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Application of the Hellinger integrals to g-variate stationary
stochastic processes

By HaBiB SALEHI

Introduction

Let (x)” be a g-variate discrete parameter weakly stationary stochastic process
(SP) with the spectral distribution measure F defined on B the Borel family of
subsets of (—m, @]. It is known (8, Thm. 2] that for matrix-valued measures M
and N the Hellinger integral (M, N)g= 7, (dMdN*)/dF (* = conjugate) may be de-
fined in such a way that H; ¢ the space of all matrix-valued measures M for
which (M, M)g= |7, (dMdM*)/dF exist becomes a Hilbert space under the inner
product (M, N)g (7 =trace). The significance of these integrals when M and N
are complex-valued measures and F is a non-negative real-valued measure has
been pointed out by H. Cramér [1, p. 487] and U. Grenander [2, p. 207] in rela-
tion to univariate SP’s. In this paper we will indicate the importance of our
Hellinger integrals with regard to g-variate SP’s. In particular, we will obtain a
natural extension of a certain result due to A. N. Kolmogorov {3, Thm. 24] which
under a certain assumption was gencralized by P. Masani [4, pp. 145-150].

Let K be any bounded subset of integers. K’ will denote the complement of
K in the set of integers. My and My, will denote the subspaces spanned by
Xy, k€ K and xy, k€ K’ respectively, i.e., My =&{x;, k€ K} and My =&{x,, kEK'}.
M., will denote &{x,, k an integer} and finally N, will denote M., N MY, where
MY denotes the orthogonal complement of My in a fixed Hilbert space H¢ con-
taining the SP (x;)%..

De?nition 1. We say that (a) K is interpolable with respect to (w.r.l.) (X)) s if
nK: 0}

(b} (Xx)% s interpolable if each bounded subset K of integers is interpolable w.r.t.
(Xk) ano- ‘

(¢) (%)% is minimal if for each k, {k} is not interpolate w.rt. (Xi) .

It is easy to see that for any X € g, (x,%;) =0 for all k€ K'. Thus the following
definition makes sense.

Definition 2, (a) For eazh x€ Hg, we let
P,(¢%) = (x, Xy) e,
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(b) We define the operator T on Ny into Hy g as follows: for each x €Ny

1
TX=—+—Mp,
Vom %

where for any trig-polynomial P with malrix coefficients the measure Mp on B is
given by Mp(B)= [P (") df.

The important properties of T are given in the following theorem.

Theorem 1. (a) Let X€E Ny and ¥ be in Ly ¢ such that V¥ =X, where V s the
isomorphism on Lo g onto M [7, p. 297). Then for each BE€ B, Mp_(B)=J3¥ dF.

(b) T 35 an isomelry on Ng into Hy g. In fact for all X and y in Ny

(Xr y) = (TX: Ty)F
(c) The range of T is a clcsed subspace of the Hilbert space Hy .

Proof. (a) Let W€L; y and x=VW. Then by [7, p. 297]
) = (B -5 [ war e, m
T J—n

Also by the definition of Mp,

1 " ik8 iy — 1 " igy 4
ﬂf_,,e dMPx(e")—%f_an(e ) e'*0 do

1 (", < L
“on {> (x,x,) e} df
~n JeK
=5 517; f (x, X,) €4 P00 = (X, X,). )
jeK -7

By (1) and (2), the measures {pWdF and [pP,(¢®)df have the same Fourier-
coefficients and hence for each B€RB,

Mp (B)= f W JF.

(b) Let x and y be in Hg, and let @ and ¥ be in L, y such that V@ =x
and VW =y. Then by [8, Thm. 1]

27(Tx, Ty)g = (B, P)sg. ' 3)
Alzo by [7, p. 297] 27(x, y) = (P, ¥)g. (4)
From (3) and (4) (b) follows. (Q.E.D.)
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(c) Since My is a closed subspace and since by (b) T is an isometry on Mg
into Hy 5, therefore the range of T is a closed subspace of Hsp. (Q.E.D.)

In the following theorem a eharacterlzatlon is given for the interpolability
of a SP.

Theorem 2. (x)7. is interpolable iff for any trig-polynomial P with matrix
coeffieients for which Mp vs not ¢ null-point in Hp g, (Mp, Mp) is nof Hellinger
integrable w.rt. F.

