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On Toeplitz forms and stationary processes 
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1. Introduction 

This paper is intended to show that the theory of Toeplitz forms is applic- 
able to some important linear statistical problems concerning stationary stoch- 
astic processes with a discrete time-parameter. Although the main results on 
Toeplitz forms have been known for more than 30 years they d 9 not seem to 
have attracted the attention they deserve of the mathematical statisticians. 
This motivates a short summary of the most important results in this theory. 

That summary is given in the next section. In 3 we study the problem of 
prediction in the light of what has been said in 2 about Toeplitz forms. Sec- 
tion 4 is devoted to the problem of finding asymptotic expressions for the 
distribution of certain quadratic forms which is of importance in the statistical 
analysis of stationary time series. In 5, finally, we study the estimation of 
the mean value of the process and a similar but more general problem of 
estimation which i.a. contains a theorem of KOLMOGOROFF on interpolation of 
stationary processes as a special case. 

2. Some results from the theory of Toeplitz forms 

2.1. Consider a Hermitian matrix 54 of the form 

I CO ~--1 C--2 . . . C--n . I  

ii iii  i i i l/ j 
{ c~_. }; ~ , ~ = 0 ,  i . . . .  n. (1) 

Then .M is said to be a Toeplitz matrix and the adjoint quadratic form 

~, ~=0 

is called a Toe~litz ]orm. An important class of Toeplitz forms is defined in 
the following way. Let /(~t) be a non-negative Lebesgue-integrable function 
defined in the interval ( - -g ,  g), and let the matrix elements be defined as 
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c, = f e i ' ~ l ( 2 ) d 2 .  (2) 

Introducing the customary definition of inner product 

(~, if) = f ~ (4) ~ (4) 1 (4) d 4, 

we can apply Schmidt's well-known orthogonalization procedure to the set of 
functions 1, e i~, e 2i~ . . . .  In this way we obtain an ON system 

so that  
~o (2), ~ (2), ~ (2) . . . .  

(~.,  ~.) = &. .  

2.2. SZEG5 has studied (see [9], [10]) the following important problem. Let 
:r be a complex number. Which is the polynomial P~ (e ~) of the n th order in 
e i ~ =  z that  makes the integral 

f I Pn (e ia) I ~ / (4) d 2 (3) 
--yl 

a minimum under the condition 

P~ (0r = 1. 

The minimum of (3) is denoted by fin (a; 1). 
Using Schwarz' inequality SZEG5 shows that  the minimum is obtained for 

Pn (z) = ft.  (~; 1) { ~0 (~) ~0 (~) + ~1 (~) ~1 (~) + + ~ -  (~) ~ -  (z) } "= 

= i f , ,  (~; t) .~ (~, ~), (4) 
where 

1 
f t .  (,~; i)  I 'Po (o01 ~ + I ,pl (~) I ~ + + 1 ~-  (~)7.  (5) 

2.3. In the interior of the unit circle in the a-plane there is defined a 

function G (~; ]). If the integral f" log ] (4) d 2 diverges G (:r is p u t  identi- 

cally equal to zero. Otherwise we shall have 

1 ? l--q2 
2~ J I~ l - - 2 q c o s O l - - ~ ) + ~  

G(~;]) = e -"  

where a = e e i ~ ; ] Q [ < l .  

d ),, 
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Evidently the Sequence /~n (~;/) is non-increasing. SZEGO shows that 

/z (~;/) = lira/~. (~;/) = 2 :r G (~;/) (1 - -  J ~ 1~). 
n - - >  oo 

(6) 

Further this relation holds already for a finite value of n 

if and only if 
( < / )  = 2 ~ o  (:r ( 1 -  I~ I ~) 

1 1 

/ ( ~ )  = I 1 - ~ 1  '~ ~ ( ~ ) '  

where q (2) denotes a positive trigonometric polynomial of order n. 

2.4. An other auxiliary function D(z) is introduced in the following familiar way. 

If  f l o g / ( 2 ) d 2  converges we use ~he coefficients of the  formal Fourier series 

log ] (2) ~ k o + 2 ~ (ks cos n ,~ + In sin n ,~) 
1 

to form a function 

and put 

o0  

D (z) = e g(~). 

