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1. Introduction

The study of the dynamical behavior of transcendental functions, initiated by Fatou in
1926 [F], has enjoyed increasing interest recently. Many intriguing phenomena discov-
ered in polynomial dynamics, relating to the behavior of high-order renormalizations of a
polynomial, occur naturally for transcendental maps. Compare, for example, Shishikura’s
proof that the boundary of the Mandelbrot set has Hausdorftf dimension 2 [S] with Mc-
Mullen’s treatment of the Julia set of z— A exp(z) [McM1]. A more recent example is pro-
vided by work of Avila and Lyubich [AL], who proved that a constant-type Feigenbaum
quadratic polynomial with positive measure Julia set would have hyperbolic dimension
less than 2. Work of Urbanski and Zdunik [UZ] shows that a similar phenomenon occurs
for the simplest exponential maps.

In this note, we prove a structural theorem for the dynamics near a logarithmic
singularity. On the one hand, this result explains the observation that many Julia sets
of explicit entire transcendental functions bear striking similarities to each other, even
if they are very different from a function-theoretic point of view, compare Figure 1. On
the other hand, it provides a tool to better understand the Julia sets of these functions,
and results in some important rigidity statements required in the study of density of
hyperbolicity [RvS2].

The Eremenko—Lyubich class B is the class of transcendental entire functions for
which the set sing(f~!) of critical and asymptotic values is bounded. We say that two

functions f,geB are quasiconformally equivalent near oo if there exist quasiconformal
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(a) f1(2)=2(exp(2)—1) (b) f2(z)=(z+1) exp(z)—1 (c) f3(z)=Asinhz

Figure 1. Images (a) and (b) show the Julia sets of the functions f1 and f2 (in black). Our
results imply that these two functions are quasiconformally conjugate in a neighborhood of
these sets. (Compare Theorem 3.1 and Observation 2.7.) In (c) the black set consists of
points whose orbits under f3 remain in a right half-plane. Again, restricted to this set, f3 is
quasiconformally conjugate to fi. (The Julia set of f3 is underlaid in gray.) Note that the
three maps are function-theoretically diverse: fi has one asymptotic value, fo has both an
asymptotic and a critical value, and f3 has two critical values. (In (c), A=0.575.)

maps ¢, 1): C—C such that
P(f(2)) =g(p(2)) (1.1)

whenever |f(z)| or |g(¢(2))] is large enough. (When (1.1) holds on all of C, the maps
are called quasiconformally equivalent; compare §2. Quasiconformal equivalence classes

form the natural parameter spaces of entire functions.)

THEOREM 1.1. (Conjugacy near infinity) Let f,g€B be quasiconformally equivalent
near infinity. Then there exist R>0 and a quasiconformal map ¥: C—C such that

Jof =god on Jr(f):={2€C:|f"(2)| =R for all n>1}.

Furthermore, ¥ has zero dilatation on {z€Jr(f):|f"(z)|—o0}.

Remark 1. In fact, our methods are purely local and as such apply to any (not
necessarily globally defined) function that has only logarithmic singularities over infinity.
In particular, they apply to restrictions of certain entire (or meromorphic) functions that
themselves do not belong to class B. We refer the reader to §2 for the precise definition
of the class of functions that is treated.
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(a) fa(z)=exp(z)+sx (b) f5(2)=exp(2)

Figure 2. Two functions that are quasiconformally equivalent to the map f; from Figure 1,
but have very different dynamics: in (a), the Julia set (in gray) is a “pinched Cantor bouquet”,
while in (b) it is the entire complex plane. However, on the sets Jg(f;) from Theorem 1.1 (in
black), they are quasiconformally conjugate to (a suitable restriction of) fi. (The parameter
in (a) is given by 3=1.0038+2.8999:.)

Remark 2. For functions with non-logarithmic singularities over infinity, the dynam-
ics near infinity may vary dramatically within the same parameter space. For example,
for the function zrz—1—exp(z), all points with sufficiently negative real part tend to
—oo under iteration: the function has a Baker domain containing a left half-plane. On
the other hand, the function zr2z+1—exp(z) does not have any Baker domains: every
orbit in the Fatou set converges to an attracting fixed point; see [W, §5.3].

Theorem 1.1 can be seen as an analog of a classical theorem of Boéttcher which states
that any two polynomials of the same degree d>2 are conformally conjugate near oo
[M, Theorem 18.10]. We find the generality of our theorem surprising for a number of
reasons. Not only can functions that are quasiconformally equivalent near infinity have
very different function-theoretic properties (recall Figure 1), but more significantly the
behavior near infinity can vary widely between different functions in B. Indeed, for the
function-theoretically simplest functions in this class, such as those shown in Figure 1,
and in fact all functions f€B of finite order [RRRS, Theorem 1.2], the escaping set

I(f):={z€C: f"(z2) > o0} (1.2)

consists entirely of curves. On the other hand, it is is possible for the escaping set of a
hyperbolic function f€B to contain no non-trivial curves at all [RRRS, Theorem 8.4].
Theorem 1.1 shows that, even for such a “pathological” function, the behavior near
infinity remains the same throughout its quasiconformal equivalence class.

Douady and Hubbard [DH1] used Béttcher’s theorem to introduce dynamic rays,
which have become the backbone of the successful theory of polynomial dynamics. We
believe that our result will likewise be useful in the study of families of transcendental
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functions, even those with such wild behavior as the example mentioned above. Indeed,
one corollary of Theorem 1.1 (Corollary A.1) is that any function that is quasiconformally
equivalent to this example also does not contain any curves in its escaping set.

Another aspect of the theorem’s generality that seems surprising is the statement
about dilatation. It is worth noting that two quasiconformally equivalent functions in
class B may have different orders of growth. (Whether this is possible for functions with
finitely many singular values is a difficult open problem.) Hence the map ¢ in the defi-
nition of quasiconformal equivalence cannot, in general, be chosen to be asymptotically
conformal near infinity. In such a situation, one could imagine that some of the dilata-
tion of the quasiconformal map ¥ would be supported on the escaping set I(f), but by
Theorem 1.1 this is not the case.

In fact, we will show that the map ¥ is essentially unique (more precisely, it is unique
up to an initial choice of isotopy class; compare Corollary 4.2); hence it follows that no
quasiconformal conjugacy between f and g can support dilatation on the set I(f).

THEOREM 1.2. (No invariant line fields) A function f€B supports no invariant line

fields on its escaping set.

Remark 1. This statement has content only in families where the set of escaping

points has positive measure. As far as we know, it is new even for the family
z+— aexp(z)+bexp(—z)

of cosine maps, whose escaping sets have positive measure by [McM1].

Remark 2. Showing that the Julia set of a polynomial cannot support an invariant
line field is a major open problem in complex dynamics. In contrast, it is known [EL2]
that there are entire functions with invariant line fields on their Julia sets. In fact, the
example from [EL2| has an invariant line field on I(f)NJ(f), showing that Theorem 1.2
becomes false if the assumption f€B is dropped.

By the same reasoning, we also obtain further rigidity principles for the set I(f), of

which the following is an important special case.

THEOREM 1.3. (Quasiconformal rigidity on escaping orbits) Suppose that f and g
are entire functions with finitely many singular values, and let m be a topological conju-
gacy betweeen f and g. If O={zo, f(20), f*(20), ... } is any escaping orbit of f, then the

restriction w|o extends to a quasiconformal self-map of the plane.

While the source of the rigidity here is much softer than in the famous rigidity
results for rational functions (as indicated by the absence of dynamical hypotheses), our



RIGIDITY OF ESCAPING DYNAMICS 239

results provide an essential step in transferring rigidity theorems from the rational to the
transcendental setting. For example, in [RvS1], Theorem 1.2 is used to obtain the absence
of invariant line fields on the Julia sets of a large class of “non-recurrent” transcendental
functions, extending the work of Graczyk, Kotus and Swiatek [GKS]. In [RvS2], our
results are used, together with the work of Kozlovski, Shen and van Strien [KSvS1],
[KSvS2] to establish density of hyperbolicity in certain families of real transcendental
entire functions (including the real cosine family asinx+bcosz, a,beR).

