Application of the Hellinger integrals to q-variate stationary stochastic processes

By Habib Salehi

Introduction

Let $(\mathbf{x}_k)_{-\infty}^{\infty}$ be a q-variate discrete parameter weakly stationary stochastic process (SP) with the spectral distribution measure \mathbf{F} defined on \mathbf{B} the Borel family of subsets of $(-\pi,\pi]$. It is known (8, Thm. 2] that for matrix-valued measures \mathbf{M} and \mathbf{N} the Hellinger integral $(\mathbf{M},\mathbf{N})_{\mathbf{F}} = \int_{-\pi}^{\pi} (d\mathbf{M} d\mathbf{N}^*)/d\mathbf{F}$ (* = conjugate) may be defined in such a way that $\mathbf{H}_{2,\mathbf{F}}$ the space of all matrix-valued measures \mathbf{M} for which $(\mathbf{M},\mathbf{M})_{\mathbf{F}} = \int_{-\pi}^{\pi} (d\mathbf{M} d\mathbf{M}^*)/d\mathbf{F}$ exist becomes a Hilbert space under the inner product $\tau(\mathbf{M},\mathbf{N})_{\mathbf{F}}$ (τ = trace). The significance of these integrals when \mathbf{M} and \mathbf{N} are complex-valued measures and \mathbf{F} is a non-negative real-valued measure has been pointed out by \mathbf{H} . Cramér [1, p. 487] and \mathbf{U} . Grenander [2, p. 207] in relation to univariate SP's. In this paper we will indicate the importance of our Hellinger integrals with regard to q-variate SP's. In particular, we will obtain a natural extension of a certain result due to A. N. Kolmogorov [3, Thm. 24] which under a certain assumption was generalized by P. Masani [4, pp. 145–150].

Let K be any bounded subset of integers. K' will denote the complement of K in the set of integers. \mathcal{M}_K and $\mathcal{M}_{K'}$, will denote the subspaces spanned by \mathbf{x}_k , $k \in K$ and \mathbf{x}_k , $k \in K'$ respectively, i.e., $\mathcal{M}_K = \mathfrak{S}\{\mathbf{x}_k, k \in K\}$ and $\mathcal{M}_{K'} = \mathfrak{S}\{\mathbf{x}_k, k \in K'\}$. \mathcal{M}_{∞} will denote $\mathfrak{S}\{\mathbf{x}_k, k \text{ an integer}\}$ and finally \mathcal{N}_K will denote $\mathcal{M}_{\infty} \cap \mathcal{M}_{K'}^{\perp}$, where $\mathcal{M}_{K'}^{\perp}$ denotes the orthogonal complement of \mathcal{M}_K in a fixed Hilbert space \mathcal{H}^q containing the $SP(\mathbf{x}_k)_{-\infty}^{\infty}$.

Definition 1. We say that (a) K is interpolable with respect to (w.r.t.) $(\mathbf{x}_k)_{-\infty}^{\infty}$ if $\mathcal{H}_K = \{\mathbf{0}\}.$

- (b) $(\mathbf{x}_k)_{-\infty}^{\infty}$ is interpolable if each bounded subset K of integers is interpolable w.r.t. $(\mathbf{x}_k)_{-\infty}^{\infty}$.
 - (c) $(\mathbf{x}_k)_{-\infty}^{\infty}$ is minimal if for each k, $\{k\}$ is not interpolate w.r.t. $(\mathbf{x}_k)_{-\infty}^{\infty}$.

It is easy to see that for any $x \in \mathcal{H}_K$, $(x, x_k) = 0$ for all $k \in K'$. Thus the following definition makes sense.

Definition 2. (a) For each $x \in \mathcal{H}_{K}$, we let

$$\mathbf{P}_{\mathbf{x}}(e^{i\theta}) = \sum (\mathbf{x}, \mathbf{x}_k) e^{-ik\theta}.$$

H. SALEHI, Hellinger integrals and q-variate stationary stochastic processes

(b) We define the operator T on \mathcal{H}_K into $H_{2,F}$ as follows: for each $x \in \mathcal{H}_K$

$$\mathbf{T}\mathbf{x} = \frac{1}{\sqrt{2\pi}}\mathbf{M}_{\mathbf{P}_{\mathbf{x}}},$$

where for any trig-polynomial P with matrix coefficients the measure $\mathbf{M_P}$ on \mathcal{B} is given by $\mathbf{M_P}(B) = \int_B \mathbf{P}(e^{i\theta}) d\theta$.