Then D(z) is analytic and free from zeroes in ] z [ <  1 and I D(z) [~= G (z ; / ) .  
Then the series 

lim sn (a, z) = 9% (:r 900 (z) + q~l (or ~Pl (Z) + ' ' "  

n---->oo 

converges for 
the sum 

[~[ < 1, Iz[ < 1 ,  and "uniformly for I~l 

1 1 1 1 

2 ~  - - ~ z  D ( ~ )  D ( z )  

and [zl<--r<l to 

(7) 

2.5. Introduce the  Toeplitz determinants 

I C 0 C--1 �9 . . C--n 

D n ( t ) =  l el co . . . c-~+1 

I 
C a  O n - 1  �9 �9 �9 C o 

> O, 
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where the inequality sign follows because the matrix is positive definite. SZEG0 
shows (see [9] p. 192) that  

D,  (t) 
D._~ (1) = ~ (0; 1), (S) 

which combined with (6) gives 

1 f log/(2)d2 n+l 2~ 
lim Dn(t) lim VD~(/) = 2~e  -~ . (9) 

2.6. To the matrix (1), (2) there corresponds n + 1 eigen-values ~t~ n), ~t[ n), 
. . . .  ~t~ ~). SzEc5 has shown that they coincide on the average with the equi- 
distant ordinates of 2 ~ ]  (2). This is made a rigorous mathematical statement 
in the following way (see [9] p. 194): Suppose that  - - c ~ < m ~ _ ] ( 2 ) ~ M < c ~ ;  
] (~t) ia not restricted to non-negative values. Then 

2 ~t m ~< ~(,~)~< 2 ~ M; ( v = 0 ,  1 . . . .  n , n = l ,  2 , . . . ) .  (10) 

Further if F(x)  is an arbitrary continuous function of x in the interval 
m - - < x ~ M  we have 

lim ~ [F (2(~)) + F (ki n)) + - . .  + F (2(n))] = ~ F [2 g ] (~)] d ~. (11) 
~,--> OO 

(11) is deduced frcm the only apparently more special formula (9). 
For proofs and further developments of the theorems quoted in this section 

the reader is referred to Sz•Qb's original papers [9] and [10]. 

3. Extrapolation of stationary processes 

3.1. Let { xn } be a stationary (wide sense) process whose time parameter 
n takes all integral values. We assume that  E xn ~ 0. According to a well- 
known theorem of Bcclmer its covariance sequence can be represented as a 
Fourier-Stieltjes integral 

r~ = E x ~ n + h  = f elh~dF(~) 

where F (~t) is a bounded, non-decreasing function of 2. The process itself has 
the analogous representation 

x~ = ; eln~dz(~), (12) 

where z(2} is an orthogonal process corresponding to F(2}. According to 
KARHU~rEN [7] there is an isometry between the Hilbert spaces spanned by 
the process {xn} resp. by the exponentials { e ina }. 
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WOLD has shown [15] that the process can be decomposed into two pro- 
cesses orthogonal to each other 

X n  = Y n  -t- Zn~  

where { y,  } is purely indeterministic and { zn } a deterministic process. The 
part { yn } consists of the absolutely continuous part of the spectrum if the 
spectral intensity / (2) = F '  (2) satisfies 

f log / (2) d2 > - -  co; (13) 
- -2g  

otherwise { yn} reduces to zero. 

3.2. In 3.2-3.3 we shall suppose that  the process is purely indeterministic 
so that  the spectrum is absolutely continuous and (13)holds. Having observed 
a sample ( x - n ,  x-n+1 . . . . .  X-l) we want to extrapolate the realization in the 
sense of least squares to the time 0. This problem has been solved for n = oo 
(see [13]). Denote the extrapolation by 

X~} = - -  e i x -  1 -  c 2 x _ 2  . . . . .  C n X - n .  

Then 

Elxo-xZl = f Izn(e- a)]z/(2)d2 = min 
- -  x g  

under the condition that  the n th order polynomial z~ (z) = ~ c , z "  satisfies 
0 

~ .  (0) = Co ~- 1. 

n 

Introducing the ~polynomial P,~(z) = ~ 5 ~ z "  we get instead 
0 

f [  Pn (e ~a) I~/(2) d 2 = min 

p .  (0) = 1 

This is however a 
is (see 2.2) 

special case of SzEGS's minimum problem. 

