind the reader that holomorphic covering maps preserve the hyperbolic metric, and
that Pick’s theorem [M, Theorem 2.11] implies that %U ′(z)>%U (z) for all z∈U ′ if U ′ U .

In §5, we will use the following estimate on the hyperbolic metric in certain multiply-
connected domains.

Lemma 2.1. (Hyperbolic metric in countably punctured sphere) Let {wj}j∈N be a
sequence of points in C, with wj!∞, satisfying |wj+1|6C|wj | for some constant C>1
and all sufficiently large j∈N. Set V :=C\{wj :j∈N}. Then 1/%V (z)=O(|z|) as z!∞.

Proof. By Pick’s theorem, we may disregard finitely many entries in the sequence
and hence suppose that |wj+1|6C|wj | holds for all j∈N. We will estimate the value
%V (z0) at a given point z0∈C from below by using the hyperbolic metric in a suitable
doubly-punctured plane Ua,b :=C\{a, b}. Note that the map

ϕa,b(z) :=
z−a
b−a

is a conformal isomorphism between Ua,b and U0,1. In particular, for all z∈Ua,b we have

%Ua,b
(z) =

%U0,1(ϕa,b(z))
|b−a|

.
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Set a:=|w0| and let z0∈C with |z0|>|a|. Let j be minimal with |wj |>2|z0| and set
b:=wj . Then 2|z0|6|b|62C|z0| by our assumption on the sequence wj , and, in particular,

|z0|6 |b−a|6 3C|z0|.

It follows that |ϕa,b(z0)|62. Hence, setting

K := inf
|z|62

%U0,1(z)> 0,

we see that

%V (z0) > %Ua,b
(z0) =

%U0,1(z0)
|b−a|

>
K

3C|z0|
.

Since z0 was arbitrary with |z0|>|a|, and C and K are constants independent of z0, this
proves the claim.

Tracts and logarithmic coordinates

A domain U⊂C is called an unbounded Jordan domain if the boundary of U on the
Riemann sphere is a Jordan curve passing through ∞.

Suppose that f∈B, and let D⊂C be a bounded Jordan domain chosen such that
S(f)∪{0, f(0)}⊂D (e.g., D=DR(0), where R>1+|f(0)|+maxs∈S(f) |s|). Set W :=C\
D
and U :=f−1(W ). Then each component T of U is an unbounded Jordan domain (called
a tract of f), and f :T!W is a universal covering.

We can perform a logarithmic change of coordinates (see [EL3, §2] or [Berg, §4.8])
to obtain a 2πi-periodic function F :V!H, where H=exp−1(W ) and V=exp−1(U), such
that exp �F=f �exp. We will say that this function F is a logarithmic transform of f .
By construction, the following properties hold:

(A) H is a 2πi-periodic unbounded Jordan domain that contains a right half-plane.
(B) V 6=∅ is 2πi-periodic and Re z is bounded from below in V.
(C) F is 2πi-periodic.
(D) Each component T of V is an unbounded Jordan domain that is disjoint from all

its 2πiZ-translates. For each such T , the restriction F :T!H is a conformal isomorphism
with F (∞)=∞. (T is called a tract of F ; we denote the inverse of F |T by F−1

T .)
(E) The components of V have pairwise disjoint closures and accumulate only at ∞;

i.e., if zn∈V is a sequence converging to some finite point z∈C, then all but finitely many
of the zn belong to a single component of V.
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We will denote by Blog the class of all functions

F :V −!H,

where F , V and H have the properties (A)–(E), regardless of whether F arises as the
logarithmic transform of a function f∈B or not.

Remark. In [RRRS], the class Blog is defined without requiring condition (C).

Note that any F∈Blog extends continuously to 	V by Carathéodory’s theorem. The
Julia set and escaping set of F∈Blog are defined to be

J(F ) := {z ∈ 	V :Fn(z)∈ 	V for all n> 0},

I(F ) := {z ∈J(F ) : ReFn(z)!∞}.

If F is the logarithmic transform of a function f∈B, then exp(I(F ))⊂I(f) and the orbit
of every z∈I(f) will eventually remain in exp(I(F )). For Q>0, we also define

JQ(F ) := {z ∈J(F ) : ReFn(z) >Q for all n> 1},

IQ(F ) := I(F )∩JQ(F ).

If F is the logarithmic transform of f , then clearly exp(JQ(F ))=JeQ(f) (the latter set
was defined in Theorem 1.1).

Expansion and normalization

Let us introduce two important sub-classes of Blog.

Definition 2.2. (Disjoint-type and normalized functions) Let F :V!H belong to the
class Blog.

(a) We say that F is of disjoint type if 	V⊂H.
(b) We say that F is normalized if H=H and, for all z∈V,

|F ′(z)|> 2. (2.2)

Remark. If an entire function f∈B has a logarithmic transform F of disjoint type,
then we will also say that f itself is of disjoint type. In this case, the Fatou set of f
consists of a single immediate basin of attraction, and J(f)=exp(J(F )). The examples
from Figure 1 are of disjoint type, while those in Figure 2 are not.
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Let F :V!H be any element of Blog. It follows easily from (D) and the standard
estimate (2.1) on the hyperbolic metric that

‖DF (z)‖H!∞, as Re z!∞. (2.3)

In particular, by Pick’s theorem, any disjoint-type function F∈B is uniformly expanding
with respect to the hyperbolic metric in H.

The same argument also shows, again for any function F∈Blog, that |F ′(z)|!∞
as ReF (z)!∞; see [EL3, Lemma 1]. In particular, there is R>0 such that (2.2) holds
for all z∈V with ReF (z)>R. By restricting F to the set Ṽ :={z∈V :ReF (z)>R} and
conjugating by z 7!z−R, we obtain the function

F̃ : Ṽ−R−!H,

z 7−!F (z+R)−R.

By construction, this function F̃ is a normalized element of Blog. As we are mostly
concerned with the behavior of F near ∞, we usually deal only with normalized functions.
However, note that a normalization of a disjoint-type map F need not be of disjoint type.

Lemma 2.3. (J(F ) has empty interior) If F∈Blog is normalized or of disjoint type,
then J(F ) has empty interior.

Sketch of proof. This is the same argument as in [EL3, Theorem 1], using the uni-
form expansion of the function F in the Euclidean metric (in the normalized case), resp.
the hyperbolic metric (for disjoint-type maps).

Remark. It follows that for any F∈Blog, JQ(F ) has empty interior for sufficiently
large Q; if F is the logarithmic transform of a function f∈B, then similarly exp(JQ(F ))⊂
J(f) for sufficiently large Q.

It is easy to see that JQ(F ) 6=∅ for all Q; in fact, the following is true.

Proposition 2.4. (Unbounded sets of escaping points [R3, Theorem 2.4]) Let F
be any element of Blog and let T be a tract of F . Then there is an unbounded , closed ,
connected set A⊂T∩I(F ) such that ReF j(z)!+∞, as j!∞, uniformly on A.

