Communicated 11 September 1963 by AKE PLEIJEL and LARS GARDING

Compact linear mappings between interpolation spaces

By ARNE PERSSON

Introduction

Let L^p denote the space of all (equivalence classes of) functions f defined on some subset Ω of the ν -dimensional euclidean space R^{ν} and such that f is measurable and

$$\int_{\Omega} |f(x)|^p dx < \infty, \ dx = dx_1 \dots dx_r.$$

The well-known M. Riesz theorem states in particular that, if T is a linear operator which maps L^{p_j} continuously into L^{q_j} (j=0,1), then T maps L^p continuously into L^q , where p and q are given by

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \ \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1} \quad (0 < \theta < 1).$$

If in addition $T:L^{p_0}\to L^{q_0}$ is a compact mapping, it was proved by Krasnoselski [2] (cf. also Cotlar [1], where a similar, slightly weaker result is established) that the mapping $T:L^p\to L^q$ also is compact. J. L. Lions (personal communication) posed the problem if this theorem holds true if we replace L^{p_0} , L^{p_1} and L^{q_0} , L^{q_1} by more general interpolation pairs A_0 , A_1 and E_0 , E_1 , respectively, of Banach spaces and L^p and L^q by interpolation spaces A_θ and E_θ of exponent θ with respect to these pairs. We shall prove here that this question can be answered in the affirmative as soon as the interpolation pair E_0 , E_1 satisfies a certain approximation hypothesis, a special case of which was already considered by Lions [3] for other purposes. The approximation hypothesis is easily verified in almost all known concrete examples of interpolation pairs. We give the details of the verification in the case E_0 , E_1 are L^p -spaces over an arbitrary locally compact space X with respect to a positive measure on X. Lions [3] has verified the condition in another important case.

Interpolation spaces

A pair E_0 , E_1 of Banach spaces is called an interpolation pair, if E_0 and E_1 are continuously embedded in some separated topological linear space \mathcal{E} . One verifies easily that $E_0 \cap E_1$ and $E_0 + E_1$ are Banach spaces in the norms

A. PERSSON, Compact linear mappings

$$x \to \max (\|x\|_{E_0}, \|x\|_{E_1})$$

and

$$x \to \inf_{x=x_0+x_1} (\|x_0\|_{E_0} + \|x_1\|_{E_1}),$$

respectively. Provided that A_0 , A_1 and E_0 , E_1 are interpolations pairs, A_{θ} and E_{θ} are called interpolations spaces of exponent θ (0 < θ < 1), with respect to A_0 , A_1 and E_0 , E_1 if we have the topological inclusions

$$A_0\cap A_1 \subset A_\theta \subset A_0 + A_1; \ E_0\cap E_1 \subset E_\theta \subset E_0 + E_1,$$

and if each linear mapping T from A into \mathcal{E} , which maps A_i continuously into E_i (i=0, 1), maps A_{θ} continuously into E_{θ} in such a way that

$$M \leq M_0^{1-\theta} M_1^{\theta}$$

where M denotes the norm of $T:A_{\theta} \to E_{\theta}$ and M_{i} the norm of $T:A_{i} \to E_{i}$ (i=0,1). For given pairs A_{0} , A_{1} and E_{0} , E_{1} one can construct many interpolation spaces (see Lions-Peetre [4]). But there exist interpolation spaces A_{θ} , E_{θ} and A_{θ} , E_{θ} , which for each fixed θ are in a certain sense minimal and maximal, respectively (loc. cit.). We shall make use of the following lemma, the proof of which can be found in Lions-Peetre [4].

Lemma. Let A_0 , A_1 be an interpolation pair and suppose that A and E are given Banach spaces with $A \subset \overline{A}_{\theta}$ (0< θ <1). Then, if $T: A_0 \to E$ is compact and $T: A_1 \to E$ is bounded, it follows that $T: A \to E$ is compact.

The approximation hypothesis

If E and F are Banach spaces we denote by L(E, F) the space of all linear bounded mappings T of E into F endowed with the norm

$$||T||_{L(E, F)} = \sup_{||x||_{E} \leq 1} ||Tx||_{F}.$$

For interpolation pairs E_0 , E_1 we shall consider the following condition:

(H) To each compact set $K \subset E_0$ there exist a constant C > 0 and a set \mathcal{D} of linear operators $P: \mathcal{E} \to \mathcal{E}$, which map E_i into $E_0 \cap E_1$ (i = 0, 1) and are such that

$$||P||_{L(E_i,E_i)} \leq C \quad (i=0,1).$$
 (1)

Furthermore, we suppose that to each $\varepsilon > 0$ we can find a $P \in \mathcal{D}$ so that

$$||Px-x||_{E_0} < \varepsilon \tag{2}$$

for all $x \in K$.