Pn (z) = ~ .  ( o ; / )  s~ (0, z) 

J E ~ n  ]xo - -  ~ I s -- ~n  ( 0 ; / )  

3.3. Let us see what happens when n tends to infinity. 
we get the following expression for the limit error 

The solution 

From (8) and (9) 
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1 f logf(2)d/t 
lim E m i n  IXo - -  X~ 1'~ = ~ (0;  [ )  = 2 :rr e -~ '  

~ - - +  oo  

(14) 

This formula can also be found in [13]. 
The best (linear) extrapolator lim x~ can also be explicitly constructed. For  

n---> oo  

a finite value of n we get from (12) 

x~) = f [1 =- Pn (e/a)] d z (2). 
- - y g  

Introduce the function (see (4), (6) and (7)) 

D (0) D (e ia) - -  D (0) 
�9 (2) = 1 

D (e ~ 4) D (e i4) 

I t  is seen in the usual way that  the stochastic variable 

f ~ (2) d z (2) 

can be constructed as a limit in the mean of ( . . .  x-2,  x-l) .  The simplest way 
to see that it is the best prediction is to compute the corresponding error 

1 f ~og/(a)aa 
2n  f r:/:l o,o) 

which equals (14). As the best prediction is unique (but for equivalence), be- 
ing the projection of the element Xo upon the subspace L2 (X; v < 0), the result 
follows. 

I t  may happen that  the best extrapolation can be obtained using only a 
finite number of the observed values of the process in the past. From 2.3 
we see that  this is true if and only if the spectral intensity is the reciprocal 
of a positive trigonometrical polynomial, i.e. in the case of an autoregressive 
process. 

3.4. Suppose now that  the process is of the general type. We form in the 
usual way the two spaces L2 (Y; v < 0) and Lz (Z; v < 0) which are orthogonal 
to each other. I t  can be shown that  Lz (X; v < 0) = L~ ( Y; v < 0) r L2 (Z; v < 0) 
(see [4] p. 165). We then get the best extrapo]ation x~ as 

= Pr,(x;,<o)Xo = PL,(x;,<o)Yo + PL,(x;,<o)Zo = 

= Pz,, (Y; ,<o)Yo + PL, (z; ,<o)Zo = Y~ + z~. 
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But as { zn } is deterministic we have zo = z~, and hence the error 

E l z o - - ~ 1 2 =  E l y o - - y $ ]  2 

depends only upon the purely non-deterministic par t  of the process and is 
then given by  (14). This will be used below. 

4. Quadratic forms  o f  s tat ionary processes  

4.1. Consider the moment  matrix Ms belonging to the n + 1-dimensional distri- 
bution of the variables xo, Xl, �9 �9 x.  (we shall suppose the process to be real- 
valued from now on), 

M~ = {r , -~} . . . . . . . .  , n = l ,  2 . . . . .  

r n  i r n - - 1  � 9  ?'0 

and the corresponding determinant 

l ro  ~ - - 1  . .  �9 r - - n  

M s  = ] r , - ~ l  . . . . . . . .  , n = 1, 2 . . . .  

rrt T n - 1  . . �9 r O 

I f  the spectrum is absolutely continuous the matrices Ms are of the same 
form as (1), (2). SZEGiJ'S theorem on the asymptotic distribution of the eigen- 
values of such matrices (see 2.6) can immediately be applied. Essentially the 
same result has been rediscovered by WHITTLE without USing SZEGf's work 
(see [12]). 

4.2. We now turn to SzE~5's asymptotic relation (9) for the Toeplitz de- 
terminants, also found by W~ITTLE [12]. We shall give a proof using familiar 
statistical methods and which is valid under more general conditions. 

