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On Toeplitz forms and stationary processes

By ULrF GRENANDER

1. Introduction

This paper is intended to show that the theory of Toeplitz forms is applic-
able to some important linear statistical problems concerning stationary stoch-
astic processes with a discrete time-parameter. Although the main results on
Toeplitz forms have been known for more than 30 years they do not seem to
have attracted the attention they deserve of the mathematical statisticians.
This motivates a short summary of the most important results in this theory.

That summary is given in the next section. In 3 we study the problem of
prediction in the light of what bas been said in 2 about Toeplitz forms. Sec-
tion 4 is devoted to the problem of finding asymptotic expressions for the
distribution of certain quadratic forms which is of importance in the statistical
analysis of stationary time series. In 5, finally, we study the estimation of
the mean value of the process and a similar but more general problem of
estimation which i.a. contains a theorem of KoLMOGOROFF on interpolation of
stationary processes as a special case.

2. Some results from the theory of Toeplitz forms

2.1. Consider a Hermitian matrix M of the form

[ Cop C—1 C_g ... C_q

1 C C-1 ... C-p+1 "

M= ={c-u}; »,u=0,1,...m. 1)
Cn Cp—1 Cp—2 ... Cy

Then M is said to be a Toeplitz matriz and the adjoint quadratic form
n
T= 3 CpZviu
v, u=0

is called a Toeplitz form. An important class of Toeplitz forms is defined in
the following way. Let f(1) be a non-negative Lebesgue-integrable function
defined in the interval (— =, #), and let the matrix elements be defined as
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11

o= [ fydr )

-

Introducing the customary definition of inner. product

(pp) = [o@p@Df AL

we can apply Schmidt’s well-known orthogonalization procedure to the set of
functions 1, &%, €24, ... In this way we obtain an ON system

Po (}'): 5% (A), 12 (2-), e
so that

(@v> Pu) = S
2.2. Szeed has studied (see [9], [10]) the following important problem. Let

« be a complex number. Which is the polynomial P, (e'*) of the nth order in
¢* = 7 that makes the integral

n

[1Pu@n Pt A)d A ' (3)

a minimum under the condition
P,(x) = 1.

The minimum of (3) is denoted by wx(«; f).
Using Schwarz’ inequality Szec® shows that the minimum is obtained for

Pr(2) = pn (05 ) { @0 (0) @0 (2) + (@) 1 (2) + - + (@) @u(2) } =

= pn (a; 1) sn («, 2), (4)
where
1

tn o f)

= @@ P+ (@) P+ -+ |@a(a) 2 (5)

2.3. In the interior of the wunit circle in the «-plane there is defined a
function G («; /). If the integral f log f(A)d A diverges G (a;f) is put identi-

t
cally equal to zero. Otherwise we shall have

___,qu_—d
1-2 g cos (A-¢) + e*

4

1 n
on [ Towi®

G(o; f)=e
where « = p€'?; |p| < 1.
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Evidently the sequence u,(x; f) is non-increasing. SzegO shows that

# (% f) =7}im pn (o5 /) = 27 G (o Y (1 — [ a[?). (6)
Further this relation holds already for a finite value of n

(25 f) = 226G (a5 ) (1 —| &)
if and only if
1 1

MO T azp

where ¢ (1) denotes a positive trigonometric polynomial of order .

2.4. An other auxiliary function D(z) is introduced in the following familiar way.

If f log /(1) d A eonverges we use the coefficients of the formal Fourier series

log f(A) ~ kg + 2D (kn cos n A + I sin n A)
T
to form a function
g(2) = % + 3 (kn—1ly) 2"
1

and put
D(z) =@,

Then D(z) is analytic and free from zeroes in |z2] <1 and |D(2) |2 = G(z /).
Then the series

Jim 50 (0, 2) = 70 ) 90 (&) + 71 () 92 @) + -

converges for |a|<1, |z]<l, and -uniformly for |«| and |z]|<r<1 to
the sum '

