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1. Introduction

The main topic of this paper is the study of real-analytic CR-manifolds M with every-
where degenerate Levi form. In particular, for homogeneous manifolds of this type, we
develop methods for the computation of the Lie algebras hol(M,a) of infinitesimal CR-
transformations at every a∈M . We also classify, up to local CR-equivalence, all locally
homogeneous degenerate CR-manifolds in dimension 5.
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In this context, a well-studied example of a homogeneous Levi degenerate CR-
manifold is the quadratic hypersurface

M := {z ∈C3 : (Re z1)2+(Re z2)2 =(Re z3)2 and Re z3> 0};

compare, e.g., [13], [16], [23] and [31]. This 5-dimensional CR-manifold has several
remarkable properties and serves as motivation for various considerations in this paper.
Notice that M can also be written as a tube manifold

M=F+iR3⊂C3, where F := {x∈R3 :x2
1+x2

2 =x2
3 and x3> 0}

is the future light cone in 3-dimensional space-time. A glance at this description shows
that M is homogeneous under a group of complex-affine transformations. It is less obvi-
ous that the Lie algebras of global and local infinitesimal CR-transformations at a∈M,
hol(M) and hol(M, a), are both isomorphic to so(2, 3), and hence have dimension 10;
compare [23]. Also the following ‘globalization’ is known: the group SO(2, 3) acts on the
complex quadric Q3⊂P4(C) by biholomorphic transformations and has a hypersurface
orbit that contains M as a dense domain.

The cone F clearly is a disjoint union of affine half-lines. Therefore, M is a
disjoint union of complex half-planes, actually M is a fiber bundle with typical fiber
H+ :={z∈C:Re z>0}. However, the total space M is not even locally CR-equivalent to
a product H+×M ′, with M ′ a CR-manifold. Notice that the Levi form in both cases,
that is, for M and for a product of H+ with a Levi nondegenerate 3-dimensional CR-
manifold M ′, has exactly one nonzero eigenvalue at every point. Hence, one needs
more invariants to distinguish those CR-manifolds. While every product C×M ′ is
holomorphically degenerate, the crucial fact here is that the light cone tube M is non-
degenerate in a higher order sense: To be precise, M is 2-nondegenerate at every point,
and we refer to [4] and also to [3, §11.1], for the notion of k-nondegeneracy.

In the nonhomogeneous setting, for every k∈N and fixed manifold dimension it is
not difficult to construct large classes of CR-manifolds, even hypersurfaces, which are
k-nondegenerate at some points, but are Levi nondegenerate in a dense open subset. It
seems to be much harder to construct CR-manifolds which are k-nondegenerate every-
where for k>2. Note that the CR-dimension of a homogeneous M is an upper bound for
the degree k of nondegeneracy. Hence, the lowest manifold dimension for which every-
where 2-nondegenerate CR-manifolds can exist is 5. This raises the intriguing question
whether, besides the light cone tube, there exist more 2-nondegenerate homogeneous
CR-manifolds in dimension 5. So far, compare e.g. [14], [23], [16] and [5], all known
examples in dimension 5 finally turned out to be locally CR-isomorphic to M. Even
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the announced ‘new example’ in [17] revealed itself as locally equivalent to M as shown
in [16]. Therefore the desire arose to find examples that are not locally CR-isomorphic
to M.

The main objective of this paper is to show that there are actually infinitely many
locally mutually inequivalent examples and to provide a full classification. The starting
point is the following simple observation: Suppose that F⊂Rn is an affinely homoge-
neous (connected) submanifold of dimension say d<n. Then the tube M :=F+iRn is
a generic CR-submanifold of Cn of CR-dimension d and is homogeneous under a group
of complex-affine transformations. Indeed, every real-affine transformation leaving F in-
variant extends to a complex-affine transformation leaving M invariant and, in addition,
M is invariant under all translations z 7!z+iv with v∈Rn. Clearly, the crucial question
is the following: When is M k-nondegenerate and when are two tubes M and M ′ of this
type locally CR-equivalent?

The classification of all affinely homogeneous surfaces F⊂R3 can be found in [11]
and [12]. In particular, a complete list (up to local affine equivalence and in a slightly
different formulation) of all degenerate types that are not a cylinder, is given by the
following examples:

(1) F=F , the future light cone as above;
(2a) F={r(cos t, sin t, eωt)∈R3 :r∈R+ and t∈R} with ω>0 arbitrary;
(2b) F={r(1, t, et)∈R3 :r∈R+ and t∈R};
(2c) F={r(1, et, eθt)∈R3 :r∈R+ and t∈R} with θ>2 arbitrary;
(3) F={c(t)+rc′(t)∈R3 :r∈R+ and t∈R}, where c(t):=(t, t2, t3) parameterizes the

twisted cubic {(t, t2, t3):t∈R} in R3 and c′(t)=(1, 2t, 3t2).
Notice that the limit case ω=0 in (2a) gives the future light cone F , while the limit

case θ=2 in (2c) gives the linearly homogeneous surface {x∈R3 :x1x3=x2
2 and x1, x2>0},

which is locally, but not globally, linearly equivalent to F . In fact, F is linearly equivalent
to the cone {x∈R3 :x1x3=x2

2 and x1+x3>0}.
As our first main result we show the following theorem (compare Propositions 8.8

and 8.9 for details).

Theorem I. For every surface F in (1)–(3) the corresponding tube manifold M :=
F+iR3 is a homogeneous 2-nondegenerate CR-submanifold of C3 and any two of them
are pairwise locally CR-inequivalent. Furthermore, for every F in (2a)–(3) and every
a∈M=F+iR3 the following hold :

(i) the Lie algebra hol(M,a) is solvable and has dimension 5;
(ii) the stability group Aut(M,a) is trivial ;
(iii) every homogeneous real-analytic CR-manifold M ′, that is locally CR-equivalent

to M, is already globally CR-equivalent to M.
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Notice that, a priori, there is no reason why the F in (1)–(3), although known to be
locally affinely inequivalent, should have locally CR-inequivalent tubes (for nondegener-
ate affinely homogeneous surfaces in R3, for instance, there are counterexamples).

We actually prove an analog of Theorem I in every dimension n>3, where the same
trichotomy occurs as above. Consider the following surfaces F⊂Rn:

(1′) F=Fn :={x∈Rn :x1>0, x2>0 and xj=x
2−j
1 xj−1

2 for 36j6n};
(2′) F={retϕ(a)∈Rn :r∈R+ and t∈R}, where ϕ is an endomorphism of Rn having

a∈Rn as cyclic vector and the n eigenvalues of ϕ do not form an arithmetic progression
in C;

(3′) F={c(t)+rc′(t):r∈R+ and t∈R}, where c(t):=(t, t2, ..., tn)∈Rn parameterizes
the twisted n-ic in Rn.

In §6 and §7 we show, among other statements, the following: For every F and F ′

from (1′)–(3′) the tube manifolds M :=F+iRn and M ′ :=F ′+iRn are affinely homoge-
neous generic 2-nondegenerate submanifolds of Cn with CR-dimension 2. Furthermore,
M and M ′ are locally CR-equivalent if and only if F and F ′ are globally affinely equiv-
alent, and this holds if and only if for given a∈M and a′∈M ′ the Lie algebras hol(M,a)
and hol(M ′, a′) are isomorphic. In case F=Fn, the Lie algebra hol(M,a) contains a copy
of gl(2,R) and hence is not solvable. In all other cases, that is, F comes from (2′) or (3′),
the Lie algebra hol(M,a) is solvable of dimension n+2 and the stability group Aut(M,a)
has order at most 2.

Let us briefly comment on the proof of Theorem I. Once the defining equations
for an F under consideration are explicitly known (this is quite obvious for the types
(1)–(3), compare §8, but seems to be hard for the types (2′) and (3′)), one can compute,
by standard methods, the order k of nondegeneracy. However, the amount of calculation
necessary to determine k in such a way grows very fast with k and with the dimension of
M⊂Cn. This is one of the reasons, especially with an eye on possible generalizations, to
choose a different approach, which does not use explicit equations. For instance, given
an arbitrary submanifold F⊂Rn which is (locally) affinely homogeneous, we present a
simple criterion (Proposition 3.7) which allows us to determine quickly the order k of
nondegeneracy for the corresponding tube manifold.

The hard part of the proof is to show that the various tubes F+iR3 are mutually
locally inequivalent as CR-manifolds. Recall that for real-analytic, not necessarily homo-
geneous, hypersurfaces with nondegenerate Levi form there exist local invariants which
determine each M up to local CR-equivalence due to the fundamental work of Cartan,
Tanaka and Chern–Moser, compare [8], [9] and [32]. However, an analogous approach
is not available for M of higher codimensions or when the Levi form is degenerate. To
distinguish the various tubes F+iR3, we develop a method (valid also in greater gener-
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ality) which enables us to determine explicitly the Lie algebras hol(M,a) of infinitesimal
CR-transformations of the various CR-germs (M,a) (see §2 for basic definitions and §6
for further details).

The CR-manifolds occurring in the previous theorem are quite special as they all
are tube manifolds. Moreover, all but one (namely the twisted cubic case in (3)) are
actually conical. In the Levi nondegenerate case, many (homogeneous) examples are
known which are not locally CR-equivalent to any tube manifold. For instance, the unit
sphere subbundle of TS3 with its canonical CR-structure is such an example. Therefore,
our second main result came quite unexpected to us.

Theorem II. Every 5-dimensional locally homogeneous 2-nondegenerate CR-man-
ifold M is locally CR-equivalent to F+iR3 with F being one of the surfaces in (1)–(3).

For the precise definition of local homogeneity we refer to §2. A priori, locally homo-
geneous CR-manifolds might exist which are not locally CR-equivalent to any globally
homogeneous one. As a by-product of the above two results we get that such a pathology
does not happen in the case under consideration. A word concerning the regularity in
Theorem II: According to our general assumption in this paper, Theorem II is formu-
lated and proved in the category of real-analytic CR-manifolds. But then it automatically
holds in the smooth situation as well, due to the following well-known fact: If M is a
smooth CR-manifold that is locally homogeneous under a finite-dimensional Lie alge-
bra g of smooth infinitesimal CR-transformations, then there is a real-analytic atlas on
M such that all vector fields in g become real-analytic.

Theorem II also gives a classification of all (abstract) 2-nondegenerate locally homo-
geneous CR-manifolds in dimension 5 up to local CR-equivalence. In fact, using Cartan’s
classification [8] of the 3-dimensional Levi nondegenerate homogeneous CR-manifolds, the
following result follows.

Classification. Every 5-dimensional locally homogeneous CR-manifold M with
degenerate Levi form is locally CR-equivalent to one of the following :

(i) M=F+iR3⊂C3, where F is one of the surfaces (1)–(3) from above;
(ii) M=C×M ′, where M ′ is one of the 3-dimensional Levi nondegenerate homoge-

neous CR-manifolds from Cartan’s list in [8];
(iii) M=C2×R or M=C×R3 with R3 totally real.

The manifolds in (i) are all 2-nondegenerate and those in (ii) and (iii) are holomor-
phically degenerate. Also, the manifolds in (iii) are just the Levi flat ones.

With Theorem II the following question arises naturally for higher codimension:
Are there, up to local CR-equivalence, other locally homogeneous 2-nondegenerate CR-
manifolds of CR-dimension 2 besides those that are tubes over the surfaces F in (1′)–(3′)
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above? Notice in this context that every locally homogeneous 2-nondegenerate CR-
manifold of dimension 6 necessarily has CR-dimension 2.

For 5-dimensional CR-hypersurfaces with nondegenerate Levi form, that is, when
Chern–Moser invariants are available, there already exists a partial classification: Locally
homogeneous CR-hypersurfaces in C3 with stability groups of positive dimension have
been classified by Loboda in terms of local equations in normal form; see [25], [26], [27].

The paper is organized as follows. After recalling some necessary preliminaries in §2,
we discuss in §3 tube manifolds M=F⊕iRn⊂Cn over real-analytic submanifolds F⊂Rn.
It turns out that the CR-structure of M is closely related to the real-affine structure of
the base F . For instance, the Levi form of M is essentially the sesquilinear extension of
the second fundamental form of the submanifold F⊂Rn. Generalizing the notion of the
second fundamental form, we define higher-order invariants for F (see Definition 3.4).
In the uniform case these invariants precisely detect the k-nondegeneracy of the corre-
sponding CR-manifold M=F⊕iRn. It is known that the (uniform) k-nondegeneracy of
a real-analytic CR-manifold M together with minimality ensures that the Lie algebras
hol(M,a) are finite-dimensional, and is equivalent to this in the special class of locally
homogeneous CR-manifolds. For submanifolds F⊂Rn, which in addition are homoge-
neous under a group of affine transformations, a simple criterion for k-nondegeneracy of
the associated tube manifold M is given in Proposition 3.7.

In §4 these results are applied to the case where F is conical in Rn, that is, locally
invariant under dilations z 7!tz for t near 1∈R. In this case M is always Levi degener-
ate. Assuming that hol(M,a) is finite-dimensional (which automatically is the case for
minimal and finitely nondegenerate CR-manifolds), we develop some basic techniques
for the explicit computation of hol(M,a). The main results in §4 are the following: We
prove that under the finiteness assumption, hol(M,a) consists only of polynomial vector
fields and carries a natural graded structure; see Proposition 4.2. We prove (under the
same assumptions, see Proposition 4.4 (ii)) that local CR-equivalences between two such
tube manifolds are always rational maps (even if these manifolds are not real-algebraic).
Furthermore, jet determination estimates are provided (Proposition 4.4 (iv)). In the
special situation where hol(M,a) consists of affine germs only, these results are further
strengthened.

In §5 we illustrate by examples how our methods can be applied. In Example 5.1
we present for every c>1 and k∈{2, 3, 4} a homogeneous submanifold of Ck+c which
is k-nondegenerate and has codimension c. We close this section investigating for all
1<p<n, q :=n−p and α∈R∗ the tubes Mα

p,q over the cones

Fαp,q :=
{
x∈ (R+)n :

p∑
j=1

xαj =
n∑

j=p+1

xαj

}
.
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Using our methods from the preceding section, we explicitly determine the Lie algebras
hol(Mα

p,q, a) for arbitrary integers α>2.

In §6, we construct homogeneous CR-submanifolds M=Mϕ,d⊂Cn of tube type,
depending on the choice of an endomorphism ϕ∈End(Rn), an integer 1<d<n and a cyclic
vector a∈Rn for ϕ in the following way: The powers ϕ0, ϕ1, ..., ϕd−1 span an abelian Lie
algebra h and, in turn, give a cone F :=exp(h)(a)⊂Rn. The corresponding tube manifold
Mϕ,d=F+iRn is 2-nondegenerate, minimal and of CR-dimension d. The key result here
is the explicit determination of the CR-invariant hol(Mϕ,d, a) for ϕ in ‘general position’
(Propositions 6.5 and 6.17). The precise meaning for ϕ of being in ‘general position’
is stated in Lemma 6.8. Further results are, again for ϕ in general position, that the
tube manifold M is simply connected and has trivial stability group at every point. As
a consequence, the manifolds M of this type have the following remarkable property:
Every homogeneous (real-analytic) CR-manifold locally CR-equivalent to M is globally
CR-equivalent to M .

In §7 the results from §6 are further refined in the case of homogeneous CR-manifolds
Mϕ :=Mϕ,2 :=Fϕ+iRn⊂Cn of CR-dimension 2 but without restrictions on the codimen-
sion. In fact, every minimal and locally homogeneous tube CR-manifold M :=S+iRn

with a conical 2-dimensional S⊂Rn is locally CR-equivalent to Mϕ for some cyclic ϕ.
In this section also the case is treated, where ϕ is not in ‘general position’, that is, the
characteristic roots do form an arithmetic progression (see Lemma 6.8). The main results
here are: Whether a cyclic ϕ is in general position or not, the Lie algebras hol(Mϕ, a)
(Proposition 7.3) and the global automorphism groups Aut(Mϕ) (Proposition 7.5) are
determined. Furthermore, the problem of local and global CR-equivalence among the
Mϕ’s is solved (Propositions 7.6 and 7.7) and a moduli space is constructed (§7.8).

Part I of the paper is concluded with §8, where the examples (1)–(3) from Theorem I
are presented in more detail. The results of the preceding section are applied to this case
of 5-dimensional tube manifolds M . In particular, Propositions 8.8 and 8.11 contain
some additional information to that stated in Theorem I and also complete the proof of
Theorem I.

Part II of the paper is mainly devoted to prove Theorem II. In the preliminary §9
we explain how the geometric properties such as k-nondegeneracy, minimality or the
CR-dimension of an arbitrary locally homogeneous CR-germ (M,o) can be encoded in
a pure Lie algebraic object, the associated CR-algebra (g, q). This is the key for our
classification and is based on results taken from [15]. Specified to 5-dimensional CR-
germs, we formulate the precise algebraic conditions on a CR-algebra (g, q) ensuring
that the associated CR-germ (M,o) is 2-nondegenerate.

Once the classification of 2-nondegenerate 5-dimensional locally homogeneous CR-
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germs (M,o) is reduced to a classification problem of certain CR-algebras, we begin in
§10 to carry out the details of the proof. It is subdivided into several sections, lemmata
and claims and will only be completed in §16. Our proof relies on a quite subtle analysis
of Lie algebraic properties of CR-algebras and uses basic structure theory of Lie algebras
and Lie groups. The methods are quite general and can be adapted to handle also
higher-dimensional cases.

A more detailed outline of the proof can be found in the first part of §10.

Part I. Levi degenerate CR-manifolds

2. Preliminaries

In the following let E always be a complex vector space of finite dimension and M⊂E
an immersed connected real-analytic submanifold. In most cases M will be locally closed
in E. Due to the canonical identifications TaE=E, for every a∈M we consider the
tangent space TaM as an R-linear subspace of E. Then HaM :=TaM∩iTaM is the
largest complex linear subspace of E contained in TaM . The manifold M is called a
CR-submanifold if dimC HaM does not depend on a∈M . This dimension is called the
CR-dimension of M and HaM is called the holomorphic tangent space at a; compare [3]
as general reference for CR-manifolds. Given another real-analytic CR-submanifold M ′

of a complex vector space E′, a smooth mapping g:M!M ′ is called CR if for every a∈M
the differential dga:TaM!TgaM ′ maps the corresponding holomorphic tangent spaces in
a complex-linear way to each other. Keeping in mind the identification TaE=E, a vector
field on M is a mapping f :M!E with f(a)∈TaM for all a∈M . For better distinction
we also write ξ=f(z)∂/∂z instead of f and ξa instead of f(a); compare the convention
(2.1) in [16].

An infinitesimal CR-transformation on M is by definition a real-analytic vector field
f(z)∂/∂z on M such that the corresponding local flow consists of CR-transformations.
Let us denote by hol(M) the space of all such vector fields, which is a real Lie algebra
with respect to the usual bracket. For every f(z)∂/∂z∈hol(M) and every a∈M , there
exist an open neighbourhood U⊂M of a with respect to the manifold topology on M ,
an open neighbourhood W of a with respect to E, and a holomorphic mapping h:W!E
with f(z)=h(z) for all z∈U∩W ; compare [2] or [3, Proposition 12.4.22].

Further, for every a∈M , we denote by hol(M,a) the Lie algebra of all germs of
infinitesimal CR-transformations defined on arbitrary open neighbourhoods of a with
respect to the manifold topology of M . For simplicity and without essential loss of
generality, we always assume that the CR-submanifold M is generic in E, that is,
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E=TaM⊕iTaM for all a∈M . This assumption allows us to consider hol(M,a) in a
canonical way as a real Lie subalgebra of the complex Lie algebra hol(E, a), which we
always do in the following. The CR-manifold M is called holomorphically nondegenerate
at a if hol(M,a) is totally real in hol(E, a), i.e. if hol(M,a)∩i hol(M,a)=0 in hol(E, a).
This condition together with the minimality of M at a implies that dim hol(M,a)<∞;
see [3, Theorem 12.5.3]. Here, the CR-submanifold M⊂E is called minimal at a∈M if
TaR=TaM for every submanifold R⊂M with a∈R, and HzM⊂TzR for all z∈R. By
[3, Proposition 15.5.1], dim hol(M,a)<∞ implies that M is holomorphically nondegen-
erate at a.

The CR-manifold M is called locally homogeneous at the point a∈M if there exists
a Lie subalgebra g⊂hol(M,a) of finite dimension such that the canonical evaluation map
g!TaM is surjective. By [33] this is already satisfied if the canonical evaluation map
hol(M,a)!TaM is surjective. In the global setting the situation is quite different: In
[21, p. 69], an example of a domain D⊂C2 was given, on which the group Aut(D) of
all biholomorphic automorphisms acts transitively but on which no connected Lie group
of finite dimension can act transitively. In case the CR-manifold M is locally homoge-
neous at a, the condition dim hol(M,a)<∞ is equivalent to M being holomorphically
nondegenerate and minimal at a.

By aut(M,a):={ξ∈hol(M,a):ξa=0} we denote the isotropy subalgebra at a∈M .
Clearly, aut(M,a) has finite codimension in hol(M,a). Furthermore, we denote by
Aut(M,a) the group of all germs of real-analytic CR-isomorphisms h:W!W̃ with
h(a)=a, where W and W̃ are arbitrary open neighbourhoods of a in M . It is known
that every germ in Aut(M,a) can be represented by a holomorphic map U!E, where
U is an open neighbourhood of a in E; compare, e.g., [3, Corollary 1.7.13]. Further-
more, Aut(M) denotes the group of all global real-analytic CR-automorphisms h:M!M
and Aut(M)a its isotropy subgroup at a. There is a canonical group monomorphism
Aut(M)a ↪!Aut(M,a) as well as an exponential map exp: aut(M,a)!Aut(M,a) for ev-
ery a∈M .

By aff(M)⊂hol(M) we denote the Lie subalgebra of all (complex) affine infinitesi-
mal CR-transformations on M . For every a∈M furthermore aff(M,a)⊂hol(M,a) is the
Lie subalgebra of all affine germs. The canonical embedding aff(M)↪!aff(M,a) is an
isomorphism for every a∈M .

Suppose that g:U!U ′ is a biholomorphic mapping between open subsets U,U ′⊂E.
Then

g∗(f(z)∂/∂z) = g′(g−1z)(f(g−1z))∂/∂z (2.1)

defines a complex Lie algebra isomorphism g∗: hol(U)!hol(U ′), where g′(u)∈End(E), for
every u∈U , is the derivative of g at u. For real-analytic CR-submanifolds M,M ′⊂E ev-
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ery CR-isomorphism g: (M,a)!(M ′, a′) of manifold germs induces a Lie algebra isomor-
phism g∗: g!g′, where g:=hol(M,a) and g′ :=hol(M ′, a′). From (2.1) it is clear that g∗
extends to a complex Lie algebra isomorphism l!l′, where the sums l:=g⊕ig⊂hol(E, a)
and l′ :=g′⊕ig′⊂hol(E, a′) are not necessarily direct. In particular, g 7!g∗ defines a group
homomorphism Aut(M,a)!Aut(g).

A basic invariant of a CR-manifold is the (vector-valued) Levi form. Its definitions
found in the literature may differ by a constant factor. Here we choose the following
one: It is well-known that for every point a in the CR-manifold M there is a well-defined
alternating R-bilinear map

ωa:HaM×HaM −!E/HaM

satisfying ωa(ξa, ζa)≡[ξ, ζ]a mod HaM , where ξ and ζ are arbitrary smooth vector fields
on M with ξz, ζz∈HzM for all z∈M . We define the Levi form

La:HaM×HaM −!E/HaM (2.2)

to be twice the sesquilinear part of ωa. By sesquilinear we always mean ‘conjugate linear
in the first and complex linear in the second variable’, that is,

La(v, w) =ωa(v, w)+iωa(iv, w) for all v, w∈HaM .

In particular, the vectors La(v, v), v∈HaM , are contained in iTaM/HaM , which can be
identified in a canonical way with the normal space E/TaM to M⊂E at a. The following
remark follows immediately from the way the Levi form is defined.

Remark 2.3. Suppose that Z is a complex manifold, ϕ:Z!M is a smooth CR-
mapping and a=ϕ(c) for some c∈Z. Then every vector v∈dϕc(TcZ)⊂HaM satisfies
La(v, v)=0. In general, v is not contained in the Levi kernel

KaM := {v ∈HaM :La(v, w) = 0 for all w∈HaM}.

The CR-manifold M is called Levi nondegenerate at a if KaM=0. Generalizing
that, the notion of k-nondegeneracy for M at a has been introduced for every integer
k>1 (see [3] and [4]). As shown in [3, Theorem 11.5.1], a real-analytic and connected
CR-manifold M is holomorphically nondegenerate at a (equivalently, at every z∈M) if
and only if there exists a k>1 such that M is k-nondegenerate at some point b∈M . For
k=1 this notion is equivalent to M being Levi nondegenerate at b∈M .

In the second part of our paper we also need a more general notion of a (real-
analytic) CR-manifold. This is a connected real-analytic manifold M together with a
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subbundle HM⊂TM (called the ‘holomorphic subbundle’) and a bundle endomorphism
J of HM , with J2=− id, such that (HM,J) is involutive; compare [6, §7.4]. By a
theorem in [1], there exists an embedding M↪!Z into a complex manifold Z, such that
HzM corresponds to TzM∩iTzM , where TzZ!TzZ is simply the multiplication by the
imaginary unit i (here the real-analyticity is necessary). The bundle homomorphism
J :HM!HM is then the restriction to HzM , for every z∈M , of that multiplication by
i. For local considerations one can always assume that Z is (an open subset of) Cn.

3. Tube manifolds

Let V be a real vector space of finite dimension and E :=V ⊕iV its complexification. Let
furthermore F⊂V be a connected real-analytic submanifold and M :=F+iV ⊂E be the
corresponding tube manifold. M is a generic CR-submanifold of E, invariant under all
translations z 7!z+iv, v∈V . In case V ′ is another real vector space of finite dimension, E′

its complexification, F ′⊂V ′ a real-analytic submanifold and ϕ:V!V ′ an affine mapping
with ϕ(F )⊂F ′, then clearly ϕ extends in a unique way to a complex-affine mapping
E!E′ with ϕ(M)⊂M ′. However, it should be noted that higher-order real-analytic
maps ψ:F!F ′ also extend locally to holomorphic maps ψ:U!E′, U open in E. But in
contrast to the affine case, we have in general ψ(M∩U) 6⊂M ′. We may therefore ask how
the CR-structure of M is related to the real affine structure of the submanifold F⊂V .

