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The set of extreme points of a compact convex set

By Goran Biorck

0.1. Introduction

The purpose of this note is to establish necessary and sufficient conditions
for a set S in a Fréchet space X to be the set of extreme points of some
compact convex set.l

We shall first study the case where X is a Euclidean space R". Suppose that
S is the set of extreme points of some compact convex set K. As is well known,
8 mneed not be closed. But it is also well known that K must be the convex
hull of § and, consequently,

the closure of S is contained in the convex hull of S. (b)
Further obvious necessary properties of § are that

the closure of 8 is compact (a)
and that

no point of S s a barycenter of a finite set of other points of S. (c¢)

The following is obviously an equivalent formulation of (¢’): For all A< S, no
point of § is in the convex hull of 4 without being in A4, or, with obvious
notation,

SNH(A)< A for all A<S. (c)

Thus, in a Euclidean space, conditions (a, b, ¢) are necessary. In Theorem
2.1 ‘they are proved to be sufficient. We shall also prove that some apparently
stronger conditions are necessary.

When X is a general Fréchet space (Theorem 3.1), we have to make some
changes in conditions (b) and (c), for it develops that (b) is not necessary and
(a2, b, ¢) are not sufficient. However, if the convex hull occurring in (b) and
(c) is replaced by a certain larger “hull”, the resulting conditions will be ne-
cessary and sufficient. This new hull He of a set S was considered by Choquet
[4, 5, 6]. It is defined as the set of barycentra of those positive Radon mea-
sures u of total mass one on § which are contained in S in the sense that
(8§ —8) has u-measure zero. Choquet [5 or 6] proved that each compact convex
set K in a Fréchet space is the Hc-hull of its set of extreme points. The Krein-

1 For terminology, see [1] and [2].
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Milman theorem only tells us that every point of K is the barycenter of a
measure on §. Choquet’s result means that in a certain sense there need not
be any masses outside of S. At first it might seem more natural to require the
masses to be contained in S in the stronger sense that each z in K is the ba-
rycenter of a measure with its support (compact by definition) contained in §.
However, it follows from examples given by Choquet (see Lemma 3.2), that
this is not possible. Accordingly we shall find that the corresponding “hull ope-
ration” (the Hy: of section 0.2) cannot be introduced in conditions (b) and (c).

0.2. Notation and definitions
Let X be a linear space. Let S X and let K< X be convex. We shall con-
sider the following sets:

Hp (8)={z€ X |2 =3 A, mES, 120, 3 h=1};

H (S)=convex hull of S= U1H’" S);

and E (K)=the set of extreme points of K
={x€K|x€H,(A)>z€ A for all Ac K}.

When X is a topological linear space, we shall also consider:

S = closure of §;
H (8)=H (S)=closed convex hull of S;
H:(S)={~z€X|3Radon measure y on §
withz=[tdu(t), p=0, p(8)=1, u(§—8)=0};
S

and

H,;(8), defined as H¢(S) but with “u (8§ —S)=0" replaced by “support (u) =S’
(The support is the smallest compact set outside which u vanishes.)
Evidently,

S=H,(S)cH,(S)c...c H(S)c Hy(S)= Hc (S) < H (8).

If x and u are related as in the definition of H¢ (S), we shall write z = ft du.
™

1. Non-topological preliminaries

In this section, K (convex) and S are sets in a linear space X.

We first formulate without proof two remarks which are simple consequences
of the definition of an extreme point:

1.1. Remark. If E(K,) c K,< K,, then E(K,) c  (K,).

1.2. Remark. B (H(S)) < S for all 8.

1.3. Lemma. If S=E (K) for some convex K, then S=E (H (3)).

Proof: Take K, =K and K,=H(S) in Remark 1.1. We get S E (H (8)), and
the lemma follows from Remark 1.2.
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1.4. Remark. In contrast with the case in Theorem 2.1, it does not follow
from §=E (K) that K=H(S).
1.5. Lemma. The following three properties of a point x and a set S are equivalent:

(1) z€E (H(S)).
(II) x€ H(A) implies x€A for all AcS.
(III) x€ H (B) implies x€B for all B< H (S).

This was observed by Klee {7, Theorem 1]. (That (I)= (III) is very near the
definition of an extreme point, (III)=(II) is obvious, and (IT)=(I) is proved
by straightforward calculation.)

The following lemma states that condition (¢) of section 0.1 is necessary and
sufficient for § to be the set of extreme points of some convex set.