Let  { xn } be an arbitrary process of the type described in 3.1 (not neces- 
sarily purely indeterministic). We form the best extrapolation x~ using (x - s ,  
x-n+1 . . . . .  x- l ) .  As shown in 3.4 the corresponding error E Ix  o - x ~ ] 3  tends 
to the error obtained if we had only considered the purely non-deterministic 
part  of the process as n tends to infinity: 

~t 

1 f los ](~)da 
lira E I xo - -  x~ [3 = 2 zt e - "  (15) 

On the other hand the well-known formula for the residual variance (see [1] 
p. 305) gives for a finite value of n 

E l  Xo - -  x~ 12 a '  Ms (16) = o, -1 , -2 , . . . , -n  - Mn-1 
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Combining (15) and (16) we get the wanted relation 

lira log Mn 1 ; 
n -~  ~ /b 2 ~ . 10g ] (4) d ~t + log 2 g, 

which is valid as soon as the purely indeterministic part of the process is not 
absent. 

4.3. Using the asymptotic distribution of the eigen-values WHITTLE [12] 
has studied the distribution of certain quadratic forms and ratios of quadratic 
forms in the variables xl,  x2 . . . . .  xn which are supposed to have a multivariate 
normal distribution. The following somewhat related result has been given by 
KAC and SIEGERT [ 6 ] .  These authors consider the continuous parameter case 
but the proof holds for the discrete case after trivial modifications. The proc- 
ess is supposed to have an absolutely continuous spectrum with a spectral 
intensity satisfying 

f 13(2)d2 < ~ .  

n 
Then the stochastic variable ~x~ is asymptotically normally distributed as n 

1 
tends to infinity. 

In connection with empirical spectral analysis the author has needed the 
following result which is closely related to the results of KAc--SIEGERT and 
WHITTLE. Let the process be normally distributed and the spectrum absolutely 
continuous with a spectral intensity /(2) for which 0 ~ / 0  -~ ] ( 4 ) - / 1  ~ c~ 
holds. Introduce the quantity 

1 I I ~ :r~, e - i ~ l  I~ (1 ) -  2 ~ ( 2 N  + 1) ,=-N 

i.e. the periodogram. When trying to determine empirically the spectrum o f 
a process the following type of estimate has been studied (see [3]). 

/* = f I~v(1) w(1)dl, 
- -  2 t  

where the weight function w (1) is supposed to be continuous. I t  means no 
restriction to demand that  w (1) shall be an even function in l. Asymptotic 
expressions for the mean and variance of ]* have been given. In this section 
we shall prove that  /* is asymptotically normally distributed as N tends to 
infinity. 

Putting 

w~ = f e~Zw(1)dl 
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we get easily 

1 N 
l* 2ze(2N + 1)~,~,~_s w~-~'x'xt'" 

This is a quadratic form in x-N,  x-iv+l . . . .  , xlv with the matrix 

I ' } F =  2 g ( 2 N  + 1) w~-" ' v,,u = - - N ,  - -N  + 1, . . .  N. 

Using a well-known relation (see [1] p. 120) we get the characteristic function 
of /* in the form of a determinant 

~o(t) = E e it1* = ] I - -  2 i t  RF[- �89 

where R denotes the moment matrix of the observed variables. If  the eigen- 
values of R F are denoted ;t (iv), 1 ('v), 2 (iv) we have 2 " " "~ 2 N - k l  

Then 

2 N + 1  
l o g , ( t ) = - - � 8 9  ~ l o g ( 1 - - 2 i t ~ ) ) .  

2 N + l  

El*= Z~., 

2N+1 

D~I *=2 Z Z 

where we have dropped the superscripts for printing convenience. Consider the 
normed variable 

I*--E/* Z 
D/* 

and its characteristic function, say v? (t); we get 

where 

2N+I ( 
Iog~p( t )= - - � 89  ~ log 1 tE r t2 

- - 2 i t  - - i  D/* 2 +R•,  

§ [3 2 N + l  

[Rzcl<--KDa ~ ~ [1,[. 

We now have to show that  R~v tends to zero as N tends to infinity. 
this we shall majorate the t 's .  

