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On a class of Diophantine equations of the second degree
in imaginary quadratic fields

By Lars FJELLSTEDT

Introduction

The problem of solving the Diophantine equation
(1) uw?—Dv*=N,

where D and N are rational integers and where D is not a perfect square, in
rational integers has usually been treated by using either the theory of quadratic
forms or the theory of quadratic fields. T. NacrrL [1], [2], [3], [4]* has shown,
however, how it is possible to determine all the solutions of (1) completely ele-
mentarily and without using either of the theories mentioned above.

The purpose of this paper is to show that NacrLL’s method can also be used
to determine the solutions in integers belonging to an imaginary quadratic number
field, of equation (1), when D and N are integers in the field considered, and
D is not a perfect square in that field.

I treat in § 1—§ 3 the equation

@) Byt =+1,
and in §5 of this paper I will show how the theory developed here can be
used for studying equation (I).

In §4 we make a closer investigation of a special case of (2) and connect
the equation with the units in certain quartic fields.

§ 1. A lemma and its application

The theory of the Diophantine equation z>—d%?=1, can easily be developed
starting from the following

Lemma 1: Let « be any compléz number which does not belong to the field
K (l/ —m), where m s a squarefree natural number and where V—m is taken to
be iVm. Then the Diophantine inequality

(3) |z—ay|? <=

! Figures in [ ] refer to the Bibliography. at the end of this paper. -
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L. FJELLSTEDT, On a class of Diophantine equations

where N (y) denotes the norm in the field K(V —m). with respect to the rational
number field, has an infinitude of solutions in integers x and y belonging to the
field K (V —m). ,

In the Gaussian number field this Lemma has been proved by DiricuLeT [5].

Remark: Observe that if inequality (3) is satisfied by the system (z,y) it is
also satisfied by the system ({x, {y), where { denotes an arbitrary root of

unity belonging to the field K (V—m). In the following it will appear convenient
not to regard any two such systems as being essentially different and for that
reason we will agree to regard two systems (x,y) and (¢',y’) as different if and
only if |z —ay|+|a’—ay'|, for it is obvious that the systems (z,y) and ({2, {y)
satisfy the equation

xr—ay|=|lz—aly|.

Furthermore we exclude the case =0, so that in the following lines z—ay is
always an irrational number and consequently == 0.

Proof: We consider first the case m=1, 2 (mod. 4). Let » be a natural num-

. . . 1 .
ber and let A satisfy the inequality A>W;;2 - Furthermore let 7 be an integer

in the field K()/—m), for which the real part and the ccefficient of ¥ —m is
contained among the numbers

—n,=(n—1),— =+, —1,0,+1,+ =, + (n—1), +n.

To each of the integers 5, the number of which is (2n+ 1)?, we determine such
an integer & in K(/ —m) that in the number &—az the real part and the
coefficient of ) —m are positive and less than one. It is evident then that if

1 . 1 . . .
p-— and g-— are the greatest multiples of -~ which are contained in the real
2n 2n . 2n

part of £ —a#n and the coefficient of YV —m in the number & — an respectively,
the integers p and ¢ are contained in the sequence

0,1,2 3,---,2n~1.

The number of possible combinations of the integers p and ¢ is 4% whereas
the number of possibilities for the expression £ —az is (27 + 1)? and consequently
at least one of the combinations (p,q) has to appear twice. Let

E—an and & —an’
be two expressions for which this is the case. If V\%e put
E—F=z and n—9y' =y
we get a new expression z—oay in which y is obviously == 0, and in which the

.. 1 .
real part as well as the coefficient of /' —m are less than 2 as to their abso-

lute values, and therefore it follows
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4 —ayli<
( ) Ix ayl 4.%2
and consequently |z—ay[?< 4.

If we now observe that in y=#—%" the real part and the coefficient of
V=m are certainly both =2# as to their absolute values, the inequality
N(y)<4n®(m+1) follows at once. This inequality combined with the inequality
(4) immediately gives

(m+1)*
N(y)

It remains now to consider the case m=3 (mod. 4). The integers in K V' —m)

are here of the form (x+yV —m), 2=y (mod. 2). Let A obey the inequality

A> %1 , and let n=4(a+bV —m) be such an integer in K V' —m) that a and

b are contained among the numbers

|z —ayl*<

-n,—(nr-1),— ..., =1, 0,+1,+...,+(n-1), +n

To each of the integers x, the number of Which_ig obviously 2n%+2n+1, we
determine such a corresponding integer Emm K (V —m) that in the number & —ay
the real part and the coefficient of ¥ —m are positive and less than 3. Tt is

. . 1 . 1 .
then evident that if pL and ¢-— are the greatest multiples of — which are
2n 2n 2n

contained in the real part of &é—a#n and the coefficient of V' —m in the num-
ber &— a7, respectively, the integers p and ¢ are contained in the sequence
AN

0,1,2,3,...,n—1

The number of possible combinations of the integers p and ¢ is #%, so that at
least one of the combinations (p,q) has to appear twice. Let

E—~any and & —ay
be two expressions for which this is the case. If we put
E—E=zand n—n'=y
we get a new expression x —ay where y is #0, and in which the real part as
well as the coefficient of }/ —m are less than §17b as to their absolute values, so
that inequality (4) is still valid, and consequently |z—ay|*< 4.

If we now observe that in y=#—#’ the real part and the coefficient of V —m
are certainly both =, as to their absolute values, the inequality ¥ (y) <i®(m+1)
follows at once. On combining this inequality with (4) we get
(m+1)?
4N (y)

a result that is somewhat sharper than (3).

\ |z—ayl<
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When we have now shown how it is possible to determine such pairs of
integers  and y in K () —m) which obey (3) as well as (4), and this for 4 as
small as we please, it 18 easy to prove that the inequality (3) has an infinitude
of solutions. To that effect we consider a set of solutions of (3). Starting from
this set we find a new set containing solutions different from the previous ones
if we choose 4 to be the least of all the numbers |z—ay|* belonging to the
first set and, starting from this value of 4, repeat the argument which has
been described above.

