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§ 1. Introduction

The main objective of this paper is to establish the structure theorem in § 5.

If K and M are subsets of a linear space we let K + M denote the set of all sums
k +m, where k€K and meM. If K consists of only one point k, we write k& + M
instead of {k} + M. This operation of addition is obviously commutative and associa.-
tive. Thus a family of subsets forms a commutative semigroup under addition if it
is closed under this dperation. Such a semigroup is called a one-parameter semigroup
if there exists a one-to-one application: 6— 4 (9), of the set of positive real numbers
onto the semigroup, satisfying:

A8y +8,) = A(6;) + A (D).

In his paper (2) Gleason introduced the concept of a one-parameter semigroup of
subsets of an arbitrary toplogical group. In my thesis (3, henceforth referred to as
CN) I obtained results concerning the structure of such semigroups in Lie groups.
In particular, it follows from results in CN that in a finite-dimensional linear space
every one-parameter semigroup A4 (d) of closed sets which come arbitrarily close to
the origin as §—0 is of the form A () = 4- M where M is a convex, compact set and
8. M denotes the set of all §m with m € M. This is of course a consequence of the much
more general results in § 5 below.

It should be observed that the definition of one-parameter semigroups given above
is neither equivalent to the one in CN nor to Gleason’s although there are no very
essential differences.

We remark that:

1° In CN a one-parameter semigroup is the mapping § — 4 (8), and not a family of
sets. Thus in CN 4 () eould be constant which is not possible with the present
definition. (We require 6 — .4 (6) to be one-to-one.)
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H. RADSTROM, One-parameter semigroups

27 In CN the mapping is defined for § = 0 and not only for 6 > 0.
3% In CN the sets A{8) are assumed to be closed for all small §.

4° In CN the mapping is assumed to be continuous with respect to Hausdorff’s
topology for sets (see below, section 3.1).

If the semigroup is parametrized in two ways with parameters § and ¢, then there
exists a one-to-one mapping, f, of the set of positive reals onto itself satisfying

g =f{0) and f(6, + 5) = f(8;) + [ (So)-

It 1s well known that the only positive solutions of this functional equation are of the
form f(0) = const-d. Therefore every possible reparametrization of a given semigroup
consists simply in a change of unit for the parameter.

§ 2. Remarks and examples

2.1. We denote by 0.3/ the set of all m where me M.

Example 1. If M is convex it is easy to prove that (5, + ) M =&, M + 6, M. Thus,
for a convex set M, which is not a cone, the sets ¢ M constitute a one-parameter semi-
group with ¢ as parameter. (We must require that M not be a cone in order to guaran-
tee that the mapping 634 be one-to-one.)

Conversely, suppose that M is a set such that the sets M form a one-parameter
semigroup with 4 as parameter. Then M is convet. Namely, let x and y be elements of
M. Then Zxeil M and (1 —A)ye(l —1) M for 0< A< 1. It follows that Az + (1 —A)y€e-
EAM+(1-AYM =M.

2.2, Definition: 4 one-parameter semigroup A (0) is called linear if there is a set M
such that
A@)y=0M
for all § > 0.

We have seen that a linear semigroup consists of convex sets. The converse is not
true, not even in the case of a one-dimensional space as the next example proves.

Example 2. Let {(6) be a realvalued function of the positive real variable 6 and
satisfying the functional equation

f(al + 52) = f(61) +f(8,).

Putting 4 (0) = {f(8)} for each § we obtain a one-parameter semigroup of points on
the real line. It is known that under almost any (even very mild) regularity condition
the funection f(8) must be of the form const-d and consequently 4 (d) linear. On the
other hand there also exist pathological solutions of the equation. Thus a semigroup
of points need not be linear.

2.3. The result in § 5 below shows that for one-parameter semigroups of compact
sets in a locally convex space, the two examples given cover all possibilities. We shall
see that if 4 (J) is such a semigroup, it can be expressed in the form A4 (8) = f(6) + - M,
where f(d) is a semigroup of points and M a compact convex set. If the compactness
condition is not made the conclusion A (6) = f(4) +d.M with convex M is no longer
wue.
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Ezxample 3. On the real line, let 4 (6) be the set of all rational numbers » with
0<r<d.