In practice it is often more convenient to verify one of the following stronger hypotheses:

(H₁) There exist a constant $\upsilon > 0$ and a set \mathcal{D} of linear operators $P \colon \mathcal{E} \to \mathcal{E}$ with $P(E_i) \subset E_0 \cap E_1$ (i = 0, 1), such that (1) is satisfied and such that to every $\varepsilon > 0$ and every finite set x_1, \ldots, x_N in E_0 we can find a $P \in \mathcal{D}$, so that

$$||Px_k - x_k||_{E_0} < \varepsilon \quad (k = 1, \ldots, N).$$

(H₂) There exists a sequence $(P_n)_1^{\infty}$ of linear operators $P_n: \mathcal{E} \to \mathcal{E}$ with $P(E_i) \subset E_0 \cap E_1$ (i = 0, 1) such that $P_n x \to x$ in E_i as $n \to \infty$ for each fixed $x \in E_i$ (i = 0, 1).

The latter condition is considered in Lions [3]. Using the Banach-Steinhaus theorem we see that (H_1) follows from (H_2) , and it is easily verified that (H_1) implies (H). Thus $(H_2) \Rightarrow (H_1) \Rightarrow (H)$. For later use we notice that in (H_1) it is clearly sufficient to consider elements x_1, \ldots, x_N which belong to a dense subset of E_0 .

We shall now prove the main result.

Theorem. Let A_0 , A_1 and E_0 , E_1 be interpolation pairs and suppose that A_θ and E_θ are interpolation spaces of exponent θ (0< θ <1), with respect to these pairs. Suppose further that $A_\theta \subseteq \bar{A}_\theta$ and that E_0 , E_1 satisfies (H). Then, if $T: A_0 \to E_0$ is compact and $T: A_1 \to E_1$ is bounded, it follows that $T: A_\theta \to E_\theta$ is compact.

Proof. The image $K = T(B_0)$ in E_0 of the unit ball B_0 in A_0 is relatively compact in E_0 . Hence, choosing P in accordance with (H), we find

$$||PTa-Ta||_{E_0} < \varepsilon$$

for all $a \in B_0$, that is

$$||PT-T||_{L(A_0,E_0)}<\varepsilon.$$

In virtue of (1) we therefore obtain

$$\|PT-T\|_{L(A_{\theta},\,E_{\theta})}\leqslant \|PT-T\|_{L(A_{\theta},\,E_{\theta})}\,\|PT-T\|_{L(A_{1},\,E_{1})}\leqslant \varepsilon^{1-\theta}\,(C+1)^{\theta}\|T\|_{L(A_{1},\,E_{1})}.$$

This means that the mapping $T: A_{\theta} \to E_{\theta}$ can be approximated uniformly by operators of the form PT, where $P \in \mathcal{D}$, and hence the theorem will follow if we can prove that each mapping $PT: A_{\theta} \to E_{\theta}$, $P \in \mathcal{D}$, is compact.

By the closed graph theorem the mappings $P: E_i \to E_0 \cap E_1$ (i = 0, 1), are continuous. Hence, the composition of a compact and a bounded operator being compact, $PT: A_0 \to E_\theta$ is compact and $PT: A_1 \to E_\theta$ is bounded, so that in view of the lemma $PT: A_\theta \to E_\theta$ is compact. This completes the proof.

An example

We shall verify the approximation hypothesis in an important concrete case. Let X be a locally compact space and μ a positive measure on X. Denote by L^p ($1 \le p \le \infty$), the Banach space of all (equivalence classes of) measurable functions f on X with

$$||f||_{L^p} = (\int |f(x)|^p d\mu(x))^{1/p} < \infty,$$

if $1 \le p < \infty$, and

$$||f||_{L^{\infty}} = \operatorname{ess} \sup_{x \in X} |f(x)| < \infty,$$

A. PERSSON, Compact linear mappings

when $p = \infty$. The closed subspace of L^{∞} which consists of all bounded functions vanishing at infinity is denoted by L_0^{∞} . When combined with the main theorem the following proposition generalizes the result of Krasnoselski [2] to arbitrary locally compact spaces. The method of proof is well known.