For every a∈F let TaF⊂V be the tangent space and NaF :=V/TaF be the normal
space to F at a. Then TaM=TaF⊕iV for the corresponding tube manifold M , and NaF
can be canonically identified with the normal space NaM=E/TaM of M in E. Define
the map la:TaF×TaF!NaF in the following way: For v, w∈TaF choose a smooth map
f :V!V with f(a)=v and f(x)∈TxF for all x∈F (actually it suffices to choose such an
f only in a small neighborhood of a). Then put

la(v, w) := f ′(a)(w) mod TaF, (3.1)

where the linear operator f ′(a)∈End(V ) is the derivative of f at a. One shows that la
does not depend on the choice of f and is a symmetric bilinear map. We mention that
if V is provided with a flat Riemannian metric and NaF is identified with TaF

⊥, then
l is nothing but the second fundamental form of F (see [30, §II.3.3]). The form la can
also be read off from local equations for F ; more precisely, suppose that U⊂V is an
open subset, W is a real vector space and h:U!W is a real-analytic submersion with
F=h−1(0). Then the derivative h′(a):V!W induces a linear isomorphism NaF∼=W ,
and modulo this identification la is nothing but the second derivative h′′(a):V ×V!W
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at a, restricted to TaF×TaF . By

KaF := {w∈TaF : la(v, w) = 0 for all v ∈TaF}

we denote the kernel of la. The manifold F is called (affinely) nondegenerate at a if
KaF=0 holds. The following statement follows directly from the definition of la.

Lemma 3.2. Suppose that ϕ∈End(V ) satisfies ϕ(x)∈TxF for all x∈F . Then ϕ(a)∈
KaF if and only if ϕ(TaF )⊂TaF .

Lemma 3.2 applies in particular for ϕ=id in case F is a cone, that is, rF=F for all
real r>0. More generally, we call the submanifold F⊂V conical if x∈TxF for all x∈F .
Then Ra⊂KaF holds for all a∈F .

In the remaining part of this section we explain how the CR-structure of the tube
manifold M is related to the real objects la, TF , KF and KrF , to be defined below,
which depend only on the affine geometry of F . In general it needs some effort to check
whether a given CR-manifold M is k-nondegenerate at a point a∈M (in the sense of
[4]). For affinely homogeneous tube manifolds, however, there are simple criteria, see
Propositions 3.5 and 3.7. We start with some preparations. For every a∈F⊂M ,

HaM =TaF⊕iTaF ⊂E (3.3)

is the holomorphic tangent space at a, and E/HaM can be canonically identified with
NaF⊕iNaF . It is easily seen that the Levi form La of M at a, compare (2.2), is
nothing but the sesquilinear extension of the form la from TaF×TaF to HaM×HaM .
In particular,

KaM =KaF⊕iKaF

is the Levi kernel of M at a. In case the dimension of KaF does not depend on a∈F ,
these spaces form a subbundle KF⊂TF . In this case, for every v∈KaF there exists a
smooth function f :V!V with f(a)=v and f(x)∈KxF for all x∈F , that is, the tangent
vector v extends to a smooth section in KF . In any case, let us define inductively linear
subspaces Kr

aF of TaF as follows.

Definition 3.4. For every real-analytic submanifold F⊂V , every a∈F and every
r∈N, put

(i) K0
aF :=TaF , and define

(ii) Kr+1
a F to be the space of all vectors v∈Kr

aF such that there is a smooth map-
ping f :V!V with f ′(a)(TaF )⊂Kr

aF , f(a)=v and f(x)∈Kr
xF for all x∈F .
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It is clear that K1
aF=KaF holds. Let us call F of uniform degeneracy or uniformly

degenerate if for every r∈N the dimension of Kr
aF does not depend on a∈F . In this case

it can be shown that for every v∈Kr
aF the outcome of the condition f ′(a)(TaF )⊂Kr

aF

in (ii) does not depend on the choice of the smooth mapping f :V!V satisfying f(a)=v
and f(x)∈Kr

xF for all x∈F . For instance, F is of uniform degeneracy if F is locally
affinely homogeneous, that is, if there exists a Lie algebra a of affine vector fields on
V such that every ξ∈a is tangent to F and such that the canonical evaluation map
a!TaF is surjective for every a∈F . Clearly, if F is locally affinely homogeneous in the
above sense, then the corresponding tube manifold M=F+iV is locally homogeneous as
CR-manifold.

Recall our convention that every smooth map f :V!V is considered as the smooth
vector field ξ=f(x)∂/∂x on V . Our computations below are considerably simplified by
the obvious fact that every smooth vector field ξ on V has a unique smooth extension to
E that is invariant under all translations z 7!z+iv, v∈V . In case ξ is tangent to F⊂V ,
the extension satisfies ξz∈HzM for all z∈M .

In case the submanifold F⊂V is uniformly degenerate in a neighbourhood of a∈F ,
we call F affinely k-nondegenerate at a if Kk

aF=0 and k>1 is minimal with respect
to this property. It can be seen that ‘affine k-nondegeneracy’ is invariant under affine
coordinate changes. As a consequence of [23] (compare the last five lines in the appendix
therein) we state the following results.

Proposition 3.5. Suppose that F is uniformly degenerate in a neighbourhood of
a∈F . Then the corresponding tube manifold M=F+iV is k-nondegenerate as a CR-
manifold at a∈M if and only if F is affinely k-nondegenerate at a.

Corollary 3.6. Suppose that dimF>2 and KxF=Rx for all x∈F . Then F is
affinely 2-nondegenerate at every point.

Proof. The map f=id has the property that f(x)∈KxF for every x∈F . Hence, the
relation f ′(x)(TxF )=TxF 6⊂KxF implies that x /∈K2

xF and thus K2
xF=0 as well as x 6=0.

In particular, F is uniformly degenerate.

For locally affinely homogeneous submanifolds F⊂V the spaces Kr
aF can easily be

characterized. For each affine vector field ξ=h(x)∂/∂x on V denote by ξlin :=h−h(0)∈
End(V ) the linear part of ξ.

Proposition 3.7. Suppose that A is a linear space of affine vector fields on V such
that every ξ∈A is tangent to F and the canonical evaluation mapping A!TaF is a
linear isomorphism. Then, given any r∈N, the vector v∈Kr

aF is in Kr+1
a F if and only

if ξlin(v)∈Kr
aF for every ξ∈A.
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Proof. By the implicit function theorem, there exist open neighbourhoods Y of 0∈A

and X of a∈M such that g(y):=exp(y)a defines a diffeomorphism g:Y!X. Define the
smooth map f :X!V by f(x)=µy(v), where µy for y :=g−1(x) is the linear part of the
affine transformation exp(y). Then f(a)=v and f(x)∈Kr

xF for every x∈X. A simple
computation shows that

f ′(a)(g′(0)ξ) = ξlin(v) for every ξ ∈A.

In view of Definition 3.4 (ii), this identity implies the claim.

It is easily seen that a necessary condition for M being minimal as a CR-manifold
is that F is not contained in an affine hyperplane of V . For later use in Proposition 4.10
we state the following sufficient condition.

Proposition 3.8. Suppose that A has the same properties as in Proposition 3.7
and denote by Λ⊂End(V ) the associative real subalgebra generated by {ξlin :ξ∈A}. Then
the tube manifold M=F+iV is minimal at a if V is the linear span of all vectors λ(v)
with v∈TaF and λ∈Λ.

Proof. Without loss of generality we assume that the canonical evaluation mapping
A!TxF is a linear isomorphism for every x∈F . We also assume that V is the linear span
of all λ(v) as above. Define inductively for every integer r>1 the subbundle HrM⊂TM
in the following way: H1M :=HM and every Hr+1

z M , z∈M , is the linear span of Hr
zM

together with all vectors [ξ, η]z, where ξ and η are arbitrary smooth sections in HrM

over M . For the proof, it is enough to show that TaM=H∞
a M :=

⋃
r>1 TaM .

From TaF⊕iTaF⊂Hr
aM⊂TaF⊕iV we see that for every 16r6∞ there is a unique

linear subspace Hr
aF⊂V with Hr

aM=TaF⊕iHr
aF and H1

aF=TaF . Therefore, it is
enough to show that H∞

a F=V . We claim that ξlin(Hr
aF )⊂Hr+1

a F holds for all ξ∈A. To
see this, fix an arbitrary w∈Hr

aF and an arbitrary vector field ξ∈A. Choose a smooth
section η over F in the bundle iHr

aF with ηa=iw and extend η as well as ξ in the unique
way to smooth vector fields on M that are invariant under all translations z 7!z+iv
with v∈V . Then ξ and η are sections in HrM , and [ξ, η]a=iξlin(w)∈Hr+1

a M implies
that ξlin(w)∈Hr+1

a F as required. Now define inductively the linear subspaces W r⊂V by
W 1 :=H1

aF=TaF and letting W r+1 be the linear span of W r together with all ξlin(W r),
ξ∈A. Then V =

⋃
r>1W

r by assumption and W r⊂Hr
aF by induction give V ⊂H∞

a M⊂V
as desired.

Lemma 3.9. Suppose that F⊂V is a submanifold such that for every c∈V with c 6=0
there exists a linear transformation g∈GL(V ) with g(F )=F and g(c) 6=c (this condition
is automatically satisfied if F is a cone). Then for M=F+iV the CR-automorphism
group Aut(M) has trivial center.
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Proof. Let an element in the center of Aut(M) be given and let h:U!E be its
holomorphic extension to an appropriate connected open neighbourhood U of M . Since
h commutes with every translation z 7!z+iv, v∈V , it is a translation itself. Indeed, for
a∈F fixed and c:=h(a)−a, the translation τ(z):=z+c coincides with h on a+iV and
hence on U by the identity principle. For every g∈GL(V )∩Aut(M) the identity gh=hg
implies g(c)=c. This forces c=0 by our assumption, that is, h(z)≡z.

Proposition 3.10. Suppose that the homogeneous CR-manifold M is simply con-
nected and that Aut(M) has trivial center. In case the stability group Aut(M,a) is trivial
for some (and hence every) a∈M , the following properties hold :

(i) Let M ′ be an arbitrary homogeneous CR-manifold and D⊂M and D′⊂M ′ be
nonempty domains. Then every real-analytic CR-isomorphism h:D!D′ extends to a
real-analytic CR-isomorphism M!M ′.

(ii) Let M ′ be an arbitrary locally homogeneous CR-manifold and D′⊂M ′ be a
domain that is CR-equivalent to M . Then D′=M ′.

Proof. (i) Fix a point a∈D. For every g∈G:=Aut(M) with g(a)∈D there exists
a transformation g′∈G′ :=Aut(M ′) with hg(a)=g′h(a). Since Aut(M ′, a′)={id}, the
transformation g′ is uniquely determined by g and satisfies hg=g′h in a neighbourhood
of a. Since the Lie group G is simply connected, g 7!g′ extends to a group homomorphism
G!G′ and h extends to a CR-covering map h:M!M ′. The deck transformation group
Γ:={g∈G:gh=h} is in the center of G and hence is trivial by assumption. Therefore,
h:M!M ′ is a CR-isomorphism.

(ii) The proof is essentially the same as of Proposition 6.3 in [16].

The condition ‘locally homogeneous’ in Proposition 3.10 (ii) cannot be omitted. A
counterexample is given for every integer k>3 by the tube M ′⊂C3 over

F ′ := {x∈R3 :xk2 =xk−1
1 x3 and x2

1+x2
2> 0}.

Then with R+ :=eR the tube M over F :=F ′∩(R+)3 is the Example 8.4 below for θ=k,
and M and M ′ satisfy for D′=M the assumption of Proposition 3.10 (ii).

4. Tube manifolds over cones

In this section we always assume that the (connected) submanifold F⊂V is conical (that
is, x∈TxF for every x∈F ) and that a∈F is a given point. Then, for M :=F+iV , the
Lie algebra g:=hol(M,a) contains the Euler vector field δ :=z∂/∂z. Denote by P the
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complex Lie algebra of all polynomial holomorphic vector fields f(z)∂/∂z on E, that is,
f :E!E is a polynomial map. Then P has the Z-grading

P=
⊕
k∈Z

Pk, [Pk,Pl]⊂Pk+l, (4.1)

where Pk is the k-eigenspace of ad(δ) in P. Then Pk is the subspace of all (k+1)-
homogeneous vector fields in P if k>−1 and is 0 otherwise. Define gk :=g∩Pk. Clearly,⊕

k∈Z gk is a graded, in general proper subalgebra of g, and aff(M,a)=g−1⊕g0.

Proposition 4.2. Retaining the above notation, suppose that g=hol(M,a) has fi-
nite dimension. Then, the following properties hold :

(i) g⊂P, that is, every f(z)∂/∂z∈g is a polynomial vector field on E=V ⊕iV .
Furthermore, f(iV )⊂iV .

(ii) g=
⊕

k>−1 gk, [gk, gl]⊂gk+l and g−1={iv∂/∂z :v∈V }.
(iii) For every z∈M the canonical map hol(M)!hol(M, z) is a Lie algebra isomor-

phism.
(iv) gk=0 for some k∈N implies that gj=0 for every j>k.

Proof. Consider l:=g⊕ig⊂hol(E, a), which contains the vector field η :=(z−a)∂/∂z.
We first show that l⊂P. Fix an arbitrary ξ :=f(z)∂/∂z∈l. Then in a certain neighbour-
hood of a∈E there exists a unique expansion ξ=

∑
k∈N ξk, where ξk=pk(z−a)∂/∂z for

a k-homogeneous polynomial map pk:E!E. It is easily verified that the vector field
ad(η)ξ∈l has the expansion ad(η)ξ=

∑
k∈N(k−1)ξk. Now assume that for d:=dim l there

exist indices k0<k1<...<kd such that ξkl
6=0 for 06l6d. Since the Vandermonde ma-

trix ((kl−1)j) is nonsingular, we get that the vector fields (ad(η))jξ=
∑
k∈N(k−1)jξk,

06j6d, are linearly independent in l, a contradiction. This implies that ξ∈P as claimed.
Since g⊂P has finite dimension, every η∈g is a finite sum η=

∑m
k=−1 ηk with ηk∈Pk

and m∈N not depending on η. For every polynomial p∈R[X] then

p(ad(δ))η=
m∑

k=−1

p(k)ηk

shows that ηk∈gk for all k, that is, g=
⊕

gk. The identity g−1={iv∂/∂z :v∈V } follows
from the fact that g−1 is totally real in P−1 and this implies that f(iV )⊂iV for all
f(z)∂/∂z∈gk, by [g−1, gk]⊂gk−1 and induction on k. For the proof of the last claim,
assume that gk=0 for some k>0. Then [P−1, gk+1]⊂(gk⊕igk)=0 implies gk+1⊂g−1

and hence gk+1=0.

Corollary 4.3. In case g=hol(M,a) has finite dimension, the CR-manifold M=
F+iV is locally homogeneous at a if and only if F is locally linearly homogeneous at
a∈F .
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Proof. From Proposition 4.2 follows that W :={ξa :ξ∈
⊕

k∈N g2k} is a subspace of V ,
while {ξa :ξ∈

⊕
k∈N g2k−1}=iV . Hence, M is locally homogeneous at a if and only if

W=TaF . But for every k∈N and every ξ∈g2k the vector field η :=(ad(ia∂/∂z))2kξ is in
g0 and satisfies ηa=(−1)k(2k+1)!ξa, that is, W={ξa :ξ∈g0}.

Notice that the conclusion g⊂P together with an eigenspace decomposition as in
Proposition 4.2 can for V =Rn be obtained in the same way if instead of ‘F conical’ it
is only assumed for M=F+iRn that g=hol(M,a) contains a vector field α1z1∂/∂z1+
α2z2∂/∂z2+...+αnzn∂/∂zn with αk>0 for all k; compare e.g. (7.13).

Proposition 4.4. Assume that g:=hol(M,a) has finite dimension, that F ′⊂V is
another conical submanifold with tube manifold M ′=F ′+iV, and that g′ :=hol(M ′, a′)
for some a′∈F ′. Assume that the CR-germs (M,a) and (M ′, a′) are isomorphic and
let g, g̃: (M,a)!(M ′, a′) be arbitrary CR-isomorphisms. Then, the following properties
hold :

(i) dim gk=dim g′k for all k∈Z, where gk and g′k are given by the decomposition in
Proposition 4.2 (ii).

(ii) g is represented by a rational transformation on E.
(iii) In case g1=0, g is represented by a linear transformation in GL(V )⊂GL(E)

mapping every Kr
aF onto Kr

a′F
′.

(iv) g=g̃ if and only if g and g̃ have the same d-jet at a, where

d :=min{k∈N : gk =0}.

Proof. Let l:=g⊕ig and lk :=l∩Pk for all k. The Lie algebra automorphism Ψ:=
exp(ad(a∂/∂z)) of l maps every f(z)∂/∂z to f(z+a)∂/∂z. For every k denote by lk⊂l the
subspace of all vector fields that vanish of order at least k+1 at a. Then Ψ(lk)=

⊕
j>k lj

implies that dim lk=dim lk/lk+1. As a consequence, dimR gk=dimC lk is a CR-invariant
of the germ (M,a) for every k.

For the proof of (ii) and (iii), put l′ :=g′+ig′ and extend g to a biholomorphic map-
ping g:U!U ′ with g(a)=a′ and g(U∩M)=U ′∩M ′ for suitable connected open neigh-
bourhoods U and U ′ of a and a′ in E. Consider the induced Lie algebra isomorphism
g∗ :l!l′; compare (2.1). Its inverse Θ:=g−1

∗ is given by

Θ(f(z)∂/∂z) = g′(z)−1f(g(z))∂/∂z. (4.5)

Since l consists of polynomial vector fields (Proposition 4.2), there exist polynomial maps
p:E!E and q:E!End(E) such that

Θ(z∂/∂z) = p(z)∂/∂z and Θ(e∂/∂z) = (q(z)e)∂/∂z
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for all e∈E. Then (4.5) implies that g′(z)−1=q(z) and g′(z)−1g(z)=p(z), that is,

g(z) = q(z)−1p(z) (4.6)

in a neighbourhood of a∈E and, in particular, g is rational.
Now suppose g1=0. Then also gk=g′k=0 for all k>1 by (i) and Proposition 4.2 (iv).

Clearly Θ(l′a′)=la, where la :={ξ∈l:ξa=0}, and similarly l′a′⊂l′, are the isotropy subal-
gebras at a and a′. Also, δa :=(z−a)∂/∂z is the unique element in la such that ad(δa)
induces the negative identity on the factor space l/la. As δa′ has the same uniqueness
property for l′a′ , we must have Θ(δa′)=δa. Since δ=z∂/∂z is the g-component of δa as
well as of δa′ in g⊕ig, we actually get Θ(δ)=δ, that is, p(z)≡z. Also l−1 is Θ-invariant,
implying that q is constant. Therefore g=q(a)−1.

For the proof of (iv) we assume without loss of generality thatM=M ′, a=a′ and that
g, id∈Aut(M,a) have the same d-jet at a. This implies that g(z)−z vanishes of order >d
and g′(z)−id vanishes of order >d at a. Therefore also g′(z)−1−id=q(z)−id vanishes of
order >d at a. Since q is a polynomial of degree 6d, there is a d-homogeneous polynomial
s:E!End(V ) with q(z)=id+s(z−a). Consider the vector field η :=(z−a)∂/∂z∈l and
define the holomorphic mappings h, r:U!E by

h(z) := q(z)(g(z)−a) = (z−a)+r(z).

Then Θ(η)=h(z)∂/∂z∈g shows that h and r are polynomials of degree 6d. But

r(z) = (g(z)−z)+s(z−a)(g(z)−a)

vanishes of order >d at a, that is, r=0 and Θ(η)=η. This implies that Θ(l−1)=l−1, since
l−1 is the (−1)-eigenspace of ad(η). Therefore g is an affine transformation on E. From
g(a)=a and g′(a)=id we finally get g=id.

Corollary 4.7. Let M :=F+iV and M ′ :=F ′+iV , with F, F ′⊂V being conical
submanifolds, and let a∈F and a′∈F ′ be arbitrary points. Assume furthermore that
hol(M,a)=aff(M,a) holds. Then, the following conditions are equivalent :

(i) the manifold germs (M,a) and (M ′, a′) are CR-equivalent ;
(ii) the manifold germs (M,a) and (M ′, a′) are affinely equivalent ;
(iii) the manifold germs (F, a) and (F ′, a′) are linearly equivalent.

Recall that aut(M,a)⊂g=hol(M,a) is defined as the isotropy subalgebra at a and
Aut(M,a) is the CR-automorphism group of the manifold germ (M,a), also called the
stability group at a∈M .
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Proposition 4.8. Let F⊂V be conical and let M=F+iV . In case g=hol(M,a)
has finite dimension, the following conditions are equivalent :

(i) g1=0;
(ii) g=aff(M,a);
(iii) the tangential representation g 7!g′(a) induces a group monomorphism

Aut(M,a) ↪!GL(V ).

Each of these conditions is satisfied if aut(M,a)=0.

Proof. Let l:=g⊕ig⊂hol(E, a) and lk :=gk⊕igk for all k.
(i)⇒ (ii) Follows from the last claim in Proposition 4.2.
(ii)⇒ (iii) By Proposition 4.4 (iii), every g∈Aut(M,a) is represented by a linear

transformation on V .
(iii)⇒ (i) Let ξ∈g1 be an arbitrary vector field. Then there exists a unique sym-

metric bilinear map b:E×E!E with ξ=b(z, z)∂/∂z. Now,

(ad(ia∂/∂z))2ξ=−2b(a, a)∂/∂z ∈ g,

i.e., η :=h(z)∂/∂z is in aut(M,a), where h(z):=b(z, z)−b(a, a). For every t∈R therefore
the transformation ψt :=exp(tη)∈Aut(M,a) has derivative ψ′t(a)=exp(th′(a))∈GL(E)
in a. But ψ′t(a)∈GL(V ) by Proposition 4.4 (iii) and thus 2b(a, v)=h′(a)v∈V for all
v∈V . On the other hand, b(a, v)∈iV by Lemma 3.9, implying that ψ′t(a)=id for all
t∈R. By the injectivity of the tangential representation, therefore, ηt does not depend
on t, and we get ξ=0. This proves (i) and thus the equivalence of (i)–(iii).

Suppose aut(M,a)=0 and that there exists a nonzero vector field ξ∈g1. Then ξa∈iV
and there exists an η∈g−1 with ξ−η∈aut(M,a), a contradiction.

Remark 4.9. Notice that condition (iii) in Proposition 4.8 states that the tangential
representation takes its values in the subgroup GL(V )⊂GL(E). In general, the tangential
representation is not injective and also takes values outside GL(V ). The tube M over
the future light cone can serve as a counterexample for both of these phenomena.

Proposition 4.10. Suppose that M=F+iV, with F⊂V being a conical submani-
fold , is locally homogeneous and that g=g−1⊕g0 for g=hol(M,a). Then the tangential
representation at a induces a group isomorphism

Aut(M,a)∼= {g ∈GL(V ) : gg0g
−1 = g0 and g(a) = a},

where g0 is considered in the canonical way as a linear subspace of End(V ).
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Proof. The assumptions imply that H(a)∩F is a neighbourhood of a in F for
H :=exp(g0)⊂GL(V ). Let g∈GL(V ) be an arbitrary linear transformation with g(a)=a
and gg0g

−1=g0. Then gHg−1=H and hence gH(a)=Hg(a)=H(a), that is g∈Aut(M,a).
Conversely, by Proposition 4.4 (iii), every element of Aut(M,a) can be represented by
some g∈GL(V ) with g(a)=a. Since δ is invariant under the Lie algebra automorphism
Θ=g∗ of g, also g0 is invariant under Θ. As a consequence, Θ(ϕ)=gϕg−1 for every ϕ∈g0,
that is, gg0g

−1=g0.

The real Lie algebra structure of hol(M,a) is a CR-invariant for the manifold germ
(M,a). For certain classes of conical tube manifolds this gives a complete invariant.

Proposition 4.11. Let F, F ′⊂V be conical submanifolds for which the correspond-
ing tubes M :=F+iV and M ′ :=F ′+iV are locally homogeneous CR-manifolds. Let a∈F
and a′∈F ′ be arbitrary points and assume that for g:=hol(M,a) the spaces gk occur-
ring in the grading of Proposition 4.2 (ii) satisfy gk=[g0, g0]=0. Then, the following
conditions are equivalent :

(i) the germs (M,a) and (M ′, a′) are CR-equivalent ;
(ii) hol(M,a) and hol(M ′, a′) are isomorphic as real Lie algebras.

Proof. Only the implication (ii)⇒ (i) is not obvious. Suppose that

Θ: g! g′ := hol(M ′, a′)

is a Lie algebra isomorphism. We use the same symbol for the complex linear extension:

Θ: l! l′.

Our first step is to show that Θ can be modified in such a way that it respects the
gradings. To begin with, [g′, g′] is abelian since our assumption implies that [g, g]=g−1

has this property. With g′=
⊕

k∈Z g′k being the grading for g′ as in Proposition 4.2 (ii),
assume that there exists a minimal integer k>1 with g′k 6=0. Then g′−1=[δ, g′−1] and c:=
[g′−1, g

′
k] 6=0 imply that g′−1, c⊂[g′, g′] together with [g′−1, c] 6=0, a contradiction. Therefore

g′=g′−1⊕g′0, with [g′, g′]=g′−1, and, as a consequence, Θ(g−1)=Θ([g, g])=[g′, g′]=g′−1.
Since ad: g′0!gl(g′−1) is injective, δ+g′−1 is precisely the set of all ξ∈g′ such that ad(ξ)
induces the negative identity on g′−1. Therefore, there exists η∈g′−1 with Θ(δ)=δ−η.
Replacing Θ by exp(ad(η))Θ=(id+ ad(η))Θ, we get Θ(δ)=δ and finally Θ(gk)=g′k for
all k.

There exists a linear operator θ∈GL(V )⊂GL(E) with Θ(e∂/∂z)=θ(e)∂/∂z for all
e∈E=V ⊕iV . We claim that H ′=θHθ−1 holds for the abelian subgroups H :=exp g0

and H ′ :=exp g′0 of GL(V ). Indeed, applying Θ to [e∂/∂z, λ(z)∂/∂z]=λ(e)∂/∂z yields

λ̃θ= θλ for all λ(z)∂/∂z ∈ g0 and λ̃(z)∂/∂z :=Θ(λ(z)∂/∂z)∈ g′0.
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We may therefore assume (possibly after replacing F by θF and a by θa) that H=H ′,
F=H(a) and F ′=H(a′). Denote by Λ⊂End(V ) the associative subalgebra generated by
all λ∈End(V ) with λ(z)∂/∂z∈g0. Then Λ is abelian, contains the identity of End(V ) and
H⊂Λ. Since dim g<∞, the CR-manifold F+iV is minimal and consequently F cannot
be contained in a hyperplane of V . This implies that Λ(a)=V , and thus the existence
of a g∈Λ with a′=g(a). From gH=Hg we get F ′=g(F ). Since g(F ) also cannot be
contained in a hyperplane of V , finally g∈GL(V ) follows.

In Propositions 6.5 and 6.17 a large class of linearly homogeneous conical sub-
manifolds F⊂V is given for which the corresponding tubes M satisfy the condition
g1=[g0, g0]=0 in Proposition 4.11.

We note that we do not know a single example with dim g<∞ and dim gk>dim g−k

for some k∈N. We also do not know any pair M,M ′ of holomorphically nondegener-
ate conical tube manifolds, that are locally CR-equivalent but are not locally affinely
equivalent. For Levi nondegenerate tube manifolds (which necessarily cannot be conical)
such examples can be found in [10]. In [20] even two affinely homogeneous examples are
contained which are locally affinely inequivalent but whose associated tube manifolds are
locally CR-equivalent.