In employing the results of Lemma 1 we are now able to prove

Lemma 2: The Diophantine inequality

(5) |22 — 892 | < (m+1)(m+1+2]Vé|)

where & is an integer in the field K (V —m) which is not a perfect square, has an
infindtude of solutions in integers x and y belonging to K(V/ —m).
(m+1)?
___ N

of solutions in integers z and y belonging to K(V/ —m) and furthermore we
have

has an infinity

Proof. According to Lemma 1 the inequality |z —ay|* <

le+ay|Sle—ay|+]2ay]
This gives us

1
|z+ay|<(m+1)m+|2ay|

and on multiplying with the inequality for |z—ay| we find

2 _ 2 2 ('mﬂl)_z
[o? —a?y?| < N +2(m+1)|al.

Since y is an integer in K (V —m) and consequently N (y)=1 this can be written
|22 — | < (m+ 1) (m +1+2]a|).

If we put a=Vé here, where J is an integer in K(V—m) which is not a perfect
square, our conditions in Lemma 1 are obviously fulfilled, and Lemma 2 is
proved.

After these preliminaries we are now in a position to prove

Theorem 1: If & is an integer in K(V—m) which 1s not a perfect square there

exists at least ome pair of integers x and y in K(V —m), y=#0, which satisfy the
Diophantine equation

(6) -0yt =1.

Proof. According to Lemma 2 the inequality (5) has an infinitude of solutions
in integers z and y belonging to K (/ —m), and since, furthermore, N («*— d3?)
is a natural number which is less than (m-+1)%(m+1+2|V8])?, there exists at
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least one integer A in K (V - m) such that z?— d%*= A for infinitely many integers
2 and y in K(/—m). Among these infinitely many pairs there must be at least
two, (2,, ¥;) and (z,, y,) which satisfy the congruences

(M %, =, (mod. 1), y; =y, (mod. 4).

This depends on the fact that the remainders of the four integers z;, z,, ¥
and y, can only be combined in a finite number (=N (2)*) of ways, and con-
sequently we may assume

(8) v 7 —Oyi=at—0yi=1
wherg Ty, Y1, Tp and y, satisfy the congruence conditions (7). We form the ex-
pression
(11— 12V 0) @2+ 12V 0) = T — Sy o + (2192~ 2 91) V6.
From (7) and (8) it follows

Ty 2, — Oyy Yy =ai — 6yi=0 (mod. A)
and
951?/2“332?/15371?/1—33121150 (mod l)
and therefore
Ty Ty~ Oy Yo =Au
and
Ty Yy — XYy = A0,

where % and v are integers in K (/' —m). It now follows

(@~ 9,V 8) (@t sV O) =2 (u+0Vé)
and

@1+ 3,V8) (@2 =9V ) =2 (w—vV9).
On multiplying together member by member we have
(25— 0ud) (a5~ 0y3)=A" =22 (u® — 627)

and we finally get

wr—o0v*=1.

In this equation we have v#£0, because if we had v=0 we would get z, ¥, =z, ¥,
and 4= +1 and from this it would follow

(@~ 41V O) @+ sV 8) (ma— 9oV 8) = + 4 (3~ 4oV 0)
or when we divide by A
2~y Vo= + (2, — 1,V 0)
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which implies ;= +z, and y; = t¥, According to our agreement in Lemma 1
this would mean that the systems (z, ;) and (z,, y;) were not different. But
we can choose |z,|#|z,|. Thus Theorem 1 is proved.

Remark 1. It is an incompleteness in the theory of equation (6) just devel-
oped, that from the reasoning which led to Theorem 1 we did not obtain an
upper bound for the solution. It is easy, however, to modify the proof of the
theorem in such a way that an upper limit may be determined.

We content ourselves with the case m=1, 2 (mod. 4). Adopting the notations
of Lemma 1 we consider the integers z+ gy} 6 which obey inequality (4). Assum-
ing zn+ynl/5 to be one of these where » has the same meaning as in Lemma 1,
we have assuming n>3Vm+1

Ixﬁ_ayil=Ixn"‘ynl/;s”xn"'ynv—é_2ynl/;sl<

<ML L 1 1V3] <1+ G+ DIV

Given n, we determine n, so that

n2Vm+lglyn2l>nll/m+_1 élynJ-
Now

|n, + yn V8] = T8 0Um] L
|Zn, +yn V8 —29a, V3| 1+2mVm+1|V5]

In order that

Vm+1 1
< —
21 1+2n,Vm+1]Vé|

| @, +ya, V8| <

it is obviously sufficient that

Vm+1 1

<

or

ng>ny [1+ (m+1)|V8] 1.
Generally we put

me=[1+(m+1)[V3|F=¢'
and consequently we have

|y"t+1|> Iy"t I

Putting R=4¢% ¢*+1 at least among the R different integers

ynl, yﬂgy'-- ’ynR
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give the same value for
b, — 0y, =k,

Suppose that only ¢* of the integers 4, (¢ =y, %y, . . . , ng) gave the same value
for k,,. The number of possibilities for kn, is <4 ¢® Thus the total number of

possibilities is <4t R~ 1.
Among the ¢*+1 different pairs of integers (z., y») such that

there are at least two pairs (ai, ;) and (z,, y) which satisfy the congruence
conditions

T = (mod. k), y = y» (mod. k).

We can now proceed as in t:he proof of Theorem 1. With
(@~ 9 V8) (@ + 4 V3) =k (u+vV5)
(@ +y:V8) (2 ~ 4 V8) =k (u—~vV3)

we have
w—dv?=1.
Putting )
o=@+ Vo) —y Vo=e~ 4 V3
= (2 + 4 Vo)~ g Vo=t — 4 V3
we find
ku= (e~ v V5) (&~ 4 V) ~ by =6y — ey VO~ & i V3.
and

ful<1+Vo|[|w]+lo] 151 +2Vm+1|V5|nn=

=1+2Vm+ 1{V8|(1+ (m+1)|V5])¢usemen 1311,
Further we have '

ko=(s—y Vo) y, — (& — 0 Vo) = €.4e ~ &0 .
ol |yl +|ul= 20 =2(1+ (m+1)|V3])sn+emn1yair,

Thus we have found an upper limit for the integers u and o which satisfy the
eguation (6). Obviously we have not tried here to find a best upper limit, but
merely shown the possibility of determining such a limit with aid of the
DiricuLer principle. Remax [6] has given a similar limit for the fundamental
solution of the ordinary Pell equation.