The important properties of T are given in the following theorem.

Theorem 1. (a) Let $\mathbf{x} \in \mathcal{H}_K$ and $\mathbf{\Psi}$ be in $\mathbf{L}_{2,\mathbf{F}}$ such that $\mathbf{V}\mathbf{\Psi} = \mathbf{x}$, where \mathbf{V} is the isomorphism on $\mathbf{L}_{2,\mathbf{F}}$ onto \mathcal{H}_{∞} [7, p. 297]. Then for each $B \in \mathcal{B}$, $\mathbf{M}_{\mathbf{P}_{\mathbf{x}}}(B) = \int_B \mathbf{\Psi} d\mathbf{F}$.

(b) T is an isometry on \mathcal{H}_K into $H_{2,F}$. In fact for all x and y in \mathcal{H}_K

$$(\mathbf{x}, \mathbf{y}) = (\mathbf{T}\mathbf{x}, \mathbf{T}\mathbf{y})_{\mathbf{F}}.$$

(c) The range of T is a closed subspace of the Hilbert space H_{2,F}.

Proof. (a) Let $\Psi \in \mathbf{L}_{2,\mathbf{F}}$ and $\mathbf{x} = \mathbf{V}\Psi$. Then by [7, p. 297]

$$(\mathbf{x}, \mathbf{x}_k) = (\mathbf{\Psi}, e^{-ik\theta})_{\mathbf{F}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{\Psi} d\mathbf{F} e^{ik\theta} d\theta.$$
 (1)

Also by the definition of $\mathbf{M}_{\mathbf{P_x}}$,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mathbf{M}_{\mathbf{P}_{\mathbf{X}}}(e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{P}_{\mathbf{X}}(e^{i\theta}) e^{ik\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ \sum_{j \in \mathbf{K}} (\mathbf{X}, \mathbf{X}_{j}) e^{-ij\theta} \right\} e^{ik\theta} d\theta$$

$$= \sum_{i \in \mathbf{K}} \frac{1}{2\pi} \int_{-\pi}^{\pi} (\mathbf{X}, \mathbf{X}_{j}) e^{i(k-j)\theta} d\theta = (\mathbf{X}, \mathbf{X}_{k}). \tag{2}$$

By (1) and (2), the measures $\int_B \Psi dF$ and $\int_B P_{\mathbf{x}}(e^{i\theta}) d\theta$ have the same Fourier-coefficients and hence for each $B \in \mathcal{B}$,

$$\mathbf{M}_{\mathbf{P}_{\mathbf{X}}}(B) = \int_{B} \mathbf{\Psi} \, d\mathbf{F}.$$

(b) Let x and y be in \mathcal{H}_K , and let Φ and Ψ be in $\mathbf{L}_{2,F}$ such that $\nabla \Phi = \mathbf{x}$ and $\nabla \Psi = \mathbf{y}$. Then by [8, Thm. 1]

$$2\pi (\mathbf{T}\mathbf{x}, \mathbf{T}\mathbf{y})_{\mathbf{F}} = (\mathbf{\Phi}, \mathbf{\Psi})_{\mathbf{F}}.$$
 (3)

Also by [7, p. 297]
$$2\pi(x, y) = (\Phi, \Psi)_F.$$
 (4)

From (3) and (4) (b) follows. (Q.E.D.)

(c) Since \mathcal{H}_K is a closed subspace and since by (b) **T** is an isometry on \mathcal{H}_K into $\mathbf{H}_{2,\mathbf{F}}$, therefore the range of **T** is a closed subspace of $\mathbf{H}_{2,\mathbf{F}}$. (Q.E.D.)

In the following theorem a characterization is given for the interpolability of a SP.