Then the sets 4 (d) form a one-parameter semigroup of non-convex sets.

However, in this example the closure, 4 (3), of each set in the semigroup is convex.
Examples 5, 6 and 7 below show, among other things, that this is not always the case.

2.4. We shall also be somewhat interested in finding conditions to ensure that
A (9) or A(9) is linear. If A4 (8) is given and ¢ (8) is a one-parameter semigroup of points,
then ¢(8) + A(d) is a one-parameter semigroup. Can ¢(J) be chosen so that ¢(d) +
+ A (d) is linear? Our next example shows that this need not be possible even if the
sets A (d) are convex.

Example 4. Let f(d) be a pathological function in example 2. In the zy-plane,
consider the set 4 () of all points (z,y) with 0 <z < § together with the points (0, 0)
and (0, /(9)). Then the sets 4 (8) form a non-linear, one-parameter semigroup of
convex sets such that ¢ (6) + 4 (d) is not linear for any choice of ¢.

2.5. The following statement is an application of Theorem 5.6 of CN (p. 133) to
the case of a linear space: Let a translation invariant metric be given on a linear
space and denote the closed sphere of radius § around the origin by §(5). A necessary
and sufficient condition that S (9) forms a one-parameter semigroup is that the metric
be convex. (See CN p. 133.) A well known case when this occurs is when the metric
is defined by a norm. It can, however, occur also in other cases.

Ezample 5. Consider for 0 < p <1 the space L? of functions f(f) (with the usual

1

identifications) defined for 0 <¢<1 and such that ||f|| = f [f(£)|7dt <oco.(Observe!
0

1
Unusual notation. If p >1 the norm is defined by |f| =f|]‘(t) [Pdt. Our ||f]| is

0
not a norm for p <1 since it is not homogeneous.) If ||/ —g|| is taken to mean the
distance between f and ¢ this makes the space a complete metric space which is not
locally convex for p << 1 but locally bounded (see Tychonoff 4, or Bourbaki 1 p. 224
ex 17). The triangle inequality follows from the elementary inequality

la+b|7 <|a|®-+|b|”

in which for p <1 the sign of equality holds if and only if either a or b is zero. Thus the
triangle inequality is strict unless the two functions involved are different from zero
on disjoint sets in which case equality holds. Now the triangle incquality:

N+l <Nl + gl
is obviously equivalent to the following inequality for the spheres:
8(8,) +8(d) = S8, +0y).

We obtain equality if and only if to any & with ||A||< §, + 4, it is possible to find f
and g with f +¢g =4, ||f{|<é, and ||g||<é,. It is obviously sufficient to prove that
given & with ||&|=0; + 6}, there exist f and g with f+¢g=h and ||f||=0, and
[|g]] = 8,. This is done in the following way. Let A be a number such that
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A
[1h @) dt=8,
0

1
which exists since 0 <48, <8, +4, =[|h|?dt.
0

Put
[ k() for 0<i<A
m)_{o for A<it<1

)= f 0 for 0<t<4i
TO=\ bty for a<t<1

Since the sets where f and g are different from zero are disjoint the result follows.
Thus the spheres form a one-parameter semigroup and the metric is convex. Since
the spheres are closed and it is known that they are bounded, this is also an example
that a one-parameter semigroup of closed bounded sets need not consist of convex sets.

2.6. The spaces L? for p < 1 are not locally convex and for p =1 the semigroup of
spheres in example 5 does in fact consist of convex sets. Thus we have not yet obtained
an example of a pathological (= consisting of non-convex sets) semigroup of closed
bounded sets in a locally convex space. Example 6, however, shows that such an
example exists in L,

Example 6. In example 5 let p = 1 and put A4 (8) = the set of those functions f which
satisfy

1
1° [fde=4
0

2° >0

3° The values of f are integers almost everywhere.