Remark 2. Theorem 1 states obviously that as soon as N(8)> 1, equation

(6) has at least one solution 2+yVd in which = and y are both different from
zero (about the definition of the concept of solution see § 2). When N (9)=1,

we may have, as will be shown in § 2, improper solutions z+yVd of (6) where
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z=0. In this case Theorem 1 gives no information about the existence of proper
solutions of (6).

We shall now make a complementary investigation and show that the equa-
tion (6) always has at least one proper solution. For this purpose we have to
study the following equations:

a) #®+¢*>=1. We leave the field K (¢) out of consideration since —1 is a perfect

square in that case. The equation a) has always a proper solution in K(V—m),

m>1, of the form u+vV —m) —1, where » and v are natural numbers, which
satisfy the equation u®—mv®=1. Tt is wellknown that this equation has proper
solutions.

b) 2®+9y*=1, where p=4(— 1+V —3). This equation has for instance the so-
lution 2+ 3( 3+V 3V —o.

c) 2% +0°y* =1, where 22% —V—3). This equation has for example the

solution 2+ 3 ( —8+)—3 3 V-
We treat here for later purposes also the equation
2—yi=1,

although d is a perfect square in this case. If m=1, 2 (mod. 4) we put z=

=a+bV~m and y=c+dV —m, where a, b, ¢ and d are rational integers. This
gives us '

a?—mb?— (- md¥) =
ab=cd
or if we eliminate a®> between these two equations
(d*=®)(EF+m bz). =

which is obviously impossible if b#0. If we assume b=0, we must also have

¢=0 and we get a*+md*=1 which has only the followmu solutions: ¢= +1,
d=0.

If m=3 (mod.4) we put z=3(a+bV/—m) and y=3(c+dV/—m) and find
analogously the equation

(d% — b?) (® + mb?) = 4 b2,

Here we cannot have d?—5?>1 because m=3. From d*—b*=1 it follows b=
=c¢=0, and we get the equation a®+md*=4. In this equation we must have
a=d=0 (mod. 2) since we have assumed z and v to be integers in K (/ —m).
If we put a=2a; and d=2d,, we get ad+mdi=1, so that We must have
d,=0 and a;= +1. Thus our result is that the equatlon 22— y?=1 only has

improper solutions in K (J —m).
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§ 2. The Diophantine equation x*—dy’=1
P q Yy

In paragraph 1 we showed that the Diophantine equation (6) is always solv-
able in integers z and y of the field K(V~m). If equation (6) is satisfied by
the integers x and y we say that the number z+yV3 is a solution of the equa-
tion. To get the value of V4 uniquely determined we prescribe the imaginary
part of V8 to be positive. Solutions x +yVé of (6) in which either z or y is
zero are called smproper. When we speak of solutions in the following lines we
shall always mean proper solutions, i.e. solutions in which both z and y are
different from zero.

In this paragraph we shall study a little closer the properties of the solutions
and begin with a few remarks.

The only improper solutions of (6) are the following

1) z=+1, y=0.

[ I <)

r=0, y= +o® for § = — o where p*= —3(1+V ~3).
2=0,y=11,for6=—1and K(/—m m) # K (2).

e

)
Y =0, 2=t g for 6= —p where p=4(— 1+V—_3
)
)

The improper solutions enumerated above obviously satisfy the equation

(9) lz+yVo|=1,

and we further assert that there are no proper solutions of (6) satisfying (9).
Our assertion is obviously equivalent to the following proposition: The equa-
tion

(10) |z +y Vo) +|z—yVo|P=

has only the solutions enumerated above.
If we observe that for any two complex numbers » and s we have the identity

[r+sP+lr—sf=2(]r+|s[)
equation (10) may be written
x>+ |y [?|]=1.

Since the absolute values of z, ¥y and 6 are =1 if they are different from zero
it follows that we can have no proper solution of (6) satisfying (9). Thus we
have only the following possibilities: z= -+1, y=0 or if N(d)=

a) 6= —1. In every imaginary quadratic field the equation z®+y®=1 has
solutions with z=0, y=+1 and = +1, y=0, but in K(¢) —1 is a perfect
square. '

b) 6= +4 As is seen at once the equations 2?+iy*=1, have no improper
solutions in K(4) except z=+1, y=0.

¢) 6=p or ¢? where p=4(—1+)~3). In these cases § is a perfect square.
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d) 6= —p or —¢* The Diophantine equations 2°+¢y*=1 and 2+ 0%y =1,
have only the solutions oV —o and g* —@? respectively, apart from z= +1,
y=0.

We now assert that two solutions x+yVd and o’ +4' Vo of (6) satisfy the
condition |z +yV8|=|a'+y V5| if and only if 2’ = += and ' = *y, where the
upper signs correspond. It is evident that to the two solutions w-l—ylfé and
@' +y' VO there exists a new one & -Hyl/é of (6) which satisfies the equation

iV
f+17V(5=g'i y V_ .
w+yV6

If we identify here the rational parts and the coefficients of V6 we get
E=za' —dyy, =2y —y<
But for the solution 5-I—77V5 we have

|x'+y'l/¢_3|=1

+nVe|= =
|-+ 7V0] |z-+y V8|

b

and if N(8)=1 we have to consider the following cases:

a) 6= —1. Here we have either £=2z2'+yy =0 which implies 2'= +y and
y' =+, or =0 which implies 2’ = +z and y = ty. Because of the symmetry
of #*+y*=1 our proposition is true.

b) 6= 1. Here we have =0 which implies 2'= t2 and y' = ty.

¢) 0= —p, where p=3(—1 +V———3). Suppose that we have &=za'+pyy =0
and n=zy —ya'= to. £=0 implies either z= toy’, y= T2 leading to n=
=+ (2% +py'®)= T o which is impossible, or z= 1y, y= T o2’ and here we get
7=t (ex®*+y"%) = +o. On multiplication with ¢® we find &'®+¢*y"*= £ 1, where
we must have the minus sign. If we combine the equations z®+py®=1 and
22 +oty?= —1 we get

#*(e—1)=1+¢= 0’

which is again impossible. Thus we must have #=0 and it follows 2’'= = and
y' =ty o

d) 6= —p? where p*= —}(1+V —3). Suppose that we have é=za'+g’yy =0
and y=xy —yz’ = +o° There are now three possibilities:
 1).z= +¢%y, y= T/, which implies 7=+ (o*y*+a"*)= 1 g% ora+ *yi=
= 1 0%, but this is impossible.