Proof. (<) If K is any bounded subset of integers, it is a consequence of
Theorem 1 (b) that Mg ={0}; hence by definition 1 (a), K is mterpol&ble w.r.t.
(%:)%. Since K is arbitrary it follows by definition 1 (b) that (%)% is inter-
polable.

(=) Suppose there exists a trig-polynomial P with matrix coefficients for which
M;p is not a null point in H, y and (Mp, Mp) is Hellinger integrable wrt. F.
Hence by [8, Thm. 1 (c)], @ = (dMp/du) (d¥/dy) €L, g, where p is any o-finite
non-negative real-valued measure w.r.t. which Mp and F are a.c. If x€ M., such
that V@ =x, where V is as in Theorem 1, then by [7, p. 297) and (8, Thm. 2 (b)]

(X,Xk)_"q]; f q,dFeika:il;; f 50 P JF
2519; f ¢*?(AMp,/dp) (dF /dp)~ dF
I
:Ezj e'kﬂ(de/d,u) (dF/d‘u)" (dl“/d,u) dy
1 " ik@
S I ML

:J_ eiksd MPz_ 1 f eikﬂ})(eiﬂ) do
27 Jon 27

Let P(e®) =3,k A ;e % Then

A, k€K

0 k¢K @)

_,1‘ " 1k8 6 - gtk Do
3 f}ze P(e )d6-~2 DA df=

T 7ZJEK

By (1) and (2) we have that (x,x,) =0 if £ ¢ K, and hence x € M. But x€ M.,
therefore by definition of g, X € Hy. Now by Definition 2, (1) and (2),

<= Z (x’ xk)e—iko-_ ZA ——lk‘B_
kekK

Hence Mp=Mp . 1t then follows by Theorem 1 (b) that (x,x)== (Tx, Tx)p =
{(Mp, Mp)s+0. Hence My is not interpolable w.r.t. (X,)Z. Consequently by Defini-
tion 1 (b), (x4)*» is not mtbrpolab]e (Q.E.D.)

The following theorem which is a consequence of Theorem 1 is a generalisa-
tion of results given by Masani [5, pp. 147 & 149).
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Theorem 3. Let z, be the orthogonal projection of X, onto the subspace & {x,, n=+k},
and let y,= (2o, 2y)" Zx, where (2q, Z,)” is the generalized inverse of (2, z,) [6, p. 407].
Then

- _ ]. i dMJdMJ = i = dMJdMJ -
(a) (20> 29)” = (Yo Yo)*gz J‘in aF (2o, 2o) = [2% f_n aF |

where J is the projection mairix on the space C° of g-tuples of complex numbers
onto the range of (Zg,%,) n the privileged basis of CO.

(b) (%)% ts minimal ff

J"' aMydM,

—n dF

(©) (¥2)Zw ts @ weakly stationary SP with the spectral distribution
1 b dM;dM,
%) . dF

(d) (yx)Z and (X;)Z. are biorthogonal, i.e.,

(Yms Xn) = Omad.-

Proof. (a) By Theorem 1, (z,,2,)=(1/27) (M,,, M,,);, where for each BE€EB,
M. (B)= IB (Zo) Zy) de.

Hence
) ) 1 B _ 1 [ dM,dM;
(20, 20)” = (2, 20)” (Zs %0) (7 20)™ = 5 (20> Z0) ™ (M M) (2, 2) =ﬁf_,, aF
Consequently
o 1 (" dM,aM; _[L (7 daMydM,”
(Zg> Zg)” = (Yoo yo)—2n fﬁn dF and  (Zy, Zy) = [271 Jln IF .
I [ dM;dM;]|”
(b) By (), oo =[g | e

From this and Definition 1 (¢), (b) follows.
{c) Obviously (yx)*. is weakly stationary. Hence by (a)
_ 1
(Yo, Yo) = (2g, Zp)” = . My, M)
It follows that the spectral distribution of

1 & dM;dM;
% ) . dF °

(Yk)iooo is

(d) (YOv yo) = ((zo, Zo)_ z()a Xo) = (zo, Zo)_ (Zoa Xo) = (Zm zo)‘ (ZO’ ZO) = J
For n+0, z, L &(xy, k=+n), therefore (¥,,%,) =0. Hence (ym, X,)=0m.J. (Q.E.D.)
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Remark. Let [T, (dM;dM,)/dF exists (I denotes the identity matrix of order g).
Then by [8, Thm. 1 (c)], ® = (dM,/du) (dF/du)~ is in Ly g, where y is any o-finite
non-negative real-valued measure w.r.t. which M; and F are a.c. Let x€ M., be
such that x=Vd&, where V is as in Theorem 1. Then by repeating the same
argument used in the proof (1) in Theorem 2,