1.6. Lemma. The following three properties of a set S are equivalent:

(1) S=E(K) for some convex K.
(2) SNH(A) <A forall A<S.
(3) SN H(B) < B for all Bc H(8).

Proof: Obviously, (3) implies (2). Next suppose (2) is true and let z€S. Then
x satisfies (II) of Lemma 1.5, and from (I} we get S<Z(H(S)). Remark 1.2
then completes the proof of (1) with K =H(S). Finally, suppose (1) is true and
let x€S8N H(B) with B H(S). From Lemma 1.3, x satisfies (I) of Lemma 1.5,
and so from (III) we see that x€ B, which completes the proof of (3) and of
Lemma 1.6.

2. Compact convex sets in a Euclidean space

2.1. Theorem. The following three properties of a set 8 in R™ (n> 1) are equivalent:

(1) There is a compact convex set K< R", such that S=E (K).
(2) (a) § is compact,

(b) Sc H(S), and

() SNH(A)c A for all Acg.
(3) (a) § is compact,

(b) ScH,_1(8), and _

(¢} SNH(B)c B for all BcH(S).

Proof: Evidently (3)=(2), so that we only have to prove that (2)=(1)=(3).
First, suppose (2) is true. From (2a), H (S) is compact {1, exc. 2]. But from
(2b), H(S)cH(8), and so H(S)=H(S). Further, from (2¢), Lemma 1.6 and
Lemma 1.3, we get S=E(H(8)). Thus (1) is proved with K =H (S).

Finally, suppose (1) is true. Then K =H (8)=H (S), (see e.g. [1, exc. 9]). (3a)
is evident and (3 c) follows from Lemma 1.6. Since H (S) is closed, we get S< H (S),
or by Carathéodory’s theorem, S<H, 1 (S). If § is closed, (3b) is evident. If
not, let x€8—S, and let L be a supporting plane of H(S) through z. Since
«€H (8)N L=H (SN L), we get from Carathéodory’s theorem that x€ H, (SN L)<
< H,(8). First, if ScL, we replace R* by L, repeat the argument and find
x€H, 1(8). Next, if § contains points outside of L, let a be such a point, and
let L,3a and L, be the open halfspaces produced by L. Let b be any point
€ Ly. Suppose x¢ H,_,(S). Then x must be an interior point of a simplex 7' in
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L with its vertices in SN L. Let O be the interior of H (T'U {a} U {b}). Since O
is a neighborhood of z, there is in O a point y€S< L, U L. Then y is an in-
terior point of H(T U{a}) or of 7. This violates condition (3¢) with B={a} U
{vertices of T}, and the proof of (3b) and of Theorem 2.1 is. complete.

2.2. Corollary. From (3 b), we get the well-known result that if X is a com-
pact convex set in R2, then E(K) is closed.

2.3. Remark. In Theorem 2.1, condition (3 b) cannot be replaced by S< H,_2 (8).
Indeed, we shall construct a set S, satisfying e. g condition (1) but not the
proposed condition. (For n =3, the same example is given in [1, exc. 8].) We
consider R* as R"Zx R? (Wlth the coordinate spaces imbedded). In R"~* we take
a simplex W with the origin o as an interior point. Let ¥ be the set of ver-
tices of W. Then o¢ H,_2(V). The two remaining dimensions will assist in making
o an accumulation point of extreme points. In R?, let C' be the circumference
of a circle through o. Finally, take =V U (C— {0}). Then, since 0 €H (V)= H (8),
we find H(S)=H(VUC). But VUC is compact, and so H(S) is compact, and
EH(S)<=VUC. On the other hand, a point x€C— {0} obviously cannot be
the barycenter of masses which are partly distributed in W. Hence, since x€ E (C),
we get x€E (H(S)), and similarly for the points of V. Thus S=E(H (S5)). Fin-
ally, we see that o¢ H,_2(8).

3. Compact convex sets in a Fréchet space

3.1. Theorem. The following three properties of a set 8 in a real Fréchet space X
(i.e. a complete, metrizable, locally convex, real vector space, e.g. a real Banach
space) are equivalent:

(1) There is a compact convex set K< X, such that S=E (K).
(2) (a) S is compact,

(b) ScHc(8), and

(¢) SNHy(4)c A for all A<8S.
(3) (a)=(2a)

(b)=(2b) _

(¢) SNH:(B)c B for all B<H (S).