2) 2= +py’, y= toa/, which implies 7= to(@?+y?)=+¢® or (oa')*+
+0%°y’?= +1. Here we must have the minus sign. Now from
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ot +y=—p
{ '+’ y?=1
it follows
VAP =1+e= - ¢’
which 1s impossible.

3) z—+y y= T oz’ Tt follows 5=+ (¥ ) +p, and we must have
z?+poy®= —1, which combined with x'2+g , leads to

22 (1—p)=1+p= —¢~

This equation, however, is impossible.

The (proper) solutions of (6) always occur in groups of four. In the following
we shall call such a group a set of solutions. It is obvious that in a given set

the expression z+y )0 assumes four different values which can be expressed by

+¢ and "r%, where ¢ is an arbitrary of these values, while |x+yl/(§ | only as-

sumes two different values |Z| and E‘ reciprocal to each other. Since |z+yVé]

assumes only one value >1 in each set this value may be used for the purpose
of characterizing the set, because the equation |z+yV8|=|a’ +¢ V3| implies that
x+yV5 and z' +9 V8 belongs to the same set. We now call the set for which
]x+yl/(§ | assumes its least value greater than one the fundamental set of the
equation (6).

Let ¢ be a positive real number. When g increases from 1, Q+§ Increases

from 2. From this it follows that for the fundamental set the expression

lz+yVo|*+ =]z%—yV(gF—i—Ix-yl/5[2=2(|z|2+|yl2)

I
le+yVol
assumes its least value greater than 2. This may be used as a definition of the
fundamental set and although it is essentially equal to the previous definition
it has the advantage of being independent of the condition |a+yV48|>1, since
the expression above assumes the same value for every solution x+yl/6 be-
longing to a given set. B

If we have found a solution 2, +y,Vd of equation (6) it is easy to determine

the fundamental set. All we have to do is to calculate |z, +y, V8| which, for
the sake of brevity, we denote by b, for the given solution, to determine the
solutions which satisfy the inequalities

L<fol+ul o)<t (b+3)

and finally to decide for which one of these solutions the expression |z+yVo|
assumes its least value >1.
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We will now show how it is possible to determine all the solutions of (6)
starting from the fundamental set. Although we may start from an arbitrgry
solution in the fundamental set for convenience we choose one of these, ie.

o . .. < 7 7
the one satisfying the following conditions: |x+yl/6|>l and ~5 <arg. y<; .

We call this solution the fundamental solution of the equation (6). The funda-
mental solution will for the rest of this paragraph be denoted by z, + yllé
We put |z, +y;1'6|=0 and prove

Theorem 2. If 6 is an tnteger in K (l/—m) which 1s not a perfect square, the
Diophantine equation (6) has an infinitude of solutions x+yVd. All the solutions
(one representative from each set) are obtained by the formula

(11) TntynVo=(x,+ 4, V8)", (n=1,2,3,...)

where x, + 1y, Vs is the fundamental solution. On identifying the rational parts and
the coefficients of Vo we get

Zn z1+2(2k)w1 “2k ik 5%

n n—2k+l, 2k-1 gk-1
Yn= kzl(2k—1)x v

Proof. Clearly it follows from (11) that
—ya Vo= (@~ y, Vo)

Then, on multiplying together the corresponding members of this equation and
of equation (11) we have

(@7 —dyh)=(al~6yD)" =1
Hence z,+y,V98 is a solution of (6).
Suppose now that & +nlé were 1 solution of (6) which could not be obtained
by formula (11). Then, since |x; +y,V8|* i3 monotonously increasing with =,
such a natural number ¢ would exist that

|£+nVd|l=0" or ¢ <|E+ 76| <o

In the first case we have [£+7Vé|=|z +y V5|, and according to a previous
result this implies &= +a;, = +y;, where the sign is uniquely determined. In
the second case we get the double inequality

_le+nis]

<| 1+?/1V5|
l:l't+ytl/ |

and consequently the solution & +7'Vé of (6) defined by
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/T

< +nlo

§/+7],V6:5 7]1/#

xe+y Vo
satisfies the inequalities

T<|E 4y Vo|<|ay+y, V.

This, however, is contrary to our definition of the fundamental solution w, -+

+4, V8. Henee Theorem 2 is proved.
In special cases one can immediately find the fundamental solution of equa-
tion (6). To give an example the equation

- -1)y*=1, Nu)>1,
where u denotes an arbitrary integer in K (V—m), has the fundamental solution

u+Vul— 1.
More generally we have

Theorem 3. Let 6 be an integer in the field K(Vt:l;L) which s not a perfect
square. If & and n are integers i K (V—m) which satisfy the tnequalities

2 2
N (r*) (m +1)°
4m?

N>
(13)

N (&> +i, form=1,2, (mod. 4),

and if oc=§+7]l/5 ©s a solution of the equation (6), then « is the fundamental
solution of (6).

Proof. We prove first that if xl+yll/5 s the fundamental solution of (6)
Le. if [a;[*+ |y, [*|8| assumes its least value >1, then so does |y,|. According
to (12) we have

_ 7 n—2k+1, 2k—1 sk—1
Yn 121(2]6—1)%1 o

and hence
N(y")zN(yl)N(u), (n=15 25 3, L )

where u is an integer in K (/' —m), so that N(u)=1. Here the equality sign is
obviously possible only for n=1.
The theorem is true for N(n)=1. We suppose therefore that N (5)>1 and

furthermore that a;+y,V/d is the fundamental solution of (6) and that 1=
= N(y,) <N(y). However we have

xi—1 &1
0=—rg—=""g5",
n Ui
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which may be written
g -y =n*—yi=p,
or
oty é=PF, xn—ué=7Fs

where f,, f, and §#0 are integers in K (l/:7n). Now it follows

:N (B — 132 (Ig)+1_N(772~y%)+1§

N -
O ="ING) = iN@) ~ ¢V

w L for m=3 (mod. 4).

4 (m+ 1) 4’
N m+1) 1 _
Aot e for m=1, 2 (mod. 4).