9w 1—a: D D) @

2.5. Introduce the Toeplitz determinants

vCO 6—1 e Cop
C C « o Copt1

D, (f) - 1 ‘o n+ >0,
Cn Cn—] P ('0
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where the inequality sign follows because the matrix is positive definite. Szrcd
shows (see [9] p. 192) that

Dulf) _ .
Dn—l (]() Hn (0> f): (8)

which combined with (6) gives

1 Fid
1 Dﬁ(f) T ntl _ ﬂ_j"'logf(l)dz
Jim 55 = lm VDu() = 2 | o

2.6. To the matrix (1), (2) there corresponds n + 1 eigen-values AM, A,
.o, A Rzre6 has shown that they coincide on the average with the equi-
distant ordinates of 2z f(4). This is made a rigorous mathematical statement
in the following way (see [9] p. 194): Suppose that —co<m=<f(1) << M<oo;
f(4) 1s not restricted to non-negative values, Then .

2am=<A"<2aM; »=0,1,...0;0=1,2,...). (10)

Further if F(z) is an arbitrary continuous function of z in the interval
m=z=<M we have

lim ;&—}L—I[F (AP) + F(AM) + - + F (1)) = 2% fF[z af(W]di. (1)

(11) is deduced frecm the only apparently more special formula (9).
For proofs and further developments of the theorems quoted in this section
the reader is referred to SzEG6’s original papers [9] and [10].

3. Extrapolation of stationary processes

3.1. Let {a2,} be a stationary (wide sense) process whose time parameter
n takes all integral values. We assume that Ex,=0. According to a well-
known theorem of Bcechner its covariance sequence can be represented as a
Fourier-Stieltjes integral ’ :
k4
1h= Etndnin= [ €MdF(3)

-

where F (1) is a bounded, non-decreasing function of 2. The process itself has
the analogous representation

Tp = f éridz (), . (12)

where 2(4) is an orthogonal process corresponding to F(4). According to
KARHUNEN [7] there is an isometry between the Hilbert spaces spanned by
the process {za} resp. by the exponentials {¢i*4}.
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WorLp has shown [15] that the process can be decomposed into two pro-
cesses orthogonal to each other

Tn = Yn + Zn,

where {yn} is purely indeterministic and {2,} a deterministic process. The
part {yn} consists of the absolutely continuous part of the spectrum if the
spectral inteusity f (1) = F’(A) satisfies

[ 1og (123> — ooy (13)

otherwise {y, | reduces to zero.

3.2. In 3.2-3.3 we shall suppose that the process is purely indeterministic
so that the spectrum is absolutely continuous and (13) holds. Having observed
a sample (¢—p, Z-n+1, ..., T-1) We want to extrapolate the realization in the
sense of least squares to the time 0. This problem has been solved for n = oo
(see [13]). Denote the extrapolation by

X =—c1To1—Caag— " — CnTp.

Then

Elzy—al]? = flnn(e‘“)lzf(l)dl = min

7
under the condition that the n order polynomial 7, (z) = D ¢ 2" satisfies
0

7, (0) = ¢ = 1.
.
Introducing tbe polynomial P,(z) = Y &2 we get instead
‘ )

fﬂan (e [2f(A)d A = min

This is however a special case of SzEG6’s minimum problem. The solution
18 (see 2.2)

Py (2) = pa (05 f) 80 (0, 2) }

Eun| 2o — 28 |2 = ua (0; f)

3.3. Let us see what happens when n tends to infinity. From (8) and (9)
we get the following expression for the limit error
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51—”- f log f(Dd 4
lim Emin Il‘o - 1'8 I2 = ‘ll (0; f) = 2 me - . (14)
7n—>00

This formula can also be found in [13].
The best (linear) extrapolator lim zj can also be explicitly constructed. For

n—>00

a finite value of n we get from (12)
xo—f[l— (e€M]dz (4

Introduce the function (see (4), (6) and (7))

D(©) _DEH—D(0)

D) =1—=—"2 i
D(ezl) D(eul)

It is seen in the usual way that the stochastic variable

T

[ e@dz(d)

can be constructed as a limit in the mean of (... z—2, z_i). The simplest way
to see that it is the best prediction is to compute the corresponding error

o [emssal - []70]

which equals (14). As the best prediction is unique (but for equivalence), be-
ing the projection of the element x, upon the subspace L, (X; v <0), the result
follows,

It may happen that the best extrapolation can be obtained using only a
finite number of the observed values of the process in the past. From 2.3
we see that this is true if and only if the spectral intensity is the reciprocal
of a positive trigonometrical polynomial, i.e. in the case of an autoregressive
process.