5. Some examples

In this section we present two classes of examples. To our knowledge, the only known
example of a homogeneous k-nondegenerate CR-manifold with k>3 occurs in [15] for
the case k=3: this is a hypersurface M in a 7-dimensional compact complex manifold,
on which the simple Lie group SO(3, 4)0 acts by biholomorphic transformations with
orbit M . In our first example we give, for arbitrary CR-codimension c>1, a minimal
homogeneous 3-nondegenerate as well as a minimal homogeneous 4-nondegenerate CR-
manifold. The second class of examples deals with tubes M over cones of the form{

x∈ (R+)n :
∑
j6p

xαj =
∑
j>p

xαj

}
,

with 16p<n and α 6=0, 1. Using results from the preceding section, we explicitly de-
termine all Lie algebras g=hol(M,a) for certain α. Among these are all hyperquadrics
(that is, α=2) of signature (p, q) with q :=n−p, where g turns out to be isomorphic to
so(p+1, q+1).

The first example of CR-manifolds introduced below consists of tubes M=Γ(a)+iV
over certain group orbits Γ(a), where the connected group Γ:={g∈GL(2,R):det(g)>0}
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acts linearly on the real vector space V . In that way we obtain homogeneous k-nondegen-
erate CR-manifolds for k∈{2, 3, 4}. For dimensional reasons, it is impossible to construct
CR-manifolds of higher nondegeneracy, employing the group Γ=GL(2,R)0. We do not
know how to construct k-nondegenerate homogeneous tube manifolds with k>5 (should
these exist) with suitable other groups, either.

Example 5.1. For fixed integers k∈{2, 3, 4} and c>1 let V ⊂R[u, v] be the subspace
of all homogeneous polynomials of degree m:=k+c−1. Then the group Γ (see above)
acts irreducibly on V by p 7!p�g−1 for all g∈Γ, and has the subgroup {g∈R id:gm=id} as
kernel of ineffectivity. For a:=

∑k−2
j=0 u

jvm−j∈V the orbit F=Fk,c :=Γ(a) is a connected
conical submanifold of dimension k in V . With Proposition 3.7 it is easily seen that

Kr
aF =

k−1−r∑
j=0

Rujvm−j for all r> 0.

In particular, the tube manifold Mk,c :=F+iV is a k-nondegenerate homogeneous CR-
manifold of CR-dimension k and CR-codimension c. The manifolds M2,c will be dis-
cussed in more detail in §7. In particular, M2,1 is linearly equivalent to the future light
cone tube M. For easier handling let us identify Rm+1 with V via

(x0, x1, ..., xm) !
m∑
j=0

xj

(
m

j

)
ujvm−j .

Since Γ acts onMk,c by (linear) CR-automorphisms, the linear part g0 of g=hol(Mk,c, a)
(compare Proposition 4.2 (ii)) contains a copy of gl(2,R). More explicitly, this subalgebra
is spanned by the vector fields

ζ1 :=
m∑
j=1

jzj∂/∂zj , ξ−1,1 :=
m−1∑
j=0

(m−j)zj+1∂/∂zj ,

ξ1,−1 :=
m∑
j=1

jzj−1∂/∂zj , ζ2 :=
m−1∑
j=0

(m−j)zj∂/∂zj .

(5.2)

In particular, the vector fields ξ1,−1, ξ−1,1 and ξ0,0 :=ζ1−ζ2=
∑m
j=0(2j−m)zj∂/∂zj span

a copy of sl(2,R) in g0. In case k=2, a straightforward computation shows that

Γa =
{(

α β

0 ε

)
∈Γ : εm =1

}
is the isotropy subgroup at a∈M2,c. Hence,{(

α β

−β α

)
∈Γ

}
∼=C∗

acts transitively on F , that is, M2,c is diffeomorphic to Rn×C∗, where n:=m+1=dimV .
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It seems quite hard to find explicit global equations for Mk,c. For k=2 see (7.2)
and for k=3 we have the following: Denote by S⊂V =Rn, n=3+c=m+1, the union of
all Γ-orbits in V that have dimension 63. Then M3,c⊂S+iRn and M2,c+1 is contained
in the closure of M3,c in S+iRn. Consider the 4×n-matrix

D(x) :=


0 x1 2x2 ... (m−1)xm−1 mxm

mx1 (m−1)x2 (m−2)x3 ... xm 0
0 x0 2x1 ... (m−1)xm−2 mxm−1

mx0 (m−1)x1 (m−2)x2 ... xm−1 0


formed by the (real parts of the) coefficients of the four vector fields in (5.2). Then, for
every x∈Rn, the rank of D(x) is just the dimension of the orbit Γ(x). In particular,
the algebraic subvariety S⊂Rn is given by the simultaneous vanishing of all minors of
order 4 in D(x). For k=4 an explicit equation of the 4-nondegenerate hypersurface M4,1

can be found in [22].
For the rest of the example we concentrate on the hypersurface M3,1. Then

S= {x∈R4 : %(x) = 0}

for
%(x) := detD(x) = 9(x2

0x
2
3+4x0x

3
2−6x0x1x2x3−3x2

1x
2
2+4x3

1x3).

Every connected component U of R4\S is an open Γ-orbit and U+iR4 is an affinely
homogeneous tube domain in C4.

Now consider the subgroup Σ:=SL(2,R)⊂Γ. As Σ is normal in Γ and Σ(a) is open in
Γ(a), the orbits Σ(a) and Γ(a) coincide. As every vector field in sl(2,R)⊂g0 annihilates
the function %, every hypersurface Sα :={x∈R4 :%(x)=α}, α∈R, is invariant under the
group Σ. For every b∈R4\S the orbit Γ(b) has dimension 4, and hence the orbit Σ(b)
has dimension 3. As a consequence, for every α 6=0 the variety Sα is nonsingular and
every orbit Σ(b), b /∈S, is a closed hypersurface in R4. Actually it can be shown that for
every b∈V \S near a, the homogeneous tube manifold Σ(b)+iR4 is Levi nondegenerate
and has indefinite Levi form.

Example 5.3. Fix integers p>q>1 with n:=p+q>3 and a real number α with α2 6=α.
Then

F =Fαp,q :=
{
x∈ (R+)n :

p∑
j=1

xαj =
n∑

j=p+1

xαj

}
is a hypersurface in V :=Rn. Furthermore, F is a cone and therefore dimKaF>1 for
every a∈F . On the other hand, the second derivative at a of the defining equation
for F gives a nondegenerate symmetric bilinear form on V ×V , whose restriction to
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TaF×TaF then has a kernel of dimension 61. Therefore dimKaF=1 for every a∈F and,
by Corollary 3.6, the CR-manifold M=Mα

p,q :=F
α
p,q+iV is everywhere 2-nondegenerate

(compare [13, Example 4.2.5] for the special case n=α=3). Since M as a hypersurface
is also minimal, g=hol(M,a) has finite dimension.

For the special case α=2 and q=1, the above cone F=F 2
n−1,1 is an open piece of

the future light cone

{x∈Rn :x2
1+...+x2

n−1 =x2
n and xn> 0}

in n-dimensional space-time, which is affinely homogeneous. In [23] it has been shown
that for the corresponding tube manifold M the Lie algebra g=hol(M,a) is isomorphic
to so(n, 2) for every a∈M . In case q>1, the following result seems to be new.

Case α=2. Consider on Cn the symmetric bilinear form

〈z|w〉 :=
∑
j6p

zjwj−
∑
j>p

zjwj .

Then F is an open piece of the hypersurface {x∈Rn :x 6=0 and 〈x|x〉=0}, on which the
reductive group R∗·O(p, q) acts transitively. Therefore, s0 :=Rδ⊕so(p, q) is contained
in g0. One checks that

s := g−1⊕s0⊕s1, s1 := {(2i〈c|z〉z−i〈z|z〉c)∂/∂z : c∈Rn}

is a Lie subalgebra of g. The radical r of s is ad(δ)-invariant and hence of the form
r=r−1⊕r0⊕r1 for rk :=r∩gk. From so(p, q) being semisimple we conclude that r0⊂Rδ.
But δ cannot be in r since otherwise g−1⊂r would give the false statement [g−1, s1]⊂Rδ.
Therefore r0=0, and [g−1, r1]=[r−1, s1]=0 implies r=0. Now, [23, Proposition 3.8] implies
that g=s, and, in particular, that g has dimension

(
n+2

2

)
. In fact, it can be seen that g

is isomorphic to so(p+1, q+1).

Case α an integer >3. Then F is an open piece of the real-analytic submanifold

S :=
{
x∈Rn :x 6=0 and

p∑
j=1

xαj =
n∑

j=p+1

xαj

}
(5.4)

which is connected in case q>1 and has two connected components otherwise. For
every x∈Rn let d(x)∈N be the cardinality of the set {j :xj=0}. It is easily seen that
dimKxS=1+d(x) holds for every x∈S. Now consider the group

GL(F ) := {g ∈GL(V ) : g(F ) =F}.
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Every g∈GL(F ) leaves S and hence also H :={x∈Rn :d(x)>0} invariant, that is, g is
the product of a diagonal matrix and a permutation matrix. Inspecting the action of
GL(F ) on {c∈
F :d(c)=n−2}, we see that GL(F ), as a group, is generated by R+· id and
certain coordinate permutations. As a consequence, g0=Rδ. Now suppose that there
exists a nonzero vector field ξ∈g1. Then ξ=q(z, z)∂/∂z for some symmetric bilinear map
q:Cn×Cn!Cn with q(c, z)∂/∂z∈Cδ for every c∈Cn. As q 6=0 is symmetric, any two
vectors in Cn must be linearly dependent, which contradicts n>3. Therefore g1=0 and
hence gk=0 for all k>1, by Proposition 4.4 (iv). In particular, dim g=n+1<dimM for
the tube manifold M=F+iV , that is, M is not locally homogeneous. For n=3 this gives
an alternative proof for [14, Proposition 6.36].

Proposition 5.5. Let a, a′∈F=Fαp,q be arbitrary points. Then in case 36α∈N the
CR-manifold germs (M,a) and (M,a′) are CR-equivalent if and only if a′∈GL(F )(a).

Proof. Suppose that g: (M,a)!(M,a′) is an isomorphism of CR-manifold germs.
From g′=g′−1⊕Rδ for g′ :=hol(M ′, a′), Proposition 4.4 (iii) implies that g is represented
by a linear transformation in GL(V ) that we also denote by g. But then g(F )⊂S with S
defined in (5.4). Because g(F ) has empty intersection with H, we actually have g(F )⊂F .
Replacing g by its inverse, we get the opposite inclusion, that is g∈GL(F ).

6. Levi degenerate CR-manifolds associated with an endomorphism

The lowest CR-dimension for which there exist homogeneous CR-manifolds that are Levi
degenerate but not holomorphically degenerate is 2. The construction recipe below will
give, up to local affine equivalence, all affinely homogeneous conical tube submanifolds of
Cn with CR-dimension 2. Indeed, it is based on the following simple observation. Sup-
pose that F⊂V :=Rn is a conical locally linearly homogeneous submanifold of dimension
2. Denote by a the Lie algebra of all linear vector fields on V that are tangent to F . Then,
fixing a point a∈F , there exists a ϕ∈End(V ) with ϕ(x)∂/∂x∈a and TaF=Ra⊕Rϕ(a).
Therefore, the orbit H(a) under the subgroup H :={exp(r id+tϕ):r, t∈R} is an (im-
mersed) surface in V having the same germ at a as F .

6.1. Construction recipe

Throughout this section, let 1<d<n be arbitrary integers and V be a real vector space of
dimension n. Let furthermore ϕ∈End(V ) be a fixed endomorphism and h⊂End(V ) the
linear span of all powers ϕk for k=0, 1, ..., d−1. Then H :=exp(h)⊂GL(V ) is an abelian
subgroup, and for given a∈V the orbit F :=H(a) is a cone and an immersed submanifold
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of V (not necessarily locally closed in case n>4). Furthermore, the tube M=F+iV ⊂E
is an immersed CR-submanifold of E.

6.2. Cyclic endomorphisms and vectors

A vector a∈V is called cyclic with respect to ϕ∈End(V ) if the ϕk(a), k>0, span V . This
is equivalent to a, ϕ(a), ..., ϕn−1(a) being a basis of V . We call ϕ∈End(V ) cyclic if it has
a cyclic vector and denote by Cyc(V )⊂End(V ) the subset of all cyclic endomorphisms. If
a, b∈V both are cyclic vectors of ϕ then there exists a transformation g∈R[ϕ]⊂End(V )
with b=g(a). But g commutes with every element of the group H=exp(h) and hence
maps the orbitH(a) ontoH(b). In particular, the CR-isomorphism type ofM=H(a)+iV
only depends on ϕ and d, but not on the choice of the cyclic vector a. To emphasize
this dependence, we also write Mϕ,d for M and Fϕ,d for H(a), but only if ϕ is cyclic.
We tacitly assume that a choice for a cyclic vector a has been made. In case d=2 we
even write Mϕ and Fϕ instead of Mϕ,2 and Fϕ,2, respectively. The following proposition
shows the relevance of these manifolds in our discussion.

Proposition 6.3. For F=H(a) and M=F+iV as in §6.1, the following conditions
are equivalent :

(i) hol(M,a) has finite dimension;
(ii) a is a cyclic vector of ϕ.

If these conditions are satisfied , M is a minimal 2-nondegenerate homogeneous CR-
manifold with CR-dimension d and Levi kernel KaM=Ca.

Proof. (i)⇒ (ii) Condition (i) together with the homogeneity of M implies that M
is minimal. Let W⊂V be the linear span of all vectors ϕk(a), k>0. Then H⊂R[ϕ]
implies H(a)⊂W and hence W=V by the minimality of M . Therefore, a is a cyclic
vector, and the ϕk(a), 06k<d, form a basis of the tangent space TaF . In particular, F
has dimension d, which is also the CR-dimension of M .

(ii)⇒ (i) Suppose that a is a cyclic vector of ϕ. Lemma 3.2 gives Ra⊂KaF , since
F is a cone in V . For the proof of the opposite inclusion fix an arbitrary w∈TaF with
w /∈Ra. Then w=

∑m
j=0 cjϕ

j(a) with cm 6=0 for some 16m<d and ϕd−m(w) /∈TaF shows
that w /∈KaF by Proposition 3.7. Therefore, M is 2-nondegenerate by Corollary 3.6 and
KaM=Ca. It remains to show that M is minimal at a. But this immediately follows
from Proposition 3.8.

For the manifolds M=Mϕ,d it is possible to compute the Lie algebras g=hol(M,a)
in ‘most cases’. Clearly, the Lie algebra g0 contains the d-dimensional Lie algebra h (as
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before, g0 is canonically identified with a linear subspace of End(V )). In Propositions 6.5
and 6.17 we will show that the equality g=g−1⊕h holds for all ϕ in ‘general position’.

Suppose that ϕ∈End(V ) has the cyclic vector a∈V and that the integer d satisfies
1<d<n. Let

χϕ :=
s∏
j=1

(X−λj)nj ∈R[X], nj > 1, (6.4)

with mutually distinct eigenvalues λ1, ..., λs∈C, be the characteristic polynomial of ϕ.
Let furthermore α1, ..., αn be the family of all roots of χϕ, that is, each λj occurs nj
times in this family. As usual, α1, ..., αn is called an arithmetic progression in C if there
exists a β∈C such that, after a suitable permutation, αj=α1+(j−1)β for all 16j6n.

Proposition 6.5. Let M=Mϕ,d and g:=hol(M,a) for a cyclic vector a∈V ∩M
of ϕ. Then g0=h holds if one of the following conditions is satisfied :

(i) d=2 and the characteristic roots of ϕ do not form an arithmetic progression;
(ii) d>3 and s>d.

For the proof we need several preparations. To simplify the notation at various
places let us introduce

S := {1, ..., s}, m := d−1 and mk :=nk−1 for all k∈S. (6.6)

For every K⊂S define furthermore

∆K := {βjk : j ∈S and k∈K} with βjk := (λj−λk, λ2
j−λ2

k, ..., λ
m
j −λmk )∈Cm, (6.7)

and denote by K the set of all nonempty subsets K⊂S such that there exist subsets
P⊂Q⊂S\K with the following two properties, where the maximum over the empty set
here is defined to be 0:

(i)
∑
k∈K nk+

∑
q∈Q nq>d+max{np−1:p∈P};

(ii) for every β∈∆Q\∆K there exist uniquely determined j∈S and q∈Q with β=βjq
such that nj<nq and q∈P .

Notice that K contains every subset K⊂S with
∑
k∈K nk>d (just take Q=∅). In

the following lemma we show that (i) or (ii) in Proposition 6.5 will follow from a more
general technical condition that will allow us to give a uniform proof of Proposition 6.5
for all d.

Lemma 6.8. Suppose that s>d and that
⋂
K∈K ∆K={0} holds. Then one of the

conditions (i) and (ii) in Proposition 6.5 is satisfied.

Proof. Case d=2. Assume that the characteristic roots α1, ..., αn do not form an
arithmetic progression and that there exists a nonzero β∈

⋂
K∈K ∆K . We claim that
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λ1, ..., λs is an arithmetic progression. Otherwise s>3 and there exists a k with 1<k<s
such that, without loss of generality, λj=λ1+(j−1)β for all 16j6k and λ1−β 6=λr 6=
λk+β for all r>k. For every j>k the set ∆{k,j} contains the number β, that is, there is
an r∈S with λr=λk+β or λr=λj+β. The first possibility violates our assumptions. In
the second case necessarily r>k must hold, since r6k would imply λj=λ1−β, and thus
the second possibility cannot be true for all j with k<j6s. This proves that λ1, ..., λs

is an arithmetic progression, and also s<n by assumption. In particular, nj>1 for some
j∈S. Next, we claim that {1}∈K and {s}∈K . To see that {1}∈K , let k∈{1, ..., s} be
minimal with nk>1. With P :=Q:={k}\{1}, condition (ii) after (6.7) is fulfilled and the
first part of the claim follows. A similar argument proves also that {s}∈K . But then
∆{1}∩∆{s}={0} gives a contradiction.

Case d>3. Suppose that 0 6=βjk∈
⋂
K∈K ∆K and that s>d. Then L:=S\{k}∈K

(with Q=∅) and there are l∈L and r∈S with βjk=βrl. Since d>3, the equation βjk=βrl
implies k=l, a contradiction.

Proof of Proposition 6.5. It is enough to assume that the assumption of Lemma 6.8
is satisfied. Consider the decomposition E=E1⊕...⊕Es with Ek being the kernel of
(ϕ−λk)n for every k∈S. Let πk:E!Ek be the canonical projection and let εk:Ek!E
be the canonical injection. Then ak :=πk(a) is a cyclic vector for ϕk :=πkϕεk∈End(Ek).
Furthermore, if we put ajk :=(ϕk−λk)j(ak) for all j>0, then a0

k, ..., a
mk

k is a basis of Ek.
With m=d−1 as defined above let Φ:=(ϕ1, ..., ϕm)∈End(V )m.

For every real (or complex) vector space W and all tuples t=(t1, ..., tm)∈Rm and
w=(w1, ..., wm)∈Wm let us write as shorthand t·w:=

∑m
j=1 tjwj . For every t∈Rm the

point et·Φ(a) is contained in F=M∩V .
Now fix an arbitrary µ∈g0⊂End(V ). Since the vector field µ is tangent to F , for

every t∈Rm there exist real coefficients r0, r1, ..., rm with

µet·Φ(a) =Ret·Φ(a) for R :=
m∑
l=0

rlϕ
l. (6.9)

Actually, every rl has to be considered as a real-valued function on Rm. Put

µk :=πkµ and Nk := (ϕk−λk, ..., ϕmk −λmk )∈End(E)m

for all k∈S. Applying πk to (6.9) gives

Ret·Nk(ak) = et·NkR(ak) =
s∑
j=1

et·βjkµke
t·Nj (aj) with

R(ak) =
mk∑
j=0

%k,ja
j
k for %k,j(t) :=

m∑
l=j

(
l

j

)
λl−jk rl(t).

(6.10)
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For every subset B⊂Cm denote by F (B)⊂C(Rm,C) the smallest linear subspace con-
taining all functions h(t)et·β with β∈B and h∈C[t]=C[t1, ..., tm] being a polynomial
function on Rm. Then, it is well known that every f∈F (B) has a unique representation
f=

∑
β∈B f

[β]et·β with f [β]∈C[t] and {β∈B :f [β] 6=0} finite. Since t·Nj is nilpotent, i.e.,
e±t·Nj is polynomial, as a consequence of the identities (6.10) we get for every K⊂S,

%k,j ∈F (∆K) for every k∈K and 0 6 j6mk. (6.11)

Denote by B the set of all subsets B⊂Cm with rl∈F (B) for all l.

Claim 1.
⋂
K∈K ∆K∈B, that is, rl∈C[t] for all l.

Proof. Fix an arbitrary K∈K and let P⊂Q be as in the definition of K . Since B

is closed under intersections, it is enough to show that ∆K∈B. Assume on the contrary
that this is not true. Consider the following linear system of equations for the rl (compare
also Remark 6.16):

%k,j =
m∑
l=j

(
l

j

)
λl−jk rl ∈F (∆K∪Q) for all k∈K∪Q and 0 6 j6mk. (6.12)

The coefficient matrix is of generalized Vandermonde type and hence has rank d=m+1,
since by the definition of K the number of equations is at least d. This implies that
rl∈F (∆K∪∆Q) for all l. Since, by assumption, not all rl are in F (∆K), there is a
β∈∆Q\∆K such that the β -components r[β]

l ∈C[t] do not vanish for all l simultaneously.
By the definition of K , there are uniquely determined p∈S and q∈P with β=βpq. Define
L:=K∪Q\{q}. Since β /∈∆L, we get from (6.10) the linear system

%
[β]
k,j =

m∑
l=j

(
l

j

)
λl−jk r

[β]
l =0, where k runs through L and 0 6 j6mk. (6.13)

By the very definition of K, P and Q, it follows that the above linear system consists of
at least d−1 equations. Consequently, we can write it in the form

m−1∑
l=j

(
l

j

)
λl−jk r

[β]
l ∈Cr[β]

m for all k∈L and 0 6 j6mk.

Since its coefficient matrix is of generalized Vandermonde type, every r[β]
l is a complex

multiple of r[β]
m and, in particular, r[β]

m 6=0. We claim that %[β]
q,0 6=0. Indeed, otherwise we

could add the equation %
[β]
q,0=0 to the linear system (6.13), which then has a coefficient

matrix of generalized Vandermonde type with rank d, contradicting r[β]
m 6=0. Denote by D
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the degree of %[β]
q,0=

∑m
l=0 λ

l
qr

[β]
l . Then D=deg %[β]

q,0=deg r[β]
m >0 and all rl and %

[β]
q,j have

degree 6D. The equations (6.10) imply (replace k by q, form the β -components for
β :=βpq and carry out the multiplication by et·Nq ) that

µqe
t·Np(ap) = et·Nq

mq∑
j=0

%
[β]
q,ja

j
q =

mq∑
j=0

(fj%
[β]
q,0+gj)ajq (6.14)

for certain polynomials fj , gj∈C[t] with deg(gj)<deg(fj)=j. Comparing degrees on both
sides in (6.14) and keeping in mind that np<nq (by the definition of K ), we get

D+mq =deg(fmq%
[β]
q,mq

+gmq ) 6mp<mq.

This contradicts r[β]
m 6=0 and Claim 1 is proved.

Claim 2. Every rl is a constant polynomial.

Proof. Fix a k∈S withD:=deg(%k,0)=maxj∈S deg(%j,0). With s>d, a Vandermonde
argument applied to the linear system %j,0=

∑m
l=0 λ

l
jrl, j∈S, gives that every rl has degree

6D. As in (6.14), we have

µke
t·Nk(ak) = et·Nk

mk∑
j=0

%k,ja
j
k =

mk∑
j=0

(fj%k,0+gj)a
j
k (6.15)

for polynomials fj , gj∈C[t] with deg(gj)<deg(fj)=j. All coefficient polynomials in (6.15)
in front of the ajk have degree 6mk, that is D+mk6mk, and hence D60. This proves
Claim 2.

The proof of Proposition 6.5 is now complete. Indeed, since F contains a basis
of V , the endomorphism µ is uniquely determined by the function tuple (rl), that is,
dim g06d=dim h.

Remark 6.16. For given tuples λ1, ..., λs∈C and n1, ..., ns∈N, with nk>1 for all
k and n:=

∑s
k=1 nk, let L:={(k, j):16k6s and 06j<nk} be endowed with the lexi-

cographic order. Then it can be seen that the following n×n-matrix of generalized
Vandermonde type (every entry with l<j is zero)((

l

j

)
λl−jk

)
06l<n, (k,j)∈L

has determinant ∏
p<q

(λq−λp)npnq .
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Notice from the proof of Proposition 6.5 that the condition
⋂
K∈K ∆K={0} guar-

antees that every µ∈g0 leaves every generalized eigenspace Ek of ϕ invariant, while s>d
guarantees that every such µ actually is in h. In the next section we will see that condi-
tion (i) in Proposition 6.5 for d=2 is optimal (compare Proposition 7.3).

Proposition 6.17. Let M=Mϕ,d and assume that g0=h for g=hol(M,a). Then
g=aff(M,a) and aut(M,a)=0.

Proof. For the proof of g=aff(M,a), it is enough to show that g1=0 by Proposi-
tion 4.2 (iv). This is more easily done in the more general complex setting (compare the
following Lemma 6.18). Finally, counting dimensions yields aut(M,a)=0.

It remains to show the next lemma. As before,we identify the spaces End(E) and P0;
see (4.1).

Lemma 6.18. Let ϕ∈Cyc(E) be an arbitrary cyclic endomorphism. For a given
integer d<n=dimE, let furthermore h be the complex linear span of all powers ϕj ,
06j<d. Then

{ξ ∈P1 : [P−1, ξ]⊂ h}=0.

Proof. We identify E with Cn in such a way that the matrix Φ of ϕ is in Jordan
normal form. More precisely, Φ is a block diagonal matrix with Jordan blocks J1, ..., Js,
where each block Jl is lower triangular, has the eigenvalue λl on its main diagonal and
is of size nl×nl for some nl>1. We also introduce an equivalence relation on {1, ..., n}
in the following way: put j∼k if the jth row and the kth column in Φ intersect in one
of the Jordan blocks.

Now suppose that there exists a nonzero vector field ξ∈P1 with [P−1, ξ]⊂h. This ξ
has a unique representation

ξ=
n∑

j,k,p=1

cjkp zjzk∂/∂zp with cjkp = ckjp ∈C.