Then ||f||=0 so that A4(8) < S(8). Thus A(J) is bounded and it is obviously closed.
Now let feA(d,) and g€ A(S,). Then f +g is clearly in 4(d; +J;) which shows that
A6, +A(,) = A(S, +6,). The reversed inequality is obtained by considering an
element 4 in 4 (8, + d,) and applying the decomposition of example 5. This yields
1 €4 () and g€ A (dy).

Now A (6) is not a semigroup of convex sets. We prove that 4 (3) is not convex.
Let f, and f, be defined as follows

1 if 0<z<}
h“*‘{o if p<z<l

[0 if 0<z<}
h”*‘{l if j<a<l

Thus f, and f, are elements of 4 (}) but (f, +f,)/2 =} for all z and is therefore not
integervalued almost everywhere and so it is not an element of 4 (}).
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2.7.

Ezxample 7. Let A (8) be the set of all integervalued functions in £1(0, 1) of norm <4.
Then 4 () is closed and bounded and A (}) contains the functions f, and f, of example
6, but it does not contain the function (f; + f,)/2. Thus the function (f, + f,)/2hasa po-
sitive distance to the closed set A (}) and therefore there is a positive number % so
small that 4 (}) +%S(3) is not convex. (S() denotes the sphere of radius § in the
norm.) Hence the semigroup 8, (d) =4 (8) + £8 () does not consist of convex sets.
On the other hand all these sets are symmetric neighborhoods of the origin and
again by Theorem 5.6 of CN they are the spheres around the origin in a translation
invariant convex metric for L. This shows therefore that such spheres need not be
convex even in a locally convex space.

§ 3. Auxiliary material
3.1. Hausdorff’s topology for sets.

The following is a well known method to define a topology on the family, F, of all
subsets of a linear space. Let U be a neighborhood of the origin and 4 a given set,
the neighborhoods in F of which we want to define. Let U’(4) be the subset of F
consisting of those sets B in the space for which the two inequalities hold:

A< B+U
BcA+U.

If U varies in the set of all neighborhoods of the origin, the corresponding sets U’ (4)
run through a fundamental system of neighborhoods of 4 in a topology for F. This
will be called Hausdorff's topology.

In general (i.e. if the space has more than one point) Hausdorff’s topology does not
satisfy Hausdorff’s separation axiom, T',, for it is clear that if 4 is not closed the sets
{or points in F} A and 4 are two different elements of all sets U’ (4) or U'(4). On
the other hand, the restriction of Hausdorff's topology to the family of closed subsets of
the linear space satisfies Ty and so does the restriction to the open convex subsets. The
first part of this proposition is standard and the second is an immediate consequence
of the fo%owing theorem in the theory of convex sets: If A is open and convex then
A=1Int 4.

Althongh limits are not unique in Hausdorff’s topology we can thus nevertheless
pick at most one limit among the closed sets and if there exists an open convex limit
it is also unique.

3.2. The convex hull.

We denote the convex hull of a set A by HA. The closed convex hull will be denoted
by HA. In this section we prove the formula:

H(A+B)=HA+HB

which is important in the sequel and, rather surprisingly, does not seem to be ex-
plicitly mentioned in the literature on convex sets.

Although the formula follows rather easily from the barycentrie representation
of the points in the convex hull, we prefer to deduce it as a special case from the
following consideration which is much to general for our immediate purpose but has
also other applications.
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By a hull operation we mean an operation, T, which is defined on a family of subsets
of a given space, takes its values in the same family and which satisfies

1°T4>o4
2° T4 =TA4A
3° Ac Bimplies TA< TB.

