ON THE BOUNDARY BEHAVIOUR OF ELLIPTIC MODULAR
| FUNCTIONS.
By
K. ANANDA-RAU

of MADRAS, India.

I.
Introduction.

1. Let v=a+¢y be a complex variable, and ¢ = ¢'7%; let us write, following

the notation of Tanxery and Morx?,
1 9 25
Fs(o]n)=2gt+2¢t+2q% + -
Fylo|)=1+29+2¢"+2¢°+ -
dy(oft)=1—2q9+29"~2¢°+ -
These series are convergent when y >0 and represent functions which are ana-
lytic in the half-plane y >0 and which cannot be continued across the z-axis. The
behaviour of these functions, when 7 tends to a real number & by moving along
the straight line z=§, has many interesting features.. When & is rational, the

behaviour is fairly  simple and can be obtained either directly®, or by effecting

on 7= a suitable linear transformation

! TANNERY and Moik, Eléments de la théorie des Fonctions Elliptiques, Vol. IT (1896),
p. 257. We shall refer to this book (Vol. II) as F.E.

? Cf. HARDY, On the representation of a number as the sum of any number of squares, and
in particular of five, Transactions of the American Mathematical Society, Vol. XXI (1920) pp. 255
—284 (p. 259) Though the direct method gives the result in many cases without necessitating
an appeal to the transformation theory, the latter has the advantage of being applicable to all
elliptic modular functions, including those for which a direct method is not available. See HARDY
and RAMANUJAN, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathe-

wmatical Society, (Ser. 2) Vol. 17 (1918) pp. 75—I15 (pp. 93, 94).
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(I) IA(H-IM,

where a, b, ¢, d are integers such that ad —be=1. If 525, where P, ) are

Y

integers prime to each other, the latter method consists in taking ¢ =P, b= — @
and ¢, d to be any integers such that Pd+ Qc=1. It is then éasily seen from
(1) that, when z traces the line z=§& in the half-plane y >0, T=X+{Y traces

the line X=— — in the half-plane Y >o0; and that on these lines as y— +o,

4
@
Y-+ . Now the transformation theory of the Theta functions® enables us to
express (say) 9,(0]7) in terms of one of the functions &, (0|7, &5(0| T), &, (0] T);
and in order to examine the behaviour of J,(0|7) as = tends?® to &, it is only
necessary to study the behaviour of one or other of the functions &, (0| 7),
33 (0] T), 9.(0|T) as Y— + » along a fixed line parallel to the Y-axis. This latter
investigation is very simple and leads to the required result without any difficulty.

2. When & is irrational the behaviour of the Theta functions is compli-
cated, and there appear to be no results so simple as those that exist when & is
rational. Harpy and Lirrnewoop® have obtained some interesting results when

£ is irrational. They have proved in this case that

33(011)20(717), 33(o|r):i:o(i4‘/')-
! y

They have further proved that, if § is such that, when expressed as a simple
continued fraction, the partial quotients form a bounded sequence, then two posi-

tive constants K,, K, exist such that

K, K
T]_<|03(01")|< Z—f'
Vy Vy

In particular these inequalities hold when £ is a quadratic surd.
3. The object of this paper is to investigate more fully the case when £
is a quadratic surd. It is shown here that the periodicity of the continued frac-

! F.E. p. 262.
* To avoid constant repetition we shall understand that throughout this paper the path along
which 7 tends to § is the straight line x=§.

3 HArDY and I1ITTLEWOOD, Some problems of Diophantine approximation (II), dcta Mathe-
matica, Vol. 37 (1914), pp. 193—238 (pp. 226—230).
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tion for £ is reflected also in the behaviour of the Theta functions, and enables
us to obtain formulae which involve actual limits, when we break up the range
of variation of y in a manner to be explained presently.

We shall confine ourselves in the following to the function 9,(0]z). A re-
ference to the formulae given at the end of Tanvery and Mornx's book?! will
show that the considerations developed in this paper are applicable, with suitable
modifications, to the other Theta functions and also to the modular functions
h(z), J(7), @ (z) ete.

Let & be a quadratic surd? and let

=

1] 1], 1], 1] 1]
= ph, +— BN S 1 4o
I PR P P o

! 4 I|+_IJ+
Iaz 1

a, |as

— ]
= [by,bgy .. b, 0y, A9, ... ],

there being » partial quotients in a period of the continued fraction. Let Pn
. n

be the nth convergent of the continued fraction. As y is to tend to zero, we may
suppose that it is restricted to values satisfying

1
O<y<I=T'
qai

Let 4, denote the interval
I I
=y< -, n=1,2,...
2L e | )

so that the range of variation of y may be considered to be made up of the

sequence of intervals
Ay Ay, oo dn,y ...

Now we divide this sequence of intervals into a finite number of sub-sequences

! F.E. pp. 262, 266, 267.

? We may suppose that § is positive; this does not imply any loss of generality, since the
function 95(0|7) has the period 2.