In contrast to the polynomial case, the map ¥ from Theorem 1.1 will generally
not extend to a conjugacy between the escaping sets of f and g [R1, Proposition 2.1].
However, in the case of hyperbolic functions feB—i.e., those for which the postsingular

set is compactly contained in the Fatou set—we can do better.

THEOREM 1.4. (Conjugacy for hyperbolic maps) Let f,g€B be quasiconformally
equivalent near infinity, and suppose that f and g are hyperbolic.

Then f and g are conjugate on their sets of escaping points.

Together with recent results of Barariski [Bal, our proof of Theorem 1.4 also shows
that, for hyperbolic feB of finite order, J(f) can be described as a pinched Cantor
Bouguet; i.e., as the quotient of a Cantor Bouquet (or “straight brush”) by a closed
equivalence relation on the endpoints. Recently, Mihaljevié-Brandt [M-B] has generalized
Theorem 1.4 to a large class of “subhyperbolic” entire functions. In particular, her result
applies to all postcritically finite functions f€B with no asymptotic values for which

there is some A such that all critical points of f have degree at most A.

Structure of the article and ideas of the proofs

We begin in §2 by reviewing some basic properties of Eremenko—Lyubich functions and
introducing the local class Biog. §3 is devoted to the proof of Theorem 1.1, which has
two main ingredients. The first of these is the well-known fact that functions in B are
expanding inside their logarithmic tracts. The second is that the quasiconformal maps
¢ and ¢ do not move points near infinity more than a finite distance with respect to
the hyperbolic metric in a punctured neighborhood of infinity. With these two facts,
most of the theorem can be considered to be a variant of standard conjugacy results for
expanding maps.

However, in order to obtain the statement on dilatation, we need to break the proof
down into two cases: one where both maps f and g are dynamically simple (“disjoint-
type”) functions, and one where the quasiconformal maps ¢ and ¢ are in fact affine. (In
the latter case, the quasiconformality of the function 9, and the dilatation estimate, will
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be obtained via the “A-lemma” of [MSS].) Together, these two cases combine to give the
full theorem; compare also the discussion at the end of §3.

The proofs of Theorems 1.2 and 1.3 are given in §4. As already mentioned, they
rely on the fact that the map 9 is unique in a certain sense (Corollary 4.2). The idea
of the proof can be traced back to the argument of Douady and Goldberg [DG], who
proved that two topologically conjugate real exponential maps with escaping singular
orbits must be conformally conjugate.

To prove Theorem 1.4 in §5, we show that hyperbolic entire functions are expanding
with respect to the hyperbolic metric; the construction of a semi-conjugacy then proceeds
as usual for expanding maps.

In Appendix A, we discuss the relation of our results with some well-known questions

regarding escaping sets posed by Fatou [F] and Eremenko [Er].
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Background and notation

We refer the reader to [M], [Berg], [H] and [LV] for introductions to holomorphic dynam-
ics, plane hyperbolic geometry and quasiconformal mappings.

We denote the complex plane by C and the Riemann sphere by C=CU{oc}. All
closures and boundaries will be understood to be taken in C, unless explicitly stated
otherwise. We denote the right half-plane by H:={z€C:Re2>0} ({Rez>0}, in short)
and the unit disk by D:={|z|<1}; more generally, we write

Ho :={Rez>Q} and Dg(z):={|z—20| < R}.

If f:C—C is an entire function, we denote its Julia and Fatou sets by J(f) and
F(f), respectively. Recall that the escaping set I(f) was defined in (1.2).

The set of singular values, S(f), is the closure of the set sing(f~!) of critical and
asymptotic values of f. The Speiser class S and the Eremenko—Lyubich class BDS are
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defined as

S:={f:C— C transcendental entire: S(f) finite} and
B:={f:C— C transcendental entire: S(f) bounded}.

2. Preliminaries
The hyperbolic metric

If UCC is open and C\U contains at least two points, we denote the density of the
hyperbolic metric in U by gy. We denote the hyperbolic distance and the length in U
by distyy and £y, respectively. The derivative of a holomorphic function f with respect
to the hyperbolic metric of U (where defined) will be denoted by

ou(f(2))
ou(z)

Recall [M, Corollary A.8] that, if U is simply connected, then

IDf(2)lw=1f'(2)]

1 2

- < <-—= .
2dist(z,0U) ou(2) < dist(z, oU) 21)

for all zeU; we refer to this as the standard estimate on the hyperbolic metric. We also
remind the reader that holomorphic covering maps preserve the hyperbolic metric, and
that Pick’s theorem [M, Theorem 2.11] implies that oy (z)> oy (z) for all zeU’ if U'CU.

In §5, we will use the following estimate on the hyperbolic metric in certain multiply-

connected domains.

LEMMA 2.1. (Hyperbolic metric in countably punctured sphere) Let {w;};en be a
sequence of points in C, with w;—00, satisfying |wji1|<C|w;| for some constant C>1
and all sufficiently large jEN. Set V:=C\{w;:jeN}. Then 1/ov(2)=0(]z|) as z— 0.

Proof. By Pick’s theorem, we may disregard finitely many entries in the sequence
and hence suppose that |w;41]|<C|w;| holds for all jeN. We will estimate the value
ov(20) at a given point zp€C from below by using the hyperbolic metric in a suitable
doubly-punctured plane U, ;:=C\{a,b}. Note that the map

z—a
b—a

Pa,b(2) :
is a conformal isomorphism between U, , and Uy ;. In particular, for all z€U, ; we have

_ Ouo. (@a,b(z))
QUa,b(Z)_ |b—(l‘ .
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Set a:=|wg| and let zo€C with |z9|>|a|. Let j be minimal with |w;|>2|zy| and set

b:=w;. Then 2|z| < |b|<2C|2p| by our assumption on the sequence w;, and, in particular,
|20 < Jb—a| <3C|20].
It follows that |¢q 5(20)|<2. Hence, setting

K := inf oy,,(2)>0,

|zI<2

we see that

Uy, (%0) K
ov(20) = ou, ,(20) = \Ij—a| > 3C |20

Since zp was arbitrary with |zg|>|a|, and C' and K are constants independent of zp, this

proves the claim. O

Tracts and logarithmic coordinates

A domain UCC is called an unbounded Jordan domain if the boundary of U on the
Riemann sphere is a Jordan curve passing through oco.

Suppose that feB, and let DCC be a bounded Jordan domain chosen such that
S(f)u{0, f(0)}CD (e.g., D=Dg(0), where R=1+|f(0)|+max,ecg(s) |s|). Set W:=C\D
and U:=f~1(W). Then each component T of I/ is an unbounded Jordan domain (called
a tract of f), and f:T—W is a universal covering.

We can perform a logarithmic change of coordinates (see [EL3, §2] or [Berg, §4.8])
to obtain a 2mi-periodic function F: V— H, where H=exp~'(W) and V=exp~!(U), such
that expoF'=foexp. We will say that this function F' is a logarithmic transform of f.
By construction, the following properties hold:

(A) H is a 2mi-periodic unbounded Jordan domain that contains a right half-plane.

(B) V#@ is 2mi-periodic and Re z is bounded from below in V.

(C) F is 2mi-periodic.

(D) Each component T of V is an unbounded Jordan domain that is disjoint from all
its 2miZ-translates. For each such T, the restriction F': T— H is a conformal isomorphism
with F(co)=o00. (T is called a tract of F'; we denote the inverse of F|r by Fr'.)

(E) The components of V have pairwise disjoint closures and accumulate only at oo;
i.e., if z, €V is a sequence converging to some finite point z€C, then all but finitely many
of the z, belong to a single component of V.
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We will denote by Biog the class of all functions
F:V—H,
where F', V and H have the properties (A)—(E), regardless of whether F' arises as the
logarithmic transform of a function f€B or not.
Remark. In [RRRS], the class Biog is defined without requiring condition (C).
Note that any F'€Bj,s extends continuously to V by Carathéodory’s theorem. The
Julia set and escaping set of F'€Bo, are defined to be
J(F):={z€V:F"(2) €V for all n>0},
I(F):={z€J(F):Re F"(z) = oo}.
If F is the logarithmic transform of a function f€B, then exp(I(F))CI(f) and the orbit
of every z€I(f) will eventually remain in exp(I(F)). For @ >0, we also define
Jo(F):={z€J(F):Re F"(z) > Q for all n>1},
Io(F):=I(F)NJo(F).