If we call any set A satisfying T4 = 4 a hull, it is immediate that for an arbitrary
set 4 the set T'4 is the intersection of all hulls containing 4. We remark also that if
T is not defined for all subsets of the space, we can extend it by defining 7'4 as the
intersection of all hulls containing A4 if there is such a hull and as the entire space
otherwise. Now suppose that the space is a linear space and that our hull operation is
translation invariant, that is

4° £+ T A =T (x+ A) for all zin the space.
Then we have
TA+TB<T(4+ B)

and equality holds if and only if the left member is a hull.
Proof. Let a € A. Then by 4° and 3°

a+TB=T(a+BycT(4+ B).
It follows that

1) A+TB<T(A+ B).
Substituting T'4 for A we obtain

TA+ TB< T(TA + B)
and by use of (1)
TA+TB<TT(A+ B)=T(4+ B),

which proves the first part of the proposition.
Now observe that from 4 < T4 and B< TB follows

A+B<TA+TB.

Thus 7(4 + By T'(TA + TB)y< T*(A + B)=T(A + B) so that T(TA + TB)=
T(A + B). In this equation the left member equals T4 + T B if and only if this
set is a hull, which proves the second part of the proposition.

As special cases we take T = H and obtain the formula which we set out to prove.
Other specializations are obtained by letting 74 denote the linear variety spanned
by A or the additive variety generated by 4. In these cases we have 74 +TB =
T (A + B). An example where equality does not always hold is furnished by choosing
T to be the operation of closure: 74 =A. Thus 4 + B< A + B and equality holds

if and only if 4 + B is a closed set. In particular equality holds if A4 or B has compact
closure.

3.3. The support function.

Let T be a linear system. By 7'* we denote the algebraic adjoint of T, that is the
linear system consisting of all linear functionals on 7. Let L be such a functional
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and K a set in 7. By L 0 K we denote the supremum of L on K. This supremum may
of course assume the value + oo, but if K is non-empty it does not assume the value
—oo, If K and M are two non-empty sets we have

3.31. LoK+My=LoK+LoM,

where in the case when the value + oo occurs the obvious conventions "co + real = co”
and "co + oo =o0” should be made. If the set K is kept fixed and the functional L
varies in T* the mapping L-»LOK is a (real- or + oo -valued) function on 7'*
which is called the support function 8; of K. Formula 3.31 above shows that

3.32. Sisz =Sy + Suy.

It is easy to set that the support function is positively homogeneous:

Sg(ALYy=A8;(L) if 220,
and subadditive:
Sg(ly + Ly) < Sgly + SxLs,.

It is therefore a convex function.

For a one-point set K the support function is a lipear and everywhere finite-
valued function on T'*, i.e. S is an element of T**. The mapping of 7 into T**
defined in this way: a—>8,4; is called the canonical embedding of 7 in T**. In the
following considerations we shall assume that T is embedded in T'** in this way.

If K< T is a translate of M < 7', say K = M + a, then 3.32 gives

3.33. 8= 8y + S

where the second term in the right member is a linear functional on T'*, Conversely,
suppose we know that S = 8§, + (linear functional on T'*). Does it follow that K is
a translate of M? The answer is yes if both sets are convex and compact in a locally
convex, Hausdorff topology for 7. In fact

3.34. Let a locally convex, Hausdorff topology be given on T. Then there exists a
projection P of T** onto a subspace containing T such that if

1° K and M are compact, convex subsets of T and s€T**,

2° Sx(L) = 8y (L) +s(L) for those furctionals L€ T* which are continuous on T,
then K = M + Ps.

Proof. Any linear functional L on 7' has a natural extension to T**, for given s T'**
defined by L(s) = s(L). We assume henceforth that the elements of T* are extended
in this way.

Now we consider the weak topology on T'** defined by the set T of functionals L
which are continuous on 7'. This topology need not be Hausdorff but the topology
which it induces on the subset T of T** is Hausdorff since it is the weakening of the
original topology on 7. Therefore K and M are compact also in the new topology.
The closure of the origin in 7** is the intersection B of all nullspaces of functionals
in 7"

We define P in the following way. Let T, be a supplement of 7'+ R in T**,
Thus T** =T + R + T, and this is a decomposition of T** in a direct sum. We
define P to be the projection on T + T,.
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Now the relation S; =8, + s says that for each LeT"
LoK=LoM+L(s)=Lo(M +s).