3 We shall use this notation for periodic continued fractions. We shall also denote the finite
continued fraction
EY P

1]
c,+ —1
' les |Cn

by [cy, ¢, ... ¢,] and the infinite continued fraction

cl+_1_l+...,+_l__|.|_...
Icﬁ 'cn
by [615Carvnv Cpyvedle

19 — 2822. Acta mathematica. 82. Imprimé le 23 aout 1928,
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in a periodic manner; it is shown that there exists a positive integer H (which
is a multiple of #) such that, if y is confined to any one of the following H sub-

sequences
4y, divg, iem, .. digem, ..
Ay,  rvm, davaH, ... drveH, ...
(2) Ay, Adyrm, dsiom, ... 43+w_H, .

Adg, dsm, Asm,...dpivm, ...

the behaviour of ,(0|7) is fairly simple, and can be obtained by making a com-
bined use of some properties of periodic continued fractions and of the formulae
of the transformation theory of the Theta functions. To enable us to write down
asymptotic formulae, we introduce a continuous parameter ¢ which can take any
value in the interval 0 <¢<1; and we consider the behaviour of 9;(0|7) as y
takes the values

g I—0
2 2 ’
qn qn+l

here ¢ is kept fixed, and.» is allowed to tend to infinity through integers, which
have all the same residue R to modulus H, R being in the interval i< R<H.
In other words, ¥ tends to zero through a sequence of values, one in each of the
intervals

Ag, dr+m, Adri2mH,...,

each value of y dividing the interval in which it lies in the constant ratio 1—o: 0.
Under these circumstances it is proved in this paper that

4

V;&s(o\’z)

4
(where Vy denotes the real positive fourth root) tends to a finite limit. This
limit depends on R and o¢; and explicit formulae showing the nature of this de-
pendence are also obtained in the course of the paper. As the sub-sequences (2)
cover the whole range of variation of y, and as R can take any one of the values
I, 2,..., H and ¢ can take any value in 0 =< ¢ < 1, it is clear that the proof
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of the existence of the above-mentioned limits, and the method of their evalua-
tion amount to a complete description (to the first order of approximation) of
the asymptotic behaviour of 94(0|7) as z— & along the straight line x=E&.

I1.

Geometrical Preliminaries.
4. Let & be a quadratic surd and let
E=[by,bo,...0m, 0y, qa,...0,

there being r partial quotients in a period of the continued fraction. Let Pr e
n

the nth convergent of the continued fraction, and let 7, stand for (— 1)*. Further
let g be equal to » or 27 according as r is even or odd'; so that g is always
an even number and is divisible by . Let ¢ denote an integer in the interval
I=<p=y.

Let S, denote the linear transformation

_ Pt npn T _
9 it mtn T (n=12,3,...)
or its equivalent -
(4) s L

We consider in this section the effect of making the transformations S, on the
intervals 7, and on the points

'52771(0):§+7:?/n(0),
where
i) =2+ 122
Y AW

the suffix % in Sp, on, vx(0) being the same for any particular transformation.®

! In other words, g is the least common multiple of 2 and r.

2 The transformations Sp and the intervals An are suggested by the work of HARDY and
LIiTTLEWOOD, loc. cit. 226, 229. We have not defined the transformation 8, which is to be applied
to points in 4,. The omission is unimportant; we may, if we wish to preserve formal com-
pleteness, define S; to be (say) the identical transformation v = 7.
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5. We shall require, to start with, a lemma on periodic continued fraec-
tions.r

Lemma 1. Let £, g—": g, 0 be as defined above; let ¢ be fixed and let n tend
to enfinity by assuming all values congruent to ¢ (mod. g). Theng—;;1 and pngn—5¢2
. n
tend to finite lomats.

Let us write the finite sequence

QiyOgye by, Qy,...0f
also in the form

dl,dg,. ..dr,dr+1,dr+2,...d27,
so that -

(5)

di=a,,dy =a,,...dr =a
dr+1=dl,dr+2=a2,...dzr:ar

For 1 = ¢{=<7r we define?

01 = [O, dt+r, dH—r—-l, v dt+1 ] ,

@ = dir1, devs, . - disr].

We shall also write for convenience the continued fraction for £ in the form

(T S
so that
¢, ="by,05="y,...6n = bm,
Cm+v = Ug
when » =5 (mod. r), s, of course, being one of the numbers 1,2,...7.

Now by a known result we have?®

(6) q.’zl—;l=[o,cn,cn-1,...cz].

! The results of Lemma I were given in a somewhat different form in my paper, Some Dio-
phantine approximations connected with quadratic surds, Journal of the Indian Mathematical So-
ciety, Vol. X1V (1922), pp. 161—166.

® When r=1 there is only one # and one ¢,

0=1[0,ay,01,0;,...], @=l[a;,a,...].