Theorem 2. $(x_k)^{\infty}_{-\infty}$ is interpolable iff for any trig-polynomial **P** with matrix coefficients for which M_P is not a null-point in $H_{2,F}$, (M_P, M_P) is not Hellinger integrable w.r.t. **F**.

Proof. (=) If K is any bounded subset of integers, it is a consequence of Theorem 1 (b) that $\mathcal{H}_K = \{0\}$; hence by definition 1 (a), K is interpolable w.r.t. $(\mathbf{x}_k)_{-\infty}^{\infty}$. Since K is arbitrary it follows by definition 1 (b) that $(\mathbf{x}_k)_{-\infty}^{\infty}$ is interpolable.

(\Rightarrow) Suppose there exists a trig-polynomial P with matrix coefficients for which $\mathbf{M}_{\mathbf{P}}$ is not a null point in $\mathbf{H}_{2,F}$ and $(\mathbf{M}_{\mathbf{P}},\mathbf{M}_{\mathbf{P}})$ is Hellinger integrable w.r.t. F. Hence by [8, Thm. 1 (c)], $\mathbf{\Phi} = (d\mathbf{M}_{\mathbf{P}}/d\mu) (d\mathbf{F}/d\mu) \in \mathbf{L}_{2,F}$, where μ is any σ -finite non-negative real-valued measure w.r.t. which $\mathbf{M}_{\mathbf{P}}$ and F are a.c. If $\mathbf{x} \in \mathcal{M}_{\infty}$ such that $\mathbf{V}\mathbf{\Phi} = \mathbf{x}$, where V is as in Theorem 1, then by [7, p. 297] and (8, Thm. 2 (b)]

$$\begin{split} (\mathbf{x}, \mathbf{x}_k) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{\Phi} \, d\mathbf{F} \, e^{ik\theta} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} \, \mathbf{\Phi} \, d\mathbf{F} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} (d\mathbf{M}_{\mathbf{P}}/d\mu) \, (d\mathbf{F}/d\mu)^{-} \, d\mathbf{F} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} (d\mathbf{M}_{\mathbf{P}}/d\mu) \, (d\mathbf{F}/d\mu)^{-} \, (d\mathbf{F}/d\mu) \, d\mu \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} (d\mathbf{M}_{\mathbf{P}}/d\mu) \, d\mu \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mathbf{M}_{\mathbf{P}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} \mathbf{P}(e^{i\theta}) \, d\theta. \end{split}$$

Let $P(e^{i\theta}) = \sum_{j \in K} A_{-j} e^{-ij\theta}$. Then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} \mathbf{P}(e^{i\theta}) d\theta = \frac{1}{2\pi} \sum_{j \in K} \mathbf{A}_{-j} e^{i(k-j)\theta} d\theta = \begin{cases} \mathbf{A}_{-k}, & k \in K \\ 0, & k \notin K \end{cases}.$$
 (2)

By (1) and (2) we have that $(x, x_k) = 0$ if $k \notin K$, and hence $x \in \mathcal{M}_K^{\perp}$. But $x \in \mathcal{M}_{\infty}$, therefore by definition of \mathcal{H}_K , $X \in \mathcal{H}_K$. Now by Definition 2, (1) and (2),

$$\mathbf{P}_{\mathbf{x}} = \sum_{k \in K} (\mathbf{x}, \mathbf{x}_k) e^{-ik\theta} = \sum_{k \in K} \mathbf{A}_{-k} e^{-ik\theta} = \mathbf{P}.$$

Hence $\mathbf{M_P} = \mathbf{M_{P_X}}$. It then follows by Theorem 1 (b) that $(\mathbf{x}, \mathbf{x}) = (\mathbf{Tx}, \mathbf{Tx})_F = (\mathbf{M_P}, \mathbf{M_P})_F \neq 0$. Hence \mathcal{H}_K is not interpolable w.r.t. $(\mathbf{x}_k)_{-\infty}^{\infty}$. Consequently by Definition 1 (b), $(\mathbf{x}_k)_{-\infty}^{\infty}$ is not interpolable. (Q.E.D.)