If F is the logarithmic transform of f, then clearly exp(Jo(F))=J.o(f) (the latter set

was defined in Theorem 1.1).

Expansion and normalization
Let us introduce two important sub-classes of Bgg.

Definition 2.2. (Disjoint-type and normalized functions) Let F:V— H belong to the
class Biog.

(a) We say that F is of disjoint type if VC H.

(b) We say that F is normalized if H=H and, for all z€V,

|F'(2)] > 2. (2.2)

Remark. If an entire function f€B has a logarithmic transform F' of disjoint type,
then we will also say that f itself is of disjoint type. In this case, the Fatou set of f
consists of a single immediate basin of attraction, and J(f)=exp(J(F)). The examples
from Figure 1 are of disjoint type, while those in Figure 2 are not.
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Let F:V—H be any element of Bi,s. It follows easily from (D) and the standard
estimate (2.1) on the hyperbolic metric that

IDF(z)||g — o0, asRez—o0. (2.3)

In particular, by Pick’s theorem, any disjoint-type function F'€B is uniformly expanding
with respect to the hyperbolic metric in H.

The same argument also shows, again for any function F'€ B, that |F'(z)|—00
as Re F(z) —»oo; see [EL3, Lemma 1]. In particular, there is R>0 such that (2.2) holds
for all zeV with Re F(z)>R. By restricting F to the set V:={z€V:Re F(z)>R} and

conjugating by zr—z— R, we obtain the function

f:fﬂ—R—)H,
z+— F(z+R)—R.

By construction, this function F is a normalized element of Biog. As we are mostly
concerned with the behavior of F' near co, we usually deal only with normalized functions.

However, note that a normalization of a disjoint-type map F need not be of disjoint type.

LEMMA 2.3. (J(F) has empty interior) If F€Biog is normalized or of disjoint type,
then J(F') has empty interior.

Sketch of proof. This is the same argument as in [EL3, Theorem 1], using the uni-
form expansion of the function F' in the Euclidean metric (in the normalized case), resp.

the hyperbolic metric (for disjoint-type maps). O

Remark. It follows that for any F€Biog, Jo(F') has empty interior for sufficiently
large Q; if F is the logarithmic transform of a function f€B, then similarly exp(Jg(F))C
J(f) for sufficiently large Q.

It is easy to see that Jo(F)#@ for all Q; in fact, the following is true.

PROPOSITION 2.4. (Unbounded sets of escaping points [R3, Theorem 2.4]) Let F
be any element of Biog and let T be a tract of F. Then there is an unbounded, closed,
connected set ACTNI(F) such that Re F7(z)—+o00, as j— o0, uniformly on A.

Remark. In [R3], the theorem is stated for entire functions in the Eremenko-Lyubich
class, but the proof applies also to functions in Bioe. It follows from the results of [R2]
that the set A can be chosen to be forward-invariant, but we do not require this. Compare
[BRS] for the existence of unbounded connected sets of escaping points in more general

situations.
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COROLLARY 2.5. (Density of escaping sets) Let F'€Bioy and Q=0. Then Ig(F) is
non-empty, and Re z is unbounded from above in Ig(F).
Furthermore, if Q'>Q is sufficiently large, then

JQ/(F) CIQ(F).

Sketch of proof. We may assume that F' is normalized. The previous proposition
implies that there is Q' >Q+ 3 such that, for every M >@Q’, there is a point z€Ig(F)
with Rez=M.

Let zeJg/(F'), and note that Ig(F) is 2mi-invariant. Therefore, for every n>1 we
can find w" €lg(F) with Rew”=Re F"(z) and |Imw" —Im F"(2)|<7.

Pulling w™ back along the orbit of z, and using the expansion property (2.2), we
obtain a sequence of points w™ €I (F) with [w™ —z|<7/2". Hence z€Ig(F), as required.

O

Quasiconformal equivalence

Following [EL3, §3], two entire functions f,g€B are called quasiconformally equivalent if

there exist quasiconformal maps ¢, ¢: C—C with

gep="1of. (2.4)

The set of all functions g that are quasiconformally equivalent to f can be considered the
natural parameter space of f. (If S(f) is finite, then this set forms a finite-dimensional
complex manifold [EL3, §3].)

Similarly, let us say that two functions F, G€Bios (with domains V and W) are
quasiconformally equivalent if there are quasiconformal maps ®, ¥: C—C such that

(a) ® and ¥ commute with z+—z+27;

(b) Re ®(z)— %00 as Rez—+o00 (and similarly for ¥);

(c) for sufficiently large R, ®(F~!(Hg))CW and ®~}(G~(Hg))CV;

(d) Wo F=Go® wherever both compositions are defined.

Let ¢: C—C be a quasiconformal map. Since ¢ is an order-preserving homeomor-
phism fixing co, we can define a branch of arg ¢(z)—arg z in a punctured neighborhood
of co. It is well known [EL3, Lemma 4] that there is some C>1 such that

|21Y€ <Je(2)| < 12, (2.5)

larg p(z) —arg z| < Clog || (2.6)
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when z is sufficiently large.(!) Translating this statement into logarithmic coordinates,

we obtain the following fact.

LEMMA 2.6. (Hyperbolic distance of pullbacks) Suppose that F,G€ By are nor-
malized and quasiconformally equivalent. Then there are constants C'>0 and M >0 such
that

distg (Fr ' (2), G%l(w)) < C+ 3 distu(z, w)

for all tracts T of F and z,weMy;, where T is the tract of G containing @(FEI(HM)).

Sketch of proof. Let ® and ¥ be the maps from the definition of quasiconformal
equivalence. There are quasiconformal maps ¢,1: C—C such that pcexp=exp® and
Yoexp=expoW. Applying (2.5) and (2.6) to ¢ and ~!, we easily see that there is
some My>0 such that distg(z, ®(2)) and distg(z, ¥~1(2)) are bounded, say by o, when
z€MHy,.

By (2.3), we may also choose M; sufficiently large so that ||[DF(z)|g>2 when
Re F(z)>M;. Finally, let M >max{My, My, R}, where R is as in part (c) of the def-
inition of quasiconformal equivalence, be sufficiently large so that Re z> M, whenever
U(F(z))€Hyy.

If weHy,, we have G%l(w)zé(Ffl(\P_l(w))), and hence

distg (Fr ' (2), G%l(w)) < o+distu(Fr ' (2), Fp (0 (w))) < o+ 4 distg (2, U1 (w))
<o+1(o+disty(z, w)) =2 p+2 distu(z, w)
when z,weHy,. O

Observation 2.7. (Functions with quasidisk tracts) It is not always easy to check
whether two given functions are quasiconformally equivalent. However, suppose that
U and U are quasidisks whose boundaries contain co. Let f:U—W and g¢: U—W be
universal covering maps (where again W=C\D for a bounded Jordan domain D) that
extend continuously to the boundary of U (resp. U ) in C.

Then we can pick a conformal isomorphism ¢: U —U such that gep=f. Because U
and U are quasidisks, ¢ extends to a quasiconformal map ¢: C—C (see [LV, Satz 8.3] or
[H, §4.9]).

Hence, if f, g€B are such that f~!({|z|>R}) and g=*({|z|>R|}) are quasidisks for
large R, then f and g are quasiconformally equivalent near infinity. More generally, if
F:V—H is a function in Bieg such that exp(V) is a quasidisk, then F' is quasiconformally
equivalent to any function G€By,, with the same property. The tracts of the functions

in Figures 1 and 2 are all quasidisks.

(1) While there surely is a classical reference for (2.6), we were unable to locate one; Eremenko
and Lyubich refer to [LV], but we did not find it there. A short proof can be found in [vS, Lemma 4.1].
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External addresses

Let FeBios. We say that z,weJ(F) have the same external address (under F) if, for
every n>0, the points F"(z) and F"(w) belong to the closure of the same tract T, of F.
The sequence s=TyT1T5 ... is called the external address of z (and w) under F}

compare [RRRS] for a more detailed discussion.