5= [oetmaz
(NdA=2me -~

3.4. Suppose now that the process is of the general type. We form in the
usual way the two spaces L,(Y; v <<0) and Ly(Z; v < 0) which are orthogonal
to each other. It can be shown that L, (X; » <0) = Ly (Y; v << 0)® Ly (Z; v < 0)
(see [4] p. 165). We then get the best extrapolation zj§ as

20 = Pr, x;»<0) %o = Pr,(x;5<0) Yo + PL,(x;v<0) 20 =
= Pr,(¥;»<0) Yo + PL,(2;5<0)20 = 43 + 20.
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But as {2,} is deterministic we have z, = 2§, and hence the error
Elo,—a5 P =Ely—ui [

depends only upon the purely non-deterministic part of the process and is
then given by (14). This will be used below.

4. Quadratic forms of stationary processes

4.1, Consider the moment matrix M, belonging to the » + 1-dimensional distri-
bution of the variables x,, z,, ..., . (we shall suppose the process to be real-
valued from now on),

To T-1 ... T-n
Mn={n_[‘}= S n=12,...
n Th—1 ... 7¥g
and the corresponding determinant
o -1 ... T—n
My=|r-ul=|- - - - | n=1,2 ...
T Tn-1 ... To

If the spectrum is absolutely continuous the matrices M, are of the same
form as (1), (2). Szecd’s theorem on the asymptotic distribution of the eigen-
values of such matrices (see 2.6) can immediately be applied. Essentially the
same result has been rediscovered by WarrrLe without using SzEG6’s work
(see [12]). '

4.2. We now turn to SzEGd’s asymptotic relation (9) for the Toeplitz de-
terminants, also found by WairrLe [12]. We shall give a proof using familiar
statistical methods and which is valid under more general conditions.

Let {z.} be an arbitrary process of the type described in 3.1 (not neces-
sarily purely indeterministic). We form the best extrapolation x§ using (z—_n,
Zentl, ..., ©-1). As shown in 3.4 the corresponding error E |z, — 3 |* tends
to the error obtained if we had only considered the purely non-deterministic
part of the process as n tends to infinity:

n
% [ 1og1aa
lim E|zg—as 2P =27me —= . (15)
n—>o0

On the other hand the well-known formula for the residual variance (see [1]
p. 305) gives for a finite value of
: M,

Mn—l. (16)

Elﬁ’o_@a |2 = 0(’),—1,—2,...,—1» =
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Combining (15) and (16) we get the wanted relation

lim 208 M _ 1

n—>00 n

[logf(l‘)dll + log 2,

which is valid as soon as the purely indeterministic part of the process is not
absent.

4.3. Using the asymptotic distribution of the eigen-values WHaITTLE [12]
has studied the distribution of certain quadratic forms and ratios of quadratic
forms in the variables a,, 2, ..., 2» which are supposed to have a multivariate
normal distribution. The following somewhat related result has been given by
Kac and Stegert [6]. These authors consider the continuous parameter case
but the proof holds for the discrete case after trivial modifications. The proc-
ess is supposed to have an absolutely continuous spectrum with a spectral
intensity satisfying

[PAydr<eco.

—n

n
Then the stochastic variable Y z is asymptotically normally distributed as n
1

tends to infinity.

In connection with empirical spectral analysis the author has needed the
following result which is closely related to the results of Kac—SiEGERT and
WarrtLeE. Let the process be normally distributed and the spectrum absolutely
continuous with a spectral intensity f(4) for which 0<fy <f(}) =f; <oo
holds. Introduce the quantity

—wl

In()=

_L
272N +

y=—N

1.e. the periodogram. When trymg to determine empirically the spectrum of
a process the following type of estimate has been studied (see [3)).