By (12) we find N ()

N(y)N(y), where N(y)Z2, so that if m=3 (mod. 4)
we must have N (y)= !

m; and if m=1, 2 (mod. 4) we must have N (y)Zm.
Consequently the inequalities mentioned above for N (&) are true. Thus our as-
sumption that N (n)> N (y,) is false and Theorem 3 is proved.

We have the following corrolary to this theorem:

Let y, and u be integers in K(V —m) where N (u)Z5. If we put

d=u(uyi+2)
the number -
1+uyd+y, Vo

1s the fundamental solution of equation (6).

By letting « vary, we obtain an infinity of values § for which y, has the
same value.

An important problem concerning the equation (6) is the following: Given an
equation of the type (6). How can we determine the fundamental solution of
that equation? If we write the equation on the form 2*=d4*+1, and in the

expression dy*-+1 let y successively run through the integers of K(V m) for
which N(y)=1,2,3,..., we find after a finite number of trials an integer y,
for which 6y¥+1 13 a perfect square. By our mode of construction the solution

a,+y Vo of (6) found in this way belongs to the fundamental set. In most
cases it is, however, impossible to use this method of determination because of
the laborious calculations it requires. In general, however, it is the only method
available at present.

For the Euclidean fields m=1, 2,3, 7 and 11, A. SteIN [7] and A. ARWIN
[8] have shown how the fundamental solution of (6) may be determined by the

expansion of V6 in a certain type of continued fraction. A STEIN who does
not consider the equation (6) but the units in relative quadratic fields, treats
the field K (¢) only but makes a more exhaustive investigation than does ARWIN.
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§ 3. The Diophantine equation x*—dy*= —1

While equation (6) is solvable in integers belonging to K(/—m) for every
integer J in K(V—m) which is not a perfect square, the Diophantine equation

(14) 2—dyt=—1,

is solvable only for certain values of 4. Let us consider as an example the
equation :

(15) - (1+V-2)y=~1
in K(V/—2). The equation ;

P—(1+V-2)y%=1,
has the fundamental solution

(1=V=2)+(/=2)/1+V+2.

Suppose that £+#%V8 is the fundamental solution bf (15). According to (17)
we have 2&n= +V —2, which is obviously impossible.

If x and y are integers in K(V —~m) which satisfy the equation (14), the
number z+yVd is called a solution of the-equation. The solution is said to be
proper if x and y are both different from zero, otherwise it is called ¢mproper.
When we speak of solutions in the following lines we shall always mean proper
solutions,

We assume in the following that equation (14) is solvable and shall investi-
gate the properties of the solutions. It turns out that the field K (s) needs a
special treatment.

Let z+yVé be a solution of equation (6) which, as we have seen, is always
solvable in K (s). Then zi+yiVd is obviously a solution of equation (14). On

the other hand, if w+vVd is a solution of (14) then wi+wv3V/3 is a solution of
(6). Hence the Diophantine equation (14) is always solvable in K (¢) and its
solutions are connected with the solutions of (6) in a very simple way. We have

Theorem 4. The Diophantine equation (14) is always solvable in integers be-

longing to K (i) and we obtain all solutions xn+ ya Vo of the equation (one repre-
sentative from each set) by the formula

(16) TutyVo=i(x+yVd)", (n+1,2,38, )

where x+yV8 denotes the fundamental solution of equation (6).

Because of Theorem 4 we leave the field K (¢) out of consideration for the
test of this paragraph, i.e. we shall always assume K(/ —m)+# K (2).

In analogy with our exposition in § 2 we shall now introduce the concepts
of fundamental set and fundamental solution. First, however, we will have to
make a few remarks.
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Our first remark concerns the existence of improper solutions of equation
(14). According to theorem 4 we do not take the field K (¢) into consideration.

Since the equation #*= —1 is not solvable in K(V:Tn), m>1, we cannot
have y=0 in (14). Thus N(8)=1 is a necessary condition for the existence of
improper solutions. This means that we will have to study the equation
~dy*=—1. Now the only possibilities for 6 are d=p and §=p® where o=
=3(—-1+ 4 T3), but for these values & is a perfect square. Hence equation
(14) has no improper solutions in K(V:n), m>1.

Let z+yV6 and ' +a'Vd be two solutions of (14) for which we have |z -+
+yV8|=|a'+y'V8|. Then &' = +z and ¢ = +y, where the upper signs corre-
spond. It is evident that to the two solutions z+yVs and 2’ +y' V6 of (14)
there exists a solution &-+%V3 of the equation (6) such that

' +y Vo

6= ~
§+77V z-+~yVo

On identifying the rational parts and the coefficients of V6 we get
E=dyy —aa', n=c'y—y'
But for the solution &-+%V8 of (6) we have

- "y Ve |
f‘*‘ V(S zlx—t—=1,
&40 |z+yVé|

and aceording to our result in § 2 it follows &= +1, =0 and consequently
="z y==1y

The solutions of (14) always occur in groups of four. In the following we
shall call such a group a set of solutions. In a given set the expression {= -

~z+yVd obviously assumes four different values which may be expressed by

1 . ‘ i
+¢ and iZ, where ¢ denotes an arbitrary of these values, while |x+yl/6| only

. 1 .
assumes two different values |{| and ‘El Since |z+yV8| assumes only one

value >1 in each set this value may be used for the purpose of characterizing
the set, because the equation |z-+yV8|=|2'-+4 V8| implies that z+yVo and
2 +y' V6 belongs to the same set. We now call the set for which |z +yVé| as-

sumes its least value >1 the fundamental set of equation (14).
For the fundamental set the expression

- 1 _ ‘
le+yVoft+————=|a+yVo +|z—yVo[=2(|z]*+]y[)

|z+yVo[?

assumes its least value >2, which may also be used as a definition of the
fundamental set.
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If we have found a solution z;, +y, /8 of equation (14) it is easy to determine

the fundamental set. All we have to do is to calculate |z, -y, Vo[> which, for
the sake of brevity, we denote by b, for the given solution, to determine the
solutions which satisfy the inequalities

L<fop+luPlol<i (b+)

and finally to decide for which one of these, the expression |w+yl/5| assumes
its least value >1.