Proof: As in Theorem 2.1, we shall prove that (1)=(3) and (2)= (1). Suppose
(1) is true. Then K=Hc(S)= H(S) [5, théoréme 1, or 6, théoréme 1]. Then
(3b) follows from Sc Ho{S)=H(S), and (3a) is obvious. To prove (3¢}, let
BcK and let z€SnN H (B). Hence x=ftd,u. But 2 € K (K), and so y must con-

1¢:)
sist of one unity pointmass, which must then be in B. Consequently, xz€ B,
which completes the proof of (3).

Finally, suppose (2) is true. Since § is compact and X is complete, H () is
compact [1, N° 1]. From S<H (S) we get H (S)=H (§), and so H (8) is com-
pact. Next we shall prove that BH(8)<8. Let z€E (H (8))=E (H (S)). Then
€8 [1, prop. 4], and by (2b), x€H(S). As in the first part of the proof,

from z= f tdu it follows that x € 8. We have thus proved the inclusion # (H(@8) <8,

and we shall now use this to prove the reversed inclusion. In (2c¢), we take
A=E(H(S)). From Choquet’s theorem, Hc(4)=H (8). Hence from (2 c), we get
8< A, which completes the proof of (1) and of theorem 3.1.
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In sections 3.3-3.5 we shall discuss the possibilities of making certain changes
in the conditions of Theorem 3.1. We shall need the following lemma, which
states that in general H,, (¥ (K))+ H¢(E (K)).

3.2. Lemma. There exist in some Fréchet space Y a compact convex set W and
a point a €W such that a ¢ Hy (B (W)).

In fact, the following example is given by Choquet [6, p. 17]: Let U (with
elements ) be the closed interval {0, 1] and let V (with elements v) be the
set of reals modulo 1. Then Y is the space of Radon measures m on UxV
and W is the set of m€ Y such that m=0, m (U x V) =1 and dm (u,v) = dm (u,v + u).
Let a €W be the homogeneous distribution of total mass one on UxV. We
find that E (W) is the set of m€ W satisfying:

(1) the support of m is contained in the circle u=wu,, where u, is a con-
stant (depending on m);

(2) if 4, is irrational, then m is the homogeneous distribution of total mass
one on the circle u=w,; and

(3) if um=1plq, where p and ¢>0 are relatively prime integers, then m con-
sists of g symmetrically distributed point-masses, each with mass 1/g.

Then it is easily seen! that with a certain x4 with the support of y not con-

tained in E (W), we have a,=ftd 4. From a uniqueness theorem [4, théoréme

(B (W)
1, or 6, théoreme 2), it follows that a ¢ H (E(W)).

3.3. Remark. In Theorem 3.1, condition (3 b) cannot be replaced by S € H;(S).
In fact, let Y,W and @ be as in Lemma 3.2. If we take X = Y x R2 and pro-
ceed in a way similar to that used in section 2.3 (with o replaced by a), we
find that S=E (W)U (C—{a}) satisfies condition (1) of Theorem 3.1 and that
S ¢ H: (8S).

3.4. Remark. In Theorem 3.1, condition (3 c) may be replaced by the appa-
rently weaker condifion:

(3¢,) SnH,(B)<B for all Bc H¢(S).

In fact, (3¢,) is exactly the statement S E (H (S)). To prove that (3a, b, ¢;)
implies (1), we observe that we have as in the second part of the proof of
Theorem 3.1, that E(H (S))<S. If we take the Hc-hull of both members of the
last inclusion, we get H (S)< H(S). Consequently these two sets are equal,
which completes the proof that S=E(H (9)).

3.5 Remark. In contrast with Remark 3.4, condition (2e¢) of Theorem 3.1
cannot be weakened to

(2¢) SNHy(4)c A for all A< 8.

We consider the following example. Let X =Y and 8= {a} U E (W) with ¥, W,
and a as in Lemma 3.2. Clearly S satisfies conditions (2a,b) but not (1} of
Theorem 3.1. We shall now prove that S satisfies (2¢,). Let 4<& and z€S8N
H;(4). First, suppose z=a. If a €4, there is nothing to prove. If a ¢ 4, it fol-
lows that A<S8—{a}, and hence z€H, (S— {a}), or in the notation of Lemma
3.2, a€Hy (B (W)), which is not true. Finally, suppose x=a. Hence

z€(S—{a}) N Hy (A)=E (W) Hy(A)c BE(W)N He(4d) A4,
by (3¢) of Theorem 3.1.

1 For the concept of integral of a family of measures, see [3, § 3, N° 1].
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