LEMMA 2.8. (Expansion along orbits) Suppose that F €Biog is normalized. If z and

w have the same external address under F, then
[ (2) = F" (w)| 2 2" [z —w
for all n>0.

Proof. This is a direct consequence of the expansion property (2.2). O

Further properties of quasiconformal maps

Throughout the article, we require a number of well-known properties of quasiconformal
maps. We collect a few of these here for the reader’s convenience. By convention, the

“dilatation” of a quasiconformal map 1) will always mean the complex dilatation; that is,
9
oY’

PROPOSITION 2.9. (Compactness of quasiconformal mappings [LV, §I1.5 and §IV.5])

dil(y) =

Consider a sequence V,,:C—C of quasiconformal maps, and suppose that there is a
dense set ECC such that {¥U,}nen stabilizes on Ej i.e., for all z€E there is ng such
that U, (2)=U,,(2) for all n=ny.

If the maximal dilatation of the maps ¥, is bounded independently of n, then the
sequence V,, converges locally uniformly to a quasiconformal map ©: C—C.

If furthermore the complez dilatations dil(¥,,) converge pointwise almost everywhere,

then their limit agrees with dil(©) almost everywhere.

PROPOSITION 2.10. (Royden’s glueing lemma [Bers, Lemma 2|, [DH2, Lemma 2])
Suppose that UCC is open and that o: U—@(U)CC is quasiconformal. Suppose further-

more that ¥: C—C is a quasiconformal map such that the function
9:C—C,

zké{w@% if z€U,
Y(z), otherwise.

is a homeomorphism. Then ¥ is quasiconformal.
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PROPOSITION 2.11. (Quasiconformal maps of an annulus [L]) Let A, BCC be two
bounded annuli, each bounded by two Jordan curves. Suppose that i, po:C—C are qua-
siconformal maps such that v maps the inner boundary o~ of A to the inner boundary
6~ of B, and o takes the outer boundary o of A to the outer boundary 8% of B.

Let zea™ and wea™, let v be a curve in A connecting z and w, and let 7 be a
curve connecting ¥ (z) and p(w) in B.

Then there is a quasiconformal map p:C—C that agrees with ¢ on the bounded
component of C\A and with ¢ on the unbounded component of C\A, and such that
@(v) is homotopic to ¥ relative to OB.

Remark. The statement about the homotopy class is not made in [L], but follows
directly from the proof. (Alternatively, ¢ can be obtained from any quasiconformal map

that interpolates ¥ and ¢ by postcomposition with a suitable Dehn twist.)

Let us also formulate the translation of the preceding result to logarithmic coordi-

nates, since we frequently use it in this setting.

COROLLARY 2.12. (Interpolation of quasiconformal maps) Suppose that H and H’
are 2mi-periodic, unbounded Jordan domains, both containing some right half-plane, with
H'CH.

Suppose that U, &: C—C are quasiconformal maps, commuting with translation by
omi, such that ®(H'YCW(H). Then there is a quasiconformal map ®:C—C that agrees

with ¥ on C\ H, agrees with ® on H' and commutes with translation by 2i.

Finally, we will use the “A-lemma” for holomorphic motions, as developed in [MSS]

and improved in [BR]; compare [H, §5.2].

PROPOSITION 2.13. (A-lemma [BR, Theorem 1)) Let ECC and R>0, and suppose
that the functions
hx:E—C, XeDg(0),

are injective, with ho=id, and furthermore depend holomorphically on A for fized z€ F.
(Under these assumptions, we say that the hy form a holomorphic motion of the set E.)

Then each hy extends to a quasiconformal self-map of the plane. The complex di-
latation of this map is bounded by |\|/R.

Remark 1. [H, §5.2] even establishes the stronger fact, due to Stodkowski, that the

extensions of the h) can themselves be chosen to depend holomorphically on .

Remark 2. If each hy commutes with translation by 27, then the extension can
also be chosen with this property. (Apply the above theorem to the holomorphic motion
gx of exp(E)U{0} defined by g»(0)=0 and gx(exp(z)):=exp(hr(z)).)



RIGIDITY OF ESCAPING DYNAMICS 249

3. Conjugacy near infinity

In this section, we prove Theorem 1.1. We begin by treating the special case where both

maps are of disjoint type.

THEOREM 3.1. (Conjugacy between disjoint-type maps) Suppose that two functions

in Blog,
F:V—H and G:9®(V)—=Y(H)

are quasiconformally equivalent, Ve FF'=G-®. Suppose furthermore that F' and G are of
disjoint type; i.e., VCH and ®(V)C U (H).

Then there is a quasiconformal map ©:C—C with the following properties:

(a) O|y is isotopic to ®|y relative to OV;

(b) © is a conjugacy between F and G; i.e. @ F=G-0 on V;

(¢) dil(©)=0 almost everywhere on J(F);

(d) ©(z+2mi)=0(2)+2mi.

Proof. By Corollary 2.12 (picking a 2mi-invariant unbounded Jordan domain H’
with VC H' and ®(H')C¥(H)), we can find a quasiconformal map ®: C—C such that &
agrees with ® on V and with ¥ on C\ H (and such that ® still commutes with addition by
27i). Since ® and ® agree on the domain of definition of F, we clearly have Wo F=Go®.

In analogous manner, we can modify ¥ to a quasiconformal map Wy: C—C that is
conformal on a neighborhood of V, agrees with ¥ on C\ H, and commutes with addition
by 2mi. (Compare also the main result of [L].) Note that we are not claiming that this
modified map ¥y will satisfy the same functional equation as V.

By the Alexander trick, the isotopy class of a homeomorphism between two Jordan
domains is determined by its boundary values (compare also [H, Proposition 6.4.9]).
Hence the maps U|z, ®|z and ¥o|g all belong to a single isotopy class relative to dH.

We now define a sequence of maps ¥,,: C—C inductively, starting with ¥, by setting

\I/n+1 |T = G;(lT)O\I/nOF‘T

for every tract T of F', and

Uppiovw = Ployy.

Clearly each ¥, is a homeomorphism (recall that the components of V accumulate
only at infinity by definition). By the glueing lemma (Proposition 2.10), it follows that
each W, is quasiconformal. Since F' and G are holomorphic, the maximal dilatation of
W, depends only on that of ¥y and ®, and is hence bounded independent of n.

Furthermore, U, |z is isotopic to U|y relative to 9H for all n. This implies that the
maps ¥, 1]y and @[y, are isotopic relative to OV.
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By construction, ¥, o F=G-¥,,11, and ¥,, and ¥, agree outside the set F"~"(H),

so the sequence V¥,, stabilizes on the set
C\ () F"(H)=C\J(F).
n=0

By Lemma 2.3, C\ J(f) is a dense subset of C, and it follows from Proposition 2.9 that
the ¥, converge to some quasiconformal map ©: C—C with O F=G-0.

The dilatations of the maps ¥, stabilize on the set C\ J(F'), but on the other hand
each ¥, is conformal on a neighborhood of J(F'), so that its complex dilatation is zero
there. In particular, the dilatations converge pointwise, and it follows from the second
part of Proposition 2.9 that dil(©)=0 almost everywhere on J(F).

Furthermore, Ol belongs to the isotopy class of @[y relative to V. Since each ¥,
has W, (z427i)=V,,(2)+27i, the same is true of ©. O

Now let
Fy:V—H

be an arbitrary normalized function in Bj,s. We consider the one-dimensional family
F.:(V—x)—H,
z2+— Fo(z+5),

where »x€C. Note that all maps F),, are normalized. We will now prove Theorem 1.1 for
this family, which implies the general statement when combined with Theorem 3.1; see
Corollary 3.5 below.

For given »€C, we define maps ©,=0% by O¢(z):=z and

On+1(2) = (Fo)7 (00 (Fo(2))) -

(whenever defined), where T is the tract of Fj containing z. In other words, O, is
obtained by iterating forward n times under Fp, and then taking the corresponding

pullbacks under F,.