3 See, for example, CHRYSTAL, Algebra, Vol. II (1922), p. 433.
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Since » — o through values which differ by multiples of r, it is clear that, when
n > m, ¢p has always a constant value, say ¢;. Remembering that a; = dy,, it
is easily seen from (6) that

n— i [O, Aty dprr—1, .. -dt+1] =0,
n
which is the first result of the lemma.
To prove the second result, we write

1= [0n+1, Cnt2, ...
Then

. fn+1 Pn +£_1§
T a1 @nt G ’
and so, remembering that
DPu@n—1—Pa—14n= 1n

we have
B@__gzlﬁb_ﬁt—klpn +}9n—1: Nn ,
gn qn f;L-I—l On + @n— qn (fn+1 qn + Qn—l)
L Ea? Nn qn ,
Puln gqn fn+1 Qn -+ Qn—1
I —
(7) “‘M:'ﬂnfn+l+”7n gn L.

Pun— 54, an

Since # has the same residue to modulus g, which is an even number, it follows
that » has the same parity, and so 7, has the constant value 7,. Also by the
remark made above, when » > m, ¢, has a constant value a;; so that, ¢,+1 has
the constant value d;+1. Therefore fni+: has the constant value ¢;. And so using
the first result of the lemma we see from (7) that

I
poa—ta )

This limit cannot be zero, since 6; > o, ¢: >1. Hence p,g.—&¢? tends to a

finite limit.

n

The limits of qZ_l and pngn—§&q2 depend on ¢ and we shall denote them

respectively by L, and 4,, (e=1,2,...9). We shall also have by definition
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Agp1= Ay, Ay= Ay,

Lgs1=1L,, Ly=1L,.

6. Let us now return to the relation (3) between ¢ and I and consider
the curve traced by 7’= X +¢ Y when 7=« + ¢y describes the part of the line

x = § which lies between y = % and y = ; - We shall regard the z-plane and

n qn+l

the 7- plane as coincident, so that the x- and X-axes coincide, and the y- and Y-axes
coincide (in position as well as in direction). There will be no confusion in doing
g0, as t is confined to the fixed line x =§ and T traces circular arcs whose
positions we will now describe. Writing v =&+ 7y, 7= X + ¢ Y in (3), and equating
the real parts, we see after an easy calculation that, as 7 describes the semi-infi-
nite line x =§, y > o, I describes the semi-circle, whose equation is

(8) (X4 Y)(Pugn— Eqm)+ 1 X (prgu—1+Pr1gn — 25 qn140)
2
+ (pn—l Qn—1 — § qn—-l) =0,

and which lies in the half plane Y > o.
Now the relation (4) gives the following equations connecting X, Y, z, ¥;

(9) X ((pn — g 2)®+ g0 %) = ot [(Pa—1 — Gno1 @) (Pn — @n %) + Gu—1 097,

(10) Y((pn— qua)*+ an v} =y.

From the second of these equations we see that if the 7-points, which corres-
pond respectively to

,[’:_-g_{_%, ¢ =E+ ; ,
qn Qn+1
are X' +¢Y and X" +4 Y”, then

71 I I
(r1) ¥ [(pn — @&+ 7] =
n gn

) ) .

(12) Y l(pn — B ;—L] —

S Qn+1 gn+1
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The ZT-curve that corresponds to the part of the straight line x =1£§ be-

tween y =;2— and y = q; is the part of the semi-circle (8) which is intercepted
n n+1

between X = X' and X = X". We shall call this circular arc C,, and shall

prove that it lies in the half plane Y > é Since O, has its centre on the X-

axig and is therefore concave towards this axis, it is clear that in order to prove

that (), lies wholly in the half plane ¥ >é it is sufficient to show that?!

- 1 I
Y >, Y' > =
2 2

Now by a known property of continued fractions

r .

Ipn — qn gl < !
gn+1
so the coefficient of Y’ in (11) is less than
2
Lyl 2

2
Gn+1 dn qn

from which it follows that ¥’ >—;' Similarly the coefficient of ¥ in (12) is

less than

2
I I I 2
-+ I < 5 -+ = y

2 . 2 2
gn+1 gn+1 Qn+1 qn+1 qn+1

1
and so Y > o

Let us now consider the points
T = Ty(0) = Xu(0)+7 Y, (0) (n = 2)
obtained by effecting the transformations S, on the points

T = Tp (0) = § + Z.?/" (U)’
where '
g

qn

I—0

+ =
QH +1

Y (0) =

! ¢f. HARDY and LITTLEWOOD, loc. cit., p. 220.
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After multiplying each of the equations (9) and (10) by ¢a, and after a slight re-

arrangement we get

J Xn(o) [(1’" n—Equ)* + {0+(1—0)%} ]
Qn41
(13)
— 1 gn X - 2_“1 . 9 ZEI _ _g;_IQ
] Nn+ _[Qn—l (pn— In Eqn )(pn gn — Eqn) + o lO‘ + (1 0’) q:_HJ ]
{14) Yn (o) [(pn w—Eq)? + {0 +(1— o) qgn } ] ot (1—0) q?” B