The following theorem which is a consequence of Theorem 1 is a generalisation of results given by Masani [5, pp. 147 & 149].

H. SALEHI, Hellinger integrals and q-variate stationary stochastic processes

Theorem 3. Let \mathbf{z}_k be the orthogonal projection of \mathbf{x}_k onto the subspace $\mathfrak{S}^{\perp}\{\mathbf{x}_n, n \neq k\}$, and let $\mathbf{y}_k = (\mathbf{z}_0, \mathbf{z}_0)^- \mathbf{z}_k$, where $(\mathbf{z}_0, \mathbf{z}_0)^-$ is the generalized inverse of $(\mathbf{z}_0, \mathbf{z}_0)$ [6, p. 407]. Then

$$({\bf a}) \qquad ({\bf z_0},{\bf z_0})^- = ({\bf y_0},{\bf y_0}) = \frac{1}{2\pi} \, \int_{-\pi}^{\pi} \frac{d{\bf M_J} d{\bf M_J}}{d{\bf F}}, \; ({\bf z_0},{\bf z_0}) = \left[\frac{1}{2\pi} \, \int_{-\pi}^{\pi} \frac{d{\bf M_J} d{\bf M_J}}{d{\bf F}} \right]^-,$$

where **J** is the projection matrix on the space C^a of q-tuples of complex numbers onto the range of $(\mathbf{z_0}, \mathbf{z_0})$ in the privileged basis of C^a .

(b) $(\mathbf{X}_k)_{-\infty}^{\infty}$ is minimal iff

$$\int_{-\pi}^{\pi} \frac{d\mathbf{M_J} d\mathbf{M_J}}{d\mathbf{F}} \neq \mathbf{0}.$$

(c) $(y_n)_{-\infty}^{\infty}$ is a weakly stationary SP with the spectral distribution

$$\frac{1}{2\pi} \int_{-\pi}^{\theta} \frac{d\mathbf{M_J} d\mathbf{M_J}}{d\mathbf{F}}.$$

(d) $(y_k)_{-\infty}^{\infty}$ and $(x_k)_{-\infty}^{\infty}$ are biorthogonal, i.e.,

$$(\mathbf{y}_m, \mathbf{x}_n) = \delta_{mn} \mathbf{J}.$$

Proof. (a) By Theorem 1, $(\mathbf{z_0}, \mathbf{z_0}) = (1/2\pi) (\mathbf{M_{z_0}}, \mathbf{M_{z_0}})_{\mathbf{F}}$, where for each $B \in \mathcal{B}$, $\mathbf{M_{z_0}}(B) = \int_B (\mathbf{z_0}, \mathbf{z_0}) d\theta$.

Hence

$$(\mathbf{z_0}, \, \mathbf{z_0})^- = (\mathbf{z_0}, \, \mathbf{z_0})^- \, (\mathbf{z_0}, \, \mathbf{z_0}) \, (\mathbf{z_0}, \, \mathbf{z_0})^- = \frac{1}{2\pi} \, (\mathbf{z_0}, \, \mathbf{z_0})^- \, (\mathbf{M_{z_0}}, \, \mathbf{M_{z_0}})_F \, (\mathbf{z_0}, \, \mathbf{z_0})^- = \frac{1}{2\pi} \, \int_{-\pi}^{\pi} \frac{d\mathbf{M_J} \, d\mathbf{M_J}}{d\mathbf{F}} \, d\mathbf{M_{z_0}} \, (\mathbf{M_{z_0}}, \, \mathbf{M_{z_0}})_F \, ($$

Consequently

$$(\mathbf{z_0}, \mathbf{z_0})^- = (\mathbf{y_0}, \mathbf{y_0}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{d\mathbf{M_J} d\mathbf{M_J}}{d\mathbf{F}} \quad \text{and} \quad (\mathbf{z_0}, \mathbf{z_0}) = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{d\mathbf{M_J} d\mathbf{M_J}}{d\mathbf{F}} \right]^-.$$

(b) By (a),
$$(\mathbf{z_0},\mathbf{z_0}) = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{d\mathbf{M_J} d\mathbf{M_J}}{d\mathbf{F}}\right]^{-}.$$

From this and Definition 1 (c), (b) follows.