Thus any closed halfspace in 7** which contains one of the sets K or M + s also
contains the other set. This means that the closed convex hulls of the sets coincide.
Since the sets are convex it follows that

(1 KE=M+s.

Since R is the closure of the origin in T** the set K will contain K + R. On the
other hand this set, being the sum of a compact set and a closed set, is closed, so that
we have K = K + R. The same argument applies to M. Substituting in (1) we obtain

2) K+R=M+R+s.

We now use the fact that P is a linear transformation so that for any two sets M
and N the formula P(M + N) = P(M) + P(N) is valid. Applying P to both members
of (2) and observing that P(K) =K, P(M)= M and P(R) =0 we obtain

K=M +Ps
which was to be proved.
Incidentally, it follows that Ps€T so that s€T + R. This shows that condition 2°
is a rather strong restriction on s. For in general, of course, T + R is very far from
being all of 7'**.

§ 4. One-parameter semigroups of convex sets

4.1. We suppose in this paragraph that the sets A(d) are convex and form o one-
parameter semigroup. Then for arbitrary 2 > 0 and rational 6 > 0:

A(01) =04 (4).

Proof. We have A(l)=A(;; +A(j~; + -+ A(%), (n terms), which is=
=nA (%) since 4 (2) is convex. Thus A(%L) =}LA (4). By a change of nota-

tion we have also 4 (mA)=ma(A). Combining these two formulas we obtain

(b sl 2 oo

4.2. Example 2 (section 2.2) shows that the above proposition need not be true for
all 6 > 0, i.e. a one-parameter semigroup of convex sets need not be linear. If we make
the following topological assumptions, however, the linearity follows almost trivially.

1. The convex sets A () are bounded and either all closed or all open.
2. The mapping 4 is continuous.

It is easy to see that for a bounded set K the sets K vary continuously with 6.
(Not true for all unbounded sets. Counterexample see CN p. 106.) From 4.1 we have
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A(0) =44 (1) for rational § > 0.

Since both members vary continuously with § the result would follow if Hausdorff
limits were unique. Now the result follows from proposition 3.1. Example 2 shows
that the assumption 1 alone does not imply linearity. Example 4 shows that neither
does assumption 2.

4.3. The following result is basic in the proof of the main theorem in § 5.

Let A(0) be o one-parameter semigroup of compact convex: sets in a Hausdorff, locally
convex linear space, and let o € A (1) be given. Then there exists a function f defined for
all 6 > 0 taking (point) values in the space and satisfying

L f(al +4,) =f(61) +f(52)
2. {(9)ed (9
3. f(1) =a.

Proof. Let the space be T and its topological adjoint 7. For each § > 0 we denote
by @(d, L) the restriction to 7" of the support function of A4 (4). Then ¢ is a realvalued
function. From the semigroup property of 4 (9) it follows that ¢ is additive as a func-
tion of § for each L. Since ¢ is a support function it is subadditive as a function of L
for each ¢ > 0.

Now let L, and L, be two elements of 7. By the subadditivity in L of ¢ (3, L) we
have

@ (8, Ly) + @ (8, Ly) — (3, L; + Ly) > 0.

The left member of this inequality is an additive real-valued function y(8) for 8 > 0.
It is wellknown that such a function can be non-negative only if ¢ (8) = dy(1). Thus
y(d) —dy(1) =0 or in other words ¢ (8, L) —d¢(1, L) is additive in L on 7" for each
6 >0. Moreover ¢(8, L) is positively homogenous in L. Thus we can state the pre-
liminary result: For 6 >0 and Le7": ¢(,L) =d¢(1,L) + A(d, L) where (5, L) is a
realvalued function with 4(1, L) =0, additive in § and linear in L.

By use of 3.34 we see that there is a function g(d) taking values from 7 and such
that

A(6)=84() +g(d).