Let 

B = { b~, } = 2~r(2N + 1 ) R F  

To do 
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so that  
N 

b~ , = ~, ~v--m Wm--,u , 
m =  --22 

B is in general not a Toeplitz matrix. Introduce 

We have 

where 

a~ 

bm 

b l v  = m a x  i b~x~x~l 2 �9 
x =i v,~t=--N 

N N 

b,~,x,,x~,= ~, ambm, 
v, ,u= - - N  m =  - N  

5, ~ , - , . ~ ,  = f q~(x)e-'~/(z) d~ 

N rr 

~, W,n--~,X~, = f e~mXcf(--x)w(x)dx 
# = - - N  _ ~  

Here we have put  

so tha t  

Hence 

This gives us 

N 

~ ( x )  = Z x , e  ~'~ 

N 

Iq~(x)l~dx= 2~  ~, x~ = 2~. 

~ / t = - - ~  r --o0 

i~_  ~: Ibml ~ < 4 ~ w ~ =  

b~ < 4 :z z / 1  w , ~  = C 

where C does not depend upon N. 
Hence we obtain the wanted relation 

and 

C I~F) l< 
2~t (2N + 1) 

t 3 1 
I R~ I -< C1D 3/.  (2 N + 1) ~ 
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In [3] we have shown that~i:D/* is of the order of magnitude N-�89 which 
could be used to complete the above proof. But in [3] we demanded that  the 
spectral intensity should satisfy certain regularity conditions including differ- 
entiability. That is not necessary in the present case. Suppose only t h a t / ( 2 )  
has a positive lower bound ]o- Then 

N 

2 ~r ~ (2N + 172 D2/* = n, m, k~,=-~ rn+mrk+lWn+kWm+l = 

;;[ ]' 
= ~ Wn+ke inx+iky / ( x ) / ( Y T d x d y >  4 ~ f o  k~ ~ wn~+k 

_ ~  _ ~  n ,  k = - - N  n ,  = - -  

because the quantity in brackets is real. Hence 

2~t~(2N + 1)D~] *-> 4~2~ ~ 1 25T-~- i w~, 
,,=--2zV 

so that  D/* is at least of the order N-�89 from which the wanted result 
follows. 

N o t e .  Using SZEG6'S results we could have proved that  biv is bounded in a 
simpler manner. Because B is the product of two matrices, R and 2 z (2 N + 1) F, 
and the eigen-values of each of these is dominated by 2 ~t]l resp. 2 z Wmax 
(see 2.67. According to [5] p. 210 we then get 

biv < 4 ~2/1 Wmx. 

4.4. In dealing with Toep]itz matrices it may be worth while to observe 
the following facts although they must be considered as well-known. Consider 
the infinite real matrices 

where 

a = { a . _ . } ,  ( - ~ < ~ , ~ < o o ) ,  

B = {b~_v}, (--c~ <v , /~<  r 

a, = f ei~a(27d2 
- -  z t  

~t 

b, f ei'~b(2) d2. 
- -  2t 

If  a and fl are constants it is evident that  to the matrix a A  + f iB corre- 
sponds in the same way an "intensity" which is ~a( t )+  fib (2). 

Suppose further that  both a (27 and b (2) are quadratically integrable. Then 
we can form the product A B, and have using Parseval's relation 
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~ a,-nbn-f, = 2~  ffei('-~')~a(]t)b(2)d~t, 

so that  to A B corresponds the intensity 2 g a (4)b (4). If the inverse of a (4) 
is quadratically integrable we see that  A has an inverse corresponding to 

1 
4 g2 a (4) 

5. Estimation of  the mean value 

~ ~ 

5.1. We now change our assumptions in that  the mean value m = E x,, is 
an unknown not necessarily vanishing constant. From the sample (x0, xl . . . . .  xn) 
we want to construct a linear unbiased estimate m* of minimum variance. We 
get, introducing 

m* = ~_,c,x,, P,~(z) = ~,c ,z  ~, 
0 0 

; I  P,, (ei~) 12 1(4) d ~t = min / 

/ ~ c ,  = P , ~ ( 1 )  = 1 

This clearly is a special case of Sz~.GS's problem (see 2.2). 
In [2] the author has shown that  if 1: {xn } is purely non-deterministic, 

2: / ( 0 ) ~  0, 3: D(e i~) is differentiable in ~t = 0, then the equidistributed 
estimate 

n 

is asymptotically efficient as n tends to inifinity. (Th e th i rd  condition can be 
given a more handy form, see [3]). If we t ry  to obtain this result from SZEGS's 
theory we get only the trivial result j u (1 , ] )=  0 (see ( 5 ) a n d  [10] p. 179). 
SZEG5'S formulas hold in general only for [ a ] < 1 and in some cases for ]~ I > 1. 
In the estimation problem however r162 = 1 which demands stronger methods in 
order to enab]e us to deal with the deeper problems connected with the be- 
haviour of /~n (~r ]) at the circumference ] a i = 1. 

