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I.  

I n t r o d u c t i o n .  

I. Let ~ = x + i y  be a complex variable, and q=ei~; let  us write, fo l lowing 

the nota t ion  of TAnNErY and MoLx 1, 

1 9 ~5  
~(ol~)=2q~+2q~+2q~ +.. .  

~3(O IT)= I + 2 q + 2 q 4 +  2q9+ "'" 

# 4 ( o [ z ) ~  I - - 2 q + 2 q 4 - - 2 q ° +  . . .  

These series are convergent  when y > o and represent funct ions  which are ana- 

lytic in the half-plane y > o and which cannot  be cont inued across ~he x-axis. The 

behaviour of these functions,  when  ~ tends to a real number ~ by moving  along 

the straight l ine x ~ ~, has many interest ing features .  W h e n  ~ is rational,  ~he 

behaviour is fa i r ly  simple and can be obtained either directly", or by effeeting 

on ~ a suitable linear transformation 

1 TANNERY and MOLK, ]~16ments de la thdorie des Fonctions Elliptiques, Vol. 1I (1896), 
p. 257. We shall refer to this book (Vol. II) as F.E. 

2 Cf. HARDY, On the representation of a number as the sum of any number of squares, and 
in particular of five, Transactions of  tlte American Mathematical Society, Vol. X X I  (192o) pp. 255 
--284 (p. 2519). Though the direct method gives the result in many cases without  necessitating 
an appeal to the transformation theory, the latter has the advantage of being applicable to all 
elliptic modular functions, including those for which a direct method is not available. See HARDY 
and RAMANUJAN, Asymptotic formulae in combinatory analysis, Proceedings of  the London Mathe- 
matical Society, (Ser. 2) Vol. 17 (I918) pp. 75- - I I5  (pp. 93, 94). 
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e + d ~  
(i) T - -  

a + b z '  

where a, b, c. el are integers such tha t  a d - - b e =  I. I f  ~ P • ~,  where P, Q are 

integers  prime to each other,  the la t ter  method  consists in tak ing  a ~ P, b ~ - -  Q 

and c, d to be any integers  such tha t  P d +  Q c =  I. I t  is then  easily seen f rom 

(I) that ,  when ~ traces the line x - = ~  in the half-plane y > o ,  T - ~ X + i Y  t races 

d 
the line X - -  (~ in the half-plane Y > o ;  and tha t  on these lines as y - - * + o ,  

Y-~  + ~ .  Now the  t rans format ion  theory of the The ta  funct ions  ~ enables us to 

express (say) ~3 (o [~) in terms of one Of the funct ions  ~2 (o [ T), ~3 (o I T), ~4 (o I T); 

and in order  to examine the behaviour  of ~ ( o l z  ) as • tends  ~ to ~, it is only 

necessary to s tudy the behaviour  of one or o ther  of the funct ions ~2(o I T), 

~3 (ol T), ~t  (o I T) as I~--~ + ~ along a fixed line parallel  to the Y-axis. This la t te r  

invest igat ion is very simple and leads to the required  resul t  wi thout  any difficulty. 

2. W h e n  ~ is i r ra t ional  the behaviour  of the The ta  funct ions is compli- 

cated, and there  appear  to be no results so simple as those tha t  exist when ~ is 

rat ional ,  ttAI~DY and LITTLEWOOD ~ have obta ined some in teres t ing  results when 

is irrat ional.  They  have proved in this case t h a t  

They  have fu r the r  proved that ,  if ~ is such that ,  when expressed as a simple 

cont inued fraction,  the par t ia l  quotients  form a bounded sequence, then  two posi- 

t ive constants  K1, K2 exist such tha t  

K, 

v; vy 

I n  part icular  these inequalit ies hold when ~ is a quadrat ic  surd. 

3. The object  of this paper  is to invest igate  more ful ly the case when 

is a quadrat ic  surd. I t  is shown here tha t  the  periodici ty of the cont inued frac- 

1 F.E.p. 262, 
To avoid constant repetition we shall understand that throughout this paper the path along 

which v tends to ~ is the straight line x ~  ~. 
3 HARDY and ]~ITTLEWOOD, Some problems of Diophantine approximation (II), Acta Mathe- 

malica, Vol. 37 (r914), PP. I93--238 (PP. 225--23o). 
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tion for ~ is reflected also in the behaviour of the Theta functions, and enables 

us to obtain formulae which involve actual l imits,  when we break up the range 

of variation of y in a manner to be explained presently. 

We shall confine ourselves in the following to the function ~ (o1~). A re- 

ference to the formulae given at the end of T x ~ R r  and ~¢IOLK S book ~ will 

show that  the considerations developed in  th is  paper are applicable, with:~sui~able 

modifications, to the other Theta functions a n d  also tO the modular functions 

h (~), J(~), ~0 (~)etc. 

Let ~ be a quadratic surd s, and let 

- . .  + + -. + - . .  

l r 
= [bl ,  b~,  . . .  bin, a l ,  a~., . . .  ar] ,3  

there being r partial quotients in a period of the continued fraction. 

be the n th  convergent of the continued fraction. 

suppose that  it is restricted to values satisfying 

I 
o < y <  i =  q~ 

Let z/~ denote the interval 

Let p__n 
qn 

As y is to tend to zero, we may 

I I 
- - <  < ~ ,  ( n =  I, 2, .) q2 - -  Y "" 

n + l  qn 

so that  the range of variation of y may be considered to be made up of the 

sequence of intervals 
z/l, J~, . . .  J r ,  . . .  

Now we divide this sequenc.e of intervals into a finite number of sub-sequences 

F.E. pp. 262, 266, 267. 
We may suppose tha t  ~ is positive; this  does not  imply any loss of generality, since the 

function 9a(o Iv) has the period 2. 
We shall  use this  notat ion for periodic continued fractions. We shall  also denote the  finite 

continued fraction 

c,+ .I~+... + II 
~ c~ I Cn 

by [c~, c ~ . . .  cn] and the  infinite continued fraction 

II . . + [ ~ + . . .  c~+ ~ +  - 

by [ci, c~ . . . .  c~ . . . . .  ]. 

