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On the boundary values of harmonic functions in R?

By KJjELL-OVE WIDMAN

1. Introduction

The purpose of this paper is to exhibit three theorems about the boundary
values of harmonic functions, defined in R3 regions which are bounded by
Liapunov surfaces. Theorem 1 shows the existence almost everywhere of non-
tangential boundary values of positive harmonic functions. A full proof of this
theorem is given. Theorem 2 assures the existence almost everywhere of non-
tangential boundary values for functions bounded in cones with vertex on the
boundary and lying in the region. Theorem 3, finally, gives a necessary and
sufficient condition for the existence of non-tangential boundary values, origin-
ally derived by Marcinkiewicz and Zygmund and later generalized by Stein.
As the proofs of the two latter theorems differ from proofs published elsewhere
only in the technical aspect, these are not included here.

2. Definitions

We consider an open region €,, bounded by a Liapunov surface S;. By
Liapunov surface we mean a closed, bounded surface with the following pro-
perties: '

1°. At every point of S, there exists a uniquely defined tangent plane, and
thus also a normal. ,

2°. There exist two constants C'>0 and A, 0<A<1, such that if 6 is the
angle between two normals, and 7 is the distance between their foot points,
the following inequality holds 6< O’ -+

3°. There exists a constant d >0 such that if 2 is a sphere with radius d
and center @, on the surface, a line parallel to the normal at @, meets S, at
.most once inside 2. It is easily realized that d may be chosen arbitrarily small.

For the properties of Liapunov surfaces see Gunther [5]. In the sequel we
shall consider only inner normals, which will simply be referred to as normals.
We denote by V(Q, «, k) a right circular cone having vertex at @ €5;, axis along
the normal at @, altitude h, generating angle=a and being contained in €.
Non-tangential approach to the boundary means approach inside some V (@, «, k).
r(P, @) will be the distance between P€Q, and the tangent plane at Q€S,.
The volume element in R3 will be denoted by dv and the surface element by dS.
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3. Lemmata

If Q€S, we introduce ‘“the local coordinate system’ with the origin at @,
with the (zy)-plane in the tangent plane at @, and with the positive z-axis
along the normal at Q. Inside the Liapunov sphere, S, may be represented on
the form z={(x, y).

Lemma 1. If C'd* <1 we have

A+1
iz, y)| <202+ %) T
and |f(=, y)| < 2¢'|P - Q'

where P = (z, y, f(x, y))-
Proof: Cf. Smirnov [7], p. 490.

Lemma 2. Let @ be<m/2. Then there is a constant d, such that if d<d,, a line
making an angle < o with the normal at an arbitrary point Q€ S,, will meet Sy at
most once inside the sphere with center @ and radius d.

Proof: See Gunther [5], p. 6.
Denote by G(P, @) the Green’s function of Q.

Lemma 3. There is a constant ¢,, depending on Q, only, such that for any points
P, Q we have

ro|<ptop

where (8G/dxg) (P, Q) denotes differentiation in an arbitrary direction ai P. In parti-
cular, for P €8S we have

o 0|72

9G/onp denoting the normal derivative at P.

Proof: See Eidus [3].

Lemma 4. The derivatives of G(P, Q) are continuous in £, U S;.

Proof: According to Schauder [6], a harmonic function in £2;, having tangen-
tial derivatives along the boundary which satisfy a Holder condition, has deri-
vatives of the first order that are continuous in £, U S,. Thus it suffices to
prove that 1/|P—@]|, Q€Q,, P€S,, has tangential derivatives of the above-
mentioned kind. But that is clear, because the tangential derivatives may be
expressed as a linear combination of the partial derivatives of 1/|P—@| with
functions which themselves satisfy Hélder conditions, as coefficients.
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Lemma 5. Let w be < m/2. Then there exist two constanis 6 >0 and c,, >0 such

that if Q€S,, BEQ,, |B— Q| < & and if the angle between @_é and the normal at Q is
< w we have

B> >0 25

Proof: It suffices to prove the lemma in the case w =0. A simple application
of Harnack’s inequality then gives the general case. We may write (cf. Gunther
[6], p. 202)

1 1 1 oG

P PY= 55| "an )5 [P=T] oms

(T, P'y dS(T).

As we may regard the integral as the potential of a simple layer, we get (cf.
Gunther [5], p. 62):

oG . 1 1 cos ¢ 9G m 4 196
Emo(Q,B) [0-BP 4x)s[0-TF tn (T B) d8( )+ (Q, B)
. oG 2 1 _cos g oG
ie. %(Q, B)= |Q Blz o s,[Q le (T B) d8(T),

where @ is the angle between QT and the normal at Q. Choose ¢>0 so that
32¢,:C'-c*<land o<d. If T=(¢, 9, £) we have by Lemma 1, when & +7?<d%,

£<20'|Q -T2

Moreover, we have cos = , which gives us

_ L
Q-]
|cos p|<20'|@—T]\

For  small enough we evidently have

1
|B—T >51B-al.