5.2. A tool, useful for tha t  purpose, is the following theorem also due to 
SZEG6 (see [!1] p. 291). 

Let  /(4) be integrable in Riemann's sense and let it have the form 

/ (a)  = ~ (a)  l (z  - z l )  *, (z  - z l ) ~  (z  - z~)*~ I,  z = e ~` , 
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:where 0 < A < ~ (2) --< B, and z, = e i~" are distinct points on the unit circle, 
( r , > 0 ,  v =  1 ,2  . . . . .  I. Let  /(2) be differentiable at  the fixed point 2 = a ;  
a = e i~ ~ z,, v = 1, 2 . . . .  , l, and let the following be bounded near 2 = a:  

Then 

] (~t) - -  ] (a) - -  ] '  (a) ()l - -  a) 
(2 - -  a)  2 

~Pn ((X) = ~n { D (~) }-1 _[_ 8n, 8n ---> O. (17) 

We remark that  from the above conditions on /(2) follow conditions 1, 2, 
and 3 in 5.1 (see [11] p. 274). 

Putting ~ = 1 we get combining (5) and (17) 

lim [n /xn (1; /)]-1 = lira - ~ z = / ( 0 )  
n - - - > ~  ~ t - ~  ~ '  ~ 0  

(18) 

But  under the stated conditions we have 

lira n .  D 2 m~ = 2 ~r ] (0). 

F rom (18) and (19) the wanted result follows. 

(19) 

5.3. The question arises whether it is possible to weaken the conditions 1, 
2 and 3 in 5.1. Let  us consider 1 in this section. 

Suppose that  instead of 1 we allow also a discrete and singular part  of the 
~spectrum but  demand that  a) the spectrum of the process is absolutely con~ 

tinuous in the neighbourhood of 2 = 0, b) f log ] (2) d 2 > - -  cx~. This new con- 

dition is denoted by  1'. 

1', 2 and 3 imply the asymptotic effectiveness of m~. To show this we split 
the process in two orthogonal components in the usual way x~ = y .  + zn (see 
3.1). For y~ 1, 2 and 3 are valid and hence 

D*m " [y] 
D ~m~[y] > l - e  if 

i .e .  

1)2 m* [y] > (1 - ~) 2 ~ t  (0) 

But  because of 1' we have 

D , m ~  ix ] 2~1(0 ) ,  
n 

p 
if n > n , .  (20) 

which combined with (20) and D 2 m* [z] > 0 proves the result. 
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5.4. Contrary to 1, the second condition cannot be weakened. This is 
shown by the following non-pathological counter example used by SZEG5 for 
another purpose. 

Consider the following moving average which automatically defines a purely 
non-deterministic process : 

X n =  ~ n - - ~ n - - 1  

where the $'s may be independent variables distributed in a normal distribu- 
tion N (0, 1). The spectrum is absolutely continuous with 

/ (2) = ~ (1 - cos  2), 

and 1 and 3 but  not 2 can be seen to be satisfied. SZEG5 has calculated 
([10] p. 189) / ~ ( 1 ; / )  explicitly. I t  is of the order n -a. On the other hand 

2 
D2m~ (n + 1) 2 so that  the asymptotic efficiency of the equidistributed esti- 

mate m~ is zero. 

5.5. Suppose now that  E x~ = ma, e i)'*n where m~, i.e. the mean amplitude 
corresponding to the discrete spectral line of frequency ~ = 20, is unknown. 
Considering the process 

Yn ~ Xn e - i ~ n  " 

with spectral intensity / ( ~ t -  20) and mean value E y,~ = m~, we are back at  
the problem of 5.1. We see that  m~ is estimated with asymptotic efficiency 
one by 

1 "  
m~, = - ~:  x~ e - ~ ' ,  

3 1  

under analogous conditions. The local conditions upon the spectrum shall in 
this case hold for the neighbourhood of )t = 2 o. 