1 9 -  2822. Acta mathematica. 52. Imprimd lo 23 ao~t 1928. 
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in a periodic manner ;  i t  is shown tha t  there  exists a positive in teger  H (which 

is a multiple of r) such that ,  if y is confined to any one of the  f o l l o w i n g ' H  sub- 

sequences 

(2) 

"~1, ,~1 +H, z ~ l + 2 H ,  • . .  , ~ l ~ - v H ~  . . .  

, d 3 + 2 H ~  . . .  , J 3 + ~ H ~  • • • 

Z ~ H ,  ~ f 2 H ,  , ~ f 3 H ,  . . .  z~f(vT1) H ,  . . .  

the  behaviour  of ~ (o ] ~) is fair ly simple, and can be obta ined by making  a com- 

bined use of some propert ies  of periodic cont inued fract ions and of the formulae  

of the t rans format ion  theory  of the The ta  funct ions.  To enable us to wri te  down 

asymptot ic  formulae,  we in t roduce a cont inuous pa ramete r  a which can take  any 

value in the in terval  o ~ 6 <  I; and we consider the behaviour  of ~s(o]~)  as y 

takes  the values 

(~ I - - a  
~ +  2 ; 
q~ q,+l 

here  a is k e p t  fixed, and. n is allowed to tend  to infinity th rough  integers, which 

have all the same residue R to modulus H,  R being in the interval  I ~ R--< H .  

I n  o ther  words, y tends  to zero t h rough  a sequence of values, one in each of the 

intervals  

. J R  ~ , d R + H ,  ,~ fR-] -2H,  • • • ,  

each value of y dividing the interval  in which it  lies in the constant  ra t io  I - - q  : q. 

Under  these circumstances i t  is proved in this paper  t h a t  

4 

4 

(where ~ y  denotes the real positive four th  root) tends to a finite limit. This 

l imit  depends on R and 6; and explicit  formulae  showing the  na ture  of this de- 

pendence are also obtained in the course of the paper. As the sub-sequences (z) 

cover the whole range of var ia t ion of y, and as R can take any one of the values 

i, 2 , . . . ,  H and a can take any value in o - - < a <  I ,  i t  is clear tha t  the proof  
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of t h e  existence of the above-mentioned limits, and the method of their  evalua- 

t ion amount  to a complete description (to the first order of approximation) of 

the asymptot ic  behaviour of "$8 (0]7) as ,--+ g along the s t ra ight  line x~-~ .  

I I .  

Geometrical Preliminaries. 

4. Le t  ~ be a quadrat ic  surd and let 

= [bl, b2 . . . .  bin, a l ,  a ~ , . . ,  ar], 

there being r part ial  quot ients  in a period of the cont inued fraction. Le t  p~ be 
q~ 

the n t h  convergent  of the continued fraction,  and let V~ s tand for (-- I)~. Fur the r  

let g be equal to r or 2 r  according as r is even or odd ' ;  so tha t  g is always 

an even number  and is divisible by r .  Le t  Q denote an integer in the interval 

I ~ g .  

Let  S,~ denote the l inear t ransformat ion  

pn--1 + *]n pn T 
(3 )  = qn-1 + Vn q~ T '  
or its e q u i v a l e n t  

(4) 2' = '2.,+1 p,~-i - -  q,~-~ 

( , =  2,3,...) 

We consider in t h i s  section the effect of making the t ransformat ions  Sn on t h e  

intervals J ~  and on the points 

where 
ff I - - f f  

qn+l 

the suffix n in S~, J , , ,  ~,,(a) being the same for any part icular  t ransformat ionf l  

1 I n  other  words, g is the least  common mul t ip le  of 2 and  r. 

2 The t rans format ions  Sn and the  intervals  An are suggested by the  work of HARDY and 

LITTLEWOOD, |OC. cir. 226, 220. We have no t  defined the t r ans fo rma t ion  $1 which  is to be applied 

to points  in AI.  The om i s s i o n  is u n i m p o r t a n t ;  we may,  if we wish to preserve formal  com- 

pleteness,  define S 1 to be (say) the  identical t r ans fo rmat ion  v = T. 
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5- W e  s h a l l  r equ i r e ,  to  s t a r t  w i th ,  a l e m m a  on p e r i o d i c  c o n t i n u e d  f rac -  

t i o n s ?  

L e m m a  1. Let  ~, P~, qn g, Q be as defined above; let ~ be f ixed and let n tend 

to infinity by assuming all values congruent to Q (rood. g). Then q~-~ and p~ q,~ - -  ~ q~ 
q, 

tend to finite limits. 

L e t  us  w r i t e  t h e  f in i t e  s e q u e n c e  

a l so  in  ~he f o r m  

so t h a t  

(5) 

F o r  x =< t ~ r we  def ine  ~ 

a 1, a~, . . . a t ,  a 1~ a ~  . . . a r  

dl ,d~ , . . . dr ,d~+l ,d~+2, . . .d2~ ,  

d l - - a l , d ~  = a ~ , . . . d ~  : a r  

d r + l ~ a  1 , d , + 2 = a ~ , . . ,  d 2 r = a ~  

0t = [O, d r + r ,  d r + r - l , . . ,  dr+l],  

~t  = [d r+ l ,  d r + 2 , . . ,  d t + r ] .  

W e  sha l l  a l so  w r i t e  fo r  c o n v e n i e n c e  t h e  c o n t i n u e d  f r a c t i o n  f o r  ~ in  t h e  f o r m  

[el,e2,... en,...], 
so t h a t  

el ~ bi ,ca ~ ba, . . . e m  ~- bm, 

Cm+~ -~- as 

w h e n  ~, ~ s (rood. r), s, o f  course ,  b e i n g  one  of  t h e  n u m b e r s  I,  2 , . . . r .  

N o w  by a k n o w n  r e s u l t  we h a v e  3 

(6) q,~--lq,~ - -  [o, en, c~-1, . . . ca] . 

1 The resul ts  of Lemma I were given in a somewha t  different form in m y  paper,  Some Dio- 

phan t ine  approx imat ions  connected w i th  quadrat ic  surds,  Journal of  the Indian Mathematical So- 
ciety, Vol. X I V  (I922), pp. I 6 i - - I 6 6 .  