For every j6n the vector field ∂/∂zj is contained in P−1. Therefore

ξj :=
1
2
[∂/∂zj , ξ] =

n∑
k,p=1

cjkp zk∂/∂zp

is contained in h, implying that cjkp =0 if k 6∼p and, by symmetry, that cjkp =0 if j 6∼p.
This implies that

ξj =
∑
p∼j

∑
k∼j

cjkp zk∂/∂zp. (6.19)
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By assumption, ξ 6=0, and therefore ξr 6=0 for some r6n. Without loss of generality, we
may assume that r∼1. Replacing ϕ by ϕ−λ1, we may also assume that λ1=0. Put b:=n1,
that is, the Jordan block J1 has size b×b and is nilpotent. Define, for all 16p, k6b,

ηp := z1∂/∂zp+z2∂/∂zp+1+...+zb+1−p∂/∂zb,

Dk :=
b∑

j=k

Cηj ,

ψk :=ϕk−1
s∏
l=2

(ϕ−λl)nl ∈End(E).

From (6.19), we know that ξj∈D1∩h for all j6b. In particular,

ξj =
b∑

p=1

cj1p ηp, where cjkp =
{
cj1p+1−k, if k6 p,
0, otherwise,

and hence
ξj = c111 ηj+c

11
2 ηj+1+...+c11b+1−jηb

for all j, due to the symmetry of cjkp in the upper indices. As a consequence, there exists
a minimal q6b with q>1 and c11q 6=0. But then ξb+1−q=c11q ηb implies that ηb∈Db∩h.
We show that this cannot be true: Since ψ1 as polynomial in ϕ has constant term
λ2λ3 ... λs 6=0, we get that ψk spans Dk over Dk+1 for every k>1. This implies that
ηb=

∑n
j=1 ejϕ

j−1 for suitable real coefficients ej , with en 6=0, and thus ηb /∈h.

For the application of Proposition 3.10 to manifolds of the type M=Mϕ,d, it is
necessary to know when M is simply connected and when Aut(M,a) is the trivial group.

A sufficient condition for Mϕ,d (and Fϕ,d=H(a)) to be simply connected is the
following: There exist eigenvalues λ1, ..., λd of ϕ such that det(A+Ā) 6=0, where

A=(λk−1
j )16j,k6d

is the corresponding Vandermonde matrix.
To get a partial answer to the second question, suppose that g∈GL(V ) satisfies

g(a)=a and gϕg−1=εϕ for some ε∈R. From gϕkg−1=(εϕ)k we get g(ϕk(a))=εkϕk(a)
and thus g exp(tϕk)g−1=exp(tεkϕk) for all t∈R and k>0. This means that gHg−1=H
for the groupH=exp(h). But then g(F )=F for F=H(a) and consequently g∈Aut(M,a).

As an example, suppose that ϕ, with cyclic vector a, is nilpotent. For every t∈R
there is a unique gt∈GL(V ) with gt(ϕk(a))=ektϕk(a) for all k>0. Then gt∈Aut(M,a)
shows that g0 6=h as well as aut(M,a) 6=0.

Notice that we always may assume without loss of generality that ϕ∈Cyc(V ) has
trace 0 (otherwise replace ϕ by ϕ−c id∈End(V ) for c:=n−1 tr(ϕ), since this procedure
does not change the algebra h).
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Lemma 6.20. Suppose that 2d6n+1 for n=dimV and that ϕ is trace-free. Suppose
in addition that aut(M,a)=0 holds for the cyclic vector a∈V and M :=Mϕ,d. Then

Aut(M,a) = {g ∈GL(V ) : g(a) = a and gϕg−1 =±ϕ}.

In particular , Aut(M,a) has always order 62 and is trivial , for instance, if the spectrum
of ϕ in C is not symmetric with respect to the origin of C.

Proof. By Proposition 4.8, the assumption aut(M,a)=0 implies that g1=0 and
g0=h. As a consequence of Proposition 4.10, therefore,

Aut(M,a) = {g ∈GL(V ) : g(a) = a and ghg−1 = h}

holds. Let g∈Aut(M,a) be an arbitrary automorphism. Then gϕg−1=
∑m
j=0 cjϕ

j for
some real coefficients cj and m:=d−1. We show, by induction on k, that cj=0 holds
for all j>m/k and all 16k6m. For k=1 this is obvious. So fix a k>1 with k6m. By
the induction hypothesis, gϕkg−1=(

∑m
j=0 cjϕ

j)k=
∑2m
l=0 elϕ

l∈h, with real coefficients el.
Since 2m<n by assumption, we must have el=0 for all l>m, that is cj=0 for all j>m/k.
For k=m this implies that cj=0 for all j>1. Taking traces finally gives gϕg−1=εϕ for
ε:=c1. By the above example, ϕ cannot be nilpotent, that is, ϕ has nonzero spectrum in
C. Since this spectrum is invariant under multiplication by ε, necessarily ε=±1 holds.

7. Homogeneous 2-nondegenerate manifolds of CR-dimension 2

In this section we specialize to homogeneous tube manifolds M=F+iV in E=V ⊕iV
of CR-dimension 2, that is, where F⊂V is a surface of dimension 2. We begin with
manifolds of type Mϕ=Mϕ,2 that are obtained by the construction recipe in §6.1. Since
Propositions 6.5 and 6.17 of the preceding section do not cover the case where the char-
acteristic roots α1, ..., αn of ϕ∈Cyc(V ), n=dimV , form an arithmetic progression, let us
discuss this case first.

Possibly after replacing ϕ by ϕ−r id with an appropriately chosen constant r, we
may assume without loss of generality that ϕ is trace-free. Since multiplication of ϕ by
any nonzero real number does not change the algebra h=R id⊕Rϕ, there are essentially
three different cases for ϕ with characteristic roots forming an arithmetic progression:
either ϕ is nilpotent or ϕ has pairwise different characteristic roots in R or in iR. Con-
sider the manifold M :=M2,n−2=F2,n−2+iV from Example 5.1. As already remarked
in Example 5.1, the conformal subgroup H i :=R+·SO(2)⊂GL(2,R) acts transitively on
F2,n−2. The corresponding Lie algebra is hi :=R id⊕Rϕi, where ϕi :=ξ1,−1−ξ−1,1∈g0

is a trace-free semisimple endomorphism with eigenvalues in iR; see Example 5.2 for
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the notation. Next consider the subgroup Hr :=R+·SO(1, 1)⊂GL(2,R) with Lie alge-
bra hr :=R id⊕Rϕr, where ϕr :=ξ1,−1+ξ−1,1∈g0 is a trace-free semisimple endomorphism
with real eigenvalues. In particular, Hr(a) is open in H i(a). Finally, consider the solvable
subgroup

Hz :=
{(

α 0
β α

)
∈GL(2,R) :α> 0

}
with Lie algebra hz :=R id⊕Rϕz,

where ϕz :=ξ1,−1 has only zero eigenvalues. Again, the orbit Hz(a) is open in H i(a).
This implies that the manifolds Mϕr and Mϕz are open subsets of Mϕi =M2,n−2, and
hence that all three of them are locally CR-equivalent. Since M2,n−2 is minimal as a
CR-manifold, the endomorphisms ϕi, ϕr and ϕz have a as cyclic vector by Proposition 6.3
(which also can easily be verified directly). By construction, the characteristic roots of
the endomorphisms ϕi, ϕr and ϕz form an arithmetic progression and represent the three
types with imaginary, real and zero characteristic roots. The estimate dim g0>4>dim hψ

for ψ=ϕi, ϕr, ϕz, together with Propositions 6.5 and 6.17, implies that the characteristic
roots of all three endomorphisms form an arithmetic progression. Summing up, we have
proved the following result.

Proposition 7.1. Let ϕ,ϕ′∈End(V ) be endomorphisms with cyclic vectors a, a′∈V.
Assume that for both endomorphisms the families of characteristic roots α1, ..., αn and
α′1, ..., α

′
n form arithmetic progressions. Then the germs (Mϕ, a) and (Mϕ′ , a′) are CR-

equivalent.

We can use Proposition 7.1 to get explicit global equations for every Mϕ where the
characteristic roots of ϕ∈Cyc(V ) form an arithmetic progression. Indeed, we may take
ϕ:=ξ1,−1 from (5.2) on Cm+1 with coordinates (z0, z1, ..., zm) and a:=(1, 0, ..., 0). Then
ϕ is nilpotent and S :=exp(Rϕ)(a)={(1, t, t2, ..., tm):t∈R}. Consequently, Mϕ=F+iV
is the tube over the cone F generated by S (that is F=R+·S). As a consequence, F is
an open piece of the algebraic surface given by the following explicit system of quadratic
equations on Rm+1 with coordinates (x0, x1, ..., xm):

x0xj+1 =x1xj for 0<j <m. (7.2)

This can be reformulated also in the following slightly different form. Let

C := {(t, t2, ..., tn) : t∈R}

be the twisted n-ic in Rn (also called twisted cubic, quartic, etc.; see [18] for interesting
properties of these curves). Then the cone R+·C generated by C is a nonsingular surface
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outside the origin and the corresponding tube manifold is locally CR-equivalent to Mϕ,
with ϕ as in Proposition 7.1. The twisted n-ic will also show up in another type of
examples (compare Proposition 7.10 below).

Next, we extend Propositions 6.5 and 6.17 to the case d=2 where the characteristic
roots of ϕ do form an arithmetic progression. Recall that for the light cone tubeM∼=M2,1

the Lie algebra g=hol(M, a) is isomorphic to so(2, 3); compare [23], [16]. In particular,
g0
∼=gl(2,R) and dim g1=3 in this case.

Proposition 7.3. Assume that the characteristic roots of ϕ∈Cyc(V ) form an arith-
metic progression. Then for M=Mϕ, n=dimV and g=hol(M,a), the following proper-
ties hold :

(i) g0 is isomorphic to gl(2,R) and hence has dimension 4.
(ii) g=aff(M,a) in case n>4. In particular , dim g=n+4 in this case.

Proof. (i) We may assume that λj= 1
2 (1−n)+(j−1) for all j∈S using the notation

in (6.6) and (6.7). Then
⋂
K∈K ∆K={−1, 0, 1}. Solving (6.9) for r0 and r1 gives that

all pairs

r0 =(n−1)(ue−t+v0−wet),

r1 =2(ue−t+v1+wet),
(7.4)

with u, v0, v1, w∈R arbitrary, form the solution space. This implies that dim g0=4. Since
M is locally CR-equivalent to M2,n−2, the Lie algebra g0 contains a copy of gl(2,R),
that is g0

∼=gl(2,R).
(ii) Let n>4. We may assume that for m=n−1 the Lie algebra g0 is the linear span

of the vector fields (5.2). For every ν∈Z2 let gν :={ξ∈g:[ζj , ξ]=νjξ for j=1, 2}. Then
gν⊂gk for k=(ν1+ν2)/m and

g=
⊕
ν∈Z2

gν with [gν , gµ]⊂ gν+µ,

compare also [16, (3.5)]. Clearly i∂/∂zk∈g−k,k−m for all 06k6m. Because of Proposi-
tion 4.2 (iv), it is enough to show that g1=0. Assume on the contrary that there exists a
nonzero ξ∈g1. Then we may assume, without loss of generality, that ξ∈gk,m−k for some
k∈Z. Let c be the cardinality of {06j6m:[∂/∂zj , ξ] 6=0}. From g0=g−1,1⊕g0,0⊕g1,−1

and [i∂/∂zj , ξ]∈gk−j,j−k, we see that c63. Assume that c=3, which implies 0<k<m.
From [∂/∂zj , ξ] 6=0, for j=k±1 and the special form of ξ−1,1 and ξ1,−1 in (5.2), we see
that ξ must depend on all n variables, a contradiction to n>3. But c62 also gives a
contradiction since in all spaces g−1,1, g0,0 and g1,−1 every nonzero vector field must
depend on at least n−2 variables.
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Recall that Aut(M) is the group of all global CR-automorphisms and Aff(M) is the
subgroup of all affine transformations of M .

Proposition 7.5. Let ϕ∈End(V ) be a trace-free cyclic endomorphism. Then the
groups Aut(M) and Aff(M) coincide. Furthermore, with n=dimV , the following di-
mension estimates hold :

(i) dim Aut(M)=n+4 if the characteristic roots of ϕ are pairwise distinct and form
an arithmetic progression in iR;

(ii) dim Aut(M)=n+3 if ϕ is nilpotent ;
(iii) dim Aut(M)=n+2 in all other cases.

Proof. Let F :=M∩V and denote by a⊂g=hol(M,a) the Lie algebra of Aut(M).
Since a contains the Euler vector field, we have a=a−1⊕a0⊕a1 for aj :=a∩gj . We first
determine dim a0. Because of h:=R id⊕Rϕ⊂a0, we have dim a0>2.

In case (i), M is CR-equivalent to M2,n−2; compare Example 5.1. Therefore
GL(2,R) acts transitively on F and dim a0=4 by Proposition 7.3.

Next consider case (ii), that is, ϕ is nilpotent. Then a0 consists of all ξ∈g0⊂End(V )
with ξ(c)∈Rc for all c∈∂F :=
F \F , where 
F is the closure of F in V . We may assume
that a=(1, 0, ..., 0)∈Rn and ϕ=ξ1,−1 in the notation of (5.2). This implies that

F = {es(1, t, t2, ..., tn−1)∈Rn : s, t∈R},

and hence ∂F=Rc for c:=(0, ..., 0, 1). Therefore, a0 is the linear span of ζ1, ζ2 and ξ1,−1

and dim a0=3 in this situation.
Next consider the case V =V1⊕V2⊕...⊕Vn, where every Vj is the

(
1
2 (1−n)+j−1

)
eigenspace of ϕ, that is, the characteristic roots of ϕ form an arithmetic progression
in R. Here ∂F=V1∪Vn is easily verified. The vector fields in g0 are characterized by
the function tuples (r0, r1) in (7.4). The condition ξ(Vj)⊂Vj for j=1, n implies that r0
and r1 are constant for every ξ∈a0, that is a0=h. On the other hand, if the characteristic
roots of ϕ do not form an arithmetic progression, then also g0=h by Proposition 6.5 (i),
that is, dim a0=2 always holds in case (iii).

Next we show that a1=0 in all cases. For n>4 this follows from g1=0, see Proposi-
tion 7.3 (ii). In case (iii) we have a0=h and the claim follows by Lemma 6.18. Therefore
we only have to consider cases (i) and (ii) for n=3. In case (i), M is the future light
cone tube M and Aut(M)=Aff(M) follows as a special case of [23, Proposition 6.9].
In case (ii), M is a proper domain in M: we realize M=F+iR3 in C3 with coor-
dinates (z0, z1, z2) as F={x∈R3 :x0x2=x2

1 and x0+x2>0}. Then hol(M) is the lin-
ear span of the vector fields (3.5) and (3.7) in [16]. We may assume without loss of
generality that ϕ=ξ−1,1=2z1∂/∂z0+z2∂/∂z1. This implies that M\M=R+·c+iR3 for
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c:=(1, 0, 0)∈F . We know already that a is the linear span of the vector fields ζ1, ζ2 and
ξ−1,1. From [16, Figure 1 and (3.7)] we therefore derive that either a1=0 or a1=Rξ0,2 for
ξ0,2 :=iz2

1∂/∂z0+iz1z2∂/∂z1+iz2
2∂/∂z2. The latter possibility cannot occur, since ξ0,2 is

not tangent to M\M : check, for instance, the point (1, i, 0). This proves that a=g−1⊕a0

in all cases. As in the proof of Proposition 4.4 (iii), it is shown that this implies that
Aut(M)=Aff(M). The above dimension estimates for a0 imply the dimension estimates
in (i)–(iii).

Next we solve the local as well as the global CR-equivalence problem for all manifolds
Mϕ. Because of Proposition 7.1, in the local situation only the case has to be considered
where the characteristic roots of ϕ do not form an arithmetic progression. Recall that
without loss of generality we always may assume that ϕ is trace-free.

Proposition 7.6. Let ϕ,ϕ′∈End(V ) be trace-free cyclic endomorphisms with char-
acteristic roots α1, ..., αn and α′1, ..., α

′
n respectively. Suppose that α1, ..., αn do not form

an arithmetic progression. Then for given cyclic vectors a, a′∈V and corresponding
M=Mϕ and M ′=Mϕ′, the Lie algebras hol(M,a) and aff(M,a) coincide. Furthermore,
the following conditions are equivalent :

(i) the Lie algebras hol(M,a) and hol(M ′, a) are isomorphic;
(ii) the germs (M,a) and (M ′, a′) are CR-equivalent ;
(iii) gϕ′g−1=rϕ for some suitable g∈GL(V ) and r∈R∗;
(iv) there exists a permutation π∈Sn and an r∈R∗ with α′j=rαπ(j) for all j.

Proof. The fact that g:=hol(M,a)=aff(M,a) and dim g=n+2 follows from Propo-
sitions 6.5 and 6.17.

(i)⇒ (ii) With g, also g′ :=hol(M ′, a′) has dimension n+2. Therefore α′1, ..., α
′
n do

not form an arithmetic progression either; see Proposition 7.3. This implies that g0=h

and g′0=h′, and (ii) follows by Proposition 4.11.
(ii)⇒ (iii) Let g be a CR-isomorphism (M,a)!(M ′, a′). Then g∈GL(V ) as a con-

sequence of Proposition 4.4 (iii), and clearly ghg−1=h′. Since Rϕ′⊂h′ is precisely the
subset of all trace-free endomorphisms, (iv) follows.

The remaining implications are easy to check and left to the reader.

Proposition 7.7. Let ϕ,ϕ′∈End(V ) be trace-free cyclic endomorphisms and let
M :=Mϕ and M ′ :=Mϕ′ . Then, the following conditions are equivalent :

(i) the groups Aff(M) and Aff(M ′) are isomorphic;
(ii) M and M ′ are globally CR-equivalent ;
(iii) gϕ′g−1=rϕ for suitable g∈GL(V ) and r∈R∗.

Proof. (i)⇒ (iii) Suppose that (i) holds. By Proposition 7.5, we may assume that
dim Aut(M)=n+2 without loss of generality. Then (iii) follows from Proposition 7.6 if, at
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least for one of ϕ and ϕ′, the characteristic roots do not form an arithmetic progression. In
the remaining cases the claim follows from Proposition 7.5, since for both endomorphisms
the characteristic roots form an arithmetic progression in R and are pairwise distinct.

(iii)⇒ (ii)⇒ (i) This is obvious, since Aut(M)=Aff(M) and Aut(M ′)=Aff(M ′) by
Proposition 7.5.

7.8. Some moduli spaces

For fixed n=dimV , let M be the space of all global CR-equivalence classes [Mϕ] of
manifolds Mϕ with ϕ∈Cyc(V ), that is, every [Mϕ] is the set of all Mψ that are globally
CR-equivalent to Mϕ. Furthermore, put

Φ := {ϕ∈Cyc(V ) : tr(ϕ) = 0} and M ∗ := {[Mϕ]∈M :ϕ∈Φ and ϕn 6=0}.

The reductive group R∗×GL(V ) acts on End(V ) by

ϕ 7−! rgϕg−1 for every (r, g)∈R∗×GL(V )

and leaves the cone Φ invariant. By Proposition 7.7, M can be identified, as a set, with
the quotient Φ/(R∗×GL(V )). This quotient can be built in several steps: For every j

let σj(ϕ)∈R be the jth elementary symmetric function in n variables evaluated on the
characteristic roots of ϕ, that is,

Xn+
n∑
j=2

(−1)jσj(ϕ)Xn−j ∈R[X]

is the characteristic polynomial of ϕ∈Φ. Let W :=Rn−1 with coordinates (x2, ..., xn),
and denote by σ: Φ!W the mapping given by ϕ 7!(σ2(ϕ), ..., σn(ϕ)). Since every real
polynomial factors into a product of linear and quadratic real polynomials, the map σ

is surjective and M can be canonically identified, as a set, with the quotient W/R∗,
where R∗ acts on W by (x2, x3, ..., xn) 7!(t2x2, t

3x3, ..., t
nxn) for every t∈R∗. The sub-

group {±1}⊂R∗ leaves the sphere Sn−2=
{
x∈W :

∑n
j=2 x

2
j=1

}
invariant, and M ∗ can

be identified with the quotient Qn−2 :=Sn−2/{±1}. In general, Qn−2 can be stratified
into a finite number of manifolds. For instance, Q1 is a compact line segment and Q2 is
homeomorphic to the sphere S2. At this point a word of caution is necessary: we do not
give a topology on M , the topology on Qn−2 only serves for the readers imagination.

Instead of M , we can also consider the space of local CR-equivalence classes for
manifolds of type Mϕ. By our results, this space is of the form M /∼, where the equiv-
alence relation ∼ on M just identifies the three equivalence classes [Mϕ]∈M such that
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the characteristic roots of ϕ form an arithmetic progression. Clearly, M /∼=M ∗/∼ can
be obtained by identifying two points in Qn−2. In the special case n=3, the endpoints
of the line segment Q1 have to be identified, that is, M can be thought of in this case
as the circle 	R:=R∪∞ (without topology), where the point ∞ corresponds to the class
represented by the future light cone tube M. To be more specific, in case n=3, for every
ϕ∈Φ call

µ(Mϕ) :=−σ2(ϕ)3

σ3(ϕ)2
∈	R (7.9)

the modulus of the CR-manifold Mϕ (with t/0:=∞ for all t∈R). It is clear that Mϕ and
Mψ, in case n=3, are locally CR-equivalent if and only if they have the same modulus.
A special meaning has the modulus µ0 := 27

4 : For real moduli >µ0 the endomorphism ϕ

has three distinct real eigenvalues, while in case of real moduli <µ0 the endomorphism
ϕ has one real and two purely imaginary eigenvalues.

7.10. Another type of examples

For k=3 and c>1 let m:=c+2 and V be as in Example 5.1. Then also the subgroup

Σ :=
{(

r 0
t 1

)
: r∈R+ and t∈R

}
⊂GL(2,R) (7.11)

acts on V by p 7!p�g−1, and the Lie algebra of Σ corresponds to the linear span of
the two vector fields ζ1 and ξ1,−1 in Example 5.2. For a:=vm+muvm−1∈V the orbit
F :=Σ(a) is a surface in V , and for o:=vm the orbit C :=Σ(o) is a curve in the closure
of F . Identifying Rm+1 with coordinates (x0, x1, ..., xm) and V as in Example 5.1, we
get o=(1, 0, ..., 0), a=(1, 1, 0, ..., 0) and

C = {(1, t, t2, ..., tm) : t∈R}.

Furthermore ToC=R·b, with b:=(0, 1, 0, ..., 0), for the tangent space at o∈C. On the
other hand, the affine half-line o+R+·b is contained in F . The geometric meaning of
this is the following: The development S :=

⋃
c∈C(c+TcC) of the curve C is divided by

C into two Σ-orbits, one of which is F (compare [12, p. 45] for the special case m=3).
Now identify the Σ-invariant hyperplane W :={x∈V :x0=1} with Rm by ‘dropping the
coordinate’ x0. Then C becomes the twisted m-ic {(t, t2, ..., tm):t∈R}, o becomes the
origin and a the first basis vector (1, 0, ..., 0) in Rm. In the coordinates of Rm the vector
fields ζ1 and ξ1,−1 are affine and have the forms

ζ1 =
m∑
j=1

jzj∂/∂zj and ξ1,−1 = ∂/∂z1+
m∑
j=2

jzj−1∂/∂zj . (7.12)
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By Proposition 3.7, it is easily verified that Kr
aF={x∈Rm :xj=0 if j+r>2} for all r>0.

Since the twisted m-ic is not contained in any hyperplane of Rm, we therefore get that the
tube M :=C+iRm is a homogeneous minimal 2-nondegenerate submanifold of Cm with
CR-dimension 2 and CR-codimension m−2. Notice that for the cone R+·F generated
by F in V , the tube R+·F+iV is an open piece of M3,n−3, n:=m+1, and hence is
3-nondegenerate.

For every integer j, denote by g(j) the k-eigenspace of ad(ζ1) in g:=hol(M,a). Then
every ξ∈g(j) is a complex linear combination of monomial vector fields zν11 zν22 ... zνm

m ∂/∂zp

with ν1+2ν2+...+mνm=j+p. As in the proof of Proposition 4.2, it is shown that g has
the Z-grading

g=
⊕
j>−m

g(j). (7.13)

It can be seen that g is the linear span of all i∂/∂zj , 16j6m, as well as ζ1 and ξ1,−1.
In particular, g is a solvable Lie algebra of dimension m+2, coincides with aff(M,a) and
has commutator subgroup of dimension m+1. A proof will be sketched for the special
case m=3 in Example 8.5 below.

8. Homogeneous 2-nondegenerate CR-manifolds in dimension 5

In this section we specialize the examples of the previous section to the case V =R3. We
start with manifolds of type M=Mϕ=Fϕ+iR3 in C3. Then the local CR-equivalence
classes of these manifolds are parameterized by the modules µ(M)∈	R; compare (7.9).
The ϕ occurring in the following examples are not necessarily trace-free but easily could
be transformed to be so. As defined in the previous section, let µ0 := 27

4 .

Example 8.1. (µ=∞) Let F :={x∈R3 :x2
1+x2

2=x2
3 and x3>0} be the future light

cone. This surface occurs as Fϕ for ϕ:=x2∂/∂x1−x1∂/∂x2 having spectrum {±i, 0}.

Example 8.2. (µ<µ0) For ω>0, let F⊂R3 be the orbit of (1, 0, 1) under the group
of all linear transformations x 7!r(cos tx1−sin tx2, sin tx1+cos tx2, e

ωtx3), r∈R+, t∈R.
With r :=(x2

1+x2
2)

1/2, the manifold F is given in {x∈R3 :r>0} by the explicit equa-
tions

x3 = r exp(ω cos−1(x1/r))= r exp(ω sin−1(x2/r)),

where locally always one of these suffices. A suitable choice is

ϕ=x1∂/∂x2−x2∂/∂x1+ωx3∂/∂x3

with spectrum {±i, ω}.
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Example 8.3. (µ=µ0) Let F⊂R3 be the orbit of (1, 0, 1) under the group of all linear
transformations x 7!r(x1, x2+tx1, e

tx3) with r∈R+ and t∈R, that is,

F = {x∈R3 :x1> 0 and x3 =x1e
x2/x1}.

Here ϕ=x1∂/∂x2+x3∂/∂x3 has characteristic roots 0, 0 and 1.

Example 8.4. (µ0<µ<∞) For θ>2 let

F := {x∈ (R+)3 :x3 =x1(x2/x1)θ}.

Here ϕ=x2∂/∂x2+ωx3∂/∂x3 has eigenvalues {0, 1, ω}.

The following is Example 7.10 specialized to m=3.

Example 8.5. Let Σ be the group generated by the following two one-parameter
groups of affine transformations on R3:

x 7! (etx1, e
2tx2, e

3tx3) and x 7! (x1+t, x2+2tx1+t2, x3+3tx2+3t2x1+t3). (8.6)

Then Σ is isomorphic to the group defined in (7.11). For a:=(1, 0, 0), the orbit F :=Σ(a) is

F = {(t, t2, t3)+r(1, 2t, 3t2)∈R3 : r∈R+ and t∈R}.