Remark. In [R3], the theorem is stated for entire functions in the Eremenko–Lyubich
class, but the proof applies also to functions in Blog. It follows from the results of [R2]
that the set A can be chosen to be forward-invariant, but we do not require this. Compare
[BRS] for the existence of unbounded connected sets of escaping points in more general
situations.
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Corollary 2.5. (Density of escaping sets) Let F∈Blog and Q>0. Then IQ(F ) is
non-empty , and Re z is unbounded from above in IQ(F ).

Furthermore, if Q′>Q is sufficiently large, then

JQ′(F )⊂ IQ(F ).

Sketch of proof. We may assume that F is normalized. The previous proposition
implies that there is Q′>Q+ 1

2π such that, for every M>Q′, there is a point z∈IQ(F )
with Re z=M .

Let z∈JQ′(F ), and note that IQ(F ) is 2πi-invariant. Therefore, for every n>1 we
can find wn∈IQ(F ) with Rewn=ReFn(z) and |Imwn−ImFn(z)|6π.

Pulling wn back along the orbit of z, and using the expansion property (2.2), we
obtain a sequence of points ωn∈IQ(F ) with |ωn−z|6π/2n. Hence z∈IQ(F ), as required.

Quasiconformal equivalence

Following [EL3, §3], two entire functions f, g∈B are called quasiconformally equivalent if
there exist quasiconformal maps ϕ,ψ:C!C with

g�ϕ=ψ�f. (2.4)

The set of all functions g that are quasiconformally equivalent to f can be considered the
natural parameter space of f . (If S(f) is finite, then this set forms a finite-dimensional
complex manifold [EL3, §3].)

Similarly, let us say that two functions F,G∈Blog (with domains V and W) are
quasiconformally equivalent if there are quasiconformal maps Φ,Ψ:C!C such that

(a) Φ and Ψ commute with z 7!z+2πi;
(b) Re Φ(z)!±∞ as Re z!±∞ (and similarly for Ψ);
(c) for sufficiently large R, Φ(F−1(HR))⊂W and Φ−1(G−1(HR))⊂V;
(d) Ψ�F=G�Φ wherever both compositions are defined.
Let ϕ:C!C be a quasiconformal map. Since ϕ is an order-preserving homeomor-

phism fixing ∞, we can define a branch of argϕ(z)−arg z in a punctured neighborhood
of ∞. It is well known [EL3, Lemma 4] that there is some C>1 such that

|z|1/C 6 |ϕ(z)|6 |z|C , (2.5)

|argϕ(z)−arg z|6C log |z| (2.6)
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when z is sufficiently large.(1) Translating this statement into logarithmic coordinates,
we obtain the following fact.

Lemma 2.6. (Hyperbolic distance of pullbacks) Suppose that F,G∈Blog are nor-
malized and quasiconformally equivalent. Then there are constants C>0 and M>0 such
that

distH(F−1
T (z), G−1

T̃
(w)) 6C+ 1

2 distH(z, w)

for all tracts T of F and z, w∈HM , where T̃ is the tract of G containing Φ(F−1
T (HM )).

Sketch of proof. Let Φ and Ψ be the maps from the definition of quasiconformal
equivalence. There are quasiconformal maps ϕ,ψ:C!C such that ϕ�exp=exp �Φ and
ψ�exp=exp �Ψ. Applying (2.5) and (2.6) to ϕ and ψ−1, we easily see that there is
some M0>0 such that distH(z,Φ(z)) and distH(z,Ψ−1(z)) are bounded, say by %, when
z∈HM0 .

By (2.3), we may also choose M1 sufficiently large so that ‖DF (z)‖H >2 when
ReF (z)>M1. Finally, let M>max{M0,M1, R}, where R is as in part (c) of the def-
inition of quasiconformal equivalence, be sufficiently large so that Re z>M0 whenever
Ψ(F (z))∈HM .

If w∈HM , we have G−1

T̃
(w)=Φ(F−1

T (Ψ−1(w))), and hence

distH(F−1
T (z), G−1

T̃
(w)) 6 %+distH(F−1

T (z), F−1
T (Ψ−1(w))) 6 %+ 1

2 distH(z,Ψ−1(w))

6 %+ 1
2 (%+distH(z, w)) = 3

2%+ 1
2 distH(z, w)

when z, w∈HM .

Observation 2.7. (Functions with quasidisk tracts) It is not always easy to check
whether two given functions are quasiconformally equivalent. However, suppose that
U and Ũ are quasidisks whose boundaries contain ∞. Let f :U!W and g: Ũ!W be
universal covering maps (where again W=C\
D for a bounded Jordan domain D) that
extend continuously to the boundary of U (resp. Ũ) in C.

Then we can pick a conformal isomorphism ϕ:U!Ũ such that g�ϕ=f . Because U
and Ũ are quasidisks, ϕ extends to a quasiconformal map ϕ:C!C (see [LV, Satz 8.3] or
[H, §4.9]).

Hence, if f, g∈B are such that f−1({|z|>R}) and g−1({|z|>R|}) are quasidisks for
large R, then f and g are quasiconformally equivalent near infinity. More generally, if
F :V!H is a function in Blog such that exp(V) is a quasidisk, then F is quasiconformally
equivalent to any function G∈Blog with the same property. The tracts of the functions
in Figures 1 and 2 are all quasidisks.

(1) While there surely is a classical reference for (2.6), we were unable to locate one; Eremenko
and Lyubich refer to [LV], but we did not find it there. A short proof can be found in [vS, Lemma 4.1].
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External addresses

Let F∈Blog. We say that z, w∈J(F ) have the same external address (under F ) if, for
every n>0, the points Fn(z) and Fn(w) belong to the closure of the same tract Tn of F .

The sequence s=T0T1T2 ... is called the external address of z (and w) under F ;
compare [RRRS] for a more detailed discussion.

Lemma 2.8. (Expansion along orbits) Suppose that F∈Blog is normalized. If z and
w have the same external address under F , then

|Fn(z)−Fn(w)|> 2n|z−w|

for all n>0.

Proof. This is a direct consequence of the expansion property (2.2).

Further properties of quasiconformal maps

Throughout the article, we require a number of well-known properties of quasiconformal
maps. We collect a few of these here for the reader’s convenience. By convention, the
“dilatation” of a quasiconformal map ψ will always mean the complex dilatation; that is,

dil(ψ) =
∂̄ψ

∂ψ
.

Proposition 2.9. (Compactness of quasiconformal mappings [LV, §II.5 and §IV.5])
Consider a sequence Ψn:C!C of quasiconformal maps, and suppose that there is a
dense set E⊂C such that {Ψn}n∈N stabilizes on E; i.e., for all z∈E there is n0 such
that Ψn(z)=Ψn0(z) for all n>n0.

If the maximal dilatation of the maps Ψn is bounded independently of n, then the
sequence Ψn converges locally uniformly to a quasiconformal map Θ:C!C.

If furthermore the complex dilatations dil(Ψn) converge pointwise almost everywhere,
then their limit agrees with dil(Θ) almost everywhere.

Proposition 2.10. (Royden’s glueing lemma [Bers, Lemma 2], [DH2, Lemma 2])
Suppose that U⊂C is open and that ϕ:U!ϕ(U)⊂C is quasiconformal. Suppose further-
more that ψ:C!C is a quasiconformal map such that the function

ϑ:C−!C,

z 7−!
{
ϕ(z), if z ∈U ,
ψ(z), otherwise.

is a homeomorphism. Then ϑ is quasiconformal.