We now keep ¢ fixed in the interval o < ¢ <1 and allow # to tend to infinity
by taking all values congruent to a fixed ¢ (mod. g). Since % has the same parity,
Tu+1 has the constant value 7,11. The coefficients of X.(0), Ya(0) and the ab-
solute terms on the right hand sides of the equations (13) and (14) tend to finite
limits by Lemma 1. Hence X,(0), Yx(0) tend respectively to limits X, (), 9, (o)

glven by
¢ ¢

Ao A
= 1o+1 [—01_11;——0 -+ LQ{O' + (I — O') LZ‘H}Q]’

D, (0) (42 + {6 + (1 — 0) L241)}%) = 6 + (1—0) LEys;
or, on writing for shortness,
o+ (I - 0‘) Lz+1 = J(,+1 (0') == J(,.H,

A()——l A()

X, (o) (—43 + Jor1) = o1 [ T
0

+ L, J§+1],
(15)

D, (0) (A + Jor1) = o1

Further, since 7, (o) lies on the line x = £ between the points ¢’ and 7", it follows
that 7', (o) lies on the arc C,; and since for all values of #n, (), lies in the half-

plane Y > —;, it is clear that for all values of » and o, Ya.(d) > é; and, there-

fore 9, (o) Zé for all values of ¢ and 6. We have thus proved the following

lemma.
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Lemma 2. If o has a fixed value in the interval o <o <1, and n tends to
infinity by taking all values congruent to a fixed o (mod. g), then the points T, (o)
tend to the definite limiteng position :

%o (o) = X, (o) + i@g (0);

and this limiting point lies in the half plane Y= é

It is of interest to observe that, if we let » tend to infinity in the manner

described above, the arcs O, tend to a limiting arc €,, whose equation is
A X2+ YY)+ Dy X+ Ay =0,

and which is intercepted between the lines X = &, and X = 5,”, where D,,

N

are given by

e S
277 Ao__1
Dy =1+ e,
4 I Lg
| A1 A,
Tete L L
. No+1 | L, @]
ag = ) = *
Ag + 1
[ 1, 4
No+1 —()L“IJ‘FL@ L;-H]
= | 0 .
i

2 4
.40 + L9.|_1

It is easily seen that, if ¢ is kept fixed, and ¢ varies between o0 and 1, the points
T, (0) describe the arc €,; so that the points T, (o) (for all values of ¢ and o
under consideration) lie on a finite number of circular ares €,, all of which lie

in the halfplane Yz—;-

IIL

Periodicity of Certain Sequences.

7. This section is devoted to the proof of some congruence properties of
Pn, Gn, the numerators and denominators of the convergents of the continued

fraction for & and also to the proof of some properties of the numbers
20 — 2822. Acta mathematica. 52. Imprimé le 23 aont 1928.
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[_Z_;l] (h—2.3...)
nyn

Q] denotes a generalisation of the LrasenprE-JAcoBT symbol

where the symbol [b

(%) The symbol [%] appears in the formulae of the linear transformation

of the Theta functions, and its definition and fundamental properties are given
by Tanyery and Mork.!
8. We shall begin with a few definitions, which will facilitate the descrip-

tion of what follows. Let us write the continued fraction for £ in the two forms

[bl,bg,...bm, al,ag,...ar],.
le1, 60y v Cny. ]

We have to consider some infinite sequences for which it will be convenient to
adopt two notations. Let

Vl’ 27.--7’71,-..

be the sequence, written in the usual way, the nth term being donoted by y,. Now
we associate this sequence with the sequence formed by the partial quotients of
the continued fraction for &, so that y, corresponds to ¢;, y, to ¢, and in general
vn to cn. For n > m, this establishes a correspondence between the y's and the «'s.
We shall regard a period of the partial quotients of the continued fraction to
begin® with @, and end with a,; so that, when we speak of the partial quotient
as (1= s =7) in the jth period, the rank of the corresponding ¢ in the ¢-sequence
will be unambiguously determined. In fact the corresponding ¢ will be cmy(j—1)r+s-
Now returning to the correspondence between the y's and the a's, we shall de-

note by 'Y the member of the y-sequence which corresponds to the partial
quotient as (1==s =7) in the jth period; that is to say,

F.(sj) = VYm+(i—1) r+s -

! F. E. pp. 109—1IL.

? Owing to the cyclic order in which the a’s appear as partial quotients in the continued
fraction, one may regard (in the notation given in Lemma 1) a period as beginning with any
d,(1<t<r) and ending with d;, . _,. The convention adopted here is necessary to make our de-

finitions, that follow, unambiguous.
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To indicate that the terms of the y-sequence are denoted by the alternative
I'notation we shall write

fa V — N
Ly ={17}-

=

We next define a periodic sequence. A sequence

YirVay oo Vo oo
is said to be periodic, if there are two positive integers n, and E, so that for
every mn > n,
Yn+E==Yn -’
E 1is called a period of the sequence. Obviously, if I is a period, any integral

multiple of K is also a period.!
9. Lemma 3. Suppose for n=1,2,3,..., P 25 the tnteger such that

