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The set o f  extreme points  o f  a compact  convex  set 

B y  G(inAN BJ/SRCK 

0.1. Introduction 

The purpose of this note is to establish necessary and sufficient conditions 
for a set S in a Fr~ehet space X to be the set of extreme points of some 
compact convex set. 1 

We shall first s tudy the case where X is a Euclidean space R n. Suppose that  
S is the set of extreme points of some compact convex set K. As is well known, 
S need not be closed. But  it is also well known that  K must be the convex 
hull of S and, consequently, 

the closure o/ S is contained in the convex hull o/ S. (b) 

Further  obvious necessary properties of S are tha t  

the closure o/ S is compact (a) 

and that  

no point o/ S is a barycenter o/ a /inite set o/ other points o/ S. (c') 

The following is obviously an equivalent formulation of (c'): For all A c S, no 
point of S is in the convex hull of A without being in A, or, with obvious 
notation, 

S n H(A) ~ A /or all A c S. (e) 

Thus, in a Euclidean space, conditions (a, b, c) are necessary. In  Theorem 
2.1 t h e y  are proved to be sufficient. We shall also prove that  some apparently 
stronger conditions are necessary. 

When X is a general Frgchet space (Theorem 3.1), we have to make some 
changes in conditions (b) and (e), for it develops that  (b) is not necessary and 
(a, b, c) are not sufficient. However, if the convex hull occurring in (b) and 
(c) is replaced by a certahl larger "hull",  the resulting conditions will be ne- 
cessary and sufficient. This new hull He of a set S was considered by Choquet 
[4, 5, 6]. I t  is defined as the set of barycentra of those positive Radon mea- 
sures /z of total mass one on ~q which are contained in S in the sense tha t  
(<q-S) has #-measure zero. Choquet [5 or 6] proved tha t  each compact convex 
set K in a Fr@chet space is the He-hull of its set of extreme points. The Krein- 

1 F o r  te rminology ,  see [1] and  [2]. 
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Milman theorem only tells us that  every point of K is the barycenter of a 
measure on ~q. Choquet's result means that  in a certain sense there need not  
be any masses outside of S. At first it might seem more natural to require the 
masses to be contained in S in the stronger sense that  each x in K is the ba- 
rycenter of a measure with its support (compact by definition) contained in S. 
However, it follows from examples given by Choquet (see Lemma 3.2), tha t  
this is not  possible. Accordingly we shall f~nd that  the corresponding "hull  ope- 
ration" (the Hst of section 0.2) cannot be introduced in conditions (b) and (c). 

0.2. Notation and definitions 

Let X be a linear space. Let  S c X and let K c X be convex. We shall con- 
sider the following sets: 

m m 

Hm  ,es, a,_>0, Ea, = 1}; 

o o  

H (S) = convex hull of S = 0 Hm (S); 
m - - 1  

and E (K)=  the set of extreme points of K 

= { x e g l x e H 2 ( A ) ~  x e A  for all A c  K}. 

When X is a topological linear space, we shall also consider: 

S=c losu re  of S; 

(S) = H (S) = closed convex hull of S;  

Hc (S) = (x E X ] 3 Radon measure/z on 
w i t h x = I t d p ( t ) ,  #>_0, # ( S ) =  1, p ( S - S ) = 0 } ;  

and 

Hst (S), defined as Hc  (S) but with "#  ( S -  S) = 0" replaced by "support  (#) c S " .  
(The support is the smallest compact set outside which # vanishes.) 

Evidently, 

S = H1 (S) ~ Ha (S) ~ . . .  ~ H (S) c Hst (S) c Hc (8) ~ H (S). 

If  x and ~u are related as in the definition of Hc (S), we shall write x = f t d~.  
(z) 

1. Non-topological preliminaries 

In  this section, K (convex) and S are sets in a linear space X. 
We first formulate without proof two remarks which are simple consequences 

of the definition of an extreme point: 
1.1. Remark. If  E (K1) c K s c K1, then E (K1) c E (Ks). 
1.2. Remark. E (H (S)) c S for all S. 
1.3. Lemma. I] S = E (K) /or some convex K,  then S = E (H (S)). 
Proof: Take K I = K  and K 2 = H ( S  ) in Remark 1.1. We get S ~ E ( H ( S ) ) ,  and 

the lemma follows from Remark 1.2. 
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1.4. Remark. In  contrast  with the case in Theorem 2.1, it  does not  follow 
from S = E (K) tha t  K = H (S). 

1.5. Lemma. The following three properties o / a  point x and a set S are equivalent: 

(I) ~ ~ E (H (S)). 
(II) x E H ( A )  implies x E A  /or all A c S .  

(III) x E H (B) implies x E B /or all B ~ H (S). 

This was observed by Klee [7, Theorem 1]. (That ( I )~  (III) is very near the 
definition of an extreme point, ( I I I ) ~  (II) is obvious, and ( I I )~  (I) is proved 
by  straightforward calculation.) 

The following lemma states tha t  condition (e) of section 0.1 is necessary and 
sufficient for S to be the set of extreme points of some convex set. 

1.6. Lemma. The/ollowing three properties o /a  set S are equivalent: 

(1) S = E ( K )  [or some convex K. 
(2) SN H(A)  c A / o r  all A c S .  
(3) S N H (B) c B / o r  all B ~ H (S). 

Proof: Obviously, (3) implies (2). Next  suppose (2) is true and let xES.  Then 
x satisfies (II) of Lemma 1.5, and from (I) we get S ~ E ( H ( S ) ) .  Remark 1.2 
then completes the proof of (1) with K = H ( S ) .  Finally, suppose (1)is t rue and 
let x E S N  H(B)  with B c H ( S ) .  From Lemma 1.3, x satisfies (I) of Lemma 1.5, 
and so from (III) we see that  x EB, which completes the proof of (3) and of 
Lemma 1.6. 

2. Compact  c o n v e x  sets  in a Euc l idean  space  

2.1. Theorem. The/ollowing three properties o /a  set S in R ~ (n > 1) are equivalent: 

(1) There is a compact convex set K c R  n, such that S = E ( K ) .  
(2) (a) ~q is compact, 

(b) S ~ H ( S ) ,  and 
(e) S N H ( A ) ~ A  /or all A c S .  

(