The tube M :=F+iR3 is an affinely homogeneous 2-nondegenerate CR-manifold. The
Lie algebra of Σ is spanned by the affine vector fields

ζ1 := z1∂/∂z1+2z2∂/∂z2+3z3∂/∂z3 and ξ1,−1 := ∂/∂z1+z1∂/∂z2+z2∂/∂z3,

compare also (7.12). The Lie algebra g:=hol(M,a) is of finite dimension and has the
grading (7.13) for m=3, where g(k) is the k-eigenspace of ad(ζ1). We claim that g has
dimension 5 and coincides with aff(M,a). The proof consists of several elementary steps
which we only sketch here. To begin with, define a(k)⊂g(k) by

a(−3) :=Ri∂/∂z3, a(−2) :=Ri∂/∂z2, a(−1) :=Ri∂/∂z1⊕Rϕ, a(0) :=Rζ

and a(k) :=0 for all other k. By induction on k, it is seen that g(k)=a(k) holds for all k.
For k6−3 this is obvious. For k=−2, suppose that there exists a ξ∈g(−2)\a(−2). Then
ξ=α∂/∂z2+βz1∂/∂z3 for some α, β∈C. From [ξ, a(−1)]⊂a(−3) we get β∈R, and then
ξa∈TaM implies β=0. But then ξ∈a(−2) since a(−2)⊕ia(−2) 6⊂g(−2), a contradiction. For
k>−1 the procedure is as follows. Suppose that there exists ξ∈g(k)\a(k). Then write ξ as
a complex linear combination of monomial vector fields as mentioned above and subtract
from ξ a suitable element of a(k), thus killing as many coefficients in front of monomial
terms of the form f(z)∂/∂z1 as possible. By induction hypothesis, [g(k), a(j)]⊂a(k+j)

holds for all j<0 and gives ξ=0, a contradiction. This proves the claim and also the first
part of the following statement.
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Lemma 8.7. Let M :=F+iR3, with F=H(a)⊂R3, as in Example 8.5. Then g=
hol(M,a) is a solvable Lie algebra of dimension 5 with commutator algebra [g, g] of
dimension 4. Furthermore, Aut(M,a)={id}.

Proof. Fix a:=(1, 0, 0)∈F and write ξj :=i∂/∂zj for j=1, 2, 3. Let h∈Aut(M,a) and
Θ be the induced Lie algebra automorphism of l:=g⊕ig. With g, the subspaces

n := [g, g] =
⊕
k<0

g(k), [n, n] =Rξ2⊕Rξ3 and [n, [n, n]] =Rξ3

are stable under Θ and hence also

n∩KaM =Rξ1 and [n, n]∩HaM =Rξ2,

where g and the tangent space TaM are identified via the evaluation map. In particular,
Θ(P−1)=P−1 and h(z)=g(z)+c for a diagonal matrix g∈GL(3,R) with c=g(a)−a;
compare (2.1). Taking commutators of h with all elements in the second 1-parameter
group of (8.6), and then taking the derivative by t at t=0, gives c∂/∂z∈g. From g∩ig=0,
we conclude that c=0 and thus g11=1 for the diagonal matrix g. Now, ψ is the unique
vector field in g that has the value ∂/∂z at both points 0 and a, implying that Θ(ψ)=ψ.
Therefore g is the unit matrix and h is the identity in Aut(M,a).

For every M=F+iR3, with F⊂R3 being one of the cones from Examples 8.1–8.4,
the commutator of hol(M,a) has either dimension 10 (Example 8.1) or dimension 3 (all
the others). As a consequence of Proposition 7.6 and Lemma 8.7 we therefore get the
following result.

Proposition 8.8. The CR-manifolds M=F+iR3, with F⊂R3 occurring in Exam-
ples 8.1–8.5, are all homogeneous and 2-nondegenerate. Furthermore, they are mutually
locally CR-inequivalent.

By an argument from [16] together with [19, Theorem 2.5.10], a holomorphic exten-
sion property for global continuous CR-functions f on M=F⊕iR3⊂C3, F being one of
the cones from Examples 8.1–8.5, can be obtained. Every such f has a unique continuous
extension to the convex hull M̂ of M in C3 that is holomorphic on the interior of M̂ with
respect to C3. Since M is completely contained in the interior of M̂ in case F belongs
to Example 8.2, every global continuous CR-function on such an M is real-analytic.

For the tube M over the future light cone (that is, Example 8.1) there exist many
(even simply-connected) homogeneous CR-manifolds that are all locally CR-equivalent
to M but are mutually nondiffeomorphic; compare [23]. In contrast to this, using already
Theorem II from §9 below, we can state the following global result.
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Proposition 8.9. Let M be a homogeneous 2-nondegenerate CR-manifold that is
not locally CR-equivalent to the tube M over the future light cone. Then M is simply
connected and Aut(M) is a solvable Lie group of dimension 5 acting transitively and
freely on M . For every a∈M the stability group Aut(M,a) is trivial and every homo-
geneous real-analytic CR-manifold M ′ which is locally CR-equivalent to M is already
globally CR-equivalent to M .

Proof. By Theorem II, M=F+iV for F as in one of the Examples 8.2–8.5. It
is easily checked that F and hence M is simply connected. In case F is a cone, the
claim follows by Lemma 6.20. Therefore, we may assume that F is the submanifold of
Example 8.5. But then Aut(M,a) is the trivial group, by Lemma 8.7, and Aut(M) has
trivial center, by Proposition 3.9. But then the claim follows from Proposition 3.10.

The affinely homogeneous surfaces F⊂R3 of Examples 8.1–8.5 already occur in
[12, p. 43]. There the surfaces are presented in their affine normal forms. Our Ex-
ample 8.1 (µ=∞) corresponds to P4, Examples 8.2–8.4 (µ∈R) to P3 and Example 8.5
to P1. The remaining degenerate types in [12], types P2± and P5, do not show up among
our examples, since the associated tube manifolds are holomorphically degenerate.

Let us consider the type P3 in [12, p. 43] a little bit closer. This is the family of
local surfaces in R3 given by the local equations in affine normal form

x3 =x2
1+x2

1x2+x2
1x

2
2+x5

1+x2
1x

3
2+4x5

1x2+x2
1x

4
2+ax7

1+10x5
1x

2
2+x2

1x
5
2+O(8), (8.10)

where a∈R is an arbitrary parameter and O(8) for every fixed a is a convergent power
series in x=(x1, x2, x3) vanishing of order >8 at the origin and uniquely determined by
the requirement, that (8.10) defines, near the origin of R3, a locally affinely homogeneous
surface. Different values of a∈R give locally affinely inequivalent surfaces, and the as-
sociated tubes in C3 correspond in a one-to-one way to our Examples 8.2–8.4. It is not
difficult to see that the modulus µ of every such surface is related to the parameter a in
(8.10) by the formula 100µ=(28a)3.

In [11] and [12] all locally affinely homogeneous surfaces in R3 have been classified
up to local affine equivalence. Inspecting the degenerate surfaces in these classifications
gives together with our results the following proposition.

Proposition 8.11. Let F be a locally affinely homogeneous surface in R3 and as-
sume that the corresponding tube M :=F+iR3 in C3 is 2-nondegenerate. Then

(i) M is locally CR-equivalent to a manifold occurring in Examples 8.1–8.5;
(ii) for any other locally affinely homogeneous surface F ′ in R3, the corresponding

tubes M and M ′ :=F ′+iR3 are locally CR-equivalent if and only if F and F ′ are locally
affinely equivalent.
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Part II. The classification

9. Lie-theoretic characterization of locally homogeneous CR-manifolds

In this part of the paper we classify all homogeneous 5-dimensional 2-nondegenerate CR-
manifolds up to local CR-equivalence, that is, we carry out the proof of the following
theorem.

Theorem II. Let M be a locally homogeneous 2-nondegenerate real-analytic CR-
manifold of dimension 5. Then M is locally CR-equivalent to a tube F+iR3⊂C3, where
F⊂R3 is one of the affinely homogeneous surfaces occurring in Examples 8.1–8.5.

We call (in accordance with §2) a real-analytic CR-manifold M locally homogeneous
at a point o∈M if there exists a Lie subalgebra g⊂hol(M,o) of finite dimension such that
the canonical evaluation map g!ToM is surjective, that is, such that the tangent vectors
ξo, ξ∈g span the tangent space ToM . If this is the case, we also call the corresponding
CR-germ (M,o) locally homogeneous. If a particular locally transitive g⊂hol(M,o) has
been fixed, we also say that the germ (M,o) is g-homogeneous.

The proof of Theorem II relies on a natural equivalence (see [15, Proposition 4.1])
between the category of CR-manifold germs with a locally transitive Lie algebra action
and a certain purely algebraically defined category. Before we briefly outline the main
steps of our proof, we recall the notion of a CR-algebra, taken from [28], and introduce
some notation.

Definition 9.1. A CR-algebra is a pair (g, q), where g is a real Lie algebra of finite
dimension and q is a complex Lie subalgebra of the complexification l:=g⊕ig. The
CR-algebra (g, q) is called effective if 0 is the only ideal of g contained in g∩q.

Remarks 9.2. (i) In [28] also the case is allowed where g has infinite dimension, but
q has to have finite codimension in l. In this part of the paper, however, only finite-
dimensional Lie algebras occur.

(ii) The CR-algebras form a category in an obvious way: A morphism (g, q)!(g′, q′)
of CR-algebras is a Lie algebra homomorphism g!g′ in the usual sense whose complex
linear extension l!l′ maps q to q′. Unfortunately, the resulting notion of isomorphism
between CR-algebras is too strict for our purposes. We therefore mainly work with the
coarser notion of geometric equivalence between CR-algebras to be introduced later.

(iii) The geometric situation behind the notion of a CR-algebra is the following.
Let Z be a complex manifold, homogeneous under a complex Lie group L, let o∈Z be
a point with isotropy subgroup Q⊂L at o and let G⊂L be a connected real form of
L, that is, the connected identity component of the fixed point set Lσ for an involutive
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antiholomorphic automorphism σ of L. Then eachG-orbitM in Z is a generic (immersed)
CR-submanifold. Let g and q be the Lie algebras of G and Q, respectively. Then (g, q)
is a CR-algebra that completely describes the CR-germ (M,o) together with the local
action of G near o.

(iv) In general, however, not every CR-algebra (g, q) can be obtained from a global
situation as described in (iii), only from a more general local setting. Nevertheless,
the set G of all CR-equivalence classes of locally homogeneous CR-germs and the set
A of all geometric equivalence classes of CR-algebras stand in a canonical one-to-one
correspondence; compare also [15, §4]. For convenience of the reader, we briefly describe
below this correspondence in both directions. As a reference for a general discussion of
‘local’ and ‘infinitesimal’ actions we refer to the original paper of Palais, [29].

In the following let M always be a locally homogeneous real-analytic CR-manifold
with base point o∈M that locally can be embedded in some Cn (equivalently, M is an
(abstract) real-analytic involutive CR-manifold as defined at the end of §2). Each such
CR-manifold can globally and generically be embedded into a complex manifold Z [1].
Since we are only interested in the local structure of M at o and therefore mostly deal
with CR-germs (M,o), we may assume without loss of generality that M is embedded
in a complex vector space E∼=Cn as a locally closed generic CR-submanifold.

Next we describe the interplay between locally homogeneous CR-germs and CR-
algebras more closely. In particular, we give two canonical constructions that induce the
one-to-one correspondence between the sets G and A mentioned in Remark 9.2 (iv) and
also allow the precise definition of ‘geometric equivalence’ for CR-algebras.

Let (M,o) be a CR-germ and let g⊂hol(M,o) be a locally transitive Lie subalgebra
of finite dimension. Then an effective CR-algebra (g, q) can be associated in the following
way. To begin with, realize hol(M,o) in the canonical way as a real Lie subalgebra of
the complex Lie algebra hol(E, o). This is possible, since we assumed M to be generic
in E and we can use [3, Proposition 12.4.22]. As in Definition 9.1, we always denote
by l=gC=g⊕ig the formal complexification of g. Now Ξ(ξ+iη):=ξ+Jη defines a Lie
algebra homomorphism Ξ: l!hol(E, o), where J denotes the complex structure tensor
J :TE!TE. We will not make a notational distinction between the complex structures
in l or TZ, and write ‘i’ for it. The homomorphism Ξ is in general not injective (it
is, if M is holomorphically nondegenerate). Let q⊂l be the Ξ-preimage of the isotropy
subalgebra {ξ∈hol(E, o):ξo=0}. Then the CR-algebra (g, q) is called a CR-algebra asso-
ciated with the locally homogeneous CR-germ (M,o). It is obvious that g∩q is nothing
but the isotropy subalgebra go={ξ∈g:ξo=0} and the tangent space ToM can be canon-
ically identified with g/go. Also, the holomorphic tangent space HoM and the partial
complex structure J :HoM!HoM (equivalently: the decomposition H1,0

o M⊕H0,1
o M of
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the complexification HC
oM=HoM⊗C) can be read off the CR-algebra (g, q): Let σ be

the conjugate linear involution of l with lσ :=Fix(σ)=g. Then it is easily verified that
H:=(q+σq)σ coincides with {ξ∈g:ξo∈iToM}, that is, H/go is canonically isomorphic to
HoM (the capital letter for H is chosen to indicate that H in general is not a Lie algebra,
only a linear subspace). Further, H0,1

o M=q/(q∩σq) and H1,0
o M=σq/(q∩σq). In [15]

it has been shown that the geometric properties of the CR-structure of the CR-germ
(M,o) like minimality, k-nondegeneracy and holomorphic degeneracy can be read off
every CR-algebra (g, q) associated with (M,o). The facts relevant for our classification
will be discussed below.

There is also a canonical way to associate a locally homogeneous CR-manifold germ
(M,o) with a given CR-algebra (g, q) (not necessarily effective): Choose a complex Lie
group L with Lie algebra l=g⊕ig and a complex linear subspace E⊂l with l=q⊕E.
Then there exist open neighbourhoods U of 0∈E, V of 0∈q and R of id∈L such that
(u, v) 7!exp(u) exp(v) defines a biholomorphic mapping ϕ:U×V!R. Choose an open
neighbourhood P of 0∈g with exp(P )⊂R. Then, in our particular situation, with
π:U×V!U being the canonical projection, the mapping ψ :=π�ϕ−1

�exp:P!U has
constant rank. Without loss of generality, we therefore may assume that M :=ψ(P ) is a
connected real-analytic submanifold of E containing the origin 0∈E. The Lie algebra l

can be identified with the Lie algebra of all right-invariant vector fields on L, and every
ξ∈l can be projected along π�ϕ−1:R!U to a holomorphic vector field ξ̃∈hol(U). Thus
the real subalgebra g̃:={ξ̃ :ξ∈g}⊂hol(U) is a homomorphic image of g and spans at every
x∈M the tangent space TxM . In particular, M is a generic CR-submanifold of E and
g̃ is a locally transitive subalgebra. It is not difficult so see that g̃ is obtained from g

by factoring out the kernel of ineffectivity. More precisely, let j be the largest ideal in g

with j⊂g∩q. Then g̃ is isomorphic to g/j. If there exists a Lie group L with Lie algebra l

such that the subalgebra q corresponds to a closed complex subgroup Q⊂L, then we may
take L/Q for U and the G-orbit through [Q]∈L/Q for M . We call (M,o) the CR-germ
associated with the CR-algebra (g, q).

Definition 9.3. The CR-algebras (g, q) and (g′, q′) are called geometrically equivalent
if the associated CR-germs are CR-equivalent.

Notice that CR-algebras are always geometrically equivalent if they are isomorphic
in the categorical sense of Remark 9.2 (ii), but not conversely in general. Notice also
that every CR-algebra is geometrically equivalent to an effective one. In the following
§§9.4–9.8, we fix for the rest of the paper the basic setup and notation, which are mainly
taken from [15].
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9.4. Notation

Given a CR-algebra (g, q), let (M,o) be the associated CR-germ. Write l:=gC=g⊕ig for
the complexification and σ: l!l for the complex conjugation with lσ=g. Then

(i) go :=g∩q is called the real isotropy subalgebra. Define lo :=q(∞) :=q∩σq and note
that lo is the complexification (go)C of go.

(ii) g/go and H/go⊂g/go, for H:=(q+σq)σ⊂g, are called the real and the holomor-
phic tangent space, respectively.

(iii) The descending chain q(0)⊃q(1)⊃q(2)⊃...⊃q(∞) of complex subalgebras is
inductively defined by q(0) :=q, q(∞) :=q∩σq and q(k+1) :={w∈q(k) :[w, σq]⊂q(k)+σq}
for k∈N.

If (M,o) is the manifold germ associated with the CR-algebra in §9.4, then the
holomorphic tangent space H/go⊂g/go in the sense of (ii) can be canonically identified
with the holomorphic tangent space HoM in the geometric sense. As shown in [15], the
mapping q!H, w 7!w+σw, induces a complex linear isomorphism q/q(∞)∼=H/go. The
former quotient is canonically isomorphic to H0,1

o M (similarly, H1,0
o M∼=σq/q(∞)). The

Levi kernel KoM and its higher-order analogues Kr
oM can be considered as complex

linear subspaces of q/q(∞). We will make extensive use of some of the main results of
[15], such as Theorem 5.10.

9.5. Algebraic characterization of k-nondegeneracy

For every r>0 the space q(r) is a Lie subalgebra of q and the rth Levi kernel Kr
oM

is isomorphic to q(r)/q(∞). In particular, for every k>1 the locally homogeneous CR-
manifold M is k-nondegenerate if and only if

q(k−1) 6= q(k) = q(∞).

To handle the 5-dimensional case we also introduce the following abbreviations:
(iv) f:=q(1)={v∈q:[v, σq]⊂q+σq} and F:=(f+σf)σ.
Then go⊂F⊂H⊂g are real subspaces stable under ad(go) and lo⊂f⊂q are complex

subalgebras. In [15, Lemma 5.9] it has been shown that actually F is a Lie algebra and
it coincides with Ng(H)∩H (here, given W⊂g, Ng(W ):={v∈g:[v,W ]⊂W}).

Summarizing the above discussion, the following result is the key for our classifica-
tion.

Proposition 9.6. Let (M,o) be a g-homogeneous CR-germ and let (g, q) be the
corresponding CR-algebra. Then M is 5-dimensional , minimal and 2-nondegenerate if
and only if

codimg(g0) = 5 and q 6= f 6= q(2) = q(∞) := q∩σq.



48 g. fels and w. kaup

Lemma 9.7. The Lie algebraic terms in Proposition 9.6 are equivalent to the follow-
ing set of conditions:

(I) dim F/go=dim H/F=2 and dimR g/H=1=dimC f/lo=dimC q/f;
(II) [go,F]⊂F, [F,F]⊂F and [F,H]⊂H;
(III) [q, σq] 6⊂q+σq, if M is not Levi flat ;
(IV) [f, σq]⊂q+σq and f 6=lo, if M is Levi degenerate;
(V) [f, σq] 6⊂f+σq if M is 2-nondegenerate.

We will frequently use the fact that the condition ‘[F,H]⊂F’ (instead of ⊂H) violates
condition (V).

By the canonical bijection between the classes G and A mentioned in Remark 9.2 (iv)
and made precise above, our classification problem is transferred to the classification of
certain effective CR-algebras up to geometric equivalence. Unfortunately, with a given
locally homogeneous CR-germ (M,o) there may be associated many CR-algebras (g, q)
for which the g’s are nonisomorphic. For instance, if M=M is the tube over the future
light cone, then with (M, o) there are associated CR-algebras (g, q) with g∼=so(2, 3),
g∼=so(1, 3) and g∼=so(2, 2) together with a bunch of other Lie algebras that are not
semisimple; see [16] for explicit realizations. Therefore, the best we can do in the fol-
lowing is to consider only CR-algebras (g, q) such that dim g is minimal in the geometric
equivalence class of (g, q). But, also then, we are still left in the example (M, o) with
several nonisomorphic solvable Lie algebras of dimension 5 as well as one nonsolvable Lie
algebra of dimension 5 with 2-dimensional nonabelian radical and Levi part ∼=sl(2,R).

9.8. Fundamental assumption

In the following, every CR-algebra (g, q) under consideration is assumed to satisfy the
condition in Proposition 9.6 (equivalently, (I)–(V)) as well as the following additional
condition:

(VI) for every CR-algebra (g′, q′), which is geometrically CR-equivalent to (g, q), the
dimension estimate dim g′>dim g holds.

Condition (VI) implies, in particular, the following two conditions:
(VI)1 (g, q) is effective;
(VI)2 there is no proper subalgebra g′⊂g with g′+go=g for go=g∩q.

Indeed, (g′, q′) with q′ :=(g′+ig′)∩q is a CR-algebra that is geometrically equivalent
to (g, q) in case g′+go=g.
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9.9. Basic structure theory

In the following we frequently use standard facts concerning reductive Lie algebras and
parabolic subalgebras; see [24, Chapters VI and VII] as a general reference. To fix our
notation, let s be a complex reductive Lie algebra and t be a Cartan subalgebra of s.
Denote by Φ=Φ(s, t)⊂t∗ the corresponding root system and by Π⊂Φ the subset of simple
roots. A subalgebra r⊂s is called parabolic if it contains a maximal solvable subalgebra
(also called a Borel subalgebra) b of s. Conjugacy classes of parabolic subalgebras in s are
parameterized by the subsets of Π. For every P⊂Π, set 〈〈P〉〉:=Φ∩

⊕
α∈P Zα. Then,

the corresponding parabolic subalgebra is defined by

r = rP := rred⊕rnil with rred := t⊕
⊕

α∈〈〈P〉〉

sα and rnil :=
⊕

α/∈〈〈P〉〉

sα. (9.10)

The case of a reductive real Lie algebra s is a little bit more sophisticated. In contrast to
the complex situation there may exist several conjugacy classes of Cartan subalgebras.
Among these, the class most suitable for our purposes consists of the so-called maximally
split Cartan subalgebras t⊂s, defined as follows. Select a Cartan decomposition s=k⊕p

and let a be a maximal abelian subalgebra of p. Consider the centralizer m:=Ck(a) and
put t:=a⊕tm, where tm⊂m is a maximal abelian subalgebra. The conjugacy classes of
the real parabolic subalgebras in s are parameterized by the subsets of the simple roots
Π⊂Φ(s, a) in the restricted root system Φ(s, a)⊂a∗. Each parabolic subalgebra r in s

has the decomposition r=rrednrnil into the reductive and nilpotent parts (once a maxi-
mally split Cartan subalgebra t⊂r is selected, the reductive factor with rred⊃t is unique).
Following a common convention, the roots λ occurring in the root space decomposition
of the nilpotent ideal rnil=

⊕
λ∈Λ sλ are negative, and we write r−n :=rnil, rr :=rred and

Φ−n :=Φ(rnil, a)=Λ. Each parabolic subalgebra r containing t determines the decompo-
sition

s= rn⊕rr⊕r−n with rn :=
⊕

λ∈Φ(rnil,a)

s−λ, and we put ropp := rrnrn. (9.11)

We call rk(s):=dim t the rank of s and rkR(s):=dim a, with a⊂p as above, the real
rank of s.

10. The Lie algebra g has small semisimple part

In the preceding section we have explained how 2-nondegeneracy can be expressed in
pure Lie algebraic terms. In this section we start with the actual proof of Theorem II.
Since this proof will be quite involved, we subdivide it into several sections, lemmata
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and claims until the final step is completed in §16. For the convenience of the reader, we
briefly outline the main steps.

As explained above, the classification can be reduced to the determination of all CR-
algebras satisfying the fundamental assumption in §9.8. Once all possible CR-algebras
are known, we have to identify the underlying CR-germs. In general, it may happen that
algebraically inequivalent CR-algebras give rise to equivalent CR-germs. For this last
part of the proof we use results from §8.

Our proceeding will be to show that the assumption in §9.8 severely restricts the
possibilities for (g, q). This will be achieved by a detailed structural study of the Lie
algebras g occurring in (g, q). Recall that every Lie algebra h has a Levi–Mal’tsev de-
composition h=hssnrad(h), where hss is semisimple and is uniquely determined up to
an inner automorphism of h. Furthermore, rad(h) is the radical of h, i.e., the unique
maximal solvable ideal in h. In the first part of the proof, we investigate the various pos-
sibilities for gss, where (g, q) satisfies certain conditions stated in the previous section.
To be precise: For the rest of the paper the fundamental assumption in §9.8 remains in
force for all CR-algebras (g, q) under consideration. In particular, every (g, q) is effec-
tive (condition (VI)1, and therefore g can be considered as a transitive Lie subalgebra of
hol(M,o)). Furthermore, condition (VI)2 states that there is no proper Lie subalgebra of
g that also is transitive on (M,o).

Let an arbitrary CR-algebra (g, q) subject to the assumption in §9.8 be given, and
let gssnrad(g) be a Levi–Mal’tsev decomposition of g. In this and in the following few
sections we assume that gss 6=0 and investigate which simple factors can occur in gss.
Thereby we use the following notation: We fix a simple ideal s in gss and denote the
corresponding complementary ideal by s′, that is,

g= gssnrad g and gss = s×s′. (10.1)

In this section we show that gss only can contain simple factors isomorphic to one of
the Lie algebras so(2, 3), so(1, 3), su(2) and sl(2,R). This result is obtained by analyzing
which simple real Lie algebras can contain proper subalgebras of very low codimensions.
In the next sections we exclude further possibilities for s. In §11 we show that the factors
so(2, 3) and so(1, 3) cannot occur in gss as it will turn out that their existence in the Levi
factor would violate the minimality assumption (VI). Nevertheless notice that there exist
CR-algebras (so(2, 3), q) and (so(1, 3), q) satisfying (I)–(V) and (VI)1. All the underlying
CR-germs of such CR-algebras are locally CR-equivalent to the light cone tube M. In
§12 we find the first examples of CR-algebras which satisfy the assumption in §9.8. In
these cases gss contains a simple factor s∼=sl(2,R), and then necessarily g∼=sl(2,R)×r,
where r is a 2-dimensional nonabelian Lie algebra. Also, all such CR-algebras give rise
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only to CR-germs locally CR-equivalent to the tube over the light cone. In §13 we finally
eliminate the possibility s∼=su(2) for the simple factor s in gss. At that stage of the proof,
we will have proved the following dichotomy: Let (g, q) be an arbitrary CR-algebra which
obeys the assumption in §9.8. If gss 6=0 then gss∼=sl(2,R) and furthermore the underlying
CR-germ is locally CR-equivalent to the light cone tube M. Or gss=0, i.e., g is solvable.

For this reason, from §14 on, we only consider CR-algebras (g, q) with g solvable,
and show that then necessarily dim g=5=dimM . In §15 we look closer at the nilcenter z

of g and find out that dim z∈{1, 3}. The Main lemma 15.14, which might be of interest in
itself, gives a sufficient condition for a CR-algebra to be associated with a tube F+iR3⊂
C3 over an affinely homogeneous surface F⊂R3. In the last section, we show by ad-hoc
methods that indeed every 5-dimensional solvable Lie algebra g occurring in the CR-
algebra (g, q) under consideration fulfills the assumption of the main lemma. Hence, due
to the aforementioned assertions and since (up to local affine equivalence) all affinely
homogeneous surfaces in R3 occur among Examples 8.1–8.5, this completes the proof of
the classification theorem.