Proposition. The interpolation pairs L^{p_0} , L^{p_1} $(p_0 < \infty)$, and L_0^{∞} , L^{p_1} satisfy the approximation hypothesis (H_1) .

Proof. Let $f_1, ..., f_N$ be given functions in $L^{p_0}(L_0^{\infty})$ and suppose $\varepsilon > 0^{\bullet}$ is a given number. Since the set \mathcal{B} of all bounded measurable functions with compact supports is dense in $L^{p_0}(L_0^{\infty})$, we may assume that $f_j \in \mathcal{B}$ (j = 1, ..., N). Let K be a compact set in X, outside which all f_j vanish, and choose $\eta > 0$ such that

$$\eta \cdot \max(1, \mu(K)) < \varepsilon.$$

It is easy to construct a finite partition (K_n) of K consisting of a set K_0 of measure zero and measurable sets K_1 , K_2 , ... with $\mu(K_n) > 0$ and such that

$$\sup_{x, y \in K_n} |f_j(x) - f_j(y)| < \eta \quad (j = 1, ..., N).$$

Let φ_n (n=1, 2, ...), denote the characteristic function of K_n and set

$$Pf = \sum_{n>0} \left(\mu (K_n)^{-1} \int f \varphi_n d\mu \right) \varphi_n$$

for each locally integrable function f. It is obvious that P maps L^{p_i} into $L^{p_0} \cap L^{p_1}(i=0,1)$, $(L^{\infty}_0 \cap L^{p_1})$. Moreover, for each $f \in L^p$, $p < \infty$, we have

$$\begin{split} \|Pf\|_{L^{p}}^{p} &= \sum_{n>0} \left(\mu(K_{n})^{-1} \int f \varphi_{n} \, d\mu \right)^{p} \mu(K_{n}) \leqslant \sum_{n>0} \mu(K_{n})^{1-p} \int_{K_{n}} |f|^{p} \, d\mu \cdot \mu(K_{n})^{p/p'} \\ &\leqslant \sum_{n>0} \int_{K_{n}} |f|^{p} \, d\mu \leqslant \|f\|_{L^{p}}^{p}, \quad \left(\frac{1}{p} + \frac{1}{p'} = 1 \right). \end{split}$$

The case $p=\infty$ is easily treated directly, and hence we have proved (1) with C=1. In order to prove (3) we observe that

$$\sum_{n>0} \left(\mu(K_n)^{-1} \int f_k \varphi_n \, d\mu \right) \varphi_n(x) - f_k(x)$$

$$= \sum_{n>0} \left[\mu(K_n)^{-1} \int \left(f_k(y) - f_k(x) \right) \varphi_n(y) \, d\mu(y) \right] \varphi_n(x).$$

Since for each $x \in K_n$

$$\left|\mu(K_n)^{-1}\int (f_k(y)-f_k(x))\varphi_n(y)\,d\mu(y)\right| \leq \eta,$$

we conclude that, for all $1 \le p \le \infty$,

$$\left\|Pf_k-f_k\right\|_{L^p}\leqslant \eta\left(\sum_{n>0}\int\!\!\varphi_n\left(x\right)\;d\mu\;\left(x\right)\right)^{1/p}=\eta\left(\mu\left(K\right)\right)^{1/p}<\varepsilon\quad(k=1,\,\ldots,\,N).$$

Thus the proposition is proved.

Remark. Lions [3] showed that a very wide class of interpolation pairs satisfy condition (H₂).

University of Lund, Sweden.

REFERENCES

- 1. COTLAR, M., Continuity conditions for potential and Hilbert operators. Cursos y Seminarios de Matemática, Fasc. 2, Buenos Aires (1959). (Spanish.)

 2. Krasnoselski, M. A., On a theorem of M. Riesz. Dokl. Akad. Nauk 131, 246-248 (1959).

 3. Lions, J. L., Sur les espaces d'interpolation; dualité. Math. Scand. 9, 147-177 (1961).

- 4. LIONS, J. L. and PEETRE, J., Sur une classe d'espaces d'interpolation. To appear in Inst. Hautes Études Sci. Publ. Math.