When  r =  I there  is only one 0 and one ~p, 

0 = [o, al ,  al ,  a~ . . . .  ], ~ -- [a~, a . . . . .  ]. 

8 See, for example,  C~RYSTAL, Algebra, Vol. I I  (I922), p. 433. 
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Since n -* ~ t h rough  values which differ by multiples of r, i t  is clear that ,  when 

n > m ,  c,~ has always a constant  value, say at. Remember ing  tha t  a t =  dr+,., i t  

is easily seen f rom (6) t ha t  

qn--1 ---> [0, dr+ r, t i t + r - l , .  • • dt+l ] : Or, 
q,~ 

which is the  first resul t  of the lemma. 

To prove the second result, we write 

Then  

and so, remember ing  tha t  

we have 

P~ ~:P~ 
q~ q,~ 

f n+l  = Ion+l, c~+2, . . . ] .  

f , + l  p,~ + pn--1 
: fi~+l q,~ + qn--1 ' 

.Pn qn--1 - -  ~)n--1 qn = ~n 

fi~+ip~ + p~-1  __ 
q,~ (fi~+~ q,~ + q~-~) ' 

qn - - f n + l  qn + qn- l '  

I 
(7) Pn qn - -  ~ q~ - -  ~ n f n + l  + ~]n qn--l.qn 

Since n has the same residue to modulus g, which is an even number,  it  follows 

tha t  n has the same pari ty,  and so V,~ has the cons tant  Value ~e. Also by the 

remark  made above, when n > m, c~ has a constant~ value at; so tha t ,  c~+1 has 

the constant  value dt+l. Therefore  f~+l h a s  the constant  value q~t. And  so using 

the first resul t  of the lemma we see f rom (7) t ha t  

I 

This l imit  cannot  be zero, since Ot > o, ~0t > I. Hence  p,~q,.--~q,~ tends to a 

finite limit. 

The  limits of q,~-i and p~q ,~ - -~q~  depend on Q and we shall denote  them 
qn 

respectively by L e and //e, (¢)= I ,  2 / . . . g ) .  W e  shall also have by definit ion 
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. d g + l  ~ - d l ,  . l /0 ~ - / /g ,  

L~+I = L1, L0 - -  Lg. 

6. L e t  us now re turn  to the  re la t ion  (3) be tween  ~ and T and consider  

the  curve t raced  by T = X + i Y when  ~ -~ x + i y  describes the  pa r t  of the  line 

I I - W e  shall  r egard  the  ~-plane and  x = ~ which lies be tween y - ~  and  y - ~  2 
q~ q,+l 

the T- plane as coincident,  so tha t  the x- and  X-axes  coincide, and  the y- and  Y-axes 

coincide (in posi t ion us well as in direction). There  will be no confusion in doing 

so, as v is confined to the  fixed line x =  ~ and  T t races  circular  arcs whose 

posit ions we will now describe. W r i t i n g  v ---- ~ + i y ,  T = X + i ~ in (3), and  equa t ing  

the real  par ts ,  we see a f t e r  a n  easy calculat ion tha t ,  as • describes the  semi-infi- 

nite line x~--~ ,  y > o, T describes the  semi-circle, whose equat ion  is 

(8) 
- -  ~ qn)+ ~,, X ( p n  qn-1 +pn--1 qn - -  2 ~qn--1 qn) 

2 
-~-(pn--I qn--1 - -  ~ qn-1) = O, 

and which lies in the  ha l f  p lane Y > o. 

Now the re la t ion  (4) gives the  fol lowing equat ions  connec t ing  X,  Y, x, y; 

- -  q n x )  -{-qny2] = ~ n + l  [(pn--1 - -  qn--lX) (~3n-- qnX) ~- qn--lqny2], (9) x [(p~ ~ 

( i  o)  Y [ (p .  ~ - -  q .  x )  + q .  y2] == y .  

F r o m  the second of these equat ions we see t ha t  if  the T-points,  which corres- 

pond respect ively  to 

~ + i ,  ~ " = ~  i , _~ + ~ ,  
q~ q~ + 1 

are X '  + i Y '  and  X "  + i Y",  then  

r ,  [(~, _ q . [ )~+~ ] I 
qn 

02) 
[( i 

y"  pn-q .~)~÷ - 2 
q,~+l] qn+l 
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The T-curve tha t  corresponds to the par t  of the s t ra ight  line x ~ ~ be- 

I I 
tween y--~ ~ and y -~ 2 is the par t  of the semi-circle (8) which is in tercepted  

q,~ q. + 1 

between X =  X '  and X ~ X" .  W e  shall call this circular arc C~, and shall 

prove tha t  it  lies in the  hal f  plane Y > _I. Since C. has its centre  on the  X- 2 

axis and is therefore  concave towards  this axis, i t  is clear tha t  in order  to prove 

tha t  C, lies wholly in the half  plane Y > _I it  is sufficient to show tha t  ~ 
2 

IT,  > I i t , ,  I 

2 2 

Now b y  a known proper ty  of cont inued  fract ions  

I p , , -  q,~ gl < ~ ;  
q n + 1 

so the  coefficient of Y '  in (I~) is less t han  

I I 2 

2 -~-~ < - ~ '  
qn + 1 q~, q~ 

f rom which it  fol lows tha t  Y'  

less t han  

and so Y "  

I 
> - "  Similarly the coefficient of Y "  in (I2) is 

2 

2 
I 017 I 

qn + 1 qn + I qn + I 

I 

2 

Let  us now consider the points 

I 2 
2 2 

q n + l  q n + l  

T= n,(o)= X~(a)+¢ }.~ (~) (. ->_ 2) 

obtained by effeeting the t ransformat ions  S~ on the  points 

where 
= ~,, (~) - -  g + i v,, (~), 

(I I - - ( 7  y , , ( ~ ) = ~ +  ~ 
~/n qn  +1 

* Cf. HARDY a n d  LITTLEWOOD, loc. c i t . ,  p. 229.  
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After multiplying each of the equations (9) and (~o) by q S, and after a slight re- 

arrangement we get 

qn-t- 1) ] 