We now begin with the proof of Theorem II.

Lemma 10.2. Let (g, q) be a CR-algebra subject to the assumption in §9.8. Then the
simple Lie subalgebra s⊂gss can only be isomorphic to so(2, 3), so(1, 3), sl(2,R) or su(2).

Proof. The proof is carried out in several reduction steps. To begin with, we write
as shorthand

ho := go∩h, hF :=F∩h and hH :=H∩h

for every subalgebra h⊂g. Notice that ho⊂hF are subalgebras and hH is a linear
ad(hF)-stable subspace of h.

Consider the subalgebras so⊂sF of s. The case so=sF=s, that is s⊂go, can be
ruled out since then s′⊕rad(g) would be a proper locally transitive subalgebra of g,
contradicting assumption (VI)2. Therefore, at least one of the inclusions so⊂sF⊂s is
proper. Consequently, there is always a proper subalgebra of codimension 63 in s.
Indeed, in case sF 6=s the subalgebra sF has this property, and in case sF=s the proper
subalgebra so has codimension 62. Hence, there exists a maximal proper subalgebra h of
s with either sF⊂h or so⊂h. Such a maximal subalgebra h has codimension 63 in s. Due
to [7, §VIII.10, Corollary 1], every maximal proper subalgebra of s is either reductive or
parabolic. In the following claims we list all simple Lie algebras s which admit proper
maximal subalgebras of such low codimensions. We discuss the reductive and parabolic
cases separately.

Claim 1. Let k be a simple real algebra and h⊂k reductive with 0<codims h63.
Then k can only be isomorphic to sl(2,R), su(2) or so(1, 3).
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Proof. Let h=h1×...×hp×z be the decomposition of the reductive subalgebra h into
the simple factors hj and the center z. Weyl’s theorem implies the existence of an ad(h)-
stable complement v⊂s. Let %: h!gl(v) be the induced adjoint representation. Every
restriction %j : hj!gl(v) must be faithful since otherwise hj would be an ideal in s. The
crucial condition here is dim v63 which, in turn, implies that each hj is isomorphic either
to sl(2,R), so(3) or sl(3,R). As a consequence,

dim h 6

{
8k, if r=2k,
8k+3, if r=2k+1,

for r := rk(h) 6 rk(s).

On the other hand, a glance at the classification of simple Lie algebras shows that

dim s>

{
2k2+4k=dimR sl(k+1,C), if r=2k,
4k2+8k+3 =dim sl(2k+2,R), if r=2k+1.

Putting both inequalities together and bearing in mind that dim s−dim h63 shows that
the rank of s can only be one of the numbers 1, 2 and 4. Since sl(2,R) and su(2) are the
only simple real Lie algebras of rank 1, we may assume that s has rank 2 or 4. The case
rk(s)=4 can be ruled out in the following way. Consider first the situation where s is of
complex type, that is, s is the underlying real Lie algebra of a complex simple Lie algebra
c of (complex) rank 2. Then c is either sl(3,C) or so(5,C). But in both cases a proper
reductive real subalgebra has at least (real) codimension 4 (in fact, 8). If s is of real type
then the above estimates give dim h616 and dim s>24=dim sl(5,R). For the remaining
case rk(s)=2, either s∼=so(1, 3), which is in the list of the claim, or s is isomorphic to a
real form of sl(3,C) or so(5,C). In both cases every proper reductive complex subalgebra
has at least codimension 4. This proves Claim 1.

Claim 2. Let k be a simple real Lie algebra and h⊂k be parabolic with 0<codimsh63.
Then s is isomorphic to so(1, 3), sl(4,R), su(2) or to a noncompact real form of sl(3,C)
or so(5,C).

Proof. Since every parabolic subalgebra of a compact Lie algebra is trivial, apart
from s∼=su(2) we only have to consider the case where s is noncompact. The estimate
rk(s)6dim s−dim h (compare §9.9) implies that rk(s)63. We work out the various cases
separately.

rk(s)=3. The complexification sC of s is one of the Lie algebras sl(4,C), so(7,C) or
sp(3,C). The latter two can be immediately ruled out since a glance at the corresponding
Satake diagrams shows that every proper parabolic subalgebra of them is at least of
codimension 4. In the remaining case sC∼=sl(4,C), only the normal real form sl(4,R)
has a parabolic subalgebra of codimension 3. (A glance at the Satake diagrams for the
remaining noncompact real forms of sl(4,C) excludes further possibilities).
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rk(s)=1, 2. The rank conditions imply that s is the underlying real Lie algebra
of sl(2,C) or a real form of sl(3,C) or so(5,C). The Lie algebra so(1, 3), as well as
every noncompact real form of sl(3,C) or so(5,C), contains a parabolic subalgebra of
codimension less than or equal to 3. Since dim sl(2,R)=dim su(2)=3, all simple Lie
algebras of rank 1 also contain parabolic subalgebras of the required codimension.

In order to further reduce the list of possibilities for s, we have to look more closely
at the particular real forms obtained in Claims 1 and 2, but not in the list of Lemma 10.2.

Elimination of s∼=sl(4,R). Up to an automorphism of sl(4,R), there is only one
such parabolic subalgebra h of codimension 3. Let t=a⊂h be the split Cartan subalgebra
and h=hrnh−n be the decomposition as in (9.11). Note that here the reductive factor
hr∼=gl(3,R) acts irreducibly on h±n∼=R3. The only possibility for the flag so⊂sF⊂sH⊂s,
which cannot be trivially excluded, is when so⊂sF=h sH s and codimh(so)62. This
cannot be true since dim sH/sF=2 and [sF :sH]⊂sH (condition (II)), but h=sF acts irre-
ducibly on the 3-dimensional space s/sF

∼=hn.

Elimination of s∼=su(1, 2). In this case of real rank 1, there exists, up to conju-
gacy, only one parabolic subalgebra h. This is the minimal one h=h∅=m⊕a⊕n, which
is solvable with codims h=3. The reductive part hr=m⊕a=:t of h is a maximally split
Cartan subalgebra. As before, the only situation which cannot be trivially disposed of
is when so⊂sF=h and c:=codimh(so)∈{0, 1, 2}. Recall that h yields the decomposition
s=hn⊕t⊕h−n. If c=0, that is so=h, then hn⊕rad(g) would be a proper locally transitive
subalgebra of g in contradiction with assumption (VI)2. If c=1 then either t∩so 6=t, and
then hopp⊕rad(g) would be a proper locally transitive subalgebra of g (again contradict-
ing (VI)2), or t⊂so. But taking into account the particular structure of h−n=s−λ⊕s−2λ,
this also does not occur, since otherwise so∩h−n would be a t-stable 2-dimensional sub-
algebra, which is impossible since ad(t) acts irreducibly on the 2-dimensional root spaces
s±λ and [sλ, sλ]=s2λ.

The case c=2 remains, that is, s=g∼=su(1, 2) is locally transitive. Then

l= sC∼= sl(3,C)

and q is a subalgebra of complex dimension 5. Consequently q is contained in a maximal
(6-dimensional) parabolic subalgebra h∼=gl(2,C)nC2 of l, that is, either q coincides with
a Borel subalgebra b, or is conjugate to a subalgebra j∼=sl(2,C)nC2. In both cases
the subgroups Q of L=SL(3,C) corresponding to b or j are closed and the underlying
CR-germ (M,o) is locally CR-equivalent to an SU(1, 2)-orbit either in L/B∼=F(C3), the
complex manifold of full flags in C3, or in the C∗-principal bundle L/J over P2(C). A
direct check shows that in neither case there exist 2-nondegenerate SU(1, 2)-orbits.



54 g. fels and w. kaup

Elimination of s∼=sl(3,R). Then 36dim so66 holds except for the trivial case
so=s. If dim so=3 and hence s is locally transitive, then as in the previous situation
each CR-germ (M,o) associated with a CR-algebra (sl(3,R), q) is locally CR-equivalent
to an SL(3,R)-orbit either in SL(3,C)/B or in SL(3,C)/J (as discussed above, with
SL(3,R) in place of SU(1, 2)). Again, none of these orbits is 2-nondegenerate. The case
dim so>4 remains. But then there always exists a parabolic (proper) subalgebra h⊂s

with so+h=s, that is, h⊕rad(g) is a proper locally transitive subalgebra of g excluding
the case sC∼=sl(3,C).

Elimination of s∼=so(1, 4). There exists up to conjugacy a unique parabolic sub-
algebra h=hrnh−n⊂s of codimension 3, and we have to investigate only the cases
s!sH!sF=h⊃so. A close look at the minimal (and maximal proper) parabolic sub-
algebra h=m⊕a⊕sλ shows that m∼=so(3), and m acts irreducibly on the 3-dimensional
nilpotent ideal h−n=s−λ. Consequently, h acts irreducibly on s/h=s/sF

∼=R3. This leads
to a contradiction as [sF, sH]⊂sH, i.e., sH/sF would be a 2-dimensional stable subspace.

This completes the proof of Claim 2.

The proof of Lemma 10.2 is now complete.

In [5, Theorem 6] it is claimed that for every 2-nondegenerate real-analytic hyper-
surface M⊂C3 the Lie algebra hol(M,a) has dimension 611 at every point. Using this
result would save a few arguments in the proof of Lemma 10.2. Instead, we preferred to
present a self-contained proof of the proposition.

11. The cases s∼=so(2, 3) and s∼=so(1, 3)

We continue the proof of Theorem II. So far we have proved that for the CR-algebra
(g, q) under consideration the simple factor s of gss, see (10.1), can only be isomorphic
to one of the simple Lie algebras listed in Lemma 10.2. In this section we show that
among these, the possibilities s∼=so(2, 3) and s∼=so(1, 3) cannot occur. Here and in the
following, upper case roman numerals refer to the conditions in §9.5 and §9.8.

We would like to mention that for the tube M over the future light cone one has
hol(M, o)∼=so(2, 3), and that there exists a copy of so(1, 3) in hol(M, a) that is also
locally transitive. Since these Lie algebras have dimensions 10 and 6 and since, on the
other hand, there are transitive subalgebras of hol(M, o) of dimension 5, these two Lie
algebras do not satisfy the minimality condition (VI). In the following we consider both
cases separately.

s∼=so(2, 3). The only Lie subalgebras h in the normal real form so(2, 3) with
codims h63 are the 3-codimensional maximal parabolic subalgebras. We need to take a
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closer look at the structure of these subalgebras. There are, up to isomorphisms of s,
only two such parabolic subalgebras: If Π(a)={α, β} is a basis of the root system Φ(a)
(a a split Cartan subalgebra, α long and β short), then

h1 := (a⊕sα⊕s−α)⊕s−β⊕s−α−β⊕s−α−2β = hr
1nh−n

1 ,

h2 := (a⊕sβ⊕s−β)⊕s−α⊕s−α−β⊕s−α−2β = hr
2nh−n

2

are representatives of the corresponding isomorphy classes. The only instance where the
filtration so⊂sF⊂sH⊂s could be nontrivial (recall that so and sF are subalgebras, sH

is an ad(sF)-stable subspace) arises when so⊂sF=hj⊂sH⊂s for j=1, 2. The possibility
h2=sF cannot occur since the adjoint representation of hr

2 on hn
2
∼=s/sF is irreducible, con-

tradicting the existence of a 2-dimensional ad(sF)-stable subspace sH/sF. The possibility
that sF=h1⊃so remains. From now on, h:=h1 and we analyze the various possibilities
for dim sF−dim so∈{0, 1, 2}. The equation sF=so contradicts condition (VI)2, since in
that case the proper subalgebra (hn⊕s′)nrad(g) would be transitive on (M,o). The case
when so is of codimension 1 in sF=h can also be ruled out: either h−n⊂so, and then
(hopp⊕s′)nrad(g) would be a transitive proper subalgebra of g, or the intersection of
so with h−n=(s−β⊕s−β−α)⊕s−α−2β is a 2-dimensional subalgebra. In such a case the
image π(so) of the projection π: h=h−nohr!hr coincides with hr. But this also leads
to a contradiction: neither the intersection so∩h−n can coincide with s−β⊕s−β−α (since
it is not a subalgebra), nor (s−β⊕s−β−α)∩so can be 1-dimensional (since hr acts irre-
ducibly on (s−β⊕s−β−α)). Finally we are left with the case dim sF−dim so=2, that is,
s is transitive on (M,o). Thus g=s by assumption (VI). But then dim go=5 and there
always exist proper subalgebras g′⊂g with g′+g0=g, a contradiction to condition (VI)2.

s∼=so(1, 3)∼=sl(2,C). We work out this case by investigating various possibilities for
dim so.

• dim so>3. We claim that then there exists a solvable subalgebra r⊂s such that
so+r=s. The case dim so>4 is easily settled as all 4-dimensional subalgebras in s are
maximal, i.e., they are Borel subalgebras of sl(2,C) and consequently have nilpotent
complementary subalgebras. There do not exist (real) subalgebras of sl(2,C) of dimen-
sion 5. If dim so=3 then s is either semisimple or solvable. In the semisimple case we
work with an explicit matrix realization s⊂C2×2: either so∼=su(2) or so∼=su(1, 1), i.e.,

so∼=
{(

it εz̄

z −it

)
: t∈R and z ∈C

}
for ε=1 or ε=−1.

In both cases the upper triangular Borel subalgebra b+⊂sl(2,C)⊂C2×2 forms a linear
complement of so. This cannot happen, since then condition (VI)2 would be violated.
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If so is solvable then so is contained as a certain 1-codimensional (real) subalgebra in
a (complex) Borel subalgebra b=tnbnil of s∼=sl(2,C). We claim that so⊃bnil: otherwise
(that is, if dimR so∩bnil=1) we would have π(so)=t, where π: b!t is the projection
homomorphism, and consequently so would contain a certain complex Cartan subalgebra
t′ of b which acts R-irreducibly on bnil.

However, from our claim it follows that the opposite Borel subalgebra is a comple-
mentary subspace of so in s. The case ‘dim so=3’ is now completely ruled out.

• dim so=2. It follows that so is solvable and either complex or totally real. Since it
is immediate that every complex subalgebra in sl(2,C) has a complementary subalgebra
(a simple check), it remains only to deal with the totally real case, i.e., with so being a
real form of a Borel subalgebra b⊂sl(2,C). Let τ : b!b be the conjugation with bτ=so.
It is well-known that there exists a τ -stable Cartan subalgebra t⊂b, and consequently
we have the τ -stable decomposition b=tn[b, b]=:tnn. Select h∈t and e∈n such that
[h, e]=2e. By construction τ(h)=a·h and τ(e)=b·e for suitable a, b∈C. Since τ is an
automorphism, a=1. As τ is an involution, |b|=1. This shows that, up to a conjugation,
we may assume that b is the upper-triangular Borel subalgebra of sl(2,C) and the real
forms so⊂b+ have the realization

so∼=
{(

t sc

0 −t

)
: t, s∈R

}
for some c∈C∗.

For every c∈C∗ at least one of the Borel subalgebras

C
(

0 1
1 0

)
⊕C

(
1 −1
1 −1

)
or C

(
0 −i
i 0

)
⊕C

(
1 i

i −1

)
is then complementary to so in sl(2,C).

• dim so=1, that is, s itself is locally transitive and thus g=s by the minimality
condition (VI)2. Consider the following matrix realization:

l= sl(2,C)×sl(2,C)⊂C2×2×C2×2, σ(x, y) = (ȳ, x̄), g= {(x, x̄) : x∈ sl(2,C)}⊂ l.

The 3-dimensional complex subalgebra q⊂l is either simple or solvable.

q simple. Then q∼=sl(2,C) and q is either one of the two factors of sl(2,C)×sl(2,C)
or q is conjugate to g in l. The first case can be ruled out immediately since then
q∩g=0=go which is absurd. In the second case, all simple subalgebras q⊂l which are
not ideals are conjugate to each other. We may select the particular subalgebra

q = {(x,−xt) : x∈ sl(2,C)}⊂ l,
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where xt is the transpose of x. The corresponding Lie subgroup

Q= {(q, (q−1)t) : q∈SL(2,C)}⊂L := SL(2,C)×SL(2,C)

is closed, and the map (x, y) 7!x·yt identifies the quotient with the affine quadric

SL(2,C)⊂C2×2

on which S :=SL(2,C) (considered as a real Lie group) acts by the holomorphic trans-
formations (s, z) 7!szs̄t. Hence, in this situation every CR-germ associated with a CR-
algebra (s, q) is globalizable. It is well known (see, for instance [16]) that the hypersurface
S -orbits in L/Q are either Levi nondegenerate or locally CR-equivalent to the tube M
over the light cone. However, dim g=6 and in this case (g, q) satisfies (I)–(V), (VI)1 and
(VI)2, but not (VI).

q solvable. We will show that also this case contradicts the fundamental assumption
in §9.8. If lo=C(t, t̄) is ad-semisimple (and without loss of generality t=

( t 0

0 −t

)
for some

t∈C∗) then lo is a regular torus in l. Consequently, the centralizer Cl(lo)=:t1×t2 is a
σ -stable Cartan subalgebra. Either Cl(lo)⊂q (but then q+σq is of codimension 2 in l)
or Cl(lo)∩q=lo. In the latter case, denote by l±α1 and l±α2 the root spaces with respect
to t1×t2. A direct check shows that q is the direct sum of lo and two other root spaces
(also if t̄=t). Since q is solvable, there are four possibilities of choosing such pairs of
root spaces. In all four cases either q+σq is too small or f=lo, that is, the corresponding
CR-germ is Levi nondegenerate.

It remains to discuss the case when lo=C(n, n̄) is ad-nilpotent. Since q is solvable,
it is contained in a Borel subalgebra b of l. Consequently, lo⊂bnil=Cl(lo)∼=Cn×Cn̄. Let
π: b!b/bnil be the canonical projection. The image π(q) cannot be surjective, since there
is no 3-dimensional subalgebra C(n, n̄)⊂q⊂b with this property. Only the possibility
bnil⊂q remains, but then q∩σq⊃bnil, which is too big.

Summarizing, we have for the CR-algebra (g, q) satisfying the assumption in §9.8
that gss must be a finite direct sum of copies of sl(2,R) and su(2). In the next section
we direct our attention to factors of type sl(2,R).

12. The case s∼=sl(2,R)

In this section we continue the proof of Theorem II and consider only CR-algebras (g, q)
subject to the assumption in §9.8, for which the simple factor s of gss is isomorphic to
sl(2,R); compare (10.1). As already proved, the remaining simple factors in s′ (if there
are any) are isomorphic to su(2) or sl(2,R).
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From hol(M, o)∼=so(2, 3) for the light cone tubeM it is clear that hol(M, o) contains
copies of so(2, 2)∼=sl(2,R)×sl(2,R). Fixing a subalgebra r⊂sl(2,R) (which is necessarily
nonabelian), the 5-dimensional Lie algebra sl(2,R)×r can be embedded into hol(M, o),
and this can be done in such a way that the image is a transitive subalgebra. Therefore,
the simple factor sl(2,R) of gss cannot be avoided in the classification proof. However,
we will show that this factor only occurs in the instance described above, that is, in
connection with M.

Our first result is that in gss the simple factor sl(2,R) can occur at most once. Here
and in the following we repeatedly use the basic fact that each proper subalgebra of
sl(2,R) has a solvable complementary subalgebra. Furthermore, throughout this subsec-
tion we denote by π: g=(s×s′)nrad(g)!s the canonical projection. We analyze various
possibilities for the image of the isotropy subalgebra go under π.

If π(go) 6=0 then there exists a solvable complement r⊂s to π(go), and (r×s′)nrad(g)
is a proper transitive subalgebra of g violating (VI)2.

If π(go)=0 then go⊂s′nrad(g) and is there of codimension 2. It follows that there is
no factor h∼=sl(2,R) in s′: Otherwise, counting dimensions we would have dim h∩so>1,
which implies that there is a proper transitive subalgebra of g, violating (VI)2. This
proves that s′ is a product of factors which all are isomorphic to su(2). Finally, we show
that s′ consists of at most one such simple factor: Indeed, suppose that s′=h×s′′ for
some ideal h∼=su(2) of s′. Denote by πh: (s×h×s′′)nrad(g)!h the canonical projection.
Then πh(go) has codimension 62 in h. Since su(2) does not have a subalgebra of dimen-
sion 2, the dimension of πh(go) can only be 1 or 3. But dimension 3 violates (VI)2 since
then g=go+ker(πh). The case dimπh(go)=1 remains. Then πh(go) is a torus in h and
π(go)=h∩go. Since g′ :=s×h is a transitive subalgebra of g, we must have g′=g by (VI)2.
But this is not possible, as we show in the following result.

Lemma 12.1. s∼=sl(2,R) implies that g=snrad(g) and go⊂rad(g).

Proof. By the above discussion, we only have to rule out the case g=s×s′ with
go⊂s′=su(2). The key point here is that the isotropy subalgebra go is toral in su(2)
and that there exists a unique ad(go)-stable subspace p∗⊂su(2) on which the adjoint
representation of go is irreducible. Let πsu: s⊕su(2)!su(2) be the projection onto the
second factor. Either πsu(F)=su(2) or πsu(F)=go. In the first case, we actually have
F=su(2) as [go,F]⊂F and [s, go]=0. But this cannot be true: Independently of what
exactly H=W⊕su(2) would be, we always would have [H,F]⊂F. But this violates the
nondegeneracy condition (V).

The case πsu(F)=go remains, that is, F=b⊕go, where b=F∩s⊂s is a 2-dimensional
real subalgebra. By a dimensional argument, dim H∩su(2)>2. But this intersection must
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be ad(go)-stable, which implies that H=b⊕su(2), i.e., H is a subalgebra of g=s⊕su(2).
Clearly, this violates condition (III).

In the next lemma we show that the semidirect product snrad(g) in Lemma 12.1
actually is a direct product s×rad(g) and that the radical has dimension 2, i.e. g has
dimension 5. Recall the obvious fact that, up to isomorphism, there exist precisely two
Lie algebras of dimension 2, the abelian Lie algebra R2=R×R and a nonabelian one.

Lemma 12.2. s∼=sl(2,R) implies that g=s×r with r:=rad(g) being nonabelian and
of dimension 2.

Proof. Let π: g!s be the canonical projection. We use the same symbol also for the
complex extension l!sC. Because of (I) and go⊂r, the image π(F) has dimension 62.

• dimπ(F)=0 implies F=r, that is, F is an ideal in g. But this violates (V).
• dimπ(F)=1 implies π(f)=π(σf) and dimπ(f)=1. Consequently, π(q) and π(σq)

are 2-dimensional (Borel) subalgebras which generate sl(2,C) as a linear space (otherwise
(M,o) would be Levi flat). It follows that π−1(π(σq))∩q=f. But this implies that
[f, σq]⊂f+σq, a contradiction to (V).

• dimπ(F)=2. Note that π(f) and π(σf) are 1-dimensional, since lo⊂rC. Since
π(f)+π(σf) is a 2-dimensional subalgebra, t:=π(f) and t′ :=π(σf)=σt are tori, as follows
with the elementary structure theory of sl(2,C). The case π(f)=π(q) can be excluded,
since otherwise we would have π(q+σq)=π(f+σf) which is a subalgebra, a contradiction
to (III). Hence, the only possibility remaining is π(f) 6=π(q). This implies that q∩rad=
σq∩rad=lo. Furthermore, lo is an ideal in q and in σq, and, since [q, σq]=l, even an ideal
of l. By the effectivity assumption (VI)1, this implies that go=0, i.e., g has dimension 5
and thus

g∼= sl(2,R)n%R2 or g∼= sl(2,R)×r, with dim r =2, (12.3)

where %: sl(2,R)!End(R2) is the canonical inclusion.

Claim 12.4. The first case in (12.3), that is g∼=sl(2,R)n%R2, cannot occur.

Proof. Let π: l!sl(2,C) be the canonical projection and σ: l!l be the complex
conjugation defining the real form g of l. The possibility π(q)=0 (=π(σq)) can be
excluded, since then q=rad(l)=σq, violating (III). Also dimπ(q)=1 can be ruled out:
Then π(q) 6=π(f), since otherwise π(q+σq)=π(f+σf) would be a subalgebra, violating
(III). Hence, f=q∩rad(l). But this contradicts (V), since then [f, σq]⊂rad(l)=f⊕σf.

The most involved case is dimπ(q)=2 (that is, q∩rad(l)=0). Then π(q)=b is a
Borel subalgebra of sl(2,C). To rule out also this case we need some preparations. First
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realize l as

sl(2,C)n%C2 = {(X,w) :X ∈ sl(C2), w∈C2}, with [(X,w), (Y, u)]= ([X,Y ], Xu−Y w)

and complex conjugation σ given by (X,w) 7!(�X, 	w). Since (M,o) is not Levi flat (com-
pare (III)), we necessarily have b+σb=sl(2,C), and the 1-dimensional intersection b∩σb

is a toral subalgebra t⊂sl(2,C) (we use here the well-known fact that the [σ -stable] in-
tersection of any two Borel subalgebras contains a [σ -stable] Cartan subalgebra). In the
next two paragraphs we recall some elementary facts from the representation theory of
sl(2,C) which we need to complete our proof.

12.5. σ-adapted sl2 -triples

Let h∈t⊂sl(2,C) be the element for which [h, E]=2E and [h, F ]=−2F for every E∈bnil

and F∈σ(bnil)=(σb)nil. Since σ interchanges the eigenspaces of ad(h), we have σ(h)=−h.
There are crucial technical points here: We claim that there exists e∈bnil such that
[e, σ(e)]=h, i.e., (e, h, f), with f :=σ(e), is an sl2-triple in sl(2,C) (i.e., [h, e]=2e, [h, f]=−2f

and [e, f]=h).

Construction. We have to be careful here about signs: Since σ defines a noncompact
real form of sl(2,C), the nondegenerate Hermitian 2-form �( · , σ( ·)) has precisely one
negative eigenvalue, where � denotes the Killing form. As �(h, σ(h))=�(h,−h)<0, it
follows that �(E, σ(E))>0 and consequently [λE, σ(λE)]=h for an appropriately chosen
λ∈C∗ (keeping in mind the general formula [E,F ]=�(E,F )H, where H, the coroot, is a
positive multiple of h). Define then e:=λE and f :=σ(e). Each sl2-triple (e′, h′, f′), with
e′, h′, f′∈sC∼=sl(2,C) and σ(e′)=f′, is called σ -adapted in the sequel.

12.6. Complexifying sl(2,R)n%R2, we briefly discuss how the 2-dimensional abelian
radical C2, considered as an sl(2,C)-module, is related to the real structure. Let a σ -
adapted sl2-triple (e, h, f) be given. Let C2=V+⊕V− be the decomposition into (±1)
h-eigenspaces. They are interchanged by σ. We claim that there exists a v+∈V+ with
v− :=σ(e)v+=σ(v+) 6=0: Indeed, choose w+∈V+\{0} arbitrarily. Then there is a c∈C∗

with fw+=cσ(w+), and a direct check shows that |c|=1. Choose a b∈C with b2=c̄ and
put v+ :=b·w+.