We shall now show how it is possible to determine all solutions of equation
(14) starting from the fundamental set. Although we may start from an arbi-
trary solution in the fundamental set we choose for convenience one of these,

ie. the one which satisfies the following conditions: |z+yV8|>1 and —2> <

= arg. y<g . We call this solution the fundamental solution of the equation (14).

It will in the following be denoted by =, +y,Vé.
The square of a solution of (14) is obviously a solution of equation (6). We
prove the following

Theorem 5. Let § be an inieger in K (V—m), m>1, which is not a perfect
square, and suppose that the Diophantine equation (14) is solvable in K (V —m).

Suppose furthermore that x,+y, Vo s the Jundamental solutions of the equation.
Then either the number

(17) T+ Y Vo= (2, + 9, V82 =22+ 043+ 22,4, VO

or the number —xy—y,V8 is the fundamental solution of equation (6), according
7
as —ééarg. 2wlyl<g or not.

If, further, we put

(18) xn+y,,1/3=(x1+y11/3)", (n=1,2,3...)

where

n
Tn=ay + Z( )xi’"”y%"é"
E=1\2k

_ L n-2k+1, 2k-1 sk—1
Yn kzl(Zk'—l) 41 yim o

(19)

we obtain by formula (18)

1. All the solutions (ome representative from each set) of equation (14) when n
runs through all positive odd wntegers.
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2. All the solutions (ome representative from each set) of equation (6), when n
runs through all positive even inlegers.

Proof. Clearly it follows from (18) that
Tn — ynVS = (zl - yll/g)n

Then, on multiplying together the corresponding members of this equation and
of equation (18) we have

(@i—6y2)=@—du)" =(-1)"

Hence z,+y,V0 is a solution of (14) or of (6) according as the exponent n is
odd or even.

Suppose now that the fundamental solutions of equations (6) and (14) are
not related by the formula (17). Then we must have

1<|w+yl/(_$|<|xl+y1}/5|2

where z+yV5 denotes the fundamental solution of equation (6), and on multi-
plication with the number |z, —y, V4| it follows

|$1—y11/8(<Ia:xl—éyy1+(yx1—xy1)i/3|<|x1+y1l/5‘

where the integers

To=2x,—0yy; and yo=yz —xy

satisfies equation (1 ) On the other hand it is obvious from the properties of

the solutions =z, — yllé and z,+y,/0 that we must have z,=y,=0, since it
does not exist any improper solutions of equation (14). From zy=y,=0 it fol-
lows = +x; and y= +y, which is obviously impossible. Thus (17) is true. As
a consequence of this result and of Theorem 2 we obtain immediately the proof
of the last part of Theorem 5.

It remains to prove the second part of our theorem. Suppose the x+yV )
were a solution of (14) which is not obtainable by formula (18) i.e. such a

one that none of the solutions belonging to the same set as z+yVd is obtain-
able by (18). Then such a natural number ¢ would exist that either

|2+ y V8| =2+, Vo[

or

|z, + 1, V5 |2'"1<|x+yl/(—5|<|x1+y1V5|2t+1.

In the first case we have |x+yl/5|=|w2t_1+y2¢_1l/3| and according to a pre-
vious result, z+yV5 and Zs:_;+we2e_1V8 belongs to the same set. In the second
case we get after having divided by |z, +y, Vo[>
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- |x+yl/5l

"Izt—l

<o+ Vo2
Iw1+y1V6 |1 Y1 l

For the solution £+#Vé of (6) defined by
aH—yVS

Y S o (I
S (z+um VS)M_l

we have however
1<|&+ V5| <[z +y, Vo[

but this is impossible, since (z,+w,V8)? belongs to the fundamental set of
equation (6). Thus the proof of Theorem 5 is completed.

§ 4. The Diophantine equation x*— Dy’= +1

In this section we study equation (2) for the special case of § being a ra-
tional integer. We first put 6 =D where D is a natural number which is not a
perfect square in K (/—m). Furthermore we assume VD to be positive and
consider the equation

(20) —-Dyt=1.

It is seen at once that if z+yVD is a solution of (20), where z=4}(a, +
+0,V—m), y=4(ag+bV —m), with a,=b; (mod. 2) for m=3 (mod. 4) and
ax=br=0 (mod. 2) for m=1, 2 (mod. 4), then i-l—gl/f), where, =14(a,—
~b,V~m) and §=4(a,—b,/ —m), is also a solution of (20), and for these two
solutions we have lx+yVD|—|x+yVD| According to our results in §2 this
implies a; - b, V—m= +(a1+b11/ m) and a,—b,V —m=+ (ay+ by V —m), where
the upper signs correspond, i.e. we have either b;=50,=0 or a,=a,=0.

Let us first consider the case b,=b,=0. In this case equation (20) may be
written

—Da2=4

1.e. the equation coincides with Pell’s equation.
Let us now assume that a,=a,=0. Then equation (20) is of the form

b,V —m )2 —D (b} —m)?=
or
—mbi+Dmbi=4,

which is possible only for m=1. Hence K (¢) is the only imaginary quadratic
field in which equation (20) has non-real solutions. On observing that an ima-
ginary solution of equation (20) in K(z) may be regarded as a solution in ra-
tional integers of the equation

(21) 22— Dy?= —1, we can formulate
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Theorem 6. The Diophantine equation (20) has in the field K (¢) either alter-
nately purely imaginary solutions and real solutions, or real solutions only, ac-
cording as equation (21) is solvable in rational integers or mot.

For the other imaginary quadratic fields we have

Theorem 7. The Diophantine equation (20) has in the field K({ —m), m>1,
only real solutions z+yVD i.e. z and y are rational integers.

For the Diophantine equation (21) we have the same result ie. if equation
(21) 18 solvable, the solutions are real numbers.
We now turn our attention to the equation

(22) *+Dy*=1,

where D is a squarefree natural number such that —.D is not a perfect square

in K(/—m). With z= Hay +bV —m), y=3(as+b, V' —m m), where a;=b; (mod. 2)
for m=3 (mod. 4) and a,=b, =0 (mod 2) for m=1, 2 (mod 4), we get

1 ai—mbi+D(af—mb3)=
| a,b, + Dagh,=0.
On eliminating ai between these two equations we find
(B3+Db3) (el —mDb3)=4Db3,
and there are the following possibilities to examine
1) b, =a,=0. Putting a,=2¢, and b,=2d,, equation (22) reduces to
(23) G—mDdi=1.
It cannot occur here that mD is the square of a natural number.
2) a,=b,=0. Putting a,=2¢, and b, =2d,, this implies
(24) -mdi+ D=1

While (23) is always solvable, (24) is solvable only for certain values of D.