(c) Obviously $(y_k)_{-\infty}^{\infty}$ is weakly stationary. Hence by (a)

$$(\mathbf{y_0}, \mathbf{y_0}) = (\mathbf{z_0}, \mathbf{z_0})^- = \frac{1}{2\pi} (\mathbf{M_J}, \mathbf{M_J})_{\mathbf{F}}.$$

It follows that the spectral distribution of

$$(\mathbf{y}_k)_{-\infty}^{\infty}$$
 is $\frac{1}{2\pi}\int_{-\pi}^{\theta} \frac{d\mathbf{M_J}d\mathbf{M_J}}{d\mathbf{F}}$.

$$(\mathbf{d}) \qquad \quad (\mathbf{y}_0,\,\mathbf{y}_0) = ((\mathbf{z}_0,\,\mathbf{z}_0)^-\,\,\mathbf{z}_0,\,\mathbf{x}_0) = (\mathbf{z}_0,\,\mathbf{z}_0)^-\,\,(\mathbf{Z}_0,\,\mathbf{X}_0) = (\mathbf{z}_0,\,\mathbf{z}_0)^-\,\,(\mathbf{z}_0,\,\mathbf{z}_0) = \mathbf{J}.$$

For $n \neq 0$, $\mathbf{z}_n \perp \mathfrak{S}(\mathbf{x}_k, k \neq n)$, therefore $(\mathbf{y}_n, \mathbf{x}_0) = \mathbf{0}$. Hence $(\mathbf{y}_m, \mathbf{x}_n) = \delta_{mn} \mathbf{J}$. (Q.E.D.)

Remark. Let $\int_{-\pi}^{\pi} (d\mathbf{M}_{\mathbf{I}} d\mathbf{M}_{\mathbf{I}})/d\mathbf{F}$ exists (I denotes the identity matrix of order q). Then by [8, Thm. 1 (c)], $\mathbf{\Phi} = (d\mathbf{M}_{\mathbf{I}}/d\mu) (d\mathbf{F}/d\mu)^{-}$ is in $\mathbf{L}_{2,\mathbf{F}}$, where μ is any σ -finite non-negative real-valued measure w.r.t. which $\mathbf{M}_{\mathbf{I}}$ and \mathbf{F} are a.c. Let $\mathbf{x} \in \mathbf{M}_{\infty}$ be such that $\mathbf{x} = \mathbf{V}\mathbf{\Phi}$, where \mathbf{V} is as in Theorem 1. Then by repeating the same argument used in the proof (1) in Theorem 2,

$$(\mathbf{x}, \mathbf{x}_k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{I} e^{ik\theta} d\theta = \begin{cases} 0 & \text{if } k \neq 0 \\ \mathbf{I} & \text{if } k = 0 \end{cases}$$

Therefore

$$\mathbf{x} \in \mathcal{H}_{\{0\}}$$
 and $(\mathbf{x}, \mathbf{x}) = \frac{1}{2\pi} (\mathbf{\Phi}, \mathbf{\Phi})_{\mathbf{F}} = \frac{1}{2\pi} (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}}$.

Since $x \in \mathcal{H}_{\{0\}}$, $x = Az_0$. Consequently

$$A(z_0, z_0) A^* = \frac{1}{2\pi} (M_I, M_I)_F).$$

Hence

$$\operatorname{rank} (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} \leqslant \operatorname{rank} (\mathbf{z}_{0}, \mathbf{z}_{0}). \tag{1}$$

By Theorem 3 (a),

$$(\mathbf{z}_0, \mathbf{z}_0) = \frac{1}{2\pi} (\mathbf{z}_0, \mathbf{z}_0) (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} (\mathbf{z}_0, \mathbf{z}_0).$$

Hence

$$\operatorname{rank} (\mathbf{z}_0, \mathbf{z}_0) \leqslant \operatorname{rank} (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}}. \tag{2}$$

By (1) and (2) we get rank $(\mathbf{z}_0, \mathbf{z}_0) = \operatorname{rank} (\mathbf{M}_I, \mathbf{M}_I)_F$. Consequently

$$\frac{1}{2\pi} (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} = \frac{1}{2\pi} \mathbf{J} (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} \mathbf{J} = \frac{1}{2\pi} (\mathbf{M}_{\mathbf{J}}, \mathbf{M}_{\mathbf{J}})_{\mathbf{F}}.$$
 (3)

The following result due to Masani [4, p. 149] is a consequence of this remark and Theorem 1.