THEOREM 3.2. (Convergence to a conjugacy) Let x€C and let Q>2|»|+1. Then
the functions ©,, are defined and continuous on Jg(Fy), where they converge uniformly

to a map
0 =07 Jo(Fy) — J(F,.)

that satisfies ©cFy=F,,c0,
10(2)—2] <2 (3.1)
and is a homeomorphism onto its image.
For fived Q>1 and z€Jg(Fy) the function s ©*(z) is holomorphic on D(g_1)/2-
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Proof. The functions ©,, are clearly continuous where defined. Let us show induc-
tively that ©,(z) is defined and

On(2) 2] <2|5] (3.2)

whenever z€Jg(Fp). Indeed, for such z we have Re Fy(z) >Q>2|3|+1, so the induction
hypothesis implies that 0,,(Fy(z))€H, and thus ©,,41(z) is defined. Furthermore, by the
expansion property (2.2) of Fy and the induction hypothesis, we see that

|On+1(2) = 2| = |(Fo) 7 (0 (Fo(2))) — ¢ — (Fo) 7' (Fo(2))]
< 3100 (Fo(2)) = Fo(2) |+ 3] < |s¢] +|¢| = 2|¢]

as required.

Using (3.2), we see that
©u1(2) =00 () = |(Fo)7 (O 142(Fo(2)) ~ (Fo) 7' (©u-1 (Fo(:)
< 5101k (Fo2) O 1 (Fo(a))| . < 5 O ()~ Oul By ()] < 2.

Hence the functions ©,, form a Cauchy sequence, and thus converge to some function
©=0>:Jo(Fy) — J1(Fy,)

satisfying (3.1) and ©- Fy=F,,>0. Since the convergence is locally uniform in s and each
O,, is holomorphic in s, the map © likewise depends holomorphically on s.

It remains to verify that © has the stated properties. Note that, by definition of ©,
the external address § of ©(z) under F, is determined uniquely by the external address
s of z under Fy. Indeed, if s=T175 ..., then g:ﬁ@ ..., where Tj:Tj—%.

To see that © is injective, suppose that ©(z)=0(w). Then z and w have the same
external address under Fp, and by (3.1) their orbits are never separated by more than
4|3|. By Lemma 2.8, this is impossible unless z=wj; so © is indeed injective.

Furthermore, lim, ., ©(z)=00, again by (3.1), so © extends to a continuous injec-
tive map on the compact space Jg(Fp)U{oo}, and thus is a homeomorphism onto its

image. O

LEMMA 3.3. (Image of ©) Let »€C, and let Q and O be as in the preceding theorem.
Then @(JQ (Fo)) DJQQ (F,{)

Proof. Set Gy:=F,, and consider the family G)(z):=Go(z+A). Then Fy=G_,,.
Applying Theorem 3.2 to this family, we obtain a map ©': Jo(F,)—J(Fp) satisfying
©'<F,,=F;°0" and (3.1). Now, if we Jog(F,), then z:=0'(w) satisfies

Re F¥(2) > Re F*(w)—2|5| > 2Q 2| > Q.
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So z€Jg(Fp). The points w and w':=0(z) have the same external address under F.
Furthermore, FX(w')=0(FF(2)) and F§(2)=0'(Fk(w)) for all k, and hence

| Fo(w) = FL(w)| | Fr(w) = ' (F(w)) |+ |F5 (2) - O(Fy ()| < 4K.

So, by Lemma 2.8, we have w=w'=0(2)€0(Jg(Fy)), as required. O

THEOREM 3.4. (Quasiconformal extension and dilatation of ©) Let »x€C, and let Q
and © be as in Theorem 3.2. Then © extends to a quasiconformal map ©:C—C. This
extension can be chosen such that ©(z+427wi)=0(z)+2mi, and such that ©ly, is isotopic
to ®(z):=z—1s¢ relative to OV.

Furthermore, the mazimal dilatation of © on Jg(Fy) tends to zero as Q' —o0. In

particular, the dilatation of © is zero almost everywhere on I(Fo)NJg(Fo).

Proof. For abbreviation, let us set J:=Jg(F}), and also write JQ::J%. Then the
functions ©=0* define a holomorphic motion of the set Jg. By the A-lemma (Propo-
sition 2.13), each of these functions extends to a quasiconformal self-map ©* of the
plane.

As pointed out in Remark 2 after Proposition 2.13, © can be chosen to commute
with translation by 2mi. Also, by (3.1),

O(Fy(Jg)) CHy,

so we can use Corollary 2.12 to obtain a quasiconformal map ©’: C—C that agrees with
© on Fy(Jg), but is the identity on C\H (and is hence isotopic to the identity relative
to OH). Consider the map ©”, defined by

0" (2):= (Fo)7' 0/ (Fo(2))) — 3

when z belongs to a tract T of F, and ©”(z)=®(z) otherwise. This map is quasiconfor-
mal, isotopic to ® relative to 0V, and agrees with ©’, and hence with ©, on Jg(Fp).

To discuss dilatation, recall from Theorem 3.2 that the maps ©%| T for Q'>Q,
define a holomorphic motion over the disk D(g/_1)/2(0) in s-space. It follows from the
dilatation statement in the A-lemma that O] Tor extends to a quasiconformal map with
dilatation bounded by 2|x|/(Q’—1). In particular,

, 2||
dil(0) < o1

clearly this bound tends to 0 as Q' — o0, as claimed.

a.e. on Jg: (Fop);

Finally, recall that we have
OoFy =F, -0
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on Jg. Since Fy and F;, are holomorphic, we see that (for Q' > Q) the maximal dilatation
of © on
Xg={z€Jq: Fy(2)€Jg}

is the same as the maximal dilatation of © on Jg/, which tends to 0 as Q' —o0. Since

the bound is independent of n, the same is true for

Xo =] X4,
n=0
But I(Fo)=\g/>q X, so the dilatation of © on Ig(Fp) is zero, as required. O

We are now ready to prove Theorem 1.1, which we restate (with some additional

details) in logarithmic coordinates.

COROLLARY 3.5. (Conjugacy between quasiconformal equivalent maps) Suppose
that F, G €Biog are quasiconformally equivalent, Wo F'=Go®. For sufficiently large Q>0,
there exists a quasiconformal map © such that

(a) ©ly is isotopic to ®|y relative to OV (where V is the domain of F);

(b) BF=G-0 on Jo(F);

(c) ©(Jg(F))DJg (G) for some Q' >Q;

(d) the dilatation of © is zero on Jo(F)NI(F);

(e) O(z+2mi)=0(2)+2mi.

Proof. Let W be the domain of G. By restriction and conjugation, as discussed in
§2, we may suppose without loss of generality that ' and G are normalized, and that
(V).

Choose K, L>0 sufficiently large so that

::Vo :ZWO
Fy: V+K—H, and Go:W+L—H,
2— F(z—K) 2— G(z—1L)

are of disjoint type, and that furthermore ®(V)+ L C ¥ (H).

Now we can apply Theorem 3.1 to obtain a quasiconformal conjugacy Os between
Fy and Gp.

Furthermore, we can apply Theorems 3.2 and 3.4 to F' and Fp, as well as to G and
Gy, obtaining quasiconformal maps ©; and ©3. It is easy to check that the function

O:= @;10920@1

has the required properties. O
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Proof of Theorem 1.1. Suppose that f,geB are quasiconformally equivalent near
infinity, i.e.

Y(f(2)) =9(p(2)) (3.3)

whenever |f(2)| or |g(¢(2))] is large enough, with ¢, 1): C—C quasiconformal. Without
loss of generality, we may assume that ¢(0)=0 and ¥ (0)=0 (otherwise we modify these
maps inside some bounded disk, using Proposition 2.11).

Pick a logarithmic transform F:V— H, where the disk D=C\exp(H) is chosen
sufficiently large to ensure that (3.3) holds for z€exp(V). Let &: C—C and ¥:C—C be

lifts of ¢ and 1, respectively, under the exponential map. Then
G:=VoFod?

is a logarithmic transform of g, and F' and G are quasiconformally equivalent by defi-
nition. (Note that we are not claiming that all logarithmic transforms of f and g are
quasiconformally equivalent.) We define 9 by d(exp(z)):=exp(O(z)), where © is the map
from the previous theorem, and are done. O

We subdivided the proof of Theorem 1.1 into two steps, using Theorem 3.1 to reduce
the problem to the simpler family F,.. We remark that this would not be necessary if we
were willing to forgo the statement that the dilatation of ¥ on the escaping set is zero.