We use the linear basis v+, v− of the radical rad(l)∼=C2 in the following computations.
We now resume the proof of Claim 12.4. For short, write rC :=rad(l) for the abelian

radical. Since q∩rC=0, we can write q=C·(e, w1)⊕C·(h, w2) for suitable w1, w2∈C2.
Clearly, the wj ’s are not arbitrary: Write w1=λ1v++µ1v− and w2=λ2v++µ2v−. Note
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that w2 6=−	w2 (otherwise q∩σq 6=0), i.e., λ2 6=−µ̄2. The fact that q is a subalgebra im-
poses one more condition on the coefficients λj and µj : A simple computation shows
that µ1=0 and µ2=−λ1, i.e., for each λ, µ∈C with λ 6=µ̄ we have the two 2-dimensional
complex subalgebras q=qλ,µ and σq:

q =C·(e, λv+)⊕C·(h, µv+−λv−) and σq =C·(f, λ̄v−)⊕C·(−h,−λ̄v++µ̄v−).

Recall the definition f={u∈q:[u, σq]⊂q+σq} from §9.5 (iv). A straightforward calcula-
tion shows that in all cases f=0 holds. This contradicts (IV) and proves Claim 12.4.

We proceed with the proof of Lemma 12.2 by restricting the radical of g∼=sl(2,R)×r

further.

Claim 12.7. The Lie algebra g cannot be isomorphic to sl(2,R)×R2.

Proof. Assume on the contrary that g=sl(2,R)×R2 and denote by π1: l!sl(2,C)
and π2: l!C2 the canonical projections. As in the proof of the previous claim, the cases
dim q∩rad(l)>1 can be ruled out immediately. We therefore only have to exclude the case
q∩C2=0. In this case, let b be the 2-dimensional π1-image in sl(2,C). It follows that
σ(b) 6=b since otherwise πs(q+σq)⊂b would contradict (III). Consequently, there exist
e∈b, h∈b∩σb and f=σ(e)∈σ(b)=π(σq) with the properties described in §12.5. The fact
that q and σq are subalgebras and that π(q)=Ch⊕Ce determines q and σq as follows:
q=C·(h, w)⊕C·(e, 0) and σq=C·(h,−	w)⊕C·(f, 0) for a w∈C2.

We may further assume that w and 	w are linearly independent, otherwise

π2(q+σq) 6=C2

would contradict (III). As a consequence, (h, 0) /∈q+σq. The definition of f then shows
that f=C·(h, w). On the other hand, for this f we have [f, σq]⊂f⊕σq, in contradiction
to (V). This proves Claim 12.7.

The proof of Lemma 12.2 is now complete.

So far we know that under the assumption s∼=sl(2,R), necessarily g∼=sl(2,R)×r,
where r is the 2-dimensional nonabelian Lie algebra. To determine the full CR-algebra
(g, q), we still have to find out how the complex subalgebra q⊂l sits inside sl(2,C)×rC.

Claim 12.8. Up to a CR-algebra automorphism of (g, q), the subalgebra q⊂l is
obtained in the following way. Fix a linear basis x, z of rC, with [x, z]=z, and a σ-adapted
sl2-triple (e, h, f), with e, h, f∈sl(2,C) (see §12.5 for the definition). Then

q =C(h, 2x+µz)⊕C(e, νz)

for suitable µ, ν∈C with Imµ=±2 and |ν|=1.
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Proof. The case q=rC can clearly be excluded. If the intersection q∩rC would be 1-
dimensional, then q∩rC⊕σq∩rC=rC (as the sum q+σq must be direct). Since f must also
be 1-dimensional, we have f=rC∩q. But then [f, σq]⊂rC=f⊕σf, violating condition (V).

The case q∩rC=0 remains, that is, πs(q) is a Borel subalgebra Ce⊕Ch, and

π(σq) =Ch⊕Cf,

where h, e, f∈sl(2,C) are chosen as explained in §12.5. Since q⊂sC×rC is a Lie subalgebra,
it necessarily has the following form:

q =C·(h, λx+µz)⊕C·(e, νz) with σq =C·(−h, λ̄x+µ̄z)⊕C·(f, ν̄z)

and λ, µ, ν ∈C satisfying λ=2 if ν 6=0.
(12.9)

Case ν=0. Then λx+µz and λ̄x+µ̄z must be linearly independent in rC, that
is, λµ̄ 6=λ̄µ (otherwise πr(q+σq) 6=rC). Observe that (h, 0) /∈q+σq and λ 6=0. A direct
verification shows that f=C·(h, λx+µz) if λ∈iR and f=0 otherwise. But then f⊕σq is a
subalgebra, in contradiction to (V).

Case ν 6=0. Possibly after replacing z by |ν|z, we may assume that |ν|=1 in (12.9).
Employing the definition of f in §9.5 (iv), a simple calculation shows that

f =
{
C(h∓2iν̄e, 2x+(Reµ)z), if Imµ=±2,
0, otherwise,

(12.10)

that is, f is 1-dimensional only if Imµ=±2. This proves the claim.

Lemma 12.11. For the CR-algebra (g, q) in Claim 12.8 the associated CR-germ
(M,o) is CR-equivalent to (M, a), where M is the tube over the future light cone.

Proof. We start by giving a particular representing manifold for the associated germ;
compare [16, Example 6.6]. Let µ and ν be the constants occurring in Claim 12.8 and con-
sider the affine quadric Z :=SL(2,C)⊂C2×2, on which the group L̂:=SL(2,C)×SL(2,C)
acts holomorphically by z 7!gzh−1 for all (g, h)∈L̂. Then Ĝ:=SL(2,R)×SL(2,R) is a
real form of L̂. Via

x :=
1
2

(
0 1
1 0

)
, z :=

1
2

(
1 −1
1 −1

)
∈ r

e :=
ν

2

(
1 i

i −1

)
, h :=

(
0 −i
i 0

)
, f :=σ(e) ∈ sC

(12.12)

we consider l=sC×rC as a complex subalgebra of l̂=sl(2,C)×sl(2,C) and g as a subal-
gebra of ĝ.
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We recall some basic facts (compare [16]). The polynomial function

ψ(z) := det(z+z̄)−2

on Z is invariant under the action of the group Ĝ. Furthermore, the nonsingular part M
of the algebraic subset S :=ψ−1({±2}) is a (nonconnected) hypersurface in Z, locally CR-
equivalent to M. On the other hand, the singular part of S is a totally real submanifold
of Z. Consider the point

o :=
e−πi/4

4

(
4+µ −µ
iµ i(4−µ)

)
∈Z,

which actually is in S because ψ(o)=Imµ. A direct computation shows that the isotropy
subalgebra lo of l⊂ l̂ at o∈Z is C(h, 2x+µz)⊕C(e, νz) and that the isotropy subalgebra
of g⊂ĝ at o is trivial. This implies that a∈M and also that the CR-algebra (g, q) is
associated with the germ (M,o). Since M is locally CR-equivalent to the tube M over
the future light cone, the proof for Lemma 12.11 is complete.

13. The case s∼=su(2)

The status of our proof so far can be summarized as follows. For the CR-algebra (g, q)
satisfying the assumption in §9.8 and gss 6=0, the simple ideal s of gss can only be iso-
morphic to sl(2,R) or su(2), Furthermore, the case s∼=sl(2,R) only occurs if the asso-
ciated CR-germ is equivalent to (M, o), with M being the light cone tube, and then
g∼=sl(2,R)×r with nonabelian 2-dimensional r. Consequently, only the situation needs
to be investigated when gss only contains simple ideals isomorphic to su(2). We assume
this throughout this section and state our main lemma.

Lemma 13.1. There is no simple factor of gss isomorphic to su(2).

Proof. The proof will be subdivided into several claims. Note that contrary to
sl(2,R), the only nontrivial proper subalgebras of su(2) are 1-dimensional tori. As before,
let s be a fixed simple factor of gss and denote by π: g!s the canonical projection. Then,
the image π(go) must be a proper subalgebra, since otherwise g′=π−1(0) would violate
(VI)2. Our first observation is the following statement.

Claim 13.2. For g and r:=rad(g) only the following cases may occur :

g∼= su(2)nr, g∼= su(2)×su(2) or

g∼=(su(2)×su(2))nr with r 6=0 and go =(Rt1×Rt2)n(go∩r) for tj ∈ su(2).
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Proof. Write g=(s1⊕s2⊕s′′)nr, where s1, s2
∼=su(2), s′′ is the complementary ideal

in gss, and π1 and π2 denote the projections onto s1 and s2, respectively. Only one of
the following possibilities can occur:

• π1(go)=0. Then s1⊕s2 is already a transitive subalgebra of g and s′′=r=0.
• π1(go) 6=0 6=π2(go). Then either g=s1⊕s2 or

go∩(s1⊕s2) = (go∩s1)⊕(go∩s2) =Rt1⊕Rt2

for suitable nonzero t1, t2∈su(2). In the latter case go∩(s′′nr) is of codimension 1 in
s′′nr. But then we conclude that s′′=0 as there are no 1-codimensional subalgebras in
su(2).

For the proof of Lemma 13.1, we only need to investigate the above three types of g.
We repeatedly use the fact that each 1- or 2-dimensional representation of su(2)∼=so(3)
is trivial and that each toral subalgebra t⊂su(2) acts irreducibly on su(2)/t.

Claim 13.3. g∼=(su(2)×su(2))nr implies that r=0.

Proof. Let π1 and π2 be the projections onto the first and the second simple factor,
respectively. As observed in the preceding claim, go=(t1×t2)nro with ro :=go∩r and
1-dimensional toral subalgebras tj . Recall that we have the go -stable filtration g⊃H⊃
F⊃go. At least one of the images πj(F) coincides with sj , say for j=2. Since tj acts
irreducibly on sj/tj , it follows that F=s2nro. Then, since H∩s is at least 2-dimensional,
the irreducibility of the action of t1 implies that H=s×s2nro. But this would imply that
[H,H]⊂H, contradicting (III).

Claim 13.4. g 6∼=su(2)×su(2).

Proof. Suppose on the contrary that g=su(2)×su(2). Since F⊂g is a subalgebra of
dimension 3 and there is no solvable subalgebra of this dimension, necessarily F∼=su(2).
Consequently, either F is one of the simple factors of g or F is the graph of an automor-
phism of su(2). Both possibilities lead to a contradiction: in the first case F is an ideal
in g, contradicting (V), and in the second case F acts irreducibly on g/F, violating the
existence of the ad(F)-stable proper subspace H/F⊂g/F.

The remaining case g=su(2)nr with r:=rad(g) is the most involved. In this situation
the image of go under the canonical projection π: g!su(2) is of dimension 61. As usual,
we denote the canonical projection l!sl(2,C) by the same symbol π. We investigate the
various possibilities for the π -images of the Lie subalgebras lo⊂f⊂q defined in §9.4 (i)–(iii)
and §9.5 (iv).

• π(lo)=π(f)=π(q). Since π(lo) is a σ -stable torus, π(q+σq)=π(lo) would follow.
Counting dimensions, this cannot happen.
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• π(lo) π(f)=π(q). Here, we have to rule out the two possibilities dimπ(lo)61.
If dimπ(lo)=0 then π(F) is a 1-dimensional toral subalgebra in su(2), and conse-

quently π(f)=π(σf)=π(q)=π(σq) is 1-dimensional. This contradicts the fact that q+σq

is a hyperplane in l. The case when π(lo) is 1-dimensional remains. Then π(F)=s, and
possibly after replacing s∼=su(2) by the Levi factor contained in F, we may assume that
s⊂F. For dimensional reasons, ro :=go∩r=F∩r. Further, ro is an ideal in F and we have
F=snro as well as H=snrH with rH :=H∩r. As dim rH−dim ro=2, the ad-representation
of s on rH/ro is trivial, that is, [s, rH]⊂ro. Since f=lo⊕Cy for some y∈sC∼=sl(2,C) and
σq=σf⊕Cx̄ for some x̄∈rC

H, we would have

[f, σq] = [lo⊕Cy, σf⊕Cx̄]⊂ f+σf,

in contradiction to (V).
• π(lo)=π(f) π(q). The possibility 0=π(f) can be excluded since otherwise F=r,

i.e. f+σf would be an ideal in l, contradicting condition (V). Next, we deal with the case
when π(lo)=π(f)=π(σf) is a (1-dimensional) toral subalgebra. By assumption b:=π(q) is
then 2-dimensional, that is, a Borel subalgebra, which implies that b+σb=sC∼=sl(2,C), or
equivalently π(H)=s. Counting dimensions, rF :=F∩r=H∩r. Further, [rF,H]⊂r∩H=rF

and since, due to condition (III), H generates g as a Lie algebra, we deduce that rF is
an ideal in g. From π(lo)=π(f) follows that f=lo⊕Cr with r∈rC

F. But this implies that
[f, σq]=[l0⊕Cr, σq]⊂σq+rC

F⊂σq⊕f, violating (V).
One last possibility remains for the flag lo⊂f⊂q in l, which we consider in the next

claim.

Claim 13.5. If π(lo) π(f) π(q) then lo=0 and g∼=su(2)×r with r:=rad(g) of
dimension 2.

Proof. The properness of the inclusions implies that lo∩rC=f∩rC=q∩rC=σq∩rC.
Since q and σq generate l as a Lie algebra, it follows that lo∩rC is an ideal in l, or
equivalently go∩rCg. By the effectivity assumption (VI)1, we have go∩r=0. Conse-
quently, as dimπ(lo)61, the same estimate holds for dim lo. Next, we show that the
case 1=dimR π(go) (=dimπ(lo)=dim lo) cannot happen. Assume on the contrary that
π(go)=1. Then π(F)=s and, possibly after replacing the Levi factor s⊂g by a conjugate
one, we may assume that s⊂F. Counting dimensions yields then F=s∼=su(2). Since
[F,H]⊂H by (II), we have a representation of s on H/F. But this yields the contra-
diction as dim H/F=2 (compare (I)) implies that this representation is trivial, that is,
[s,H]=[F,H]⊂F, violating (V).

We have proved that the only possibility for g is su(2)nr with a 2-dimensional
radical r. Since su(2) can act only trivially on such an r, the above semidirect product
is in fact direct. This proves the claim.
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Claim 13.6. The case g∼=su(2)×r, dim r=2, cannot occur either.

Proof. We write π=πs and πr for the projections onto sC∼=sl(2,C) and rC, respec-
tively. The proof analyses various possibilities for f⊂q.

If πs(F)=0 then F=r would be an ideal in g contradicting (V). The case when
πs(F), as well as πs(f), is 1-dimensional remains. In that situation one necessarily has
πs(q) 6=πs(f), and π(q) is a Borel subalgebra in sl(2,C). Further, πs(q)+σ(πs(b))=sl(2,C)
and πs(q)∩πs(σb) is a Cartan subalgebra of sl(2,C). Similar to the situation considered
in §12.5, we can also here choose a standard triple e, f, h∈sC, with πs(q)=Ch⊕Ce and
σ(h)=−h, but now σ(e)=−f for the Cartan involution σ. The radical r cannot be abelian:
otherwise, exactly as in the proof of Claim 12.7, we obtain a contradiction. In the
remaining nonabelian case, we proceed as in the proof of Claim 12.8 by investigating
the various positions of q in l. The cases dim rC∩q>0 are easily ruled out (the same
argument as in the proof of Claim 12.8, following (12.9)). Hence, we may assume that q

and σq are given by the formula (12.9), except that now σq=C·(−h, λ̄x+µ̄z)⊕C·(−f, ν̄z),
that is, the sign in front of f has changed. This slight difference is precisely the reason
why in the case ν 6=0, contrary to (12.10), the CR-germ (M,o) associated with (g, q)
would be Levi nondegenerate, as shown by a simple computation. This contradicts our
fundamental assumption and concludes the proof of the claim.

The proof of Lemma 13.1 is now complete.

14. Reduction to the case where g is solvable and of dimension 5

Striking the balance for the proof of Theorem II obtained so far, we have shown the
following:

Let (M,o) be an arbitrary locally homogeneous 2-nondegenerate CR-germ of dimen-
sion 5 and let (g, q) be an associated CR-algebra. If the Lie algebra g is not solvable then
M is locally CR-equivalent at o∈M to the tube M over the future light cone.

For the rest of the proof we therefore assume that every CR-algebra (g, q) under
consideration satisfies the fundamental assumption in §9.8 and that g is solvable. The
following is the main result of this section.

Lemma 14.1. The solvable Lie algebra g has dimension 5, i.e., go=0.

Proof. The proof will be subdivided into several steps. Recall that by definition the
nilradical gnil of g is the maximal nilpotent ideal in g. It is well known that gnil contains
the commutator subalgebra [g, g], and each element ξ∈gnil is ad-nilpotent in g. Similarly,
we denote the (complex) nilradical of l by lnil. We retain the notation from §9.4 and §9.5.
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Claim 14.2. go⊂gnil.

Proof. Since [g, g]⊂gnil, the quotient g/gnil is abelian. Let π: g!g/gnil be the pro-
jection. Assume that go 6⊂gnil, i.e., π(go) 6=0. Select a subalgebra r⊂g/gnil (possibly 0)
which is a complement of π(go). But then g′ :=π−1(r) would violate (VI)2. Consequently,
we necessarily have π(go)=0, that is, go⊂gnil as claimed.

14.3. Recall that for the CR-algebra (g, q) under consideration there exist flags lo⊂f⊂q

and lo⊂σf⊂σq of subalgebras in l, as defined in §9.4. For the subsequent considerations,
we select the following elements in l: y∈f\lo and x∈q\f, and write x̄:=σ(x) and ȳ:=σ(y),
for short. Then

f =Cy⊕lo, q =Cx⊕Cy⊕lo, σf =Cȳ⊕lo and σq =Cx̄⊕Cȳ⊕lo.

The inclusion lo⊂lnil is guaranteed by Claim 14.2. Hence, lo acts by ad-nilpotent
endomorphisms on l. In particular, [lo, f]⊂lo and [lo, q]⊂f. The condition (III) means that
[x, x̄] /∈q+σq, and (V) is equivalent to [x̄, y] /∈f+σq.

Let z⊂lnil be the center of the nilradical (which is nontrivial if l 6=0), to which we
refer as the nilcenter of l. As for every characteristic ideal, we have σ(lnil)=lnil and
σ(z)=z.

Claim 14.4. (i) The nilcenter z of l is not contained in q+σq.
(ii) lo=0 if dim z>2.

Proof. (i) Assume that (i) is not true and let x, y, x̄, ȳ∈l be as in §14.3. Let

ζ := ax+āx̄+by+b̄ȳ+γo,

with γo∈go and a, b∈C, be an arbitrary element in zσ. Then [x̄, ζ]∈z⊂q+σq, since z is
an ideal in l. On the other hand,

[x̄, ax+āx̄+by+b̄ȳ+γo] = a[x̄, x]+[x̄, by+b̄ȳ+γo]≡ a[x̄, x]≡ 0 mod q+σq,

which implies that a=0. This shows that z⊂f+σf. Given then ζ=by+b̄ȳ+γo∈zσ, the
inclusion [x̄, ζ]⊂z holds, since z is an ideal. On the other hand,

[x̄, by+b̄ȳ+γo] = b[x̄, y]+[x̄, b̄ȳ+γo]≡ b[x̄, y]≡ 0 mod f+σq.

Hence, b=0 as a consequence of the above equation and (V). But this cannot be true,
since then z⊂lo would be a nontrivial ideal of l, violating (VI)1.
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(ii) Assume that dim z>2, that is, z∩(q+σq) 6=0. Recall that lo⊂lnil, by Claim 14.2,
and consequently [y, lo]⊂lo and [ȳ, lo]⊂lo. Let an arbitrary

ζ := ax+āx̄+by+b̄ȳ+γo ∈ zσ∩(q+σq)

be given. Computing its bracket with lo, we obtain

[ζ, lo] = a[x, lo]+ā[x̄, lo]≡ 0 mod lo.

Either a=0 for all such ζ, and then z∩(q+σq)=z∩(f+σf), or a 6=0, and then

[x, lo]⊂ lo⊃ [x̄, lo].

In the latter case, it follows that lo is an ideal in l (due to Lemma 9.7 (III), x, y, x̄, ȳ

and lo generate l as a Lie algebra), hence lo=0 as claimed. The other possibility would
be z∩(q+σq)=z∩(f+σf) and we show that this cannot happen. Given an arbitrary
ζ=by+b̄ȳ+γo∈zσ∩(f+σf), note that

[x̄, ζ]∈ z∩(q+σq) = z∩(f+σf).

More explicitly, [x̄, by+b̄ȳ+γo]=b[x̄, y]+[x̄, b̄ȳ+γo]∈b[x̄, y]+σq. But then the above equa-
tion together with (V) would imply b=0, i.e., z∩(q+σq)=z∩lo 6=0. This is absurd, as

[q+σq, z∩lo]⊂ z∩(q+σq) = z∩lo 6=0,

i.e., since q+σq generates l as a Lie algebra, z∩lo would be a nontrivial ideal in l.

The case when the nilcenter is 1-dimensional remains.

Claim 14.5. Suppose dim z=1. Then l=z⊕(q+σq) and go=lo=0.

Proof. Since z 6⊂q+σq by Claim 14.4, the sum z+(q+σq) is direct. Recall that the
recursively defined subspaces C0(lnil):=0 and Ck :=Ck(lnil):={u∈lnil :[u, lnil]⊂Ck−1(lnil)}
for every k>0, form the ascending central series of lnil. Clearly, z=C1 and σ(Ck)=Ck for
all k. Either z=C1=C2=lnil, and consequently lo=0 (due to (VI)1, lo must be a proper
subalgebra of the 1-dimensional algebra lnil), or C1 6=C2. In the latter case C2∩(q+σq) 6=
0. Let η=ax+āx̄+by+b̄ȳ+γo∈Cσ2 ∩(q+σq) be arbitrary. Since [η, lo]⊂z∩(q+σq)=0, we
have

[η, lo]≡ a[x, lo]+ā[x̄, lo]≡ 0 mod lo.

If a 6=0 then [x, lo], [x̄, lo]⊂lo and lo is an ideal in l, that is, lo=0 by (VI)1. If a=0 for
every choice of η∈Cσ2 ∩(q+σq) as above, then C2∩(q+σq)=C2∩(f+σf). This possibility
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can be ruled out as follows. For a nonzero η=by+b̄ȳ+γo∈Cσ2 ∩(f+σf) we have [η, x]∈
(q+σq)∩C2=(f+σf)∩C2, that is,

[by+b̄ȳ+γo, x] = b̄[ȳ, x]+([by+γo, x])≡ 0 mod f+σf,

which is only possible if b̄=0. This would imply that (q+σq)∩C2=lo∩C2. On the other
hand, the identity (q+σq)∩ C2=lo∩C2 implies that lo∩C2 is an ideal of l. The effectivity
of (g, q) then forces lo∩C2=0, contradicting (q+σq)∩C2 6=0. This completes the proof
of Claim 14.5.

The proof of Lemma 14.1 is now complete.

15. The existence of a 3-dimensional abelian ideal in g suffices

The proof of Theorem II has brought us to the point where we may and do henceforth
assume that the Lie algebra g in the CR-algebra (g, q) satisfying the assumption in §9.8
is solvable. The subalgebra q⊂l=g⊕ig then necessarily is of complex dimension 2.

The Main lemma 15.14 of this section states that the CR-germ associated with (g, q)
is represented by the tube F+iR3 over an affinely homogeneous surface F⊂R3 if g is
isomorphic to a semidirect product hnr, with h being a 2-dimensional Lie subalgebra
and r∼=R3 being an abelian ideal. Once this main lemma is proved, our proof of the
classification theorem will be complete as soon as we can show that every 5-dimensional
solvable Lie algebra g occurring in (g, q) indeed is isomorphic to a semidirect product as
above. This will be achieved in the final §16. In this section we only prove the partial
result that if q is abelian, then also the commutator [g, g] is abelian and 3-dimensional.
Moreover, there exists an abelian subalgebra h⊂g such that g=hn[g, g].

Since there is no general structure theory for solvable Lie algebras, we develop ad hoc
methods and describe the structure constants in l=gC with respect to a particularly cho-
sen basis. Every CR-algebra (g, q) under consideration gives rise to the 1-dimensional sub-
algebras f and σf of the 2-dimensional subalgebras q and σq, respectively. We construct
a basis of l which reflects the conditions (I)–(V) and investigate the various possibilities
for the values of the corresponding structure constants. Select a nonzero z∈z−σ\(q+σq)
(this is possible due to Claim 14.5) and an x∈q\f such that for x̄:=σx the congruence
[x, x̄]≡z mod q+σq holds (this is possible due to (III)). By (V), it is further possible to
select y∈f\lo such that for ȳ:=σy the structure equations of l are of the following form
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(in particular, the coefficient in front of x̄ in the second equation is b2=1):

[x, x̄] = z+ a1x− ā1x̄ + a2y− ā2ȳ,

[x, ȳ] = b1x + x̄ + b3y + b4ȳ,

[y, ȳ] = cy− c̄ȳ,

[y, x] = d1x + d2y,

[z, η] ∈ z(lnil) for every η ∈ l.

(15.1)

The brackets [y, x̄] and [ȳ, x̄] are completely determined by the above five equations, due
to the fact that σ: l!l is an antilinear Lie algebra automorphism. Of course, not for all
values of the constants the above identities give rise to a Lie algebra. In fact the above
structure constants a1, ..., d2, are subject to further constraints, imposed by (1) the Jacobi
identity, (2) our assumption that l is solvable and, (3) our assumption z∈z(lnil).

Conversely, let a 5-dimensional solvable complex Lie algebra

l=Cz⊕Cx⊕Cx̄⊕Cy⊕Cȳ

be given with structure equations as in (15.1) (together with [x̄, y]=x+b̄1x̄+b̄4y+b̄3ȳ and
[ȳ, x̄]=d̄1x̄+d̄2ȳ) for certain a1, .., d2∈C and z∈z−σ, where z is the nilcenter of l. Define

g :=Riz⊕R(x+x̄)⊕R(ix−ix̄)⊕R(y+ȳ)⊕R(iy−iȳ) and q :=Cx⊕Cy.

Then the CR-algebra (g, q) satisfies the fundamental assumption in §9.8.
As already mentioned, besides the geometrically motivated conditions in Lemma 9.7,

which are already incorporated in (15.1), further conditions affect the particular values
of the structure constants, for example those given by the Jacobi identity. We use

[[ξ1, ξ2, ξ3]] := [[ξ1, ξ2], ξ3]+[[ξ2, ξ3], ξ1]+[[ξ3, ξ1], ξ2]

as shorthand. The identity [[x, y, ȳ]]=0 implies that

|c|=1, d1 = c̄−b̄1 and c̄b1 ∈R. (15.2)

Remark 15.3. From c 6=0, that is, [y, ȳ] 6=0, it follows that the solvable subalgebra
f+σf, and in turn l, cannot be nilpotent.