5.6. One could proceed and study what happens under a non-stationary 
hypothesis 

E x n =  m~n; ~ = ~ e  i ~ .  

As we have seen in 3.2 the choice ~ = 0 gives us the problem in prediction. 
The "stationary case" Q = 1 has  been treated in 5.1-5.5. 

For ~ ~ 1 we can use SzEGO's results to elucidate the corresponding esti- 
mation problem. We will however proceed in another way and only refer 
to [10]. 

Let the hypothetical values of the mean value be of the form 
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where 
yt  

~ = f e i ' ~d#  (~). 

The function tt (2) shall be of bounded var ia t ion in (--~r,  zr) but  not  neces- 
sarily real-valued. We want  to form a linear unbiased es t imate  

m* = m* (x-n . . . . .  x,n) 

of m of min imum variance, and ask under  what  conditions this min imum vari-  
ance tends to zero as n tends to infinity, or, in other  words, when there is a 
consistent es t imate  of m. 

For  a fixed value of n we have to solve 

where the polynomial  

has to sat isfy 

, / t  

f I Pn (e 'a) I s d F (2) = min  

pn(e i~) = ~ .  c ,e  i ~  
- - n  

Schwarz '  inequality" gives 

1__< -< [XIPn (e"?') I I z : z  I1 s + ~ -< 

< Z. I Z ' n l ~  ,, ) ISA,  F " # l  s 
- - ,  ~ A r E  + s  

where e > 0 can be made arbi t rar i ly  small if the division - -  ~r < 2~ m) < 2(m) < 
< . . .  < 2(,~ m) < ~r is made sufficiently fine. But  the  quan t i ty  

K:=ZI~:#[ s 
A : F  

is known (see e.g. [14]) to be non-decreasing when the  division is made  finer. 
The limit is called a Hellinger integral  and  is denoted 

lira K m =  K = F Id-~(X)ls < c~. 
,n-.~ _~, dE(X)  - -  
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Hence 
1 

D~ m* ~ --" 
K 

1 
Actually ~ is the in/imum when n tends to infinity. To show this we con- 

sider the stepfunction 

~0 ( ~ ) ( 2 ) = K  -1A~/z for 2~ ~ ) < 2 < 2 ( ~ )  m AiF  --"~+1" 

This can be uniformly approximated by the aid of a trigonometric polynomial 
of sufficiently high order and 

f I v (m) (2)1 ~ d E (4) = g~ 

7g 

f ~(m) (2) d # (2) = 1 

Letting m tend to infinity we see that 

1 2 $ Drain m 

f ld~ (2) I s 
d F (2) 

(21) 

Hence a necessary and sufficient condition for the existence of a consistent 
estimate of m is the divergence of the Hellinger integral of bt with respect to 
F. This happens for example if /z(2) has .a saltus at a continuity point o f  
F (2). We see the relation to what has been said ab o v e .  

Remark 1. The problem has been studied in [2] p. 234 (although the re- 
sults were stated for the continuous case they apply after simple modifications 
to the discrete case also). For  a finite interval of observation we found 

1 

1 2,, 

(22) 

Here 2, are the eigen-values of the covarianee matrix and a~ the "Fourier":  
coefficients of mn developed in terms of the eigen-vectors of the matrix. For 
n = oo the differential solutions will be { ei'~ } and the coefficients with respect 
to these will be d/~ (2). Previously in 2.6 we have seen that  2, coincide asymp- 
totically with the equidistant ordinates of the spectral intensity. (21) is thus 
in an intuitive way seen to be a limit of (22). 
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2 
R e m a r k  2. Take # (2) = 2 ~  and F (2) absolutely continuous with the derivative 

/(2). Then the problem studied reduces to minimizing 

EIx0- yc,  l 
v*0 

which is a problem of interpolation which has been solved by KOLMOGOROFF [8] 

giving as the in/imum of the error the quantity 

4 ye s 
- - - 7  

/ (2/ 

which can also be obtained as a special case of (21). 
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