D U U € T
(X,Xk)‘2nJ\‘nIe de—{l d r—o
1 1 :
Therefore X€ 7’1{0} and (X, X) = % (@, ¢)F = é?[ (MI> MI)F'

Since x€ Ny, x = Az, Consequently

1 .
A(z0> zo) A* = % (Mb MI)F)'

Hence rank (My, My)g <rank (zy, %,). 1
By Theorem 3 (a),
1
(2o, 29) = % (25 29) (My, Mg (2o, Zo).

Hence rank (z,, z,) <rank (My, My)g. (2)

By (1) and (2) we get rank (z,, 2o) =rank (My, My)y. Consequently
1 1 1
% (M, My)g= % J(M, My)p = % (My, Mj)e. (3)

The following result due to Masani [4, p. 149] is a consequence of this remark
and Theorem 1.

Corollary. (a) (%)% is minimal and rank (z,,z,) =q iff for almost all 0, F'(¢')
kas dn inverse and [, (F')71(e®)df ewists.

() If (%)% is minimal and rank (z, %,) =¢q, then
1 27 L -1
(2o, Z,) :{271 fo (F)"1(e") dﬁ} .

Proof. Let F, and F, be the absolutely continuous and singular components
of F w.rt. Lebesgue measure on (—m,n] [5, p. 18]. Then

0 MieH, p iff MyeH,
M; € Hp ¢ = (My, M)y = (My, My)g,.

We proceed to prove (I). Let u be a o-finite non-negative real-valued measure
w.r.t. which F and My are a.c. Let M;€ Hs p,. Then

F=F,+F,=F>F,= (dF/du) > (dF,/du) ae. u.

309



H. SALEHI, Hellinger integrals and q-variate stationary stochastic processes
Hence (dF/du)” <(dF,/du)” (1)
Since M;€H; 5, by (1) it follows that M;€ H, . Moreover

(Mg, M) < (Mg, My)g,. 2)

Since M€ H, y then by [8, Thm. 1 (c)] there exists a WE€L, g such that for
each BERB

MI(B)=f ‘PdF=f ‘I’dF,ﬁ—f W dF,. (3)

Since M;(B)=L(B)1, L{B)=Lebesgue measure of B, from (3) it follows that
for each BEB, [ WdF,=0. Hence

MI(B)=J ‘I’dF=J ¥ JF,. (4)
By (4) and [8, Lemma 3] we get
(MD MI)F:("P, ¥, (Mb MI)Fa: ("I': 'I’)Fa- (5)

We note that since F,<F,
(¥, ¥, < (¥, ¥ (6)

Therefore by (2), (5) and (6) we obtain that if My€H, 5, then M;€H; ¢ and

(M, My)p, = (M, My)g. Conversely if M{€H, g, then repeating the argument fol-

lowing (2), we conclude that My€H; g , and (My, My)p= My, My)g,. Hence (I) is

proved.

(a) (=) Since rank (zy, z,) =¢q, J=1. Hence by Theorem 3 (a) and (I},
()= 51 O M= - (O Mo, = [ () () ™)
27 P A ¢ 2x J_ . :
-1

Since rank (zg, z,) = ¢, (%) is of full-rank. Hence rank F'=q¢ a.e., and (F')
exists a.e. 4, p. 147]. From (7) it follows that §7, (F') ' (e’®)df exists.

1 1 1 (7 ;
(<) By (0, 506 Mie— - O0 Me, 5 [ ()" (@) a6,

Hence from Theorem 3 (c) and previous remark (3) it follows that the spectral density
of the SP (y.). is (F') "' (e'). (¥x)% is of full-rank, because [*,logdetF ! ('®)d0
exists [4, p. 148]. Therefore rank (z,, z,) =rank (y,, ¥,) =¢, and hence by Defini-
tion 1 (c) (x4)”. i8 minimal,

(b) This is a special case of Theorem 3 (a). (Q.E.D.)
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