Keeping in mind the identities (15.2), it is possible to readjust the basis x, ..., z of l

as follows. Write c=f2 for the coefficient c in the third equation of (15.1) and replace
x by fx, as well as y by cy. After this replacement, the structure equations (15.1) keep
their form, only c changes to c=1 and b1 becomes real.
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Notational agreement. For the rest of this section we use α, β, γ and δ to denote
real numbers, while aj , bj , cj and dj stand for complex numbers. In particular, we write
β1 :=b1 to underline that the structure constant b1 is real.

The Jacobi identity [[x, y, ȳ]]=0 implies more relations between the coefficients in
the structure equations (15.1):

c=1, β1 := b1 ∈R, d1 =1−β1, b̄3−d2 = b4(β1−1), −β1(b3+d2) = b4−b̄4. (15.4)

15.5. Perfect basis

Summarizing, there exists a basis z, x, x̄, y, ȳ (x̄:=σ(x) and ȳ:=σ(y)) of l=gC with
z∈z−σ\(q⊕σq), q=Cx⊕Cy and f=Cy, such that the corresponding structure constants
in (15.1) satisfy (15.4). We call each such basis perfect.

There are still more constraints for the structure constants given by the Jacobi
identity for other triples of elements and also by the fact that z is in the center of
lnil. Later on, we characterize these additional conditions more explicitly. For now, we
elaborate the particular structure of the nilcenter in the next result.

Lemma 15.6. The nilcenter z⊂g has dimension 1 or 3.

Proof. We closely analyze the conditions in Lemma 9.7 in order to get the dimension
estimates. It is clear that 16dim z64; see Remark 15.3. Assume that dim z=4. Then
dim z∩(q⊕σq)=3 follows by Lemma 14.4. But since f+σf is not abelian, that is,

dim z∩(f⊕σf) = 1,

there exist elements in z of the form x+η1 and x̄+η2 with ηj∈f+σf. This leads to
a contradiction: indeed, on the one hand [x+η1, x̄+η2]=0, and on the other hand (V)
implies that [x+η1, x̄+η2]≡[x, x̄] 6≡0 mod q+σq. Hence, we have proved that 16dim z63.

The main difficulty is to rule out the possibility dim z=2. Select a perfect basis
in l as described in §15.5, keeping in mind (15.1) and (15.4). We have to deal with two
subcases.

Claim 15.7. If [x, y] 6=0, i.e., q is not abelian, then dim z=1.

Proof. We first show that z∩(q⊕σq)=z∩(f⊕σf). Select an arbitrary

z′ :=λx+λ̄x̄+µy+µ̄ȳ∈ zσ∩(q⊕σq).

We have to investigate the two possibilities β1 6=1 and β1=1. In the first case we get

[z′, (1−β1)x+d2y]≡ λ̄(1−β1)[x̄, x]≡ 0 mod q+σq,
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since [y, x]∈lnil. Therefore, λ=0 by the condition (III), i.e., z′∈f+σf. If β1=1, i.e., d1=0,
then, by our assumption, d2 6=0, and in turn y∈lnil. Hence, [z′, y]≡λ̄[x̄, y]≡0 mod f+σf,
which, together with (V), also forces λ=0. This proves that z∩(q⊕σq)=z∩(f⊕σf).

We claim that this identity can only hold if both sides vanish, i.e., dim z=1 by
Lemma 14.4 (i). Assuming on the contrary that z∩(q⊕σq) 6=0, then on the one hand
there exists z′=µy+µ̄ȳ∈z∩(f⊕σf) with µ 6=0. On the other hand,

[x, z′] = [x, µy+µ̄ȳ]∈ z∩(q⊕σq) = z∩(f⊕σf),

which in view of (V) is only possible if µ=0. This shows that dim z=1.

It remains to rule out the second subcase.

Claim 15.8. If [y, x]=0, i.e., q is abelian, then [l, l] is a 3-dimensional abelian ideal.
Further , if dim z>2 then [l, l]=lnil, and consequently z=[l, l] is 3-dimensional.

Proof. This is the most involved case. The assumption [y, x]=0, that is, d1=d2=0,
implies β1=1, b3=0 and b4 :=β4∈R, see the table below:

[x, x̄] = z+ a1x− ā1x̄ + a2y− ā2ȳ,

[x, ȳ] = x + x̄ +β4ȳ,

[y, ȳ] = y− ȳ,

[y, x] = 0,
[z, η] = cηz+qη, η ∈ l, qη ∈ z∩(q⊕σq).

(15.9)

We need to analyze the relations between the structure constants in more detail. Let

qx = z1x+z2x̄+z3y+z4ȳ and qy =w1x+w2x̄+w3y+w4ȳ.

The fact that the qη’s commute with all elements of [l, l]⊂lnil (and in particular with
y−ȳ) implies that z1=z2, w1=w2, z4=z1β4−z3 and w4=w1β4−w3. The Jacobi identity
[[x, x̄, y]]=0 yields

wj =0, cy =1, i.e. [z, y] = [z, ȳ] = z, a1 = iα1 and a2 =α2+ 1
2 iα1β4 (15.10)

for some α1, α2∈R, and [[x̄, y, z]]=0 implies that

Im z1 =0, Re z3 = 1
2z1β4 and Re cx =− 1

2β4. (15.11)

Summarizing,
[l, l] =Cz⊕C

(
x+x̄+ 1

2β4y+ 1
2β4ȳ

)
⊕C(y−ȳ), (15.12)
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and, using the above relations between the structure constants, a simple check shows
that this ideal is abelian. Moreover, the subset

h :=Ri
(
x−x̄+ 1

2β4y− 1
2β4ȳ

)
⊕R(y+ȳ) (15.13)

is an abelian subalgebra of g (and g=h⊕[g, g]; in fact g=hn[g, g]).
It should be noted that the nilcenter z may be 1-dimensional, and then lnil properly

contains [l, l].
We next show that the case dim z=2 does not occur. Assume on the contrary that

dim z=2. Then z∩(q⊕σq) is nonzero. Let z′ :=λx+λ̄x̄+µy+µ̄ȳ∈zσ∩(q⊕σq) be arbitrary.
Either, for all such z′ the coefficient λ is 0, that is, z∩(q⊕σq)=z∩(f⊕σf), and then this
case can be ruled out by a similar argument as in the proof of the above claim. Or, there
exists z′ with λ 6=0. In such a situation the identity [z′, y−ȳ]=0 implies that λ∈R∗ and,
without loss of generality, we may suppose that z′=x+x̄+z3y+z̄3ȳ for some z3∈C. The
condition [z, z′]=0 gives Re z3= 1

2β4. But then

z′ =
(
x+x̄+ 1

2β4·(y+ȳ)
)
+i Im z3·(y−ȳ)∈ [l, l],

compare (15.12). We claim that, in the situation under consideration, lnil=[l, l]. To prove
this, we simply compute the ad-action of y+ȳ and x−x̄ on [l, l]. Since [x−x̄, z′]∈Cz⊕Cz′,
the relation β2

4 +4(Im z3)2=4α1 Im z3+4α2 must also be fulfilled. Once again, a simple
computation yields

ad(y+ȳ)|[l,l] =−2· id and [x−x̄, z′] = 2z+2i(α1−Im z3)z′.

The above identities show that for every v:=u1·(x−x̄)+u2(y+ȳ)+u3η, uj∈C, η∈[l, l],
the condition [v, z′]=0 implies that u1=u2=0, i.e., the centralizer Cl(z′) coincides with
[l, l]. This proves [l, l]=lnil=Cl(z′). But this is absurd, since then the nilcenter z would
coincide with the 3-dimensional abelian ideal [l, l], contrary to our assumption dim z=2.

Finally, we need to investigate the case dim z=3. We claim that z=[l, l]=lnil. To see
this, it is enough to show that lnil is 3-dimensional, as, due to (15.12), [l, l] is 3-dimensional
too. As already mentioned (see the sentence following (15.2)), lnil can be at most
4-dimensional. But the 4-dimensional case can be excluded, otherwise lnil=z⊕Cn for
n∈lnil\[l, l], which would imply that lnil is abelian. Hence, the nilradical is 3-dimensional.
This proves Claim 15.8.

The proof of Lemma 15.6 is now complete.

The next statement is one of the key points in our classification of 5-dimensional
2-nondegenerate homogeneous CR-germs. Before stating it, we first fix some nota-
tion. Given a vector space V , write aff(V ) for the Lie algebra consisting of affine maps
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of V . This Lie algebra (as well as the corresponding Lie group Aff(V )) has the natu-
ral semidirect product structure: aff(V )=V ogl(V ) (with gl(V )={X∈aff(V ):X(0)=0}).
Let π: aff(V )!gl(V ) be the projection homomorphism. We use similar notation on the
Lie group level and write, for instance, π: Aff(V )=V oGL(V )!GL(V ) for the corre-
sponding group homomorphism. Sometimes, we simply write ψlin :=π(ψ) for the linear
part of an element in aff(V ) or Aff(V ).

Main lemma 15.14. Let (g, q) be a CR-algebra satisfying the fundamental assump-
tion in §9.8 and let g be solvable and of dimension 5. Suppose that there exists a 3-
dimensional abelian ideal v⊂g and a 2-dimensional subalgebra h⊂g with h∩v={0}.
Then, the associated CR-germ (M,o) is locally CR-equivalent to a tube F×iR3⊂C3,
where F⊂R3 is an affinely homogeneous surface.

Proof. The proof is divided into several steps which give more precise (but also more
technical) information concerning the structure of the Lie groups corresponding to g, l

and q, and a realization of the CR-germ (M,o).

Claim 15.15. The adjoint representation ad: h!gl(v) is faithful. Consequently ,
identifying h with the subalgebra ad(h)⊂gl(v), the Lie algebras g and l can be realized as
Lie subalgebras of affine transformations:

g= voh = voad(h)⊂ aff(v)∼= aff(R3) and l= vCohC⊂ aff(vC)∼= aff(C3).

Proof. Let n⊂h be the kernel of the adjoint representation ad: h!gl(v). The case
dim n=1 can be excluded, otherwise n⊕v=gnil=z would be 4-dimensional, contradict-
ing Lemma 15.6. The case dim n=2 can be also excluded, otherwise g=v×h would be
abelian or contain a 4-dimensional abelian nilradical which in both cases would contradict
conditions (III)–(V).

Write V ∼=R3 for a vector group with Lie algebra v and E :=V C for its complex-
ification. Let HGL⊂GL(V ) and HC

GL⊂GL(E) be the Lie subgroups corresponding to
the Lie algebras ad(h) and ad(hC), respectively. Since GL(V )∼=GL(3,R) contains no
compact torus of dimension >2, each subgroup, in particular HGL, is closed. This
is in general not true for the complex subgroup HC

GL. Let HC be the simply con-
nected Lie group with Lie algebra hC, pr:HC!HC

GL⊂GL(vC) the homomorphism in-
duced by ad: hC!ad(hC)⊂gl(vC) and L:=V CoHC. For simplicity, for each h∈HC we
also write hlin⊂GL(E) instead of π(h). Let G=V oH⊂L be the real form. Since every
2-dimensional Lie algebra is solvable, we deduce that also l=vCohC (as well as g, L
and G) is solvable.

Claim 15.16. Let Q⊂L be the subgroup corresponding to the Lie subalgebra q⊂l.
Then Q is closed and Q∩V C={e}. Hence L=V CoQ is a semidirect product.
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Proof. Let π: l!hC be the projection homomorphism. Our first observation is that
π(q)=hC. The case π(q)=0 can clearly be excluded, as in such a situation q⊂vC, and in
turn q+σq⊂vC, which is absurd.

The possibility dimπ(q)=1 can be ruled out as follows. We may assume that
π(q⊕σq)=hC (otherwise q⊕σq would be a subalgebra). Either, π(f)=0, that is, q∩vC=f,
and in turn (q⊕σq)∩vC=f⊕σf: this leads to a contradiction, since then [F,H]⊂H∩v=F,
violating (V). Or, π(f)=π(q). But then q=f⊕Cx with a nonzero x∈q∩vC, and in turn
[q, σq]⊂q⊕σq, contradicting (III). Summarizing, π(q)=hC.

On the group level, since L is simply connected and solvable, every connected sub-
group is closed. The restriction of π to Q induces a surjective homomorphism Q!HC.
Since both groups are 2-dimensional, this homomorphism is a covering. Our assumption
that HC is simply connected finally implies that π|Q:Q!HC is an isomorphism. In
particular Q∩V C=Q∩kerπ={e}.

Claim 15.17. With respect to the identification Z :=L/Q=V C∼=C3 the real form G

acts on L/Q by affine transformations and V ⊂G by translations.

Proof. The existence of the decomposition L=V CoQ implies that there are well-
defined functions v:L!V C and q:L!Q such that l=v(l)·q(l) for every l∈L. Let

g=w·h∈V oH =G

(with w∈V and h∈H) be arbitrary. Then, for any z∈V C we have

g·zQ=w·h·zQ=w·v(h)·q(h)·zQ=w·v(h)·(q(h)·z·q(h)−1)Q

and q(h)·z·q(h)−1=v(h)−1h·z·h−1v(h)=hlin(z). Hence, with respect to the identifica-
tion V C=L/Q (induced by the inclusion V C ↪!L such that 0 corresponds to the point
eQ∈L/Q), the action of G can be written as follows:

g ·z=hlin(z)+v(h)+w, with g=w·h∈L and z ∈V C. (15.18)

In particular, the subgroup V ⊂G acts by translations z 7!z+w.

Consequently,
M :=G·0 =V H ·0 =V +F ⊂V ⊕iV

with F :=M∩iV . It should be noted, however, that in general F :=(G·0)∩iV 6=H ·0.
Nevertheless, as we shortly will see, F is affinely homogeneous under a slightly different
subgroup of Aff(iV ). Clearly, multiplying a tube manifold F+iV ⊂V ⊕iV , F⊂V , by the
imaginary unit i, we get the CR-equivalent realization V +iF=V +F ′ with F ′=iF⊂iV .
The latter form of a tube manifold is more suitable in our particular setup, and we keep
this notation until the end of the proof of the main lemma.
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Claim 15.19. Retaining the previous notation, there exists a subgroup

B⊂ iV oGL(iV ) =Aff(iV )

such that F :=(G·0)∩iV =B ·0.

Proof. Let pri:V ⊕iV!iV be the linear projection. A glance at (15.18) shows that
F=pri{v(h):h∈H}. In order to determine v(h) more explicitly, we need to analyze the
position of Q in V CoHC in greater detail. Since h is 2-dimensional, there exists a basis
s, n∈h such that [s, n]=εn with ε∈{0, 1}. Recall that the projection map π: q!hC is
an isomorphism. Consequently, there exist ws,wn∈vC=V C such that the elements ws+s

and wn+n in l=V C⊕hC generate q. Then, since σq=C(	ws+s)⊕C(wn+n), we must have
ws 6=	ws and wn 6=	wn (otherwise q∩σq 6=0). Let exp: l!L and Exp: ad(hC)!GL(V C) be the
exponential maps (that is, Exp(ad(v))=π(exp(v)), with π as in the paragraph preceding
the Main lemma 15.14). Furthermore, let Ψ be the entire function defined by

Ψ(z) =
ez−1
z

=
∞∑
k=0

zk

(k+1)!
.

Then, for St :=Ψ(t ad(s)) and Nu :=Ψ(u ad(n)), a simple computation shows that

H = {exp(ts)· exp(un) : t, u∈R},

Q= {exp t(ws+s)·expu(wn+n) : t, u∈C}

= {St(tws)· exp(ts)·Nu(uwn)· exp(un) : t, u∈C}

= {(St(tws)·Exp(t ad(s))(Nu(uwn)))·exp(ts)· exp(un) : t, u∈C}⊂V C ·HC =L.

(15.20)

The explicit form of v(h) (compare the proof of Claim 15.17) can be read off the last line
in (15.20):

v(h) = v(exp(ts) exp(un))= (St(tws))−1 ·(Exp(t ad(s))(Nu(uwn)))−1.

Since ad(s), Nu and St are real operators, it follows, for h=exp(ts)·exp(un) as before,
that

pri(v(h))= (St(tws))−1 ·(Exp(t ad(s))(Nu(uwn)))−1

=exp(t(−wis+s))· exp(u(−win+n))·0⊂ iV.
(15.21)

(Using additive notation, pri(v(h))=−St(twis)−Exp(t ad(s))(Nu(uwin))⊂iV .) Define

b :=R(−wis+s)⊕R(−win+n)⊂ l=V CohC

and check that this is a Lie algebra. Then B :=exp(R(−wis+s))· exp(R(−win+n)) is the
subgroup of L with Lie algebra b, and (15.21) shows that F=pri{v(h):h∈H}=B ·0. This
finishes the proof of the claim.

The proof of the Main lemma 15.14 is now complete.
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16. The final steps

Our final step toward the complete classification of all 5-dimensional 2-nondegenerate
and homogeneous CR-germs is to deduce that each 5-dimensional solvable Lie algebra g

which occurs in a CR-algebra (g, q) subject to the assumption in §9.8 also satisfies the
assumptions of the preceding Main lemma 15.14.

Lemma 16.1. Let (g, q) be a CR-algebra satisfying the assumption in §9.8 and sup-
pose g is solvable and of dimension 5. Then there exists a semidirect product decomposi-
tion g=voh with a 3-dimensional abelian ideal v⊂g and a 2-dimensional subalgebra h.

Proof. We have already observed in Lemma 15.6 that the nilcenter z has dimension
1 or 3. If dim z=3 then, due to Claim 15.7, we can apply Lemma 15.8. Consequently, we
can choose v=[g, g] (compare (15.12)) and h as defined in (15.13).

The situation dim z=1 requires some more elaborate work. We classify all CR-
algebras (g, q) under consideration in terms of the corresponding structure equations with
respect to some perfect basis x, x̄, y, ȳ, z of l (see §15.5). Given (g, q), let the corresponding
structure equations be as in (15.1), taking into account (15.4). To handle the various sets
of relations between the structure constants, we divide the class of CR-algebras under
consideration into the subclasses A, B and C, see below.

Case A. β1 6=±1. In this situation it is possible to assume that a1=0 (simply replace
x by x+λy with λ=u+iv defined by u:=(Re a1)/(1−β1) and v :=(Im a1)/(1+β1)). The
structure equations then read

[x, x̄] = z + a2y− ā2ȳ,

[x, ȳ] = β1x + x̄ + b3y + b4ȳ,

[y, ȳ] = y− ȳ,

[y, x] = (1−β1)x + d2y, d2 = b̄3+(1−β1)b4,
[z, η] = cηz for every η ∈ l,

(16.2)

and we now work out more constraints imposed on the constants. An explicit evaluation
of the Jacobi identity [[x, x̄, y]]=0 yields cy=cȳ=2β1−1. Furthermore, we obtain the equa-
tions b̄3(1+β1)=b4(β2

1−β2) and b̄3(1+β1)=(b4−b̄4)(β1−1) which imply b4(1−β1)=b̄4.
In order to investigate most conveniently additional relations between the structure

constants, we deal separately with the following three subcases:

(AI) b4 ∈ iR∗ and β1 =2, (AII) b4 ∈R∗ and β1 =0, (AIII) b4 =0.

(AI) Put β4 :=−ib4. In this particular situation the identity [[x, x̄, y]]=0 implies
that b3=− 2

3 iβ4 and a2=− 2
9β

2
4 , and [[x, ȳ, z]]=0 implies that cx=−iβ4. There are no
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more conditions imposed by the Jacobi identity and the structure equations of l are now

[x, x̄] = z − 2γ2y +2γ2ȳ,

[x, ȳ] = 2x + x̄− 2iγy + 3iγȳ,
[y, ȳ] = y− ȳ,

[y, x] = −x − iγy,

[z, x] =−3iγz,
[z, y] = −3z,

(16.3)

where γ := 1
3β4∈R∗. Keeping in mind Main lemma 15.14, the structure of l and g and

the position of q is determined by (16.3). This can be seen more clearly by decomposing
g and l into the eigenspaces of ad(s), where s:=− 1

2 (y+ȳ). Define the elements n, v1, v2

and v3 from g by
n := ix− ix̄− γy− γȳ,

v1 := 1
2 iy−

1
2 iȳ,

v2 := x + x̄− 2iγy +2iγȳ,
v3 := 2iz.

It is clear that s, n, v1, v2 and v3 form a basis of g. The bracket relations are

[s, vk] = kvk, [s, n] = n, [n, v1] = v2, [n, v2] = v3 and [n, v3] = 0.

Further, v:=Rv1⊕Rv2⊕Rv3
∼=R3 is an abelian ideal in g with [g, g]=gnil=Rn⊕v.

Hence, g has the structure of the semidirect product voh with h=Rs⊕Rn and the Main
lemma 15.14 applies.

Remark. A direct verification shows that for every γ∈R∗, (g, q) in (16.3) is associated
with Example 8.5.

We show that in the next case the Lie algebra cannot be solvable, hence, this case
can be discarded.

(AII) Write β4 :=b4. The Jacobi identity implies that a2=0=b3 and d2=β4, and
(15.9) reads

[x, x̄] = z,

[x, ȳ] = x̄ +β4ȳ,

[y, ȳ] = y− ȳ,

[y, x] = x +β4y,

[z, x] =β4z,

[z, y] = −z.

(16.4)
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But then the linear span of the vectors

e+ := y−ȳ,

h :=− 1
β4

(x+x̄+(β4−1)y+(β4+1)ȳ),

e− :=
1

4β2
4

(2z+(2−2β4)x+(2+2β4)x̄−(1−β4)2y+(1+β4)2ȳ)

is a copy of sl(2,C) in l, that is, l is not solvable.

(AIII) The condition b4=0 together with the Jacobi identity [[x, x̄, y]]=0 implies that
a2=b3=0 and cy=2β1−1. Since 1−β1 6=0, the identity [z, [y, x]]=0 implies that [z, x]=0,
see the table

[x, x̄] = z,

[x, ȳ] = β1x + x̄,

[y, ȳ] = y− ȳ,

[y, x] = (1−β1)x +β4y,

[z, x] = 0,
[z, y] =−z.

(16.5)

Select the following basis of g:

n :=
1
2
i(x−x̄), s :=

1
2−2β1

(y+ȳ), v1 := iy−iȳ, v2 := x+x̄, v3 := iz.

One checks immediately that v:=Rv1⊕Rv2⊕Rv3 is an abelian ideal and h:=Rs⊕Rn is a
subalgebra with [s, n]=n. Further,

[s, vj ] =
2−j+(j−1)β1

β1−1
vj for j=1, 2, 3 and [n, v1] = v2, [n, v2] = v3, [n, v3] = 0.

Hence, g=voh as claimed, and the Main lemma 15.14 applies. Also in this case, for all
β1 6=±1 the CR-algebra (g, q) is associated with Example 8.5.

It remains to discuss the cases β1=±1.

Case B. β1=1. Plugging β1 into (15.4) gives d2=b̄3 and d1=0. A direct check shows
that [[x, x̄, y]]=0 implies that 0=b3=d2, i.e., [x, y]=0. Lemma 15.8 then gives that g is
isomorphic to the semidirect product voh, with v=[g, g], and the abelian subalgebra h

as defined in (15.13).

Case C. β1=−1. We proceed as in the preceding cases. Starting from the structure
equations (15.1) with respect to some perfect basis x, x̄, y, ȳ, z, we first evaluate (15.4)
for this particular value of β1. We get d1=2 and d2=b̄3+2b4. Next, the Jacobi identity
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[[x, x̄, y]]=0 implies b4 :=β4∈R and a1=β4. Further, [[x, y, ȳ]]=0 implies b3=−β4+iγ,
γ∈R. Next, [[x, x̄, y]]=0 determines the value of a2:

a2 = 1
4 (3β2

4 +γ2)− 1
2 iβ4γ.

Finally, [[x, y, z]]=0 implies [z, x]=
(

3
2β4− 3

2 iγ
)
z, see the diagram

[x, x̄] = z+β4x−β4x̄ + a2y− ā2ȳ, a2 = 1
4 (3β2

4 +γ2)− 1
2 iγβ4,

[x, ȳ] = −x + x̄ + b3y +β4ȳ, b3 =−β4+iγ,
[y, ȳ] = y− ȳ,

[y, x] = 2x − b4y,
[z, x] =

(
3
2β4− 3

2 iγ
)
z,

[z, y] = −3z.

(16.6)

Select the following basis of g:

n := 2ix− 2ix̄− ib3y + ib̄3ȳ,

s := − 1
4y− 1

4 ȳ,

v1 := 1
2 iy−

1
2 iȳ,

v2 := 2x + 2x̄− b3y− b̄3ȳ,

v3 := 4iz.

A direct computation (using (16.6)) shows that v:=Rv1⊕Rv2⊕Rv3 is an abelian ideal
and

[s, n] = n, [s, v1] =− 1
2v1, [s, v2] = 1

2v2, [s, v3] = 3
2v3,

[n, v1] = v2, [n, v2] = v3 and [n, v3] = 0.

Again, this shows that g is isomorphic to the semidirect product voh with h=Rn⊕Rs.
Actually, an explicit realization of the corresponding CR-manifold M along the lines of
proof of the Main lemma shows that (g, q) is associated with the tube over the future
light cone.

We close by stating that the Main lemma 15.14 together with Lemma 16.1 finishes
the proof of the classification theorem.
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[8] Cartan, É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux
variables complexes. Ann. Mat. Pura Appl., 11 (1933), 17–90.

[9] Chern, S. S. & Moser, J.K., Real hypersurfaces in complex manifolds. Acta Math., 133
(1974), 219–271.

[10] Dadok, J. & Yang, P., Automorphisms of tube domains and spherical hypersurfaces.
Amer. J. Math., 107 (1985), 999–1013.

[11] Doubrov, B., Komrakov, B. & Rabinovich, M., Homogeneous surfaces in the three-
dimensional affine geometry, in Geometry and Topology of Submanifolds, VIII (Brussels,
1995/Nordfjordeid, 1995), pp. 168–178. World Sci. Publ., River Edge, NJ, 1996.

[12] Eastwood, M. & Ezhov, V., On affine normal forms and a classification of homogeneous
surfaces in affine three-space. Geom. Dedicata, 77 (1999), 11–69.

[13] Ebenfelt, P., Normal forms and biholomorphic equivalence of real hypersurfaces in C3.
Indiana Univ. Math. J., 47 (1998), 311–366.

[14] — Uniformly Levi degenerate CR manifolds: the 5-dimensional case. Duke Math. J., 110
(2001), 37–80. Correction in Duke Math. J., 131 (2006), 589–591.

[15] Fels, G., Locally homogeneous finitely nondegenerate CR-manifolds. Math. Res. Lett., 14
(2007), 893–922.

[16] Fels, G. & Kaup, W., CR-manifolds of dimension 5: a Lie algebra approach. J. Reine
Angew. Math., 604 (2007), 47–71.

[17] Gaussier, H. & Merker, J., A new example of a uniformly Levi degenerate hypersurface
in C3. Ark. Mat., 41 (2003), 85–94. Correction in Ark. Mat., 45 (2007), 269–271.

[18] Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New
York, 1977.
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