— [ Ix)wO)dl

where the weight function w(l) is supposed to be continuous. It means no
restriction to demand that w () shall be an even function in I. Asymptotic
expressions for the mean and variance of f* have been given. In this section
we shall prove that f* is asymptotically normally distributed as N tends to
infinity.

Putting

w,= [ étwl)dl
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we get easily

1 N
T 272N +_1)v,,,=z g e T

/*
This is a quadratic form in z—x, T—y+1, ..., ¢y With the matrix

1
Y S S ——N,—N+1,...N.
F {2n(2N+1)“” “} nu=—N

Using a well-known relation (see [1] p. 120) we get the characteristic function
of f* in the form of a determinant

o(f) = Eétf* = |I —2itRF|-*

where R denotes the moment matrix of the observed variables. If the eigen-
values of RF are denoted A{™M, AN, ..., AN |, we have
2N+1
log @(t) = — 3 log (1 —2¢22%).
v=1

+

I

Then
2N+1
Eff=3> 1
v=1

2N+1
D=2 3 2
v=1

where we have dropped the superscripts for printing convenience. Consider the
normed variable
f# — E fﬁ

D

and its characteristic function, say y(¢); we get

_ 2N+1 . Ay ) Ef*_ ﬁ
logy(t)=—1% g log(1—2ztﬁ;)—@tpf*— 3 + Ry,
where

ol < K ltla 2N+1 g
|Bx| =K 3 2P

1

We now have to show that Ry tends to zero as N tends to infinity. To do
this we shall majorate the A’s.

Let
B={b,.}=222N+1)RF
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80 that
N

bv,u = z Tv—m w'm—”.
m=—N

B is in general not a Toeplitz matrix. Introduce

N 2
by = max by u X,
lzli=1]v,u=—N
We have
N N
> bt = 2 ambn,
v, u=—N m=—N
where

N n _
am = ZNr,_ma;,= f(p(x)e—’m"f(x)d:c

Y= —

N m
b= 2 Wm—pZu= fe‘”””‘(p(——x)w(w)d:c
N

n=- —“n

Here we have put

so that
7 N
[lo@Pde=22 3 o =2
Hence
N )
2 lanlP< 3 |anf = 42'fi
m=—N —o0
N 0
> jmpE< Y |bn P = 4 7° winax
N —00

This gives us
by < 47t2f1’MJmax =C

where C does not depend upon N,
Hence we obtain the wanted relation

C
(N) [ A
AP I<smev+D
and
s 1
IRy 1= Cigsp o v
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In [3] we have shown that“Df* is of the order of magnitude N—% which
could be used to complete the above proof. But in [3] we demanded that the
spectral intensity should satisfy certain regularity conditions including differ-
entiability. That is not necessary in the present case. Suppose only that f(4)
has a positive lower bound f,. Then

N
222 (2N + 12D%f = 2; Tntm TE+1 Wotk Wi+l =
n,m,k,l=—-N

n = N 2 N
=f f[ > wn+icei"’+ik”] f@) () dzdy=42%f kZan‘ﬂrk

AL W = ==

because the quantity in brackets is real. Hence

2N |vl
2 2 2 | 2
22N+ 1)D*f = 4x f§y=_§2ﬁN( 2N+1)w”

so that Df* is at least of the order N~%* from which the wanted result
follows. ‘

Note. Using S8zEc0’s results we could have proved that by is bounded in a
simpler manner. Because B is the product of two matrices, R and 27 (2N + 1) F,
and the eigen-values of each of these is dominated by 2z f, resp. 27 ¥max
(see 2.6). According to [5] p. 210 we then get

bN £4n2f1wl'ngx.

44, In dealing with Toeplitz matrices it may be worth while to observe
the following facts although they must be considered as well-known. Consider
the infinite real matrices

4= {ai’—.‘l}’ (—00<'p“u,<00)"

B = {b"—fl}’ (——-Oo<v,[u<00),
where

f&”ﬂndl

it 2

ay

f&”MMdk

-7

by

If « and f§ are constants it is evident that to the matrix « 4 + 8 B corre-
sponds in the same way an “intensity” which is aa (A1) + b (A).