(I3) [ qn (pn_lqn_l__~q2n_,)(p,,q,,__~q])÷ qn-_ I{ qg l~l 
= V,~+l . lq, ,_  1 q- (y -~ (i - -  (Y) q 2 ÷ l j  ] 

y 
q,~ + 1 )  .1 q,~ + 1 

We n o w  keep a fixed in the interval o --~ a ~ I and allow n to tend to infinity 

by taking all values congruent to a fixed Q (mod. g). Since n has the same parity, 

V,~+I has the constant value V,o+l. The coefficients of X~(a), Y~(a) and the ab- 

solute terms on the right hand sides of the equations (I3) and ( i4) tend to finite 

limits by Lemma I. Hence X~ (a), Y~(a) tend respectively to limits ~e (a), 0e (o) 

given by 
3~ e (a) [AS e + (a + (I -- a)LSe+,) e] 

I-de-1 -//e ] -~n,o+l[ L¢- + L e ( a + ( I - - a ) L ~ + l } ~  ' 

~() (if) [ / /~ + {q -f" (I - -  q) n ~ + l }  ~] : q + (I - -  o) Le+l" ; 

or, on writing for shortness, 

a~-  (I s 

(15) 

s s ] 
3~ e ( a ) ( A s s + J ~ + l ) = v e + l /  L¢ + LeJe+l , 

A s 2 9q(")( + 

Further,  since z, (o) lies on the line x ~ ~ between the points z' and v", it follows 

that Tn (a) lies on the arc C,~; and since for all values of n, C~, lies in the half- 

plane Y >  _I2, it is clear that  for all values of n and a, Y,(a) > ~; and, there- 

fore De(a)>--I for all values of Q and a. We have thus proved the following 
2 

lemma. 
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L e m m a  2. I f  a has a fixed value in  the interval o <--a < I, a~d n tends to 

infinity by taki,g all values congruent to a fixed e (rood. g), then the poi,nts T~, (a) 

tend to the definite limiting position 

~Q (~) = ~¢~ (~) + i 9Q (~); 

a+~d this limiting point h:es in the half  plane Y >-- I. 
2 

I t  is of in teres t  to observe that ,  if  we let  ~ tend  to infinity in the m an n e r  

described above, the arcs C. tend to a l imit ing arc ~e, whose equat ion is 

and which is in tercepted  

~,o, ~,o are given b y  

A o (X ~ + Ye) + D e X + A o-~ --  o, 

between the lines X ~ =,o-' and X = =o-", where Do, 

D e = ~  + 
LQ 

t 

[~'~ ~ -- i A 0 ] 
VQ+I[ L,o + G J  

2 A e q - i  

~¢+~ Lo + L e Le+I 

÷ Le+I 

I t  is easily seen that ,  if  Q is kept  fixed, and a varies between o and I, the  points 

~ ( ~ )  describe the arc ~e; so tha t  the points  ~e(a) (for all values of e and a 

under  consideration) lie on a finite number  of circular  arcs (~e, all of which lie 

i 
in the half-plane Y - - > - "  

2 

III. 

Periodicity of Certain Sequences. 

7. This section is devoted to the proof  of some congruence propert ies  of 

p,~, q~, the numera tors  and denominators  of the convergcnts  of the cont inued  

fract ion for ~, and also to the proof  of some propert ies  of the numbers  
2 0 - - 2 8 2 2 .  Acta  mathematica.  52. Imprim4 le 22 ao~t 1928. 
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where the symbol [b ]  

(b)"  The symbol [b  ] 

[ q n - ~ ] ,  (n  = 2 ,  3 . . . .  ) 
~,, q n J  

denotes a generalisation of the LEGEND~P,-JACOBI symbol 

appears in the formulae of the linear transformation 

of the Theta functions, and its definition and fundamental properties are given 

by TANNElCY and MOLK. 1 

8. We shall begin with a few definitions, which will facilitate the descrip- 

tion of what follows. Let us write the continued fraction for ~ in the two forms 

[bi ,be , . . .b ,n ,  a l  , a , ,  . . . arj  , 

[Cl,Ce, • . . C n, • . .]. 

We have to consider some infinite sequences for which it will be convenient to 

adopt two notations. Let 

~ ' ~ , 7 , . , ,  • • . ) ' n ,  • • • 

be the sequence, written in the usual way, the nth term being donoted by 7n. Now 

we associate this sequence with the sequence formed by the partial quotients of 

the continued fraction for ~, so that 7~ corresponds to e l ,  7e to e.2, and in general 

7,~ to c,. Fo r  n > m, this establishes a correspondence between the 7's and the a's. 

We shall regard a period of the partial quotients of the continued fraction to 

begin e with al and end with at; so that, when we speak of the partial quotient 

as (I --< s --< r) in the j th  period, the rank of the corresponding c in the c-sequence 

will be unambiguously determined. In fact the corresponding c will be em+( j -1 ) , .+s .  

Now returning to the correspondence between the 7's and the a's, we shall de- 

note by F~ 5) the member of the 7-sequence which corresponds to the partial 

quotient a~ (i~< s ~ r) in the j th  period; that  is to say, 

F~ ) ~ 7m+( j - i )  r+s " 

1 F. E. pp. x o 9 - - x I I .  
2 Owing to the cyclic order in which the a ' s  appear  as par t ia l  quot ients  in the cont inued 

fraction, one may  regard (in the notat ion given in Lemma I) a period as beg inn ing  wi th  any 

d i ( I ~ t < r  ) and ending wi th  d t + r _  1. The convent ion adopted here is necessary to make  our de- 

finitions, t ha t  follow, unambiguous .  
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To indica te  t ha t  the  te rms  of the y-sequence 

F-notu t ion  we shall  wri te  

} = { r J) 8" ) "  " 

are denoted by the alternative 

W e  next  define a periodic sequence. A sequence 

~ , 7 . ~ ,  - - -  y n ~ . . .  

is said to be per iodic ,  if  there  are two posit ive in tegers  n o and E,  so t h a t  for  

every n > ~o 

) 'n+ £ = )'n " 

E is called ~ period of the  sequence. Obviously,  if  E is a period, any in tegra l  

mul t ip le  of E is also a period. 1 

9. L e m m a  3. Suppose for n =  i, z, 3 , . . . ,  ~,, is the integer such that 

Then the sequence 

is a periodic sequence. ~ 

Le t  

I < - - p n < - - 8  

P1,~.2,... 0 , , . . .  