1=p,=38
Pu = Pa (mod. 8).
Then the sequence
(16) Py Dayees Payens
is a periodic sequence.®
Let

{pny={PP}
s
N

N
{Dn[*—

! We can easily prove the following properties of periodic sequences. (i) If E,, K, are two
periods of a periodic sequence (yn), and if d is the highest common divisor of F,, E,, then d is
also a period. (i) If [ is the least perio'd‘of the sequence, then every other period is a multiple
of I. To prove (i) we observe that there exist two integers n,, 7, such that n, £, —n, E,=d. If
n is sufficiently large we have

Y =yn+n, E (since E, is a period)
yntng Ey = Yn+ny Ey—ng Ey (since K, is a period)
= yn+d;

and so yn=yn+d, showing that d is a period. To prove (ii) let £ >/ be a period, and let d be
the highest common divisor of & and I. Then d=1; also by (i) d is a period. If d </, I would
not be the least period. Therefore d =1 and F is a multiple of /.

% The sequence formed by the residues of p,, psy,... to any fixed modulus M (the residues
lying between 1 and M) is also periodic. The proof is the same as that for the case M =8 given
above.



156 K. Ananda-Rau.

We shall understand that the congruences which appear in the course of this
lemma are all to modulus 8. To prove the lemma, let us suppose for the mo-
ment that there are two integers h, k, (k> h) so that

[ P(lh) — P(ll\)
(17) l

Then sincel

it follows from (17) that

P = plo
Now from
P — pio
P — p
we deduce similarly that
P = B,
and so on, till we prove that
[ nyll =P, (Ql
U po o

From these we deduce successively as before

h k+1
o = plee)
P(2h+1) — ngﬁ-l) .

It is clear the argument can be repeated indefinitely; so that what we have
proved is that, if in the sequence

plap;z:

there are two sets of consecutive numbers (B, B), (B, BY) so that

h k
By =
Il (13
P =l

! In order to show clearly the contents of the proof it is supposed here that + = 4. The
formal alterations necessary when » <4 can be easily seen. When 7 =1 it will be convenient to
regard the period as consisting of two equal partial quotients; this'is clearly permissible.

(18)
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then the sequence (16) is a periodic one, and (& —h)7 is a period of the sequence.
To complete the proof of the lemma it is’ only necessary to show that there are

two such sets satisfying (18).  Now this is obvious since, if we consider the sets

(B1", B5), (l=1,2,..)

there can only be a finite number of distinct sets, as every P is one or other of
the numbers 1,2,...8.
The argument used above enables us to prove the following lemma also.
Lemma 4. Suppose for n=1,2,3, ..., Gu 28 the enteger such that

I=qp=38

0n = Qn {(mod. 8).
Then the sequence
(19) q17q27'-'
is a periodic sequence.

10. We shall proceed to some lemmas on the numbers [%] - If a, b
nYn

are two integers prime to each other (they may be positive or negative) the sym-
bol [%] denotes a certain fourth root of unity. The method of finding the root,
when @, b are given, is described by Tannery and Mork. In the applications
that follow « will always be positive. In quoting the following properties of the
symbol for future reference the fact that @ is positive is taken into account.”

112)-
o

(22) [;—f] [g] = exp { — 71E:i(a—— 1)(b— 1)}

In (21) ¢, d are any two integers® such that ad —be=1.

] exp {?—;b(bg—l) (zc—kd)}

R

! The periods of the p- and the g-scquences are, of course, not necessarily the same.

In the course of the proof of Lemma 3 the period whose existence is proved is a multiple
of . But smaller periods may very well exist, which are not divisible by ». Thus, for example,
if every a is a multiple of 8, it is easily seen that 2 is a period. ‘

* F.E., p. 109.

® lhe dependence of [QZ—ZZ] on ¢, d is only apparent. See the remarks in’ F.E., p. 108.
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[M] _ [q_”;lJ o
dn qn

Un=1"nCn+14qn (q;": - I) (pn—1 +pn+1) .

Lemma 5. We have

where

We apply the formula (21) with the following sets of values of a,b,¢,d:

QZQn—l'f"VQN, bZQH,
C—MNn (]M -1 V_pn) , d= On Pn-
Here v is given successively the values 0,1,2,... (ca+1—1). Obviously, for every
value of »
ad-—-be= Mn (pn gn—1—Pn—1 q'n) =1,

and so formula (21) is applicable.
We have

Qn—1 + Qnﬂ _(]17-—1] e 9 l
— = | ex n n— I)\2Pn— =+ n ’
[ qn | In . P l1277 Qn(q )( Pr— p)I

EIL_,L+ anﬁ . _q”-—l+q" Iﬂ 2_ l
[ ol Bl ] exp | 5 MG (1n 1) (2Part 3p0) o

qn—1+3 Qn“ _Qn—l + ZQH] [ e 9 ]
= e — Oa@n\@n— 1) 2Pn—1 + AN
[ an R | qn Xp l 12 7 q (q )( Pn—1 Spﬂ) j