Indeed, we can adapt the proof of Theorem 3.2 to construct a suitable map © for
any two quasiconformally equivalent functions F, G€Biog, as follows.

Letting ¥ and ® denote the maps from the definition of quasiconformal equivalence,
we set Og(z):=z and define ©,, inductively as follows. If T is a tract of F and T is the
tract of G that contains ®(Fy ' (H,,)) for sufficiently large M, we define, for z€T,

(where defined).

By virtue of Lemma 2.6, the proof of Theorem 3.2 goes through as before if we replace
uniform convergence in the Euclidean metric by uniform convergence in the hyperbolic
metric. That is, for sufficiently large @), the maps ©,, are all defined on Jg(F) and
converge uniformly to a map ©: Jo(F)— J(G) that is a homeomorphism onto its image.

It is important to observe that, for fixed F', the convergence is uniform not only
in z but also in G if ® and ¥ range over a compact set of quasiconformal mappings.
Hence it follows that the conjugacy © still depends holomorphically on G (which was not
immediately clear from our original proof of Corollary 3.5). We state this result formally

for future reference.
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PROPOSITION 3.6. (Analytic dependence on parameters) Let f€B and let M be a
finite-dimensional complex manifold, with a base point \g€ M. Suppose that {fa}rem is
a family of entire functions quasiconformally equivalent to f, with the equivalences given
by Yae f=fropx, where Yy, =pr,=id, and @y and ¥y depend analytically on .

Let N>Xg be a compact subset of M. Then there exists a constant R>0 such that,
for every NEN, there is an injective function 9=0>: Jr(f)—J(fx) with the following
properties:

(a) ¥ro=id;

(b) 9o f=fro;

(c) for fived z€ Jr(f), the function A9 (2) is analytic in X\ (on the interior of N).

In particular, we can again use the A-lemma to show that 9* has a quasiconformal
extension, as in Theorem 3.4. If one was able to furnish a direct proof of the statement
that the dilatation on the escaping set is zero—our argument used the fact that the
parameter space of the family F, is a parabolic surface, and hence does not generalize—
then Theorem 3.1 would no longer be required for the proof of Theorem 1.1.

It is not difficult to show directly that the map © constructed above agrees with the
map from Corollary 3.5. (In particular, it does have zero dilatation on the escaping set.)

This also follows from the results proved in the next section (see Corollary 4.2).

4. Rigidity

Let us now show that a (not necessarily quasiconformal) conjugacy between two quasicon-
formally equivalent maps F, G € Bjg only moves escaping orbits by a bounded hyperbolic
distance, provided that it “preserves combinatorics” (condition (d) below). This, to-
gether with the existence results from the previous section, will allow us to deduce a

number of rigidity statements (Corollaries 4.2 and 4.3 and Theorems 1.2 and 1.3).

THEOREM 4.1. (Restriction on conjugacies) Let F,G€EBiog be normalized and qua-
siconformally equivalent, say Yo F=Go®. Suppose that Q>0 and that II: Jo(F)—J(G)
is continuous such that

(a) TIo F=GoIT;

(b) TI(z)— 00 as z—o0;

(¢) T(z+2mi)=I1(z)+2mi;
(d) for every zeJg(F'), II(z) and ®(z) belong to the same tract of G.

If Q' is sufficiently large, then the hyperbolic distance disty(z,I1(z)) is uniformly
bounded on Jg:(F).
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Remark. The hypothesis that II is defined on Jg(F') can be considerably weakened
(with the same proof). For example, it would be sufficient to assume that II is defined
and continuous on a forward invariant set AC Jg(F') with the property that A contains

the grand orbit (in Jo(F')) of at least one sufficiently large point z.

Proof. Let C, M >0 be the constants from Lemma 2.6; by enlarging M if necessary,
we may assume that M >Q. By Corollary 2.5, we can choose some point zg € Jg(F') such
that Re zo>M and Rell(zg)>M; we set

0:=max{2C, disty (29, I1(20)) }-
Set Q" :=e? Re(zp)+27>Q+27. We will show that
distu(z,I(2)) <o for all z€ Jg: (F).

Claim. For every z€Jg:(F), there is a point (€ Jg(F'), belonging to the same tract
of F as z, with |z—(|<2m and F({)e{z0+2mik:k€Z}.

Proof of the claim. F maps the boundary of the tract T containing z to the imag-
inary axis, and the distance of z to 9T is at most w. Since Re F(z)>Q’ >Rezy, we
can hence find a point ¢; €T with |z—(;|<7 and Re F({1)=Rezg. There is a point
Co€{z0+2mik:k€Z} with |F((1)—Ca|<m. We set (:=F;'((2). By the expansion prop-
erty (2.2) of F, we have [(—(;|<iw, and are done. O

Now let z€Jg/(F'). For each n>0, we can apply the claim to F"(z) to obtain a
point ("€ Jg(F) with |F"(z)—("|<2m and F((™)e{z0+2mik:k€Z}. We now pull back

(™ along the orbit of z to obtain a point z"; i.e.,

"= Fp (FR (Pt () ),

where ToT; ... is the external address of z. By induction and by the expansion property

(2.2), we have
j j(n 2
[F7(2) =12 (") < 55 (4.1)

for =0, ...,n. In particular, 2" €Jg(F) and 2" —=z.
We set 2! :=F7(2") and w} :=II(z}')=G7 (II(")). Let us prove inductively that
distm (2}, w}) <o (4.2)

for j=n+1,n,...,0. Indeed, we have z];,; =z0+2mik for some k€Z, and hence

disty (z;, 11, wy 1) = distr (20, 11(20)) < o,
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by property (c) and the definition of p.

Furthermore, for j<n, we have

wi = (Gl7) 7! (wiyy),

where 7T is the tract of G containing wf. By the assumption (d), T is also the tract of
G containing ®(27').

We observe that 2 |, wj' ;€Hy. Indeed, if j=n, this is true by the choice of 2.
If j<n, recall that Rez7, ;>Q'—2m by (4.1), and distm(z},,,w],)<e by the induction
hypothesis. Our choice of @’ implies that Rew;;1 >Rezo>M.

By Lemma 2.6 and the induction hypothesis, it follows that

disty (2], w}) < C+ 4 distm (2], w],) <C+30<o,

as claimed.
We have z{=2"—z, and hence, by continuity of II, also wj=II(z{) —II(z). There-
fore (4.2) implies that disty(z,I1(2))<o, as desired. O

COROLLARY 4.2. (Uniqueness of conjugacies) Let F and G be quasiconformally
equivalent. Then for every Q>0, there is Q' >Q with the following property. If

11, II5: JQ(F) —>J(G)

are continuous functions satisfying the hypotheses (a)—(d) of the previous theorem, then
IT (z)=II3(z) for all z€Jg (F).

Proof. We may assume without loss of generality that F' and G are both normalized.
Let @' >Q be chosen such that Jg/(F)CIg(F) (recall Corollary 2.5).
It follows from Theorem 4.1 that there is Q”>Q such that, for all z€ Jg~ (F), the

points II;(z) and II3(z) have the same external address, and stay within bounded hy-

perbolic distance of each other. By the expansion property (2.3) of G, this implies that
IT; (2)=II2(z) (provided Q" was chosen large enough).

So we have proved that IT; =II5 on Jg~ (F'). Using (d), we see that II; =I5 on I (F).
But Ig(F') is dense in Jg/(F'), so we are done. O

COROLLARY 4.3. (No invariant line fields) Let F'€Biog. Then F has no invariant
line fields on its escaping set I(F).

Proof. Recall that the existence of an invariant line field is equivalent to the existence
of a non-zero F-invariant Beltrami form whose support is contained in I(F') [McM2, §3.5].
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So suppose that 1 was such a Beltrami form. Recall that

[(F)=( U F"(Ja(F).
Q>0n>0
Since F is holomorphic, this implies that there is no @>0 such that u| s, () is zero almost
everywhere. Also observe that 2mi-periodicity of F' implies that p is 2wi-periodic.
By the measurable Riemann mapping theorem [H, Theorem 4.6.1], p gives rise to
a quasiconformal homeomorphism ®:C—C, which we may choose to commute with

translation by 2mi. The map
G:=PoFod™!

is holomorphic, and clearly quasiconformally equivalent to F'.