248 l. rempe

Proposition 2.11. (Quasiconformal maps of an annulus [L]) Let A,B⊂C be two
bounded annuli , each bounded by two Jordan curves. Suppose that ψ,ϕ:C!C are qua-
siconformal maps such that ψ maps the inner boundary α− of A to the inner boundary
β− of B, and ϕ takes the outer boundary α+ of A to the outer boundary β+ of B.

Let z∈α− and w∈α+, let γ be a curve in A connecting z and w, and let γ̃ be a
curve connecting ψ(z) and ϕ(w) in B.

Then there is a quasiconformal map ϕ̃:C!C that agrees with ψ on the bounded
component of C\A and with ϕ on the unbounded component of C\A, and such that
ϕ̃(γ) is homotopic to γ̃ relative to ∂B.

Remark. The statement about the homotopy class is not made in [L], but follows
directly from the proof. (Alternatively, ϕ̃ can be obtained from any quasiconformal map
that interpolates ψ and ϕ by postcomposition with a suitable Dehn twist.)

Let us also formulate the translation of the preceding result to logarithmic coordi-
nates, since we frequently use it in this setting.

Corollary 2.12. (Interpolation of quasiconformal maps) Suppose that H and H ′

are 2πi-periodic, unbounded Jordan domains, both containing some right half-plane, with
�H ′⊂H.

Suppose that Ψ,Φ:C!C are quasiconformal maps, commuting with translation by
2πi, such that Φ(H ′)⊂Ψ(H). Then there is a quasiconformal map Φ̃:C!C that agrees
with Ψ on C\H, agrees with Φ on H ′ and commutes with translation by 2πi.

Finally, we will use the “λ-lemma” for holomorphic motions, as developed in [MSS]
and improved in [BR]; compare [H, §5.2].

Proposition 2.13. (λ-lemma [BR, Theorem 1]) Let E⊂C and R>0, and suppose
that the functions

hλ:E−!C, λ∈DR(0),

are injective, with h0=id, and furthermore depend holomorphically on λ for fixed z∈E.
(Under these assumptions, we say that the hλ form a holomorphic motion of the set E.)

Then each hλ extends to a quasiconformal self-map of the plane. The complex di-
latation of this map is bounded by |λ|/R.

Remark 1. [H, §5.2] even establishes the stronger fact, due to S lodkowski, that the
extensions of the hλ can themselves be chosen to depend holomorphically on λ.

Remark 2. If each hλ commutes with translation by 2πi, then the extension can
also be chosen with this property. (Apply the above theorem to the holomorphic motion
gλ of exp(E)∪{0} defined by gλ(0)=0 and gλ(exp(z)):=exp(hλ(z)).)
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3. Conjugacy near infinity

In this section, we prove Theorem 1.1. We begin by treating the special case where both
maps are of disjoint type.

Theorem 3.1. (Conjugacy between disjoint-type maps) Suppose that two functions
in Blog,

F :V!H and G: Φ(V)!Ψ(H)

are quasiconformally equivalent , Ψ�F=G�Φ. Suppose furthermore that F and G are of
disjoint type; i.e., 	V⊂H and Φ(V)⊂Ψ(H).

Then there is a quasiconformal map Θ:C!C with the following properties:
(a) Θ|V is isotopic to Φ|V relative to ∂V;
(b) Θ is a conjugacy between F and G; i.e. Θ�F=G�Θ on V;
(c) dil(Θ)=0 almost everywhere on J(F );
(d) Θ(z+2πi)=Θ(z)+2πi.

Proof. By Corollary 2.12 (picking a 2πi-invariant unbounded Jordan domain H ′

with V⊂H ′ and Φ(H ′)⊂Ψ(H)), we can find a quasiconformal map Φ̃:C!C such that Φ̃
agrees with Φ on V and with Ψ on C\H (and such that Φ̃ still commutes with addition by
2πi). Since Φ and Φ̃ agree on the domain of definition of F , we clearly have Ψ�F=G�Φ̃.

In analogous manner, we can modify Ψ to a quasiconformal map Ψ0:C!C that is
conformal on a neighborhood of 	V, agrees with Ψ on C\H, and commutes with addition
by 2πi. (Compare also the main result of [L].) Note that we are not claiming that this
modified map Ψ0 will satisfy the same functional equation as Ψ.

By the Alexander trick, the isotopy class of a homeomorphism between two Jordan
domains is determined by its boundary values (compare also [H, Proposition 6.4.9]).
Hence the maps Ψ|H , Φ̃|H and Ψ0|H all belong to a single isotopy class relative to ∂H.

We now define a sequence of maps Ψn:C!C inductively, starting with Ψ0, by setting

Ψn+1|T :=G−1
Φ(T )�Ψn�F |T

for every tract T of F , and
Ψn+1|C\V := Φ̃|C\V .

Clearly each Ψn is a homeomorphism (recall that the components of V accumulate
only at infinity by definition). By the glueing lemma (Proposition 2.10), it follows that
each Ψn is quasiconformal. Since F and G are holomorphic, the maximal dilatation of
Ψn depends only on that of Ψ0 and Φ̃, and is hence bounded independent of n.

Furthermore, Ψn|H is isotopic to Ψ|H relative to ∂H for all n. This implies that the
maps Ψn+1|V and Φ|V are isotopic relative to ∂V.
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By construction, Ψn�F=G�Ψn+1, and Ψn and Ψn+1 agree outside the set F−n(H),
so the sequence Ψn stabilizes on the set

C\
∞⋂

n=0

F−n(H) =C\J(F ).

By Lemma 2.3, C\J(f) is a dense subset of C, and it follows from Proposition 2.9 that
the Ψn converge to some quasiconformal map Θ:C!C with Θ�F=G�Θ.

The dilatations of the maps Ψn stabilize on the set C\J(F ), but on the other hand
each Ψn is conformal on a neighborhood of J(F ), so that its complex dilatation is zero
there. In particular, the dilatations converge pointwise, and it follows from the second
part of Proposition 2.9 that dil(Θ)=0 almost everywhere on J(F ).

Furthermore, Θ|V belongs to the isotopy class of Φ|V relative to ∂V. Since each Ψn

has Ψn(z+2πi)=Ψn(z)+2πi, the same is true of Θ.

Now let
F0:V −!H

be an arbitrary normalized function in Blog. We consider the one-dimensional family

F�: (V−�)−!H,

z 7−!F0(z+�),

where �∈C. Note that all maps F� are normalized. We will now prove Theorem 1.1 for
this family, which implies the general statement when combined with Theorem 3.1; see
Corollary 3.5 below.

For given �∈C, we define maps Θn=Θ�

n by Θ0(z):=z and

Θn+1(z) := (F0)−1
T (Θn(F0(z)))−�

(whenever defined), where T is the tract of F0 containing z. In other words, Θn is
obtained by iterating forward n times under F0, and then taking the corresponding
pullbacks under F�.