Corollary. (a) $(\mathbf{x}_k)_{-\infty}^{\infty}$ is minimal and rank $(\mathbf{z}_0, \mathbf{z}_0) = q$ iff for almost all θ , $F'(e^{i\theta})$ has an inverse and $\int_{-\pi}^{\pi} (\mathbf{F}')^{-1}(e^{i\theta}) d\theta$ exists.

(b) If $(\mathbf{x}_k)_{-\infty}^{\infty}$ is minimal and rank $(\mathbf{z}_0, \mathbf{z}_0) = q$, then

$$(\mathbf{z}_0, \mathbf{z}_0) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} (\mathbf{F}')^{-1} (e^{i\theta}) d\theta \right\}^{-1}.$$

Proof. Let \mathbf{F}_a and \mathbf{F}_s be the absolutely continuous and singular components of \mathbf{F} w.r.t. Lebesgue measure on $(-\pi, \pi]$ [5, p. 18]. Then

$$\begin{aligned} \textbf{(I)} & \textbf{M_I} \in \textbf{H}_{2,\,\textbf{F}} & \text{iff} & \textbf{M_I} \in \textbf{H}_{2,\,\textbf{F}a}, \\ & \textbf{M_I} \in \textbf{H}_{2,\,\textbf{F}} \Rightarrow (\textbf{M_I},\,\textbf{M_I})_{\textbf{F}} = (\textbf{M_I},\,\textbf{M_I})_{\textbf{F}a}. \end{aligned}$$

We proceed to prove (I). Let μ be a σ -finite non-negative real-valued measure w.r.t. which \mathbf{F} and $\mathbf{M}_{\mathbf{I}}$ are a.c. Let $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_{d}}$. Then

$$\mathbf{F} = \mathbf{F}_a + \mathbf{F}_s \Rightarrow \mathbf{F} \geqslant \mathbf{F}_a \Rightarrow (d\mathbf{F}/d\mu) \geqslant (d\mathbf{F}_a/d\mu)$$
 a.e. μ .

H. SALEHI, Hellinger integrals and q-variate stationary stochastic processes

Hence
$$(d\mathbf{F}/d\mu)^{-} \leq (d\mathbf{F}_{a}/d\mu)^{-}$$
 (1)

Since $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_a}$ by (1) it follows that $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}}$. Moreover

$$(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} \leqslant (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}_{\mathbf{G}}}.\tag{2}$$

Since $\mathbf{M_1} \in \mathbf{H_{2,F}}$ then by [8, Thm. 1 (c)] there exists a $\mathbf{\Psi} \in \mathbf{L_{2,F}}$ such that for each $B \in \mathbf{B}$

$$\mathbf{M}_{\mathbf{I}}(B) = \int_{B} \mathbf{\Psi} d\mathbf{F} = \int_{B} \mathbf{\Psi} d\mathbf{F}_{a} + \int_{B} \mathbf{\Psi} d\mathbf{F}_{s}. \tag{3}$$

Since $\mathbf{M}_{\mathbf{I}}(B) = L(B)\mathbf{I}$, L(B) = Lebesgue measure of B, from (3) it follows that for each $B \in \mathbf{B}$, $\int_{B} \mathbf{\Psi} d\mathbf{F}_{s} = 0$. Hence

$$\mathbf{M}_{\mathbf{I}}(B) = \int_{B} \mathbf{\Psi} d\mathbf{F} = \int_{B} \mathbf{\Psi} d\mathbf{F}_{a}.$$
 (4)

By (4) and [8, Lemma 3] we get

$$(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} = (\mathbf{\Psi}, \mathbf{\Psi})_{\mathbf{F}}, \quad (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}_a} = (\mathbf{\Psi}, \mathbf{\Psi})_{\mathbf{F}_a}. \tag{5}$$