[_(In—-l + Cn+1 _(711] — [%1—1 + (011+i_ I) qn

********* 0 ] exp { g Nn qn (Q?f— I) (2])1z—l + ml p“) }

On multiplying these equations and cancelling the common factors which appear
on both sides, and remembering that

-1t Cot1qn = Qn+1,

1+3+5+--- +(20n+1"—1):(72+1,
we get

Guir| _ [ qns [ i 2 L 1.
[ n ] = [ In ] exp 112 NnGn (Qn I)(20n+1 Pn—1 1 Cnt1 pn)j?
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and using the identity
2Cn+1 Pr—1+ 072L+1 Pn=Cni1 (pn——l + Pn—1+ Cat1 pn)

= Cn+1 (pn—l +_pn+1) ’

we get the result of the lemma.

[ dn ] . [Qn—l] 6’711'; w,
Mu+1 Gn+1 Nn Gn

Wn=Cn+14qn (Qi‘_ I) (pn—l + Z)n+1) + 37 (Qn—H*‘ I) (Qn - I)~

Lemma 6. We have

where

First, let » be even, so that
e MR
Nn+1 Gn+1 —n+1 Nn qn gn
Now using formulae (20) and (22)
[JL] [qi]zl
'_'Qn-l-l gn+1 ‘

oo { ==t} = [ ] ]

From these two we get

[ ][5 e [}

and so by Lemma g

(In i} QTL——I 7Tl
2 — | =]
( 3) [_Qn+l] [ an ] P {12

.2’11 +%€(Qn+l— 1)(gn— I)}

Remembering that n is even, 7;,=1, it is seen that (23) is equivalent to the

result of the lemma.
Next, let » be odd, so that

[Fsteen Il et O i Bl K
Nn+1G9n+1 In+1 Nn gn — {n
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[1o] = ]
qn _ qn

ol B

. n —{n

exp {— ZZ’;(an._ I)(qn"l)} = [QLH] [L]

Qn q n+1

By Lemma 5§
By (20)

Also by (22)

On multiplying these three equations we get

gn—1 [ ) } zltji"n [ Qn ]
e | ex — —(gus1—1) (gn—1) ; = €1? —
[—q,,] Pl (qus1—1)(q )' el
and so

(24) [ﬁ] = [%—z] exp {— %’Un_ %Z (gn+1—1){gn— 1)} )

Since % is odd, 5, = —1, and (24) is equivalent to the result of the lemma.

Lemma 7. Let
n ’
Nn qn_

C2aC3»---Cn,-..

then the sequence

18 a periodic sequence.

Let A, B be respectively the smallest periods of ‘the p-sequence and the
g-sequence. Let F be the least common multiple of 2, , 4, B. By Lemmas
3 and 4 there is an integer N’ so that for » = N’

Pr+da = Pn
(mod. 8).

9n+B = {qn

To prove the present lemma, suppose for the moment that there are two
integers h, & satisfying the following conditions:

k>h>m
h> N’
& ="=C
k—h=caF,

where o is a positive integer.
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By Lemma 6 we have

rtiw
“wh
Crer=1Cret

n—iw
Cov1=Cee*

wi = eni1qn (@ —1) (pr—1 + prs1) + 300 (g1 —1) (@ —1),

Wr = Cr+1 Qk (Q,%—I) (Pe—1 + Pr+1) + 37 (Qrs1— 1) (qe—1).

Now since £—h is a multiple of #, and £ > h > m,

Ch+1 = Ck+1;
since k—h is even,

N == Nk;
since k—h is a multiple of 4, and h> N, h—1= N’

Pr—1 = Pr—1
(mod. 8);

Pr+1 = Pr+1

and lastly since & — & is a multiple of B, and h > N’

9n = qr
(mod. 8).

qn+1 = Qr+1
Using these results we see that

wy = 10, (mod. 8),
and so

ﬂlY i‘r—i g
ot ‘/L: P uk.
Also by our assumption
Cn = Cr;
and therefore from (26)
Ch+l = Ck*l—l .

Starting from this result we can argue similarly and prove that

Ch+2 = Ck+2,

161

and so on; so that, the [-sequence will be a periodic sequence with period

k—h=alPF.

21 — 2822. Acta mathematica. 52. Imprimé le 23 aout 1928.
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We will have therefore proved the lemma, if we establish the existence of
two integers h, k, satisfying the conditions (25). To do this let’

&) ={29},
F=Gr,
%0 that G is an integer. Further, let 8 be an integer so large that, if

Z({”) = [,
then t > N'.
Let us consider the five numbers

(27) . Z(ﬁl), Z((i1+ G), Z({31+2 G), Z({;’+3G)’ Z((i‘+46').