Theorem 3.2. (Convergence to a conjugacy) Let �∈C and let Q>2|�|+1. Then
the functions Θn are defined and continuous on JQ(F0), where they converge uniformly
to a map

Θ = Θ�:JQ(F0)−! J(F�)

that satisfies Θ�F0=F� �Θ,
|Θ(z)−z|6 2|�| (3.1)

and is a homeomorphism onto its image.
For fixed Q>1 and z∈JQ(F0) the function � 7!Θ�(z) is holomorphic on D(Q−1)/2.
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Proof. The functions Θn are clearly continuous where defined. Let us show induc-
tively that Θn(z) is defined and

|Θn(z)−z|6 2|�| (3.2)

whenever z∈JQ(F0). Indeed, for such z we have ReF0(z)>Q>2|�|+1, so the induction
hypothesis implies that Θn(F0(z))∈H, and thus Θn+1(z) is defined. Furthermore, by the
expansion property (2.2) of F0 and the induction hypothesis, we see that

|Θn+1(z)−z|= |(F0)−1
T (Θn(F0(z)))−�−(F0)−1

T (F0(z))|

6 1
2 |Θn(F0(z))−F0(z)|+|�|6 |�|+|�|= 2|�|,

as required.
Using (3.2), we see that

|Θn+k(z)−Θn(z)|= |(F0)−1
T (Θn−1+k(F0(z)))−(F0)−1

T (Θn−1(F0(z)))|

6
1
2
|Θn−1+k(F0(z))−Θn−1(F0(z))|6 ...6

1
2n
|Θk(Fn

0 (z))−Θ0(Fn
0 (z))|6 2|�|

2n
.

Hence the functions Θn form a Cauchy sequence, and thus converge to some function

Θ = Θ�:JQ(F0)−! J1(F�)

satisfying (3.1) and Θ�F0=F� �Θ. Since the convergence is locally uniform in � and each
Θn is holomorphic in �, the map Θ likewise depends holomorphically on �.

It remains to verify that Θ has the stated properties. Note that, by definition of Θ,
the external address s̃ of Θ(z) under F� is determined uniquely by the external address
s of z under F0. Indeed, if s=T1T2 ... , then s̃=T̃1T̃2 ... , where T̃j =Tj−�.

To see that Θ is injective, suppose that Θ(z)=Θ(w). Then z and w have the same
external address under F0, and by (3.1) their orbits are never separated by more than
4|�|. By Lemma 2.8, this is impossible unless z=w; so Θ is indeed injective.

Furthermore, limz!∞ Θ(z)=∞, again by (3.1), so Θ extends to a continuous injec-
tive map on the compact space JQ(F0)∪{∞}, and thus is a homeomorphism onto its
image.

Lemma 3.3. (Image of Θ) Let �∈C, and let Q and Θ be as in the preceding theorem.
Then Θ(JQ(F0))⊃J2Q(F�).

Proof. Set G0 :=F� and consider the family Gλ(z):=G0(z+λ). Then F0=G−�.
Applying Theorem 3.2 to this family, we obtain a map Θ′:JQ(F�)!J(F0) satisfying
Θ′
�F�=F0�Θ′ and (3.1). Now, if w∈J2Q(F�), then z :=Θ′(w) satisfies

ReF k(z) > ReF k(w)−2|�|> 2Q−2|�|>Q.
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So z∈JQ(F0). The points w and w′ :=Θ(z) have the same external address under F�.
Furthermore, F k

�
(w′)=Θ(F k

0 (z)) and F k
0 (z)=Θ′(F k

�
(w)) for all k, and hence

|F k
�

(w)−F k
�

(w′)|6 |F k
�

(w)−Θ′(F k
�

(w))|+|F k
0 (z)−Θ(F k

0 (z))|6 4K.

So, by Lemma 2.8, we have w=w′=Θ(z)∈Θ(JQ(F0)), as required.

Theorem 3.4. (Quasiconformal extension and dilatation of Θ) Let �∈C, and let Q
and Θ be as in Theorem 3.2. Then Θ extends to a quasiconformal map Θ:C!C. This
extension can be chosen such that Θ(z+2πi)=Θ(z)+2πi, and such that Θ|V is isotopic
to Φ(z):=z−� relative to ∂V.

Furthermore, the maximal dilatation of Θ on JQ′(F0) tends to zero as Q′!∞. In
particular , the dilatation of Θ is zero almost everywhere on I(F0)∩JQ(F0).

Proof. For abbreviation, let us set J�Q :=JQ(F�), and also write JQ :=J0
Q. Then the

functions Θ=Θ� define a holomorphic motion of the set JQ. By the λ-lemma (Propo-
sition 2.13), each of these functions extends to a quasiconformal self-map Θ� of the
plane.

As pointed out in Remark 2 after Proposition 2.13, Θ can be chosen to commute
with translation by 2πi. Also, by (3.1),

Θ(F0(JQ))⊂
H1,

so we can use Corollary 2.12 to obtain a quasiconformal map Θ′:C!C that agrees with
Θ on F0(JQ), but is the identity on C\H (and is hence isotopic to the identity relative
to ∂H). Consider the map Θ′′, defined by

Θ′′(z) := (F0)−1
T (Θ′(F0(z)))−�

when z belongs to a tract T of F , and Θ′′(z)=Φ(z) otherwise. This map is quasiconfor-
mal, isotopic to Φ relative to ∂V, and agrees with Θ′, and hence with Θ, on JQ(F0).

To discuss dilatation, recall from Theorem 3.2 that the maps Θ�|JQ′ , for Q′>Q,
define a holomorphic motion over the disk D(Q′−1)/2(0) in � -space. It follows from the
dilatation statement in the λ-lemma that Θ|JQ′ extends to a quasiconformal map with
dilatation bounded by 2|�|/(Q′−1). In particular,

dil(Θ) 6
2|�|
Q′−1

a.e. on JQ′(F0);

clearly this bound tends to 0 as Q′!∞, as claimed.
Finally, recall that we have

Θ�Fn
0 =Fn

�
�Θ
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on JQ. Since F0 and F� are holomorphic, we see that (for Q′>Q) the maximal dilatation
of Θ on

Xn
Q′ := {z ∈JQ :Fn

0 (z)∈JQ′}

is the same as the maximal dilatation of Θ on JQ′ , which tends to 0 as Q′!∞. Since
the bound is independent of n, the same is true for

XQ′ :=
∞⋃

n=0

Xn
Q′ .

But IQ(F0)=
⋂

Q′>QXQ′ , so the dilatation of Θ on IQ(F0) is zero, as required.

We are now ready to prove Theorem 1.1, which we restate (with some additional
details) in logarithmic coordinates.

Corollary 3.5. (Conjugacy between quasiconformal equivalent maps) Suppose
that F,G∈Blog are quasiconformally equivalent , Ψ�F=G�Φ. For sufficiently large Q>0,
there exists a quasiconformal map Θ such that

(a) Θ|V is isotopic to Φ|V relative to ∂V (where V is the domain of F );
(b) Θ�F=G�Θ on JQ(F );
(c) Θ(JQ(F ))⊃JQ′(G) for some Q′>Q;
(d) the dilatation of Θ is zero on JQ(F )∩I(F );
(e) Θ(z+2πi)=Θ(z)+2πi.