{ } = { 1"? } 

~ O n f - - " l  4%' ) "  

(rood. 8). 

1 W e  can easi ly prove  t h e  fo l lowing p roper t i e s  of per iodic  sequences .  (i) I f  E l ,  E~ are  two 

per iods  of a periodic s equence  (yn), and  if d is t he  h i g h e s t  c o m m o n  divisor  of E , ,  E2 ,  t h e n  d is  

also a period.  (ii) If  l is t he  leas t  per iod of t h e  sequence ,  t h e n  every  o ther  period is a m u l t i p l e  

of l. To p r o v e  (i) we observe  t h a t  the re  ex i s t  two in tegers  n l , n ~  such  t h a t  n i  E ~ - - n  2 E2 = d. I f  
n is  suf f ic ien t ly  large  we have  

~,n = ~/nq-n 1 E 1 (since E 1 is a period) 

7~+nlE1  = 7n+~h E~--n~ E,,, (since E ,  is a period) 

= y n + d ;  

and  so 7 n = y n + d ,  s h o w i n g  t h a t  d is a period. To prove (ii) le t  E >  l be a period, and  le t  d be  

t h e  h i g h e s t  c o m m o n  divisor  of E and  1. T h e n  d - < l ;  also by  (i) d is a period. If  d < l ,  1 wou ld  
no t  be t he  l eas t  period. Therefore  d =  1 and  E is a m u l t i p l e  of l. 

T he  sequence  fo rmed  b y  t he  res idues  of p ~ , p ~ , . . ,  to a n y  f ixed n m d u l u s  M (the r e s idues  
l y i ng  be tween  I and  M )  is also periodic.  The  proof  is t he  s a m e  as t h a t  for t he  case M =  8 g iven  

above. 
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W e  shall  under s t and  tha t  the congruences  which appea r  in the course of this  

l emma are all to modulus  8. To prove  the  lemma,  let  u s  suppose for  the mo- 

men t  t h a t  ~here are two integers  h, k, (k > h) so t h a t  

( I 7 )  

Then  since * 

it follows from (17) t h a t  

Now from 

we deduce similarly t h a t  

a n d  so on, till we prove  t ha t  

#h) -.(h) ip~Z,,) 

r)(h) #k) 

v?)-= p?; 

I o(h) 
J. r - - 1  = P ( k )  l 

F r o m  these we deduce successively as before  

p~h+l) l)(k+l) 

I t  is c lear  the  a r g u m e n t  can be repea ted  indefinitely;  so t h a t  wha t  we have  

proved is tha t ,  if  in the  sequence 

~I~2~''" 

there  are two sets of consecutive numbers  (~h),  ~h)) ,  (~k) ,~k) )  SO t h a t  

z I n  order  to show clearly t he  con t en t s  of t he  proof  i t  is s u p p o s e d  here  t h a t  r >--4. The  

formal  a l t e ra t ions  necessa ry  w h e n  r < 4 can  be  eas i ly  seen. W h e n  r = I i t  wil l  be  conven ien t  to 

regard  t h e  per iod as cons i s t ing  of two equa l  pa r t i a l  quo t i en t s ;  t h i s ' i s  c lear ly  pe rmiss ib le .  
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then the sequence (I6) is a periodic one, and (]~--h)r  is a period of the sequence. 

To complete the proof  of the lemma it i s  only necessary to show tha t  there  are 

two such sets sat isfying (I8). N o w  this is obvious since, if we consider the sets 

(~i'>, ~'>), (z-- ~, 2 , . . . )  

there  can only be a finite number  of distinct sets, as every ~ is one or o ther  of 

the numbers  I, 2 , . . .  8. 

The a rgumen t  used above enables us to prove the fo l lowing lemma also. 

L e m m a  4. Sup~)ose for n - - I ,  2, 3 , ' "  ", q" is the integer such that 

Then the sequence 

(i9) 
is a periodic sequence. 1 

I ~ fin ~ 8 

q,~=--q~ (,~od. 8). 

Q I '  ~ 2 ' ' ' "  

W e  shall proceed to some l emmas  on the  numbers  [ q ' ) -~]  • I f  a, b IO. 
[ J 

are two integers  prime to each other  (they may be positive or n eg a t i v e ) t h e  sym- 

bo,/; /  °oo o, 

w h e n  a, b are given, is described by TANNERY and MOLK. In  the  applicat ions 

tha t  follow a wi l l  ~lways be positive. In  quot ing  the  fol lowing propert ies  of the  

symbol for  fu ture  reference  the f~ct t ha t  a is positive is taken  into account.  ~ 

(,o, [ ; ] [ q : ,  

(22) ~ = exp I -  4 

I~_l (2I) c, d are any two integers '~ such tha t  c z d - - b e =  I. 

1 T he  per iods  of t he  p- and  t he  q-sequences  are, of course,  no t  necessa r i ly  t h e  same .  

I n  t h e  course  of t he  proof  of L e m m a  3 t he  period whose  ex i s t ence  is p roved  is a m u l t i p l e  
of r. B u t  smal l e r  per iods  m a y  very  well  exis t ,  wh i ch  arc n o t  d ivis ible  by  r.  T h u s ,  fo r  e x a m p l e ,  

if every  a is a m u l t i p l e  of  8, i t  is eas i ly  seen  t h a t  2 is a period.  

F.E.,  p. IO 9. 

8 Ihe  dependence  of [a-+~-b- 1 on c, d is on ly  appa ren t .  See t he  r emarks  i n ' F . E . ,  p. IO8. 
L v J .  
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Lemma 5. 

where 

We apply the 

K. Ananda-Rau. 

TVe have 

L q,~ J L~-~J e12 , 

2 

formula (2I) with the following sets of values of a, b,c, d: 

a = q . - i  + v q . ,  b - -  q , , ,  

Here v is given successively the values o, I, 2 . . . .  ( en+ l - - I ) .  

value of v 

a d - -  bc = ~ (p. q n-1 - - p ~ - i  q.) = i, 

and so formula (2I) is applicable. 
We have 

[ q.,-1 

Obviously, for every 

q. t qn., ~ ~'~ q" ( q " - ~ )  (~P"-' +p") ' 

[q,-i = I q,,-!-+ q'!] exp {~ i  2 (2iOn_l@ 3p'n)} ~ ~]n q. (qn-- I) 
/ q .  L q. 