Since every {, can have only one of the four values + 1,— 1, + ¢,~—%, there must
be at least two among the numbers (27) which are identical. There are there-
fore two integers y,d, (0 > y) among the numbers 0,1, 2, 3,4, so that

+y @ 73+d G)
29N = 7509,

If these Z's are respectively {»,{r when considered as members of the {-sequence,

then clearly
k>h>m

h=t>N
k—h=(—y)Gr=aF,

a being the positive integer d—y. Theé numbers h, t therefore satisfy the con-
ditions (25), and the lemma is completely proved. '

Since y,d are among the numbers o, 1,2, 3, 4, it follows that the {-sequence
has a period ¢ F where « is one of the numbers 1,2, 3,4.

IV.

Behaviour of 9,(0]7).

11. We shall apply the results established in the last two sections to obtain
the behaviour of 9;(0|7) as 7 & along the line z =¢§.

! The absence of the first term §, is of no importance. As usual ¢, is supposed to correspond to ¢, .
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If

(28) g=2

where a, b, ¢, d are integers such that ad — bc¢ =1, then it is known that'
(29) dy0]7)=e"Va+tbT S 1{0]|T),

where &’ is an eighth root of unity, u is one of the numbers I; 2, 3, according

to the type of the transformation (28), and the square root V'a+b T has that

determination which has its real part positive.? The value of ¢’ is given by the

formulae?®
(30) ¢~ ex ﬂ(0zb+ccl+2bc—l—zcH—zc~l—2m")l
& P 4 J
(31) @:[(—l]3 exp [ﬂ:(ab—kac#—bd—acbz——g,b)rl«'
b |4 | l

The number " in (30) is either —1 or b+d according to the type of the trans-
formation (28).

There are six types of transformations according to the parity of the num-
bers a, b, ¢, d. The dependence of pu and m” on a, b, ¢, d is shown in the
following table.* If @ is odd, the number 1 is entered in the a-column; if a is

even, the number o is entered. Similar notation applies to b, ¢, d.

Type @ b ¢ d u m'’
I o 1 ! 2 -1
2% s s 1 1 T 3 b+d
3% e 1 o I I ~1
4° . .. e 1 I I o 3 b+d
5% . e e o I 1 o 2 -1
6° . . ... o 1 1 I 1 —1

! F.E. p. 262, formula (3) with v = V' =o0. I have slightly altered the notation and inter-
changed 7 and 7.

2 F.E. p. 91.

3 F.E. p. 262 formulae (5) and (7).

* F.E. p. 241 Table (6), and, p. 262 Table (8).
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12. Let us now consider the transformations S, mentioned in Section II,

- Pn—1+ nnpnz

2
(3 ) Qn—1 -+ Nnqn T

(n=12,3,...).

They are all transformations of the modular group, since
NnPnQn—1 — Nn Pr—1 n = 7]3 = 1.

The numbers u, ¢’, m"" corresponding to S, will naturally depend on %, and to
indicate this dependence we shall write

w+1=M,,
[

€ = Wy,

144 r

m = my .

As in Lemma 7, let ¥ be the least common multiple of 2, 7, 4, B, and let
H=aF be a period of the {-sequence. Then by Lemmas 7, 3, 4 there is an
integer N’ such that for » = N"

Cn+H == gn,

Prn+H=Pn4+a = Pn
» (mod. 8).

Qn+H = qn+B = (qn

We have the following Lemma.

Lemma 8. Let R be a fixed integer in 1< R<H. Let n> N" and n=R
(mod. H). Then for all values of n which satisfy these two conditions w, has a
constant value', and the transformations S, are all of the same type.

Since » > N” and H is a multiple of A4, all the numbers p, are congruent
to each other to modulus 8, and so their parity is the same; similarly since
n—1= N", the parity of the numbers p,—; is the same. Since H is a multiple
of B, the same argument shows that the parity of the numbers ¢, and of the
numbers ¢,— remain unaltered. So the transformations S, are all of the same
type; M, therefore retains a constant value. If the common type of the trans-
formations S, is either 1°, 3° 5° or 6°, m,” retains the constant value —1. If

the common type is either 2° or 4°, my” = 7 (pa+¢qn); since H is even, n has

! This implies that the w-sequence is periodic with period H.
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the same parity and 7. has the constant value #g; therefore from the congruence
properties of pn, ¢n to modulus 8, we see that m,” takes values which differ by
multiples of 8.

Now by (30) and (31)

s Al . i,

-1 " W - W

e T K
ndn

where
Wo,={(ab+tcd+2bc+2a+z2c+2m,”)

+{ab+ac+bd—ack®— 30),
a = (n—1, b= NMnfgn, €= Pn—1, d = M Pn.

Since # > N/, » =R (mod. H), {. retains a constant value by Lemma 7. Also
7, has the constant value 5g. From the congruence properties (mod. 8) of
Pu—t, Pn, Gu—1i, Qn, My, it follows that W, takes values which differ by mul-
tiples of 8. Hence, finally, w, retains a constant value.

The constant values of M, and w, will, in general, depend on R and we
shall denote them respectively by m = m(R) and Q= Q(R). Further let 1 = A (R)
be equal to -1 or — ¢ according as R is even or odd.