Proof. Let W be the domain of G. By restriction and conjugation, as discussed in
§2, we may suppose without loss of generality that F and G are normalized, and that
Φ(V)⊂W.

Choose K,L>0 sufficiently large so that

F0:

=:V0︷ ︸︸ ︷
V+K−!H,

z 7−!F (z−K)

and G0:

=:W0︷ ︸︸ ︷
W+L−!H,

z 7−!G(z−L)

are of disjoint type, and that furthermore Φ(V)+L⊂Ψ(H).
Now we can apply Theorem 3.1 to obtain a quasiconformal conjugacy Θ2 between

F0 and G0.
Furthermore, we can apply Theorems 3.2 and 3.4 to F and F0, as well as to G and

G0, obtaining quasiconformal maps Θ1 and Θ3. It is easy to check that the function

Θ := Θ−1
3 �Θ2�Θ1

has the required properties.



254 l. rempe

Proof of Theorem 1.1. Suppose that f, g∈B are quasiconformally equivalent near
infinity, i.e.

ψ(f(z)) = g(ϕ(z)) (3.3)

whenever |f(z)| or |g(ϕ(z))| is large enough, with ϕ,ψ:C!C quasiconformal. Without
loss of generality, we may assume that ϕ(0)=0 and ψ(0)=0 (otherwise we modify these
maps inside some bounded disk, using Proposition 2.11).

Pick a logarithmic transform F :V!H, where the disk D=C\exp(H) is chosen
sufficiently large to ensure that (3.3) holds for z∈exp(V). Let Φ:C!C and Ψ:C!C be
lifts of ϕ and ψ, respectively, under the exponential map. Then

G := Ψ�F �Φ−1

is a logarithmic transform of g, and F and G are quasiconformally equivalent by defi-
nition. (Note that we are not claiming that all logarithmic transforms of f and g are
quasiconformally equivalent.) We define ϑ by ϑ(exp(z)):=exp(Θ(z)), where Θ is the map
from the previous theorem, and are done.

We subdivided the proof of Theorem 1.1 into two steps, using Theorem 3.1 to reduce
the problem to the simpler family F�. We remark that this would not be necessary if we
were willing to forgo the statement that the dilatation of ϑ on the escaping set is zero.

Indeed, we can adapt the proof of Theorem 3.2 to construct a suitable map Θ for
any two quasiconformally equivalent functions F,G∈Blog, as follows.

Letting Ψ and Φ denote the maps from the definition of quasiconformal equivalence,
we set Θ0(z):=z and define Θn inductively as follows. If T is a tract of F and T̃ is the
tract of G that contains Φ(F−1

T (HM )) for sufficiently large M , we define, for z∈T ,

Θn+1(z) :=G−1

T̃
(Θn(F (z)))

(where defined).
By virtue of Lemma 2.6, the proof of Theorem 3.2 goes through as before if we replace

uniform convergence in the Euclidean metric by uniform convergence in the hyperbolic
metric. That is, for sufficiently large Q, the maps Θn are all defined on JQ(F ) and
converge uniformly to a map Θ:JQ(F )!J(G) that is a homeomorphism onto its image.

It is important to observe that, for fixed F , the convergence is uniform not only
in z but also in G if Φ and Ψ range over a compact set of quasiconformal mappings.
Hence it follows that the conjugacy Θ still depends holomorphically on G (which was not
immediately clear from our original proof of Corollary 3.5). We state this result formally
for future reference.
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Proposition 3.6. (Analytic dependence on parameters) Let f∈B and let M be a
finite-dimensional complex manifold , with a base point λ0∈M . Suppose that {fλ}λ∈M is
a family of entire functions quasiconformally equivalent to f , with the equivalences given
by ψλ�f=fλ�ϕλ, where ψλ0 =ϕλ0 =id, and ϕλ and ψλ depend analytically on λ.

Let N3λ0 be a compact subset of M . Then there exists a constant R>0 such that ,
for every λ∈N , there is an injective function ϑ=ϑλ:JR(f)!J(fλ) with the following
properties:

(a) ϑλ0 =id;
(b) ϑλ

�f=fλ�ϑ
λ;

(c) for fixed z∈JR(f), the function λ 7!ϑλ(z) is analytic in λ (on the interior of N).

In particular, we can again use the λ-lemma to show that ϑλ has a quasiconformal
extension, as in Theorem 3.4. If one was able to furnish a direct proof of the statement
that the dilatation on the escaping set is zero—our argument used the fact that the
parameter space of the family F� is a parabolic surface, and hence does not generalize—
then Theorem 3.1 would no longer be required for the proof of Theorem 1.1.

It is not difficult to show directly that the map Θ constructed above agrees with the
map from Corollary 3.5. (In particular, it does have zero dilatation on the escaping set.)
This also follows from the results proved in the next section (see Corollary 4.2).

4. Rigidity

Let us now show that a (not necessarily quasiconformal) conjugacy between two quasicon-
formally equivalent maps F,G∈Blog only moves escaping orbits by a bounded hyperbolic
distance, provided that it “preserves combinatorics” (condition (d) below). This, to-
gether with the existence results from the previous section, will allow us to deduce a
number of rigidity statements (Corollaries 4.2 and 4.3 and Theorems 1.2 and 1.3).

Theorem 4.1. (Restriction on conjugacies) Let F,G∈Blog be normalized and qua-
siconformally equivalent , say Ψ�F=G�Φ. Suppose that Q>0 and that Π:JQ(F )!J(G)
is continuous such that

(a) Π�F=G�Π;
(b) Π(z)!∞ as z!∞;
(c) Π(z+2πi)=Π(z)+2πi;
(d) for every z∈JQ(F ), Π(z) and Φ(z) belong to the same tract of G.

If Q′ is sufficiently large, then the hyperbolic distance distH(z,Π(z)) is uniformly
bounded on JQ′(F ).
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Remark. The hypothesis that Π is defined on JQ(F ) can be considerably weakened
(with the same proof). For example, it would be sufficient to assume that Π is defined
and continuous on a forward invariant set A⊂JQ(F ) with the property that A contains
the grand orbit (in JQ(F )) of at least one sufficiently large point z0.

Proof. Let C,M>0 be the constants from Lemma 2.6; by enlarging M if necessary,
we may assume that M>Q. By Corollary 2.5, we can choose some point z0∈JQ(F ) such
that Re z0>M and Re Π(z0)>M ; we set

% := max{2C,distH(z0,Π(z0))}.

Set Q′ :=e% Re(z0)+2π>Q+2π. We will show that

distH(z,Π(z)) 6 % for all z ∈JQ′(F ).

Claim. For every z∈JQ′(F ), there is a point ζ∈JQ(F ), belonging to the same tract
of F as z, with |z−ζ|<2π and F (ζ)∈{z0+2πik :k∈Z}.

Proof of the claim. F maps the boundary of the tract T containing z to the imag-
inary axis, and the distance of z to ∂T is at most π. Since ReF (z)>Q′>Re z0, we
can hence find a point ζ1∈T with |z−ζ1|<π and ReF (ζ1)=Re z0. There is a point
ζ2∈{z0+2πik :k∈Z} with |F (ζ1)−ζ2|6π. We set ζ :=F−1

T (ζ2). By the expansion prop-
erty (2.2) of F , we have |ζ−ζ1|6 1

2π, and are done.