[q . - l_+3qn]  = [ q . - l + 2 q . ]  exp [Tri 2 l 
~_ qn J [ I2  ~n qn (qn-- I)(2pn--X + SPy) ' 

- ~ C . + l q . ] = [ q . - ~ + ( c . - ~ l - - , ) q . ]  exp { z i  2 } q,, q,~ ~ V,~ q,~ (q,~-- I) (2p. -1  + 2 e n + l  - - -  I p ; ~ )  " 

On multiplying these equations and cancelling the common factors which appear 
on both sides, and remembering that 

qn--1 + en+l qn = qn+~, 

I + 3 + 5 +  + (2On+l--I)  2 • ' " = C n + l ,  

we get 

{ [ o+11 1 
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and using the  ident i ty  

2 
2 Cn+l pn--i -~ en+l pn ~ en+i (pn--1 + pn--1 + en+l pn) 

we get the resul t  of the lemmu. 

L e m m a  6. We have 

where 

- -  e,,+~ (p,~-i + p,,+~), 

~.+1 qn+l] L?}. qnJ 

2 
wn=e,,+aq,,(qn---I)(p,,--a+pn+l)N 3~n(qn+l--I)(qn--  I). 

First,  let  n be even, so tha t  

L~],~+ 1 q,,+l] 

Now using formulae  (20) and (22) 

exp 

F rom these two we get  

[q. 1__ p.+q 
--q~+,_l L q,, J 

and so by Lemma  5 

[ ~ i  , 
(23) [--q" ] = [q'---'] e~1~ I ~*" L--qn+lJ L qn J 

Remember ing  tha t  n is even, ~7,~---I, it 

result  of the lemma. 

5~ext, let  n be odd, so tha t  

I q.-ll P"-~I 

--qn+lJ tq~+l]  

{--~(qn÷1--I)(qn--')} -- f an 1 I~n÷lluqn+l_I L qn J 

~n+l q . + l J  Lq~,+ 1] 

exp 4 ( q ~ ' + ' - -  i ) (qn--  I) ; 

159 

• } +'*(q.+l-~)(q,,- ~) 
4 

is seen tha t  (23) is equivalent  to the 

~ q,~J L--  q._l 
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By Lemma 5 

By (2o) 

Also by (22) 

exp 

[qn+l] _ Vn 
L q,~ J I_ qn J 

q " - 1 1  [ q ' - l l  : I .  
q, J L - -  q,~J 

{ ] l-q,,+1] l ] _ L/__ ( q , , + l -  ~ ) ( q . -  ~) = - -  
L q. J 

On multiplying these three equations we get 

[ 1 _  qL~-j_ exp ~1 - -  ~ (qu+l  I ) ( q n - - I )  = ; " 

t - - q . J  
and so 
(24) [ q n ]  [q~--l] exp { ~ i  ~ i  } = - - v , , - - - - ( q n + 1 - - I ) ( q n - - I )  " 

L qn+l l  L - - q - J  I 2 4 

Since n is odd, V,~----I ,  and (24) is equivalent to the result of the lemma. 

L e m m a  7. Let  
~,, = p , = l | S ;  

t?2. q,,J 
then the sequence 

C~, C,~, • • • C,, ,  • • • 
is a periodic sequence. 

Let A, B be resPectively 
q-sequencel Let F be the least common multiple o f  2, r, A, B. 

3 and 4 there is an integer N'  so that  for n ~ _N' 

the smallest periods of the O-sequence and the 

By Lemmas 

p,,+A ~p,,, ] (mod. 8). 
J qn+B ~ qn 

To prove the present lemma, suppose for the moment  that  there are two 

integers h, k satisfying the following conditions: 

( 2 5 )  

where a is a positive integer. 

k > h > m  

h > N '  

k - - h = c ~ F ,  
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(26) 

where 

By Lemma 6 we have 

~l)h = Ch + l qh (q2 h -  I)(~9h-1 ~- ~011+1)~- 3 ~h (qh+ l - -  I)(qh-- I), 

Wk = Ck+l  qk (q~mI)(pk--I -~ pk+l) @ 3 ~k (qk+l - -  I ) ( q k -  I). 

Now since k - - h  is a mult iple  of ~', and  /c > h > m, 

since k - - h  is even, 
C h + l  ~ Ck+l; 

since k --  h is ~ mult iple  of A, and h > N' ,  h - -  I --> 2V' 

) ph--I pk--1 
(mod. 8) ; 

) ph+l ~ pk+l 

and last ly since / c - -h  is a multiple of B, and h > N '  

qh ----~ qk / (rood. 8). 
] q/~+l ~ qk+l 

Using these results we see tha t  

and so 

Also by our  assumption 

and therefore  f rom (26) 

wl, ~ w/: (rood. 8), 

r~ l" z i 
e ~ -  Wh ~ e 4 -  Wk. 

Star t ing  f rom this resul t  we can argue similarly and prove tha t  

and so on; so that ,  the  ~-sequence will be a periodic 

k - - h = a F .  
21 - -  2822. A c t a  ma themat i ca .  52. Imprim~ le 23 aout 1928. 

sequence with period 
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two integers  h, k, sat isfying the condit ions (25). 

{C,,} - { z %  

F :  G r ,  

so tha t  G is an integer.  

then  t > N'. 

Let  u s  consider the five numbers  

(27) Z(/~I), Z<I] +°), ZIfll +20), 

K. Ananda~Rau. 

W e  wiil have therefore  proved .the lemma, if we establish the existence of 

To do this let  I 

Fur ther ,  let  fl be an in teger  so large tha t ,  if  

Z(l ) = C,,  

Z(fl+aq), ~(l~+ta) 
I J  1 

Since every ~,, can have only one of the four  values + I , - -  I ,  + i , - - i ,  there  mus t  

be at  least two among the numbers  ( 2 7 )w h ich  a r e  identical.  There  are there- 

fore two integers 7, 6, (d > 7) among the numbers  o, I, 2, 3,4, so t h a t  

Z(fll+y c,) = ~(fl+~l a) 

I f  these Z's  are respectively ~h, ~ when considered as members  of the ~-sequence, 

then  clearly 
k > h > m  

h > ~ t > N '  

k - - h - -  (6--7) G r = a F ,  

a being the positive integer  d - -7 .  The numbers  h, k therefore  sa t i s fy  the con- 

dit ions (25), and the lemma is eomplete!y proved. 