By Corollary 3.5, there is a quasiconformal map ©, isotopic to ® relative to the
boundary of the domain of definition V of F', which conjugates F' and G on Jg(F),
where Q>0 is sufficiently large.

By Corollary 4.2, we then have

Ol (7)) =Plig, (F)

for sufficiently large ’. Hence the dilatation of © and ® agree almost everywhere on
Io/(F). This is a contradiction: the dilatation of © on I/ (F') is zero almost everywhere,
but this is false for the dilatation p of the map ®. O

Proof of Theorem 1.2. Let feB, and let F' be a logarithmic transform of f. If f
supported an invariant line field on its escaping set, then the same would be true for F.
(As in the proof of Corollary 4.3, the support of the line field has non-trivial intersection
with every set of the form {z€I(f):|f"(z)|>R}, R>0.) Hence the theorem follows from
Corollary 4.3. O

Proof of Theorem 1.3. Suppose that f and g are entire functions with finitely many
singular values, let m: C—C be a topological conjugacy betweeen f and g, and let O be
the orbit of some escaping point zo€I(f).

For simplicity, let us assume that f(0)=0, and that x(0)=0. This is no loss of
generality, since any f €8 has infinitely many fixed points (see [Ep, Lemma 69] or [EL1];
compare also [LZ] for a more general result). However, we would like to point out that
this assumption is not essential for the proof, and is made purely for convenience.

Let S:=S5(f)U{0}. We can pick a quasiconformal homeomorphism (in fact, a dif-
feomorphism) ¢: C—C that is isotopic to 7 relative to S. Using the functional relation
o f=geom, the isotopy between 7 and ) lifts to an isotopy between m and a quasiconfor-
mal map ¢: C—C with

Yo f=gogp.
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(Compare also [EL3, §3].) In particular, f and g are quasiconformally equivalent.

Now, as usual, we change to logarithmic coordinates: we let F: V— H be a logarith-
mic transform of F, and II be a lift of 7; i.e., moexp=expoll. Then G:=IloFoII"! is a
logarithmic transform of g.

The isotopies between m and 1, resp. @, lift to isotopies between II and maps ¥,
resp. @, satisfying Wo FF=G-®, so F' and G are quasiconformally equivalent as elements
of Biog.

Furthermore, if M >0 is sufficiently large, then no point z€H); leaves the domain
H under the isotopy between IT and W. It follows that, if T" is a tract of F' and z€T with
F(z)eHyy, then ®(2)eIl(T).

Let © be the map from Corollary 3.5. Then, by Corollary 4.2, we have

Olsy ) =11, (F)

for some Q' >0. If ¥ is the quasiconformal map defined by Yoexp=exp o0, then ¢ and =
agree on the set
Joo (f)={z€C:|f"(2)| = e? for all n>1}.

€

Pick ko€N such that f*o(zp)€J, o/ (f). Then 7 agrees with the quasiconformal map
¥ on the tail Oy, :={f*(20):k=ko} of the orbit O.

We can modify the map ¢ (e.g. using Proposition 2.11) on a compact subset of
C\ O, to a quasiconformal function that maps f*(zq) to m(f*(20)) for 0<k<ko. This

is the desired quasiconformal extension of 7|e. O

Remark. Note that the assumption that S(f) is finite was used only to find a qua-
siconformal map 1 isotopic to . Hence we can weaken the assumptions of Theorem 1.3
to require only that f,g€B and that the conjugacy = is isotopic, relative to S(f), to a

quasiconformal self-map of the plane.

5. Hyperbolic maps

Recall that feB is hyperbolic if S(f) is contained in the union of attracting basins
of f. Since S(f) is compact by definition, there are then only finitely many such basins,
which together make up the Fatou set. In particular, f is hyperbolic if and only if the

postsingular set

is a compact subset of the Fatou set.
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In the following, we assume without loss of generality that 0 is one of the attracting
periodic points of f.

We will show that such an f is semi-conjugate on its Julia set to a disjoint-type map
quasiconformally equivalent to f, and this semi-conjugacy is a conjugacy when restricted
to the escaping set. In view of Theorem 3.1, this implies that any two hyperbolic maps
that are quasiconformally equivalent near infinity are in fact topologically conjugate on
their sets of escaping points, and hence proves Theorem 1.4.

It is easy to see that there is a bounded open neighborhood U of the postsingular

set P(f) such that f(U)CcU. We set W:=C\U and V:=f~(W)CW. Then
ffV—w

is a covering map, and hence expands the hyperbolic metric of W. We claim that this

map is in fact uniformly expanding. (Compare also [RS, Theorem C].)

LeEMMA 5.1. (Uniform expansion) There is C>1 such that | Df(2)|lw>=C for all
z€V.

Proof. Since f is a covering map, we just need to show that the inclusion ¢: V—W
is uniformly contracting. Since the density of the hyperbolic metric of V' tends to co near
OV, and V and W have no common finite boundary points, it is sufficient to prove that
ow (2)/ov(2)—=0 as z—o0.

The hyperbolic density of W satisfies ow (2)=0(1/|z|log |z|) as z—o0. We now
estimate the hyperbolic metric of V, using Lemma 2.1. Fix some point weC\W =U
such that w belongs to the unbounded component of C\S(f).

Claim. There is a constant C' and a sequence {w; }jen of (pairwise distinct) preim-

ages of w under f such that |w;41|<Clwj| for all j.

Proof of the claim. Pick a Jordan curve v surrounding S(f), but not surrounding
w, and let G be the unbounded component of C\v. If G is a component of f~1(G), then
f:G—G is a universal covering. Hence we can find a sequence {w;};en of preimages of
w in G such that the hyperbolic distance (in é) between w; and w;4; is constant. By
the standard estimate (2.1) on the hyperbolic distance in the simply connected domain
G, this implies that |w;y1|<Clw;| for some C' and sufficiently large j, as desired. O

By Lemma 2.1, the hyperbolic metric of the domain V’:=C\{w,:neN} satisfies
1/0v/(2)=0(]z|). Since gy > pv- by Pick’s theorem, this means that ow (z)/ov (2)—0 as

z—00, as claimed. O

Let K >1; if K is chosen sufficiently large, then UCDy/2(0). Furthermore, choose
R> K such that
7 {2l > RY) c {]z] > K +1}.



RIGIDITY OF ESCAPING DYNAMICS 261

We define M:=R/K and g(z):=f(z/M). Then g is of disjoint type. Indeed, we have
U:=g  ({|z|>R})C{|z|>R+M}. We define

Vi=f'({lz|>R}) and V:i=f"'({|z[>K}),
and, for all 7,
Up=g({lzl>R}), Vj:==f7({|z[>R}) and V;:=f7({|z|>K}).

Note that V;CV; CW for all 5.

We now define a sequence 9, where ¥g=id and
VU1 —> Vi1
is a conformal isomorphism for £>1, such that

FWh41(2)) =01 (9(2))-

Begin by setting 91 (z):=z/M. Furthermore, for z€lUy, let 1 (z) CVy be the straight
line segment connecting z=9y(z) and z/M =1 (z).
To define 15 let z€l;. Since

f(01(2)) =1o(9(2)),

the curve 71 (g(z)) has a preimage component 7o (z)Cﬁl under f with one endpoint at
91(2); we define ¥5(2) to be the other endpoint. Then f(¥2(2))=131(g(2)).

We continue inductively: the curve ;1 (2) Cﬁj is the pullback of v;(g(z)) with one
endpoint at ¥;(z), and ¥;41(z) is defined as the other endpoint of this curve.

It follows from the definition that each ¥y is continuous. Hence, for every compo-
nent G of Uy, 91.41|g is a branch of f~1eog, and hence a conformal isomorphism onto
some component of 1~)k It is likewise easy to check that ¥y is surjective, so these maps
are indeed conformal isomorphisms between U}, and 1~/k.

We furthermore note that ¥ (Ux)=Vx for k>0 by the inductive construction.