Now let z∈JQ′(F ). For each n>0, we can apply the claim to Fn(z) to obtain a
point ζn∈JQ(F ) with |Fn(z)−ζn|<2π and F (ζn)∈{z0+2πik :k∈Z}. We now pull back
ζn along the orbit of z to obtain a point zn; i.e.,

zn =F−1
T0

(F−1
T1

(... F−1
Tn−1

(ζn) ... )),

where T0T1 ... is the external address of z. By induction and by the expansion property
(2.2), we have

|F j(z)−F j(zn)|< 2π
2n−j

(4.1)

for j=0, ..., n. In particular, zn∈JQ(F ) and zn!z.
We set zn

j :=F j(zn) and wn
j :=Π(zn

j )=Gj(Π(zn)). Let us prove inductively that

distH(zn
j , w

n
j ) 6 % (4.2)

for j=n+1, n, ..., 0. Indeed, we have zn
n+1=z0+2πik for some k∈Z, and hence

distH(zn
n+1, w

n
n+1) = distH(z0,Π(z0)) 6 %,
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by property (c) and the definition of %.
Furthermore, for j6n, we have

wn
j = (G|T̃ )−1(wn

j+1),

where T̃ is the tract of G containing wn
j . By the assumption (d), T̃ is also the tract of

G containing Φ(zn
j ).

We observe that zn
j+1, w

n
j+1∈HM . Indeed, if j=n, this is true by the choice of z0.

If j<n, recall that Re zn
j+1>Q′−2π by (4.1), and distH(zn

j+1, w
n
j+1)6% by the induction

hypothesis. Our choice of Q′ implies that Rewj+1>Re z0>M .
By Lemma 2.6 and the induction hypothesis, it follows that

distH(zn
j , w

n
j ) 6C+ 1

2 distH(zn
j+1, w

n
j+1) 6C+ 1

2%6 %,

as claimed.
We have zn

0 =zn!z, and hence, by continuity of Π, also wn
0 =Π(zn

0 )!Π(z). There-
fore (4.2) implies that distH(z,Π(z))6%, as desired.

Corollary 4.2. (Uniqueness of conjugacies) Let F and G be quasiconformally
equivalent. Then for every Q>0, there is Q′>Q with the following property. If

Π1,Π2:JQ(F )−! J(G)

are continuous functions satisfying the hypotheses (a)–(d) of the previous theorem, then
Π1(z)=Π2(z) for all z∈JQ′(F ).

Proof. We may assume without loss of generality that F and G are both normalized.
Let Q′>Q be chosen such that JQ′(F )⊂IQ(F ) (recall Corollary 2.5).

It follows from Theorem 4.1 that there is Q′′>Q such that, for all z∈JQ′′(F ), the
points Π1(z) and Π2(z) have the same external address, and stay within bounded hy-
perbolic distance of each other. By the expansion property (2.3) of G, this implies that
Π1(z)=Π2(z) (provided Q′′ was chosen large enough).

So we have proved that Π1=Π2 on JQ′′(F ). Using (d), we see that Π1=Π2 on IQ(F ).
But IQ(F ) is dense in JQ′(F ), so we are done.

Corollary 4.3. (No invariant line fields) Let F∈Blog. Then F has no invariant
line fields on its escaping set I(F ).

Proof. Recall that the existence of an invariant line field is equivalent to the existence
of a non-zero F -invariant Beltrami form whose support is contained in I(F ) [McM2, §3.5].
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So suppose that µ was such a Beltrami form. Recall that

I(F ) =
⋂

Q>0

⋃
n>0

F−n(JQ(F )).

Since F is holomorphic, this implies that there is no Q>0 such that µ|JQ(F ) is zero almost
everywhere. Also observe that 2πi-periodicity of F implies that µ is 2πi-periodic.

By the measurable Riemann mapping theorem [H, Theorem 4.6.1], µ gives rise to
a quasiconformal homeomorphism Φ:C!C, which we may choose to commute with
translation by 2πi. The map

G := Φ�F �Φ−1

is holomorphic, and clearly quasiconformally equivalent to F .
By Corollary 3.5, there is a quasiconformal map Θ, isotopic to Φ relative to the

boundary of the domain of definition V of F , which conjugates F and G on JQ(F ),
where Q>0 is sufficiently large.

By Corollary 4.2, we then have

Θ|JQ′ (F ) = Φ|JQ′ (F )

for sufficiently large Q′. Hence the dilatation of Θ and Φ agree almost everywhere on
IQ′(F ). This is a contradiction: the dilatation of Θ on IQ′(F ) is zero almost everywhere,
but this is false for the dilatation µ of the map Φ.

Proof of Theorem 1.2. Let f∈B, and let F be a logarithmic transform of f . If f
supported an invariant line field on its escaping set, then the same would be true for F .
(As in the proof of Corollary 4.3, the support of the line field has non-trivial intersection
with every set of the form {z∈I(f):|fn(z)|>R}, R>0.) Hence the theorem follows from
Corollary 4.3.

Proof of Theorem 1.3. Suppose that f and g are entire functions with finitely many
singular values, let π:C!C be a topological conjugacy betweeen f and g, and let O be
the orbit of some escaping point z0∈I(f).

For simplicity, let us assume that f(0)=0, and that π(0)=0. This is no loss of
generality, since any f∈B has infinitely many fixed points (see [Ep, Lemma 69] or [EL1];
compare also [LZ] for a more general result). However, we would like to point out that
this assumption is not essential for the proof, and is made purely for convenience.

Let S :=S(f)∪{0}. We can pick a quasiconformal homeomorphism (in fact, a dif-
feomorphism) ψ:C!C that is isotopic to π relative to S. Using the functional relation
π�f=g�π, the isotopy between π and ψ lifts to an isotopy between π and a quasiconfor-
mal map ϕ:C!C with

ψ�f = g�ϕ.
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(Compare also [EL3, §3].) In particular, f and g are quasiconformally equivalent.
Now, as usual, we change to logarithmic coordinates: we let F :V!H be a logarith-

mic transform of F , and Π be a lift of π; i.e., π�exp=exp �Π. Then G:=Π�F �Π−1 is a
logarithmic transform of g.

The isotopies between π and ψ, resp. ϕ, lift to isotopies between Π and maps Ψ,
resp. Φ, satisfying Ψ�F=G�Φ, so F and G are quasiconformally equivalent as elements
of Blog.

Furthermore, if M>0 is sufficiently large, then no point z∈HM leaves the domain
H under the isotopy between Π and Ψ. It follows that, if T is a tract of F and z∈T with
F (z)∈HM , then Φ(z)∈Π(T ).

Let Θ be the map from Corollary 3.5. Then, by Corollary 4.2, we have

Θ|JQ′ (F ) = Π|JQ′ (F )

for some Q′>0. If ϑ is the quasiconformal map defined by ϑ�exp=exp �Θ, then ϑ and π
agree on the set

JeQ′ (f) = {z ∈C : |fn(z)|> eQ′
for all n> 1}.