Hence

f ohs 2 ¢, B asw )} o O f |@— T2 as(r)
1Q-T|<o |1@-T|<o

Q_leanr ]B le
16¢, - C" 7
<Aoot 2n< 0.
|B-@[ [B-Q[
Having fixed ¢ we find
_cosp oG 1
T, B) dS — 4.
[ttt @ masm)|<,
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If now § is chosen small enough, we get

l.4 <g_7£
S8
Thus
oG 2 1 cos ¢ oG 1
— (@, B =——5—— — (T, B)dS(T) =2 i——-
67@0(@ ) IQ_Blz 27! s‘IQ—leanT( ) () IQ_Blz

Lemma 6. Let P, be a fixed point of Q,. There exists a constant ¢, >0 such that
oG
o (@ Pg)=>c,

for all @Q€S,.

Proof: Let & be as in Lemma 5. We may assume that [P,—@|>4 for all
Q€S,. The set of points P, belonging to Q,, and for which |P—@|>8/2 when
Q€S is compact and contains P, Harnack's inequality gives

% u(Pg) < u(P) < ¢3 - u(Py)
3

for every positive harmonic function and every P belonging to the set. Let @
be an arbitrary point €8,. (8G/ong) (@, P) is harmonic and positive. Moreover,
there is a point P on the normal at @, for which §/2<|P—Q|<§, and by
Lemma 5 we get

oG 1 oG €34
il >—. > =¢, > 0.
ong @ P> 5 (@ P> 2050y >0
Lemma 7. If Q and Q' €8,, |@Q—Q'|>0>0,
. oG B
1}1)1101,370(@, P)=0
uniformly in @ and Q'.
Proof: As in the proof of Lemma 5 we have
oG o 2 1 cos ¢ oG
(@ P)= ;- "o T as (T, P)dS(T).

onq
Choose an arbitrary £>0. It is easily realized, that (9/dng) (1/|@— P|) is uni-
formly continuous in {P||Q— P|>g/2}. Choose ¢,, 0<o0,<g/3, so small that

o 1 2 1

<&
6
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if |P—P’'|<20,. Finally choose o,, 0<0,<p/3 so that
144-¢,-C' -t , ¢

92 Q2<§.
For |P—Q'|<0,/2 we now have
oG |[P-q
T, PYdS(Th< A- )
J‘IT Q |>o,3’ﬂr( ) as(T) 0'%

where 4 is a constant not dependmg on @ and ¢,. In fact, this inequality is
a lemma of Liapunov’s. It is proved in Gunther |5|, p. 200 for the case when
P is on the normal at ¢, but’the proof is easily extended to the more ge-
neral case. Hence we get

cosp oG i 1 1
—TPdST <A |P- —5
Sy g T g T DI < 2=

203

As in Lemma 5 we also get

¢
f o8¢ 0 o T Py asT) <2916 0’ oh<E.
| T~Q <o, Q 3

[@—TPon
Finally
|2830|Q1P| 217zf|T Q|<a;329|QIT|aGT(T P)dS T)‘
<%‘z | T— @ | <oy 62Q|Q1P| 3iQ|Q1T| o (T, P)dS(T)
a::Q|QIP| 2izf|r Q|>alaari.(T P)dS(T) < gﬂ-:—z-AJP;%QIIZ

provided that |P—@Q'|<o,/2.
1 1.

If P is chosen so close to @ that A-|P—@Q’ I" — ;_—2< —~, the lemma is proved
by inserting the resulting estimates in the 1ntegra1 representation of (8G/éng)
(@, P).

4. Theorem 1

If u, is a positive harmonic function in Q,, then u, has non-tangential boundary
values almost everywhere on S,. Moreover, the boundary values € L1(S,).

Remark. Fatou proved in 1906 that a bounded harmonic function in the unit
disk has non-tangential boundary values a.e. [4]. Using conformal mapping, Fatou’s
theorem may be stated for quite general plane regions. Calderon [1]and Carleson [2]
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have proved similar theorems for regions in R" bounded by planes, but have weaker
assumptions on the function. Tsuji [10] and Solomencev [8] have studied regions
bounded by curved surfaces, but are assuming stronger regularity conditions than
those in this paper. The method of proof used here is strongly related to the paper
of prof. Carleson, to whom the author also owes his interest in this problem.

Proof: Let @ be an arbitrary point €S;. It suffices to prove the existence
of boundary values in a neighbourhood of @'. Assume d to be so small that

1°. d<d,=the number appearing in Lemma 2, if w=arctg 1/2.
2. 8C'd <1, ie. 20d"* < d/4.