Suppose further that both a (1) and b(2) are quadratically integrable. Then
we can form the product 4 B, and have using Parseval’s relation
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‘n=—00

2 Gynbuy = 2nfe“” Wig ()b (A)di,

so that to 4 B corresponds the intensity 2ma ()b (A). If the inverse of a(4)
18 quadratically integrable we see that 4 has an inverse corresponding to

1t
47%a (4)

5. Estimation of the mean value

5.1. We now change our assumptions in that the mean value m = E x, is
an unknown not necessarily vanishing constant. From the sa,mple (zo, Ty, .. Zn)
we want to construct a linear unbiased estimate m* of minimum variance. We
get, introducing

m' =

o=

n
ey, Pa(z) = gcvf,

f”IP,. €Y f(A)dA = min

n

Se,=P,(1)=1

0

This clearly is a special case of SzEGH’s problem (see 2.2).

In [2] the author has shown that if 1: {x,} is purely non-deterministic,
2: f(0) #0, 3: D(e%) is differentiable in A = 0, then the equidistributed
estimate .

mg = Ty

S
Mz

is asymptotically efficient as » tends to inifinity. (The third condition can be
given a more handy form, see [3]). If we try to obtain this result from SzEed’s
theory we get only the trivial result p(l,f)=0 (see (5) and [10] p. 179).
Szea6’s formulas hold in general only for || <1 and in some cases for || > 1.
In the estimation problem however « =1 which demands stronger methods in
order to enable us to deal with the deeper problems connected with the be-
haviour of ps(x; f) at the circumference |&| = 1.

5.2. A tool, useful for that purpose, is the following theorem also due to
Szeco (see [11] p. 291).

Let (1) be integrable in Riemann’s sense and let it have the form
FA = DA (c—2) (e — 20 ... z—2)1], 2= e*,
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‘Where 0 <A <@(A) =B, and 2, = ¢*v are distinet points on the unit circle,
0,>0,v=1,2,...,1. Let f(A) be differentiable at the fixed point 1 = a;
a=€e%%z,,v=12,...,1, and let the following be bounded near 4 =a:

1A —f@)—f(a)(A—a)
(A—a)?

‘Then
@n(@) = o« { D (@) } 71 + &n, &0 0. (17)

‘We remark that from the above conditions on f(4) follow conditions 1, 2,
and 3 in 5.1 (see [11] p. 274).

Putting o = 1 we get combining (5) and (17)
tim [ (15 /11 = lim > 3o () = 57 (18)
n—>00 ’ n-»0 Ny=0 ‘ 2 nf (0)

But under the stated conditions we have

lim n- D?mE = 27 f(0). (19)

From (18) and (19) the wanted result follows.

5.3. The question arises whether it is possible to weaken the conditions 1,
2 and 3 in 5.1. Let us consider 1 in this section.

Suppose that instead of 1 we allow also a discrete and singular part of the
spectrum but demand that a) the spectrum of the process is absolutely con-

tinuous in the neighbourhood of 2 = 0, b) f log f(A)d 4> — oco. This new con-

dition is denoted by 1'.

1, 2 and 3 imply the asymptotic effectiveness of mk. To show this we split
the process in two orthogonal components in the usual way @n = yn + 2 (see
3.1). For y» 1, 2 and 3 are valid and hence

%>l~e if 2>n,,
Dzm'[y]>(1——e)gw if n>n,. (20)
But because oi 1° we have
D*mi (] ~ M«)—) s
n
which combined with (20) and D®m* [z] = 0 proves the result.

567



U. GRENANDER, On Toeplitz forms and stationary processes

5.4, Contrary to 1, the second condition cannot be weakened. This is
shown by the followmg non- pathologlcal counter example used by Szrgd for
another purpose.

Consider the following moving average which automatically defines a purely
non-deterministic process:

Zn=En—En1

where the &s may be independent variables distributed in a normal distribu-
tion N (0,1). The spectrum is absolutely continuous with

f(h) =2 (1—cos 4),

and 1 and 3 but not 2 can be seen to be satisfied. SzrgO has calculated
([10] p. 189) un(1; /) explicitly. It is of the order n~3. On the other hand

D*mi = (n_-i-_l)_z so that the asymptotic efficiency of the equidistributed esti-

mate mf is zero.