If equation (24) is solvable and has the solution d,V —m+c,/ —D, then

@V =m+cV=Dy= —md?~D&+2c,d,VmD
1s a solution of (23).

3) bi=3Db3, ie. D=3. In this case (22) reduces to an equation of type (23).
4) Finally we may have b2=Db, i.e. D=1. Here (22) is of the form

(25) (“l th ‘f_—m)z + (“1 b '/:7")2 =1,

2 2

and this equation is solvable if m does not contain any prime p=3, 5 (mod. 8),
as 1s seen at once.
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By Theorem 2 we have

Theorem 8. If D>1 and equation (24) is solvable with the fundamental solu-
tion x+yV —D this solution is also the fundamental solution of equation (22).

Furthermore the solution (x+yV — D)? belongs to the fundamental set of equation
(23), which may be regarded as an ordinary Pell’s equation. If (24) is not solvable
the fundamental solution of (22) is equal to the fundomental solution of (23).

If D=1 and (25) is solvable with the fundamental solution

a1+b11/_—7n+a’1—bll/:_7;bl/'—_l
2 2

this solution is the fundamental solution of equation (22). If (25) is not solvable
the fundamental solution of (22) 1s equal to the fundamental solution of equation (24).
For the equation .

(26) ?+Dy?=—1,

we have apart from trivial differences, the same results as for equation (22).
Our results in Theorems 6, 7 and 8 may be regarded as theorems concerning

the units z+y VD and z+y) V——D_with integral coefficients x and y in the fields
K (V—m; VD) and K (V_—m ; V—D) respectively. Leaving the roots of unity
belonging to K (/' —m; VD) and K(/—m; V —D) out of consideration we have

Theorem 9. The cyclic group G of units z+yVD, with integral coefficients
and y belonging to K(V——m), in the field K(l/——m; Vﬁ), m>1, 1s generated by
the fundamental wnit of the subfield K (VD).

In the field K (l/:_l; VE) the group G 1is generated by ]/z—!-yVD or =+
+yVD, where +yVD denotes the fundamental unit of K (VD) according as the
Diophantine equation (21) is solvable in rational integers or not.

As to the fields KV —m; V~D) we have

Theorem 10. For D>1,Vtke group G of units §+17V'?D with ‘z'ntegml coeffi-
cients & and 1 m K(/—m) is generated by Vu+vl/7;b or u+oV¥mD, where

u-l—'vl/nﬁ), where w+vVmD s the Jundamental unat in the field K (l"/m_rb), ac-
cording as either of the equations

(27 (—ma®—Dy?P=1,
and
(28) 2-my’= -1,

are solvable in rational integers or not. -

In the field K(V —m; V—-—l) the group G is generated by Vu+vl"/m or utvlm,
where u+vVm s the fundamental unit in the field K (V;@), according as either
of the equations
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(29) ?-my=—1,
and
(30) P —my*=+2,

are solvable in rational integers or not.

§ 5. The Diophantine equation x*—dy’=¢6

Let f(z, ¥) be a binary quadratic form with coefficients belonging to an al-
gebraic number field £2. If then o is an integer in the field considered, the
question arises whether or not ¢ can be represented by the form f(z, y), or
expressed in a different way, whether or not the Diophantine equation

@81 : fy)=0c

is solvable in integers belonging to £2. In investigating this problem one may
use either the theory of quadratic forms or the theory of relative quadratic fields.

When £ is the rational number field T. Nacerr [1] [2] [3] [4] has shown,
as is previously mentioned, how the solutions of (31) can be determined very
easily and with quite elementary methods.

Using the theory developed in §§ 1-3, we will show in this paragraph that
the method employed by NAGELL can also be used when £ is an imaginary
quadratic field.

Obviously it is sufficient to study the equation
(32) @ -dy’=0o

where & is an integer in K(V—m) which is not a perfect square, instead of
the more general equation (31).

If x=u and y=v are integers in K(J —m) which satisfy the equation (32)
we say that the number
u+'vl/5

is a solution of that equation.

Two solutions u-+v V8 and w' +v'Vé of (32) are said to be equal if and only
if u=v' and v=0'.

A solution u+vV8 of (32) is said to be greater than another solution u’+ v'Vé
of (32) if |u+vVé|>|u +v V3|
"In §1 we have studied the equation

(33) -8yt=1.
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We showed that (33) is always solvable in K()/ —m) and defined the funda-
mental solution of that equation to be the solution which satisfies the conditions
|v+yV8|>1 and least, and —gé arg. y<g.

Assume now that equation (32) is solvable and has the solution u+v 6. If
z+yVé is a solution of (33), then the number

(u+oVo)(w+yVo)=uz +6vy+(uy+vw)l/5

is also a solution of (32). This solution is said to be associated with the solu-

tion u+wVd. The set of all solutions associated with each other forms a class
of solutions of (32). By Theorem 2 every class contains an infinity of solutions.

It is possible to decide whether the two given solutions u+vVé and w' +v' Vo
belong to the same class or not. In fact, it is easy to see that the necessary
and sufficient condition for these two solutions to be associated with each other,
is that the two numbers

wu — v’ vu —uv
and
a g
be integers in K (V —m). B
Let K be the class consisting of the solutions w; + v; Vs, i=1,2,3,..., it
is then evident that the solutions w; — Ve, i=1, 2, 3, ..., also constitute a

class, which may be denoted by K. The classes K and K are said to be con-
jugates of each other. Conjugate classes are in general distinct, but may some-
times coincide; in the latter case we speak of ambiguous classes.

Among all the solutions u+vVé in a given class K we now chcose a solu-
tion w*+v*)6 in the following way: Let N (u*) be the least value of N (u)

which occurs in K, and furthermore let w* satisfy the inequalities “T< arg.

7 . . . e .
u*<5‘ If K is not ambiguous, then the solution w*+v*V¢§ is uniquely deter-

&

mihed. If K is ambiguous, we get a uniquely determined solution w* +v* )6 by

prescribing also that ~g§ arg. v*<g. The solution defined in this way is

said to be the fundamental solution of the class.