Since 7, d are among the numbers  o, I,  2 , 3 , 4 ,  it  follows tha t  the ~-sequenee 

has a period a F  where a is one of the numbers  1 , 2 , 3 , 4 .  

IV. 

Behaviour of as (o I ~). 

I I. We  shall apply the results established in the last  two sections to obtain 

the behaviour  of ~ (oI~) as ~--~ ~ along the line x = ~. 

i The absence of the first term ~t is of no importance. As usual ~n is supposed to correspond to c n . 
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I f  
c + d T  

T - -  
a + b T '  

where a, b, c, d are integers  such t h a t  a d - - b e - - - , ,  then  it  is known tha t  t 

(29) "~3 ( 0  ] T) ~t~' ] / a  -]- b r '  t,tO'/# +1 ( 0  I ~ ) '  

where ~" is an eighth root  of uni ty,  tt is one of the numbers  Ii 2, 3, according 

to the type  of the t r ans format ion  (zS), and the square root  ] ~ a + b T  has t h a t  

de terminat ion  which has its real  par t  positivefl The value of e" is given by the 

formulae  3 

8PP / 
(30) ~ - -  exp - - (ab+ed+2bc+2a+2c+2m") 

(3') exp 

The number  m" in (30) is e i ther  , I or b +  d according to the type of the trans- 

fo rmat ion  (28). 

There  are six types of t rans format ions  according to the par i ty  of the num- 

bers a, b, c, d. The dependence of tt and m" on a, b, c, d is shown ill the 

fol lowing table. 4 I f  a is odd, the number  I is entered in the a-column; if  a is 

even, the number  o is entered.  S i m i l a r  no ta t ion  applies to b, c, d. 

T y p e  a b c d 

I ° , , , . . • . . . . .  

2 ° . . . , . . . . .  . . 

o . . . . . . . . . . .  

4 ° . . . . . . . . .  . . 

6 ° . . . . . . . . . . .  

I 

I 

I 

I 

0 

0 

0 

0 

I 

I 

I 

I 

I 

I 

I 

O 

O 

I 

m t t  

2 - - I  

3 b+d 

I - - I  

3 b+d 

2 - - I  

I - - I  

1 F . E . p .  262, f o rmu l a  (3) w i t h  v ~ V ~ o. I have  s l i gh t l y  a l tered  t he  n o t a t i o n  and  inter-  

c h a n g e d  v and  T. 

F . E . p .  9 I .  

3 F . E . p .  262 fo rmulae  (5) and  (7). 
4 F . E . p .  241 Tab le  (6), and,  p. 262 Tab le  (8). 
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I2. Le t  us now consider the t ransformat ions  S,~ ment ioned in Section I I ,  

P,,-~ + v,P,~ T (n = 2, 3 • .). 
(3 2) .t: = q,-1 + V,, qn T ' ' 

They  are all t ransformat ions  of the modular  group,  since 

The  numbers  re, s", m"  corresponding to S,~ will na tura l ly  depend on n, and to 

indicate this dependence we shall write 

vv = O)ls 

7~ vv = m n  w.  

As in Lemma  7, let  F be the least common multiple of 2, r, A, B, and let  

H =  a F  be a period of the ~-sequence. Then  by Lemmas  7, 3, 4 there  is an 

in teger  N "  such tha t  for  n > - N "  

~ n + H  ==- ~n~ 

p,,+H ~-p,~+.4 ~p,~ t (rood. 8). 
J qn+H ==- q~+B ~ qn 

W e  have the fol lowing Lemma.  

L e m m a  8. L e t  R be a f i x ed  integer in  I <-- R <-- H .  L e t  n > N "  and n ~  R 

(rood. H) .  Then  f o r  all values o f  n which  sa t i s fy  these two co~ditio~s ~o,~ has a 

constant value 1, and the t rans format ions  S,t are all o f  the same type. 

Since n > N "  and H is a mult iple of A, all the  numbers  p,~ are congruent  

to each other  to modulus 8, and so their  par i ty  is the same; similarly since 

n -  I >-- N " ,  the par i ty  of the numbers  pn,1 is the same. Since H is a mult iple 

of B, the same a rgument  shows tha t  the pari ty of the numbers  qn a n d  of the 

numbers  q,~-i remain unal tered,  sO the t ransformat ions  S~ are all of the same 

type;  M= therefore  re ta ins  a cons tant  value. I f  the  common type  of the trans- 

format ions  Sn is e i ther  o ,  3 o, 5o or 6 °, m,/ '  retains the cons tan t  value - - I .  I f  

the common type is e i ther  2 ° or 4 ° , m,/' ---- v ,  (p,  + q,) ; since H is even, n has 

1 This implies that the w-sequence is periodic with period H. 
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the  same pa r i ty  and  ~],, has  the  cons tan t  value ~R; therefore  f rom the congruence 

proper t ies  of pn, q,, to modulus  8, we see t&at m,," takes values which differ by 

mul t ip les  of 8. 

Now by (30) and  (3I) 

where  

[ q n _ l l S  " i iv 
= e ;  " = e ]+' 

W,, -~ (a b + e d +  2 b e + 2  a +  2 e + 2  m,")  

+ ( a b + a e + b d - - a c b  ~ ' -  3b), 

a = q~-~, b ~ ~ q , ,  c - -  pn-1, d - -  ~]npn. 

Since n > N " ,  n----~ R (mod. H) ,  ~, re ta ins  a constan~ value by L e m m a  7. Also 

V,* has  the  cons tan t  value yR. F r o m  the congruence  proper t ies  (rood. 8 ) o f  

p,~-l, pn, q,~-~, q~, m,,", it follows t h a t  W~ takes  values which differ by mul- 

t iples of 8. Hence ,  finally, ~o~, re ta ins  a cons tan t  value. 