We introduce the local coordinate system with the origin at @'. Let 0=(0,0,
3d/4). The condition 2° shows that a line through O and a point on 8, inside
the sphere 2 with center @ and radius d will make an angle with the z-axis
" which is<arctg 1/2=w. Condition 1° and Lemma 2 show that such a line
meets S; at most once inside 2. We now introduce polar coordinates with origin =
O, ¢ being the angle between radius vector and the plane through O parallel
with the (z,y)-plane. What we just proved shows that the part of 8, which is
inside 2 may be represented by o=g,(0, ). Let S be the part of S, which is
inside the cylinder, which in the local system has the equation z*+y®=d?/4.
The surface of this cylinder may be represented in polar coordinates: g = g,(6, ).
The values of the vector (6, ) for which (0, @, ¢,(0, ¢)) € S will be called “(6, ¢)-
values belonging to S§”. Evidently, (6, — (/4)) do not belong to S. Now let
¥'(0, ) be an infinitely differentiable function, such that 0S¥ <1, ¥(#, ¢)=0
for o> —(n/4), and ¥(f, g)=1 for (6, ) belonging to 8. The existence of such
a function is easily proved. The surface generated by

0=0(0, 9)=0,00, ) ¥ (0, p) + 0,0, p)[1 — ¥ (6, )]

satisfies the conditions of a Liapunov surface, apart from not being bounded.
If we insert the halfsphere with radius d/2 and center (0,0,d/2) however, we
get a mew region (2, bounded by a Liapunov surface. We denote by I' the part
of 9Q which is not § and assume that the normals of SUT satisfy §<C-r".

Consider the restriction # (as a function of the local coordinates) of u, to
Q. Of course, # is harmonic and positive. Put w.(x,y,2)=u{r,y,2+¢&). For ¢
small enough this function is defined in QU SUT, and thus it may be repre-
sented as an integral (cf. Gunther [5], p. 202)

1

U (. )=E rus

m(cz)%‘i @, P)dS(@).

The measures du.(Q)=u,(Q) dS(Q) have compact support and uniformly bounded
total mass. For by Lemma 6 and the fact that u is positive, we get

f |dee| = f w(9) dS(@) < - f 95 (0, 0) u(@) d48(Q) = u,(0).
sur €y J Og Cy

But #.(0)—>u(0) and thus the total mass is uniformly bounded. Hence we may
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choose a weakly convergent subsequence, du,—>du. A well-known theorem of
Lebesgue allows us to decompose du:

du(@) =1(Q) dS(Q) +do(Q),
where (Q)€LYSUT), and do is singular. This gives us

B)= = f o ' (@ P) /(@ 4S(@+do()

We assert that u(P)—f(Q) when P—>@ non-tangentially, a.e. on S. By another
well-known theorem of Lebesgue we have for almost all T€S:

J.I S {1H@) — £(T) | dS(Q) + do(Q)} = o(e?)

Assume @, to be such a point and choose an arbitrary a<m/2. Let h be so
small that V(Q,, a/2+x/4, h) is contained in . Suppose now that §>0 is
chosen so that

1°. 46<d and 46 <inf |Q,—Q|, QET.
2" Lemma 5 is valid for o=m/4.

°. V1+3— —3 cos 28 <§ and V14388 cos 28 <& where p=arctg [2C 8'].

We assume 4 to be an arbitrary point €V(Q,, a, k), such that |4 —@Q,|=a<d/2.
Define

L,={P|P€8, |Q,— P|<a).
L,={P|Pe€S, 2 'a< |Q,— P|< 2%}
for y=1,2,..., N where 2Ya<§/2<2"*'a and
L-{rus}-{U L}

As we can write

G
Qo= gz . @2 (0.4 35(0) we get

1 1
s -t@l<g [, 11@-i@al2e @ das@+ [ 2 @ .4 doio)

N
<23 {Q (Q,A)} f . {17@ ~ Qo) 48(Q) + do(@)}

47!,,.:0
-0 i
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LN S -
+0(1) sup =" (@, 4) —s(é)go{gg% 5 (@ A)}z @
Y%
+0(1) sup =2 (@, ). M

To simplify the notations we put (8G/ong) (@, P)=K(Q, P). In the sequel ¢;
denote constants not depending on a,v or 8. We need estimates of K(Q, A)
for @€ L, For the two cases »=0 and y=1 Lemma 5 gives

€ A

-3 2
a? sin?® (7—1—(}) o? ®
4 2

Choose », 2<»< N, let ¢, be an arbitrary peint €L, and let B be the point
on the normal at @, for which we have |Q,—B|=2%a. As 2'a<2Ya<d<d/4,
B is in Q. It follows from Lemma 3 that

K(Q A)< <

%1
Q-4

K(Q,, B)< 2—2“1—ag (3)