The case N (u*)=0 can occur only when the class is ambiguous, and similarly
for the case N (v¥)=0.
If o= +£1, clearly there is only one class, and then it is ambiguous.

After these preliminaries we are now in a position to prove

Theorem 11. Let u+vVé be the fundamental solution in the class K of the
Diophantine equation

(32) w—8v¥=0¢
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and let v,+y, Vd be the fundamental solution of _the equation (33). Furthermore let
us assume that & takes mone of the values +V =1, +2, £33-V-3) £33+
+V=3) and +V—3. Under these conditions u and v obey the following inequal-
itres

2
2y 21— 1]
(34) O<|u|<|xll_1|a|
and
2
< |2 |y1| 1)
(35) 0et|< (|r_$1|—1+—|5| lo].

If o is a perfect square in K (V:n), o=n°, and n belongs to the class K we

have the following inequalities as well, which have the advantage of being also valid
for the exceptional values of 0 enumerated above.

(36) 0<|u]|= |z || Vol
(37) 0=|v|=|u.]| Vol

Proof. It is evident, that the inequalities (36) and (37) are valid when o is
a perfect square g=7* and 7 belongs to the class K, since in this case equation

(32) has the solution z;9+y,7 V.
Let us then turn to the other inequalities. If (34) and (35) are valid for the

class K they are aslo valid for the conjugate class K. We form

(u+vV?S)(zﬁ—ylV5)=ux1+6vy1+(vx1+uyl)V5
and

(u+0V8) (@y—w, Vo) =uz, — Svy, + (v 2y —uyy) Ve
Let us consider .

uxz, +0vy; and uz,—dvy;.

According to the definition of fundamental solution these numbers both obey
the inequalities

|uz, +6vy, |2 |u| and |uzy—dvy,|Z|ul.

But it is evident that at least one of these inequalities, let us assume that it
is the first one, may be sharpened to

|uzy, + vy, | = |uzl,

and here the equality sign holds only if v=0 so that we can assume the in-
equality to be strict,

|uz, +8vy,|>|uzl,
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since if v=0, |u?| satisfies the inequality |u?|<|o|, which is obviously better
than (34). It now follows
[ ai— 6* vyt | > ||| 2 |
or
|u?al — (u* — o) (a1 — 1) | > |w*| 2,
which can be written
|u?+ o (@ —1)| > |u?| |2, |
Hence
o
Shla-11m -1,
and we get

2
2 le"ll
|“|<lx1|—1|"’

under the condition |z|# 1. This condition is always fulfilled except for the
values of 0 enumerated in the theorem. Thus the inequalities (34) are true.
From (32) we deduce

lol]o*|=]w?| +]0]

1 (|#2-1] )
2 =
lvl<l5|(|$1|“1+1 lo|

and it follows

which is in fact the right hand inequality in (35).
For those values of 6 which are excepted in Theorem 11 we have
Theorem 11 a. Let 0 be ome of the integers ;_H/———l, +2, i%(3—V1—3),
+3(3+V=3), or +V—3. Furthermore let u-+vVs be the fundamental solution
of the class K of the Diophantine equation
(32) w—d¥ =g,

and let zy+y, V6 be the square of the fundamental solution of equation (33).
Under these conditicns u and v obey the following inequalities

2
oy _ |28 —1]
(38) O<|u|<lw2|_1]a|
and
2
<|q? Iy2| _:!__)
(39) 0=l |<(|x2|-1+|5| o

Proof. The proof is exactly that of Theorem 11. We have only to prove
that |z,|#1 is always true, which can be done by a simple calculation.
From Theorems 11 and 11 a we deduce immediately

Theorem 12. Let 0 and o be integers in K(V —m), where & ts assumed not
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to be a perfect square. Then the Diophantine equation (32) has only a finite num-
ber of classes of solutions. The fundamental solution vn each class can be determined
by a finite number of trials using the inequalities in Theorems 11 and 11 a.

If w*+v*V8 is the Jundamental solution in the class K, we find all the solu-
tions u+vVé in K by the formula

u+oVo=(u*+v* Vo) (x+yl/(_5)

where z+yV8 runs through all the solutions of equation (33).
A supplement to Theorems 11 and 11 a is given by

Theorem 13. If 7 is a prime n the field K (V —m), the Diophantine equation
(40) u?— 8 =n,

where O ¢s an integer in K(V —m), which is not a perfect square and such that
[8]26, has at most one solution w+vVS in which u and v satisfy the inequalities
(34) and (35).

If equation (40) is solvable, it has one or two classes of solutions according as
the prime 7 divides 20 or not.

Proof. Suppose that u-+v)8 and u,-+v,Vd are two solutions of (40) which
satisfy the conditions in the first part of Theorem 13.
Eliminating 6 between the equations

(41) u?—dv'=m and ui—dvi=nm,
we get

u2e? —udo? =g (07— 0v?).
Thus
(42) uv, = +u, v (mod. n)

for the upper or for the lower sign.
Further, on multiplying together equations (41) member by member we have

(wuy, F 0vv,)*— 8 (uv, Tu,v):=nt
In the equation

(43) (yuliévvl)z_é(uvlim)zzl
7 7

let us choose the sign so that the congruence (42) is satisfied. Then the two
squares on the left-hand side in (43) are integers. If wv, T u,v# 0, we conclude
from (43) that

(44) lwoy Ty o| 2 [0 ]| 7],

On the other hand, applying inequalities (34) and (35) we obtain, under the
condition |§|= 6,
lwey Fupv|<|w||7,
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which is contrary to (44). The remaining case is that wv, T 4, v=0, which is
obviously possible only for #=wu, and v=v,. Thus the first part of Theorem 13
18 proved. B

Consequently, there are at most two classes of solution. Suppose that wutvVé
and u—oV6 are two solutions which satisfy inequalities (34) and (35). These
solutions are associated if and only if 7 divides the two numbers 2uv and %* +
+6v*=268v*~7n. Since v cannot be divisible by z, the numbers 2« and 24
are divisible by z. But, if 20 is divisible by =, so is 2u. Thus, the necessary
and sufficient condition for w+vVé and w—vVé to belong to the same class
18 that 26 be a multiple of zz. This proves the second part of the theorem.
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