THEOREM 5.2. (Convergence to a semiconjugacy) In the hyperbolic metric of W,

the maps V| (g converge uniformly to a continuous surjection
0:J(g) — J(f)

with fod=39eg and ¥(I(g))=9I(f)). Furthermore, 9:I(g)—I1(f) is a homeomorphism.
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Proof. Let zely. By definition,

distw (Jx+1(2), Ik (2)) < lw (Ve+1(2))

We have

log M log M
< = eI ) S Tog2 )
bw (71(2)) <Lgjups /23 (1 (2)) log(1+log(2z|/MK)) \log(” log 2 > g

for all z€Uy. Since 7j41(2) is obtained from 7;(g¥(z)) by a branch of f=* and f is
uniformly expanding on W by Lemma 5.1, we see that

e
Ok

for all zeUy,, where C is the constant from Lemma 5.1.

disty (Fg+1(2), 9% (2)) < (5.1)

In particular, the maps x| s(4) form a Cauchy sequence and, by the completeness of

the hyperbolic metric, have a (continuous) limit
9:J(g) — W.

By (5.1), ¥ satisfies

disty (9(2), 2) (5.2)

pareEsy

By definition, if z€.J(g), then f¥(9(2))=9(g*(2)) €W for all keN. Thus J(z)€J(f).
Also note that, by (5.2), 9(z,)—oc if and only if z, =00, so ¥ maps escaping points to
escaping points.

The map 9: I(g)—I(f) is clearly surjective. Indeed, if wel(f), then weVj for all
sufficiently large k. Any limit point z of the sequence z, =1, '(w) will have J(z)=w.
(Note that {zj }ren cannot diverge to infinity by (5.1)).

To prove injectivity on I(g), suppose by contradiction that ¢¥(z1)=9(z2), where
21,22€1(g), 21#22. It follows from the construction of ¥ that also g7 (z1)#g’ (z2) for all

j=>=0. However, ¢ is injective on a set of the form
Tr(9)N1(g) ={z€1(9):]¢’(2)| = R’ for all j>1}.

(This follows from Corollary 4.2, or alternatively from an argument analogous to the
proof of injectivity in Theorem 3.2.) Since ¢?(z1) and g’ (z2) belong to Jr/(g)NI(g) for
sufficienly large j, we obtain the desired contradiction. The details are left to the reader.

Finally, 9(J(g))U{oc} is the continuous image of a compact set, and thus itself
compact. Since I(f)C¥(J(g))CJ(f) and J(f)CI(f) by [Er], we see that 1 is surjective.
The compactness of J(g)U{oo} and the fact that 9=(I(f))=1(g) imply that the image of
any relatively closed subset of I(g) under 9 is relatively closed in I(f). Hence (9|7(4)) "

is continuous. O
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Recall that, by a “pinched Cantor bouquet” we mean a metric space that is the
quotient of a straight brush in the sense of [AO] by a closed equivalence relation on its

endpoints. As a corollary of Theorem 1.4, we obtain the following.

COROLLARY 5.3. (Pinched Cantor bouquets) Let feB be hyperbolic and of finite

order. Then every dynamic ray of f lands, and the Julia set is a pinched Cantor bouquet.

Proof. Baraniski [Ba] proved that, in the disjoint-type case, the Julia set is a straight
brush, where all points except (some of ) the endpoints of the brush belong to I(f). The
corollary then follows immediately from our Theorem 5.2. O

Remark 1. More generally, the Julia set of a disjoint-type function f that can be
written as the composition of finitely many finite-order functions in B is homeomorphic
to a straight brush. This follows from [RRRS, Theorem 5.10] (which is independent
of [Ba]). Hence Corollary 5.3 also holds for all hyperbolic functions that can be written

as such a composition.

Remark 2. We should note that the fact that the Julia set is homeomorphic to a
straight brush is not explicitly proved either in [Ba] or in [RRRS]. However, it is not
difficult to deduce this from the results proved there using the topological characterization

given in [AQ].

Appendix A. Structure of escaping sets

In this section, we discuss the bearing that our results have on some intriguing questions
about escaping sets of entire functions that go back to Fatou’s original article of 1926
[F], and Eremenko’s study of the escaping set [Er|. Fatou observed that the Julia sets of
certain explicit entire functions contain curves on which the iterates tend to oo, and asked
whether this property holds for much more general functions. Eremenko showed that (for
an arbitrary entire function f), every component of the closure 1(7) is unbounded. He
then asked whether, in fact, every component of I(f) is unbounded, and also whether
every point of I(f) can be connected to oo by a curve in I(f). (For a more detailed
discussion of these questions and their history, compare [RRRS].)

This suggests the study of the following properties for an entire function f.

(F) Fatou property: There is a curve to oo in I(f).

(E) Eremenko property: Every connected component of I(f) is unbounded.

(S) Strong Eremenko property: Every point z€I(f) can be connected to co by a

curve in I(f).
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It is shown in [RRRS] that there exist hyperbolic functions f€B for which the Julia
set does not contain any curves to oo. Thus, property (F) (and, in particular, (S)) can
fail for functions in class B. In fact, there are even hyperbolic functions whose Julia set
does not contain any non-trivial curves at all. Together with Theorem 1.1, this implies

the following result.

COROLLARY A.l. (No curves in the escaping set) There exists an entire function
fE€B with the following property: if g€B is quasiconformally equivalent to f near infin-

ity, then the escaping set 1(g) does not contain any non-trivial curves.

Proof. Let f be the example constructed in [RRRS, Theorem 8.4], whose Julia set
does not contain any non-trivial curves. If g is quasiconformally equivalent to f near
infinity, then, by Theorem 1.1, for sufficiently large R the set Jgr(f) of points whose
forward orbits are contained in C\IDg(0) is homeomorphic to a subset of the Julia set
of f. Therefore Jr(f) does not contain any non-trivial curves either. Since the image
of a non-trivial curve under f is again a non-trivial curve, the same holds for all sets
I (), n>0.

Suppose, by contradiction, that I(g) does contain a non-trivial curve v: [0, 1]—I(g);
we may assume that 7 is not constant on any interval. For every n, v~ 1(f~"(Jr(f))) is
a closed subset of [0, 1] that does not contain any intervals, and hence is nowhere dense.
However, we have

0,1]=y""() v (F " r())),

n=0

which contradicts the Baire category theorem. O

In [R2], we establish Eremenko’s property for every hyperbolic function f€B, and
more generally any function f€B with bounded postsingular set. This shows that a situ-
ation as in Corollary A.1 cannot occur for property (E). Whether there is any entire func-
tion for which property (E) fails remains an open problem. We remark that even in the
exponential family, the study of connected components of I(f) is far from trivial: while
in the hyperbolic case, each such component consists of a single dynamic ray [BDDJM],
for many non-hyperbolic exponential maps, including z+sexp(z) and z—27iexp(z), the
escaping set is a connected subset of the complex plane [R4], [J], [R5].

Note that our Theorem 1.4 also shows that

for any quasiconformal equivalence class in class B, each of the proper-
ties (F), (E) and (S) either holds for all hyperbolic maps or fails for all
hyperbolic maps.
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Now consider the following uniform variants of the above properties.

(UE) For every z€I(f), there exists some unbounded connected set A3z such that
fla— 00 uniformly.

(US) Every z€I(f) can be connected to oo by a curve « such that f"|,—oo uni-
formly.

In many proofs of the Eremenko property, or the strong Eremenko property, they
are in fact established in this uniform sense. It is possible, following the construction in
[RRRS], to construct an entire function for which property (UE) fails.

Theorem 1.1 shows that

for any quasiconformal equivalence class of Eremenko—Lyubich func-
tions, each of the properties (UE) and (US) either holds for all maps or
fails for all maps.

In [RRRS], property (US) is established for a large subset of B, in particular for those
of finite order (as well as finite compositions of such functions). The above-mentioned
recent results of Baranski [Ba] also imply this property for disjoint-type functions f€B
of finite order (i.e., hyperbolic maps with a single fixed attractor). Hence Theorem 1.1,
together with [Ba], provides an alternative proof of property (US)—and thus a positive

answer to Fatou’s and Eremenko’s questions—for functions f€B of finite order.
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