Pick k0∈N such that fk0(z0)∈JeQ′ (f). Then π agrees with the quasiconformal map
ϑ on the tail Ok0 :={fk(z0):k>k0} of the orbit O.

We can modify the map ϑ (e.g. using Proposition 2.11) on a compact subset of
C\Ok0 to a quasiconformal function that maps fk(z0) to π(fk(z0)) for 06k<k0. This
is the desired quasiconformal extension of π|O.

Remark. Note that the assumption that S(f) is finite was used only to find a qua-
siconformal map ψ isotopic to π. Hence we can weaken the assumptions of Theorem 1.3
to require only that f, g∈B and that the conjugacy π is isotopic, relative to S(f), to a
quasiconformal self-map of the plane.

5. Hyperbolic maps

Recall that f∈B is hyperbolic if S(f) is contained in the union of attracting basins
of f . Since S(f) is compact by definition, there are then only finitely many such basins,
which together make up the Fatou set. In particular, f is hyperbolic if and only if the
postsingular set

P(f) =
⋃
j>0

f j(S(f))

is a compact subset of the Fatou set.
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In the following, we assume without loss of generality that 0 is one of the attracting
periodic points of f .

We will show that such an f is semi-conjugate on its Julia set to a disjoint-type map
quasiconformally equivalent to f , and this semi-conjugacy is a conjugacy when restricted
to the escaping set. In view of Theorem 3.1, this implies that any two hyperbolic maps
that are quasiconformally equivalent near infinity are in fact topologically conjugate on
their sets of escaping points, and hence proves Theorem 1.4.

It is easy to see that there is a bounded open neighborhood U of the postsingular
set P(f) such that f(U)⊂U . We set W :=C\
U and V :=f−1(W )⊂W . Then

f :V −!W

is a covering map, and hence expands the hyperbolic metric of W . We claim that this
map is in fact uniformly expanding. (Compare also [RS, Theorem C].)

Lemma 5.1. (Uniform expansion) There is C>1 such that ‖Df(z)‖W >C for all
z∈V .

Proof. Since f is a covering map, we just need to show that the inclusion ι:V!W
is uniformly contracting. Since the density of the hyperbolic metric of V tends to ∞ near
∂V , and V and W have no common finite boundary points, it is sufficient to prove that
%W (z)/%V (z)!0 as z!∞.

The hyperbolic density of W satisfies %W (z)=O(1/|z| log |z|) as z!∞. We now
estimate the hyperbolic metric of V , using Lemma 2.1. Fix some point w∈C\W=
U
such that w belongs to the unbounded component of C\S(f).

Claim. There is a constant C and a sequence {wj}j∈N of (pairwise distinct) preim-
ages of w under f such that |wj+1|6C|wj | for all j.

Proof of the claim. Pick a Jordan curve γ surrounding S(f), but not surrounding
w, and let G be the unbounded component of C\γ. If G̃ is a component of f−1(G), then
f : G̃!G is a universal covering. Hence we can find a sequence {wj}j∈N of preimages of
w in G̃ such that the hyperbolic distance (in G̃) between wj and wj+1 is constant. By
the standard estimate (2.1) on the hyperbolic distance in the simply connected domain
G̃, this implies that |wj+1|6C|wj | for some C and sufficiently large j, as desired.

By Lemma 2.1, the hyperbolic metric of the domain V ′ :=C\{wn :n∈N} satisfies
1/%V ′(z)=O(|z|). Since %V >%V ′ by Pick’s theorem, this means that %W (z)/%V (z)!0 as
z!∞, as claimed.

Let K>1; if K is chosen sufficiently large, then 
U⊂DK/2(0). Furthermore, choose
R>K such that

f−1({|z|>R})⊂{|z|>K+1}.
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We define M :=R/K and g(z):=f(z/M). Then g is of disjoint type. Indeed, we have
U :=g−1({|z|>R})⊂{|z|>R+M}. We define

V := f−1({|z|>R}) and Ṽ := f−1({|z|>K}),

and, for all j,

Uj := g−j({|z|>R}), Vj := f−j({|z|>R}) and Ṽj := f−j({|z|>K}).

Note that Vj⊂Ṽj⊂W for all j.
We now define a sequence ϑk, where ϑ0=id and

ϑk:Uk−1−! Ṽk−1

is a conformal isomorphism for k>1, such that

f(ϑk+1(z)) =ϑk(g(z)).

Begin by setting ϑ1(z):=z/M . Furthermore, for z∈U0, let γ1(z)⊂Ṽ0 be the straight
line segment connecting z=ϑ0(z) and z/M=ϑ1(z).

To define ϑ2 let z∈U1. Since

f(ϑ1(z)) =ϑ0(g(z)),

the curve γ1(g(z)) has a preimage component γ2(z)⊂Ṽ1 under f with one endpoint at
ϑ1(z); we define ϑ2(z) to be the other endpoint. Then f(ϑ2(z))=ϑ1(g(z)).

We continue inductively: the curve γj+1(z)⊂Ṽj is the pullback of γj(g(z)) with one
endpoint at ϑj(z), and ϑj+1(z) is defined as the other endpoint of this curve.

It follows from the definition that each ϑk+1 is continuous. Hence, for every compo-
nent G of Uk, ϑk+1|G is a branch of f−1

�ϑk �g, and hence a conformal isomorphism onto
some component of Ṽk. It is likewise easy to check that ϑk+1 is surjective, so these maps
are indeed conformal isomorphisms between Uk and Ṽk.

We furthermore note that ϑk(Uk)=Vk for k>0 by the inductive construction.

Theorem 5.2. (Convergence to a semiconjugacy) In the hyperbolic metric of W ,
the maps ϑk|J(g) converge uniformly to a continuous surjection

ϑ:J(g)−! J(f)

with f �ϑ=ϑ�g and ϑ(I(g))=ϑ(I(f)). Furthermore, ϑ: I(g)!I(f) is a homeomorphism.
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Proof. Let z∈Uk. By definition,

distW (ϑk+1(z), ϑk(z)) 6 `W (γk+1(z)).

We have

`W (γ1(z)) 6 `{|w|>K/2}(γ1(z)) = log
(

1+
logM

log(2|z|/MK)

)
6 log

(
1+

logM
log 2

)
=:µ

for all z∈U0. Since γk+1(z) is obtained from γ1(gk(z)) by a branch of f−k, and f is
uniformly expanding on W by Lemma 5.1, we see that

distW (ϑk+1(z), ϑk(z)) 6
µ

Ck
(5.1)

for all z∈Uk, where C is the constant from Lemma 5.1.
In particular, the maps ϑk|J(g) form a Cauchy sequence and, by the completeness of

the hyperbolic metric, have a (continuous) limit

ϑ:J(g)−!W.

By (5.1), ϑ satisfies

distW (ϑ(z), z) 6µ
C

C−1
. (5.2)

By definition, if z∈J(g), then fk(ϑ(z))=ϑ(gk(z))∈W for all k∈N. Thus ϑ(z)∈J(f).
Also note that, by (5.2), ϑ(zn)!∞ if and only if zn!∞, so ϑ maps escaping points to
escaping points.