Here ¢(9) is the element of 7' on which A (d,-) € T** is projected. Since the projection is
linear and 1 is additive in § it follows that g is additive and g(1) = 0. Now put f(8) =
=g(0) +da. Then f is additive so that the statement 1 of the theorem is proved.
The result 3 is immediate and 2 follows since a €4 (1) implies

f(8) =da+g(8)edA(1) +g(d) = A(5).

4.4. If all the sets in a one-parameter semigroup contain the origin the semigroup
is monotone in the sense that d, <4§, implies 4 (8,) < A(3,). For 4(d,) = A(8,) +
+ A (8, — 6;) and since 4 (4, — d,) contains the origin A4 (8,) = 4(d,).

One-parameter semigroups of convex sets containing the origin are ‘‘almost”
linear. The following proposition gives the exact formulation.

If B(9) is a one-parameter semigroup of convex sets containing the origin, there exist
two converx sets K, and K, containing the origin and such that 8 K, < B(8) <6 K,. The
set K, is oblained from K, by adjoining to K, the endpoints of all radii of K.
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Remark. By a radius of K, we mean, of course, the intersection between K; and a
ray from the origin. Such a radius is either the entire ray, the origin or a segment,
one endpoint of which is the origin and belongs to K, while the other endpoint may
or may not belong to K.

Proof. By 4.1 we have for rational r >0

B(r) =rB(l).

Now let K, be the set obtained from B(1) by deleting from B(1) all points which are
endpoints of a radius and different from the origin. Let K, be obtained by adjoining
these points to B(1). Thus

rK,< B(rycrK,.

Since B(d) is monotone it follows that for § arbitrary

UrK,<B{§)< ndrK2.

r<d

It folows from the properties of K, and K, that
UrK, =0K,
7<8

and NrK,=06K,
r>0
which proves the proposition.

4.5. By combination of 4.3 and 4.4 it is possible to complement the result of the
discussion in 2.2.

If A () is a semigroup of compact, convex sets, in a locally convex, Hausdorff, linear
space, it is of the form

A@) =f()+éK

where K 1s a compact convex set and f(6) is a one-parameter semigroun of points.
Proof. Let f be the function of proposition 4.3, put B(d) == 4 (6) — f(6) and apply 4.4.

§ 5. One-parameter semigroups of eompact sets

5.1. Theorem. In a locally convex space any one-parameter semigroup of compact sets
consists of convex sets.
Proof. Let the semigroup be 4(8). We fix § and consider the sets

Bn=2"A(;—"), n=0,1,2,....
Then
1° B, is compact
2° B,,, < B,
3° HB,=HB,
1° is obvious. 2° follows from the formula 2M < M + M. 3° follows by induction from
3.2 in the following way
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2] 2]

5 S\ 5
_ 2 I(HA( )THA(?))sz IHA(Q;L:;):H(B,H).

\

Consider now the compact set B= ﬂB We observe first that B is convex.
Let namely =z, JEB Then z, ?/EB for all n. It follows that if n>1 we have

+y,.1
z 3 2 e (B + By)= Jlosed this implies that B

is convex.

Next we observe that B,— B in Hausdortt’s topology for sets. That this follows
from 1° and 2° is a standard topological theorem.

1t follows that H B, — H B, for the operation H is a continuous operation in a locally
convex space. (We can also prove the result directly in the following way. Let U
be a convex neighborhood of the origin. We need the inequalities HB,< HB + U
for all sufficiently large n. Simply choose n so large that B, < B -+ U. Then by 3.2
we obtain HB,< HB + HD But U = HU since U is convex.)

Combining this with 3° above we obtain HB,= HB = B since B is convex and
closed. On the other hand By > B = HB, > B, so that equality holds everywhere
and it follows that B, = 4(J) is convex. The theorem is proved.

5.2. Structure Theorem.:

Any one-parameter semigroup A(0) of compact sets in a locally convex, Hausdorff,
linear space is of the form

40)=f() +0K

where f(d) is a one-parameter semigroup of points and K a compact convex set.
Proof. Theorem 5.1 and proposition 4.5.
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