The  cons tan t  values of =]I~ and  ~o,~ will, in general ,  depend on R and we 

shall  denote  t h e m  respect ively  by m = m (R) and  £2 ~ Y2 (R). F u r t h e r  let  Z - -  Z (R) 

be equal  to + I  or - - i  according  as R is even or odd. 

13. W e  are now in a posi t ion to prove  the  following, which is the  ma in  

theo rem of this paper.  

T h e o r e m .  Suppose a is a f ixed number in the in ter~;al o <--a < i, and R is 

a f ixed integer in I ~ R <-- H. Let  g be the least common multiple of  2 and r; 

and let q be the integer such that I ~ e <- g, Q ~ R  (rood. g). Further let 

where 

(~ I - - 0 "  = + 
qn qn+l 

Let  n tend to infinity by taking all values congruent to R (rood. H). Then ~ 

4 
4 

- i  J ,o+l  a m  (o / %), 

1 The numbers  z/Q, JQ+I = J ~ + l  (a), ~0 = %Q (a) are those defined in Section II.  
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4 4: 

where ]fy; V~e+ ~ denote the real positive fourth roo t s  1, a,Td 

VAQ-- iJo+~ 

denotes that determination of the square root .which has its real part positive. 

We may clearly suppose tha t  n > N" .  Let  ~ ~ ~+~ (a) and T = Tn (a) be con- 

nected by the relation (32 ) or its equivalent 

(33) T---- ~,,+I - -  
p~,-I --  q,--I T 

We shall apply formula (29), the t ransformat ion (32) taking the place of (28). 

Since n > _N", n ~ - R  (mod. H) we have, on using the result  of Lemma 8, 

(34) 

the square root having its real part  positive. 

I t  is easily verified from (33) tha t  

q,~-~ + '2,~ q,~1' (p,~---. ~ q,,) -- i q,, y 

Remembering tha t  ~ has the constant  value ~R, we have 

(35) 

Now 

V (qn_, + q,,T) = q'' 2 2 (p,,,q,~--~q,)-- iq , , y  

n ------- R (rood.  H), 

R ~ 0 (mod. g), 

and so 

Therefore, by Lemma I 

H ~ o  (mod. g), 

n--~Q (mod. g). 

2 

Jo+ l q,,y a + ( I - - a )  q" 2 -- - ~ -  --) (7 + ( I  - -  ( 7 ) L G + I  = 
qn+l 

(p,,q,,  . 2  
-- - - z q , , y - +  / l e - - i J e +  1. 

4 4 

' In what follows If  y ,  ] f y ,  ] l jQ~l l ,  ]f~rT+ 1 denote the real positive roots. 
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Using these in (35) we see tha t  

V~j (qn-i + ~n qn T) -* 

and so 

(36) ]~y. ~-q,,--i 

~RV~+I 
_/l o - i Jo + ~ ' 

4 

+ ~n qn T _.._ ~ ~ R  gJ-0 ÷ 1 
g-//e -- i J e+ l '  

where the left  hand  side has its 
4 
I/Je+i is real and positive and 

reM part: positive. On the r ight  hand  side 

has its real part  ~tt posiLive. We have therefore t o  choose tha t  determinat ion of 

1 / ~  which makes the "real part  of the r ight  hand side in (36) positive. Observ- 

ing tha t  Jo+~ > o and ~ > o, it  is easi!y seen tha t  ,~ < o, altd so we should take 

(37) ]ZVR -- Z (R). 

Next  since n ~ q .(rood. g) we see from Lemma 2 tha t  

r~ (~) -~ % (~) = ~,o (~) + i ~ (o), 

and since by the same Lemma 

2 

it f o l l o w s  from the continuity of the Theta  functions t h a t  

(38) ~ (o I T)- ,  a~ (o j ~ ) .  

Combining (34), (36), (37), (38) we g e t  

4 
z t~ V J(,+ l 

which is the result of the theorem. 

I4. Before we conclude, a few remarks may be made on the magni tude of 

the number H. Referr ing to the proof of Lemma 3 we see tha t  a period of the 
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b-sequence exists which is not  greater  than  Nr ,  where N is the number  of distinct 

sets 

(1= T, 2, 3. . . ) ,  

the integers ~ being among the numbers I, 2, 3 , . . .  8. Now remembering tha t  

p,~:-l,p,~ are prime to each other (since p~q,~-l--p,~-~ q , ~ : ±  I) we see tha t  ~[~), ~t)  

cannot both be even; and an easy cMculation shows tha t  aY=48.  Therefore there 

exists an N~--< 48 such tha t  N x r is a period of the 10-sequence. Similarly there 

is an 2V~--<48 such tha t  Nor  is a period of the q sequence. The least common 

multiple of 2, r, NI r ,  N~ r is easily seen to be not  greater  than  g ' 4 7  • 4 8 -  2256 g. 

Since the highest  value of a is 4, it  follows tha t  there exists a suitable value of 

H not  greater  than  9o24g. 

An examination of the proof of the main theorem, however, shows tha t  it  

is not  the numbers A , B  by themselves tha t  play an essential role, but  it  is the 

period of the co-sequence tha t  is important .  Of course, to ensure tha t  the trans- 

formations S~ (when n is sufficiently large and n------R (mod. H)) are of the same 

type, we should take into consideration the periods of the sequences 

(39) ~ ' ,  ~._,', • •., 

(40) el/, q..', . . . .  

where e~eh ~,~' and qn' is either I or 2 and 

~n' ------p,~. ] 
(mod. 2). 

If  A ' , B '  are respectively the least periods of the sequences (39), (40), and if Z 

is the least period of the o)-sequenee then  the least common multiple of 2, r,  A', B', Z 

will provide a suitable vMue of H ;  and this value will be, in many instances, 

much less than  the bound 9o24g assigned above. I t  can be shown by arguments  

similar to those used for the I~-sequence tha t  6r  is a period of the sequences (39) 

and (40). Hence A', B' are divisors of 6 r  (see the first foot-note on page i55); and 

there is a value of H not  greater than  the least common multiple of 6r  and Z- 