5.5. Suppose now that E x, = my, %™ where my,, i.e. the mean amplitude
corresponding to the discrete spectral line of frequency A = 4y, is unknown.
Considering the process

Yn = Tpe~thm’

with spectral intensity f(A — 4} and mean value Ey, = m, we are back at
the problem of 5.1. We see that my, is estimated with asymptotic efficiency

one by
1
T n

n
; —1, lon,

under analogous conditions. The local conditions upon the spectrum shall in
this case hold for the neighbourhood of 1 = 4.

5.6. One could proceed and study what happens under a non-stationary
hypothesis

EBay,=md*; oc——ge”"

As we have seen in 3.2 the choice ¢ = 0 gives us the problem in prediction.
The “stationary case” g =1 has been treated in 5.1-5.5.

For p#1 we can use SzEGH’s results to elucidate the corresponding esti-
mation problem. We will however proceed in another way and only refer
to [10].

Let the hypothetical values of the mean value be of the form

Exn=mpn
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where
= [ dua).

The function x(A) shall be of bounded variation in (— m, &) but not neces-
sarily real-valued. We want to form a linear unbiased estimate

My = m* (T—n, .. ., Tn)

of m of minimum variance, and ask under what conditions this minimum vari-
ance tends to zero as n tends to infinity, or, in other words, when there is a
consistent estimate of m.

For a fixed value of » we have to solve
4

[ 1Pa(e)PdF (3) = min

where the polynomial

Pn ezl 2 Cy v

has to satisfy

=2am= [ Pu@hdu@)
n —x

Schwarz’ inequality gives

(

1<[fIPn<e” Ilduwl] < [3IPa @) || dpll + o <

V]

. Ay ul?
gglpﬂ(eu:’))lzd”FglAf;'l +

where £>>0 can be made arbitrarily small if the division — 7 << A << AW <
< <A™ < 7 is made sufficiently fine. But the quantity

|4, pul?
n=2 4T

is known (see e.g. [14]) to be non-decreasing when the division is made finer.
The limit is called a Hellinger integral and is denoted

Fldp WP _
i o = K = de() =
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Hence

D*m* Zfl{'

Actually L is the nfimum when n tends to infinity. To show this we con-

K
sider the stepfunction

(p(m) (1) Kml jl; for }”EM) <1< )’iﬁ)l

This can be uniformly approximated by the aid of a trigonometric polynomial
of sufficiently high order and

[lemmrare - K5t ]

[ ™ @ydu@) =1 '

Letting m tend to infinity we see that
2 s 1
Dppnm® = ————- 1

|d/4 ) [P
dF ()

Hence a necessary and sufficient condition for the existence of a consistent
estimate of m is the divergence of the Hellinger integral of u with respect to
F. This happens for example if u (1) has.a saltus at a continuity point of
F (1). We see the relation to what has been said above."

Remark 1. The problem has been studied in [2] p. 234 (although the re-
sults were stated for the continuous case they apply after simple modifications
to the discrete case also). For a finite interval of observation we found

1

1 lv

Diin mp, = (22)

Here A, are the eigen-values of the covariance matrix and a, the “Fourier’-
coefficients of m, developed in terms of the eigen-vectors of the matrix. For
n = oo the differential solutions will be {¢***} and the coefficients with respect
to these will be du(2). Previously in 2.6 we have seen that 4, coincide asymp-
totlcally with the equidistant ordinates of the spectra.l intensity. (21) is thus
in an intuitive way seen to be a limit of (22).
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Py

Remark 2. Take u (1) = %z and F (4) absolutely continuous with the derivative

f(A). Then the problem studied reduces to minimizing
Elag— Y com?
v+0

which is a problem of interpolation which has been solved by KoLMoGOROFF [8]
giving as the nfimum of the error the quantity

4 n?

Fda

(4)

3

-1

which can also be obtained as a special case of (21).
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