We denote by the (&7 ()-system the local coordinate system with the origin at
Q. Let M, be the point of L, whose projection along the {-axis on the (§, n)-
plane is on the same line through @, as @, and which lies at a distance=
3:2"% from @, Letting I'; be the sphere with center M, and radius 3-2'%a,
we find that B does not lie inside I',. Now there exists a constant c; such that
K(Q,, P)<c;* K(@,, B) for P¢T';. For by Lemma 5 we have

c o -
K@, B)>|7_{3—B|-2=013.2 2.2 (4)
From assumption 3° about ¢ it follows that |P—@,]|>2"%a for P¢TI,, and

from this fact and Lemma 3 it follows that

c

K(Q,,, P)<W2<

¢ 2—2v+8 . a—-2‘ (5)

(4) and (5) give

K@, P) <4 a0 ¢ -2 _ .
K(@,B) ¢3-2%a® ¢;

(6)

Denoting by 4,(P) the harmonic measure of L,_, U L, U L,,; we find for P€oI’, N Q
h,(P)=cg>0. (7)

For introduce the (X, Y, Z)-system = the local coordinate system with the origin at
M,. The part of S, for which X%+ ¥2<(7- 2" *a)? is contained in L,y U L, U Ly1.
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This follows from assumption 4° about &; if @ is on said part of § we have
|@—M,[P<(7-27%a)2+(20[7- 2 *al "2 < 2" 'a, while for Q€S but Q¢L,
UL,UL,,, we evidently have [@—M,|>2"""a. If P is an arbitrary point of
Iy N Q, we find for P€S h(P)=1, and hence we may assume that P¢S. Put

P’ =the projection of P on the (X, ¥)-plane and P'P=I, |P'~P|=|l|. We
proved above that

U={Q|Q€S, Q=(X,Y,2)~|(X, Y, 0)——P']<l1—lZ—|}cL,_1 UL U Ly

If P”€U the angle between PP and 1 is<m/8, and from assumption 4° about
d it follows that the angle between ! and the normal at P” is </8. Hence the

angle between PP and the normal at P is <mn/4. Lemma 5 and assumption
2° about § then give

oq ., G
— 2=
PR TN

Thus
1 G N BN
_—— - > . = >0.
h,,(P) 47 L, qUL,UL,, ano (Q’ P) dS(Q) 47 -16 I l I2 144 Ce Y
For Peal'n Q it follows from (6) and (7)
K(Qv: P) c5
W ML =2, <o, - .
R(@, B) " g 0= M(P)

If @ is any other boundary point of Q\I';, we have lim A(P)>0, while by
P>Q
Lemma 7 we have

E(@.P)_

T E@.B)

Together with (3), the maximum principle then gives for P€Q\I'
K(Q,, P)<c; h(P) - K(Q,, B)<c; h(P) ¢, 27%-a"2
Particularly we get for P=4A
K(Q, A)<c, h(d)-c, 2% a2 8)
Inserting (2) and (8) in (1) we find
)~ @0 <o) + o(3) -c0- 2, ) + 001 sup 22 0,

Now 3V .oh(P)<3, as we may regard D;-;h,(P) as the harmonic measure of
a cerfain subset of S, each point being counted at most three times. From
Lemma 7 it follows

Tm {sup o
A->Q, |Q€L TNg

(@ A)} =0.
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— 0
Hence Al_l_fgo |u(4) = (@) | < €0 8('2‘) .

But £(8/2)-—>0 when 6—0, and thus the first part of the theorem is proved.

We remarked above that the boundary values € L1(S U I') and thus also € LY(S).
The latter part of the theorem now follows from the simple fact that we can
cover §; with a finite number of such neighbourhoods S.

5. Theorem 2

If u is harmonic in Q,, and if for almost all Q there is a cone V(Q, a, h) in which u
ts bounded, then u has non-tangential boundary values almost everywhere on 8.

Remark. The analogue of this theorem in the case 8, is a plane was proved by
Calderon [1]. Having proved Theorem 1, Theorem 2 follows as in Calderon’s paper,
his proof needing only minor modifications to be applicable in this case. We there-
fore omit the proof.

6. Theorem 3
The harmonic function u in Q, has non-tangential boundary values if and only if

[grad w(P)[* -
fvw. any 1P, Q) do(P) <

almost everywhere in Q.

Remark. The values of « and » may depend on Q. The formulation of this theorem
is chosen because of its resemblance to a similar theorem by Stein [9], valid when S,
is a plane. Note that in this case the theorem of Carleson [2] contains that of Stein.
The proof of Theorem 3 in principle follows Stein’s proof, the difference being of a
technical kind. However, the technical difficulties are overcome by the use of the
methods developed in the lemmas and in Theorem 1. Hence we here are content
with the mere statement of the theorem.
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