We note that since $\mathbf{F}_a \leqslant \mathbf{F}$,

$$(\mathbf{\Psi}, \mathbf{\Psi})_{\mathbf{F}_a} \leq (\mathbf{\Psi}, \mathbf{\Psi})_{\mathbf{F}}. \tag{6}$$

Therefore by (2), (5) and (6) we obtain that if $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_a}$ then $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}}$ and $(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}_a} = (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}}$. Conversely if $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}}$, then repeating the argument following (2), we conclude that $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_a}$, and $(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}} = (\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}})_{\mathbf{F}_a}$. Hence (I) is proved.

(a) (\Rightarrow) Since rank $(\mathbf{z_0}, \mathbf{z_0}) = q$, $\mathbf{J} = \mathbf{I}$. Hence by Theorem 3 (a) and (I),

$$(\mathbf{z_0}, \mathbf{z_0})^{-1} = \frac{1}{2\pi} (\mathbf{M_I}, \mathbf{M_I})_{\mathbf{F}} = \frac{1}{2\pi} (\mathbf{M_I}, \mathbf{M_I})_{\mathbf{F}a} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\mathbf{F}')^{-} (e^{i\theta}) d\theta.$$
 (7)

Since rank $(\mathbf{z}_0, \mathbf{z}_0) = q$, $(\mathbf{x}_k)_{-\infty}^{\infty}$ is of full-rank. Hence rank $\mathbf{F}' = q$ a.e., and $(\mathbf{F}')^{-1}$ exists a.e. [4, p. 147]. From (7) it follows that $\int_{-\pi}^{\pi} (\mathbf{F}')^{-1} (e^{i\theta}) d\theta$ exists.

$$(\Leftarrow) \text{ By (I)}, \quad \frac{1}{2\pi} (\mathbf{M_I}, \mathbf{M_I})_{\mathbf{F}} = \frac{1}{2\pi} (\mathbf{M_I}, \mathbf{M_I})_{\mathbf{F}_a} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\mathbf{F}')^{-1} (e^{i\theta}) d\theta.$$

Hence from Theorem 3 (c) and previous remark (3) it follows that the spectral density of the SP $(y_k)_{-\infty}^{\infty}$ is $(F')^{-1}(e^{i\theta})$. $(y_k)_{-\infty}^{\infty}$ is of full-rank, because $\int_{-\pi}^{\pi} \log \det F'^{-1}(e^{i\theta}) d\theta$ exists [4, p. 148]. Therefore rank $(\mathbf{z}_0, \mathbf{z}_0) = \operatorname{rank}(y_0, y_0) = q$, and hence by Definition 1 (c) $(\mathbf{x}_k)_{-\infty}^{\infty}$ is minimal.

(b) This is a special case of Theorem 3 (a). (Q.E.D.)

ACKNOWLEDGEMENT

This research was partially supported by National Science Foundation GP-7535.

Michigan State University, East Lansing, Michigan (U.S.A.)

REFERENCES

- Cramér, H., Mathematical Methods of Statistics, Princeton University Press, New Jersey, 1961.
- Grenander, U., and Szegö, G., Toeplitz Forms and Their Applications, University of California Press, California, 1958.
- Kolmogorov, A. N., Stationary sequences in Hilbert Space, Bull. Math. Univ. Moscow 2, No. 6, 1941.
- MASANI, P., The prediction theory of multivariate stochastic processes, III, Acta Math. 104, 142–162 (1960).
- MASANI, P., Recent Trends in Multivariate Prediction Theory, MRC Technical Summary Report No. 637, Jan. 1966, Math. Res. Center, Univ. of Wisc.
- 6. Penrose, R. A., A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51, 406-413 (1955).
- ROSENBERG, M., The square-integrability of matrix-valued functions with respect to a non-negative hermitian measure, Duke Math. J. 31, 291-298 (1964).
- Salehi, H., The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure. To appear in Arkiv för Mat. 7, 299 (1968).

Tryckt den 29 december 1967