The map ϑ: I(g)!I(f) is clearly surjective. Indeed, if w∈I(f), then w∈Ṽk for all
sufficiently large k. Any limit point z of the sequence zk=ϑ−1

k (w) will have ϑ(z)=w.
(Note that {zk}k∈N cannot diverge to infinity by (5.1)).

To prove injectivity on I(g), suppose by contradiction that ϑ(z1)=ϑ(z2), where
z1, z2∈I(g), z1 6=z2. It follows from the construction of ϑ that also gj(z1) 6=gj(z2) for all
j>0. However, ϑ is injective on a set of the form

JR′(g)∩I(g) = {z ∈ I(g) : |gj(z)|>R′ for all j> 1}.

(This follows from Corollary 4.2, or alternatively from an argument analogous to the
proof of injectivity in Theorem 3.2.) Since gj(z1) and gj(z2) belong to JR′(g)∩I(g) for
sufficienly large j, we obtain the desired contradiction. The details are left to the reader.

Finally, ϑ(J(g))∪{∞} is the continuous image of a compact set, and thus itself
compact. Since I(f)⊂ϑ(J(g))⊂J(f) and J(f)⊂I(f) by [Er], we see that ϑ is surjective.
The compactness of J(g)∪{∞} and the fact that ϑ−1(I(f))=I(g) imply that the image of
any relatively closed subset of I(g) under ϑ is relatively closed in I(f). Hence (ϑ|I(g))−1

is continuous.
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Recall that, by a “pinched Cantor bouquet” we mean a metric space that is the
quotient of a straight brush in the sense of [AO] by a closed equivalence relation on its
endpoints. As a corollary of Theorem 1.4, we obtain the following.

Corollary 5.3. (Pinched Cantor bouquets) Let f∈B be hyperbolic and of finite
order. Then every dynamic ray of f lands, and the Julia set is a pinched Cantor bouquet.

Proof. Barański [Ba] proved that, in the disjoint-type case, the Julia set is a straight
brush, where all points except (some of) the endpoints of the brush belong to I(f). The
corollary then follows immediately from our Theorem 5.2.

Remark 1. More generally, the Julia set of a disjoint-type function f that can be
written as the composition of finitely many finite-order functions in B is homeomorphic
to a straight brush. This follows from [RRRS, Theorem 5.10] (which is independent
of [Ba]). Hence Corollary 5.3 also holds for all hyperbolic functions that can be written
as such a composition.

Remark 2. We should note that the fact that the Julia set is homeomorphic to a
straight brush is not explicitly proved either in [Ba] or in [RRRS]. However, it is not
difficult to deduce this from the results proved there using the topological characterization
given in [AO].

Appendix A. Structure of escaping sets

In this section, we discuss the bearing that our results have on some intriguing questions
about escaping sets of entire functions that go back to Fatou’s original article of 1926
[F], and Eremenko’s study of the escaping set [Er]. Fatou observed that the Julia sets of
certain explicit entire functions contain curves on which the iterates tend to ∞, and asked
whether this property holds for much more general functions. Eremenko showed that (for
an arbitrary entire function f), every component of the closure I(f) is unbounded. He
then asked whether, in fact, every component of I(f) is unbounded, and also whether
every point of I(f) can be connected to ∞ by a curve in I(f). (For a more detailed
discussion of these questions and their history, compare [RRRS].)

This suggests the study of the following properties for an entire function f .
(F) Fatou property : There is a curve to ∞ in I(f).
(E) Eremenko property : Every connected component of I(f) is unbounded.
(S) Strong Eremenko property : Every point z∈I(f) can be connected to ∞ by a

curve in I(f).
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It is shown in [RRRS] that there exist hyperbolic functions f∈B for which the Julia
set does not contain any curves to ∞. Thus, property (F) (and, in particular, (S)) can
fail for functions in class B. In fact, there are even hyperbolic functions whose Julia set
does not contain any non-trivial curves at all. Together with Theorem 1.1, this implies
the following result.

Corollary A.1. (No curves in the escaping set) There exists an entire function
f∈B with the following property : if g∈B is quasiconformally equivalent to f near infin-
ity , then the escaping set I(g) does not contain any non-trivial curves.

Proof. Let f be the example constructed in [RRRS, Theorem 8.4], whose Julia set
does not contain any non-trivial curves. If g is quasiconformally equivalent to f near
infinity, then, by Theorem 1.1, for sufficiently large R the set JR(f) of points whose
forward orbits are contained in C\DR(0) is homeomorphic to a subset of the Julia set
of f . Therefore JR(f) does not contain any non-trivial curves either. Since the image
of a non-trivial curve under f is again a non-trivial curve, the same holds for all sets
f−n(JR(f)), n>0.

Suppose, by contradiction, that I(g) does contain a non-trivial curve γ: [0, 1]!I(g);
we may assume that γ is not constant on any interval. For every n, γ−1(f−n(JR(f))) is
a closed subset of [0, 1] that does not contain any intervals, and hence is nowhere dense.
However, we have

[0, 1] = γ−1(I(f))⊂
⋃
n>0

γ−1(f−n(JR(f))),

which contradicts the Baire category theorem.

In [R2], we establish Eremenko’s property for every hyperbolic function f∈B, and
more generally any function f∈B with bounded postsingular set. This shows that a situ-
ation as in Corollary A.1 cannot occur for property (E). Whether there is any entire func-
tion for which property (E) fails remains an open problem. We remark that even in the
exponential family, the study of connected components of I(f) is far from trivial: while
in the hyperbolic case, each such component consists of a single dynamic ray [BDDJM],
for many non-hyperbolic exponential maps, including z 7!exp(z) and z 7!2πi exp(z), the
escaping set is a connected subset of the complex plane [R4], [J], [R5].

Note that our Theorem 1.4 also shows that

for any quasiconformal equivalence class in class B, each of the proper-
ties (F), (E) and (S) either holds for all hyperbolic maps or fails for all
hyperbolic maps.
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Now consider the following uniform variants of the above properties.
(UE) For every z∈I(f), there exists some unbounded connected set A3z such that

fn|A!∞ uniformly.
(US) Every z∈I(f) can be connected to ∞ by a curve γ such that fn|γ!∞ uni-

formly.

In many proofs of the Eremenko property, or the strong Eremenko property, they
are in fact established in this uniform sense. It is possible, following the construction in
[RRRS], to construct an entire function for which property (UE) fails.

Theorem 1.1 shows that

for any quasiconformal equivalence class of Eremenko–Lyubich func-
tions, each of the properties (UE) and (US) either holds for all maps or
fails for all maps.

In [RRRS], property (US) is established for a large subset of B, in particular for those
of finite order (as well as finite compositions of such functions). The above-mentioned
recent results of Barański [Ba] also imply this property for disjoint-type functions f∈B
of finite order (i.e., hyperbolic maps with a single fixed attractor). Hence Theorem 1.1,
together with [Ba], provides an alternative proof of property (US)—and thus a positive
answer to Fatou’s and Eremenko’s questions—for functions f∈B of finite order.
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Département de Mathématiques, Orsay, 1984, 1985.

[DH2] — On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup., 18
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