13. We are now in a position to prove the following, which is the main
theorem of this paper.

Theorem. Suppose ¢ is a fived number in the interval 0 <o <1, and R s
a fixed enteger tn 1= R =<H. Let g be the least common mulliple of 2 and r;
and let ¢ be the integer such that 1<9<g¢, o=R (mod. g). Further let

T =0 (0) = E+iy = E+ 7y (o),

where
6 1—¢C
Yn (O') =3 + N
Qn  Gni1

Let n tend to infinity by taking all values congruent to R (mod. H). Then'

4

L AQV Iy
Vyo o EET T g (0] T),
yds(0|7) Vot g (0] Ty,

! The numbers Ag, J(H_1 = Jg+1 (o, %@ = CI,Q (6) are those defined in Section II.
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4 4
where Vy, VJ@H denote the real positive fourth roots', and

V dy—idyia

denotes that determination of the square root which has its real part positive.
We may clearly suppose that » > N”. Let v=v,{0) and 7= T (0) be con-
nected by the relation (32) or its equivalent

_ P —Gn1 7
(33) T = nu+1 P

We shall apply formula (29), the transformation (32) taking the place of (28).
Since #» > N”, =R (mod. H) we have, on using the result of Lemma 8,

(34) 34070 = 2V gor+ mgn T Iul0] T),

the square root having its real part positive.
It is easily verified from (33) that

L T T Py s p el

Remembering that 7, has the constant value ng, we have

- Vo
(35) V-7/(qn—-1 + 7 an) — nrR q;LQ Y -
(Pugn—8qn)— iqny
Now

n=PR (mod. H),

B=o¢ (mod. g),

H=o0 (mod. g),
and so
n=¢ (mod. g).
Therefore, by Lemma 1
. .
Gry=0+(1—0 = >0+ (1 —0) Lot1 = Jps1,
In+1

(pn qn— § q?z) _Zqi y— A(’ _-Z'J(H'l‘

4 4
! In what follows Vy, Vy, V']@+1r VJ(H_: denote the real positive roots.
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Using these in (35) we see that

- nRVl‘-_@_-{-_l_’
V_’t/ (g1t n T)— Ay —1dy41
and so
4
) o -
(36) V@; VQn—l + Nn qn T— KUR:@_:’
VAQ —lJ()-l-l

where the left hand side has its real part positive. On the right hand side
4.
VJ9+1 is real and positive and

Vde—idp=R+4i3

has its real part M positive. We have therefore to choose that determination of

Vyr which makes the Teal part of the right hand side in (36) positive. Observ-
ing that Jo41>0 and R >0, it is easily seen that I < o, and so we should take

(37) Vg =A(R).
Next since n=yp ‘(mod. g) we see from Lemma 2 that
T (0) = Ty (0) = X, (0) + 7 D, (0),
and since by the same Lemma

@9 (G)Z

’

N | =

it ‘follows. from the continuity of the Theta functions that
(38) I (0] T)— Iu (o] Ty).
Combining (34), (36); (37), (38) we get

4
ARV T

"
Vyd olt)— —
y 3( | ) VAQ-Q,'JQ_Fl

Ry (O I 19),

which is the result of the theorem.
14. Before we conclude, a few remarks may be made on the magnitude of
the number H. Referring to the proof of Lemma 3 we see that a period of the
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p-sequence exists which is not greater than Ny, where N is the number of distinct
sets

(B0, BY) (I=1,2,3..),

the integers P - being among the numbers 1,2,3,...8. Now remembering that
Pu-1, Pn are prime to each other (since pngn—1—pn—1gn=71 1) we see that B, BY
cannot both be even; and an easy calculation shows that N=48. Therefore there
exists an N, <48 such that N,r is a period of the p-sequence. Similarly there
is an N, =48 such that N,s is a period of the g sequence. The least common
multiple of 2,7, N7, N,» is easily seen to be not greater than ¢ - 47 - 48 =2256¢.
Since the highest value of ¢ is 4, it follows that there exists a suitable value of
H not greater than goz24y.

An examination of the proof of the main theorem, however, shows that it
is not the numbers A4, B by themselves that play an essential role, but it is the
period of the w-sequence that is important. Of course, to ensure that the trans-
formations S, (when % is sufficiently large and n=R (mod. H)) are of the same

type, we should take into consideration the periods of the sequences

(39) pl’v p2,a rey
(40) q1’7 Q2,) . i)

where each p, and @, is either 1 or 2 and

pn’ = Pn ]

(mod. 2).
Qn, = (Qn J

If A’ B’ are respectively the least periods of the sequences (39), (40), and if %
is the least period of the w-sequence then the least common multiple of 2,7, 4", B’ ¢
will provide a suitable value of H; and this value will be, in many instances,
much less than the bound 9024 g assigned above. It can be shown by arguments
similar to those used for the p-sequence that 67 is a period of the sequences (39)
and (40). Hence A’, B’ are divisors of 6 (see the first foot-note on page 155); and
there is a value of H not greater than the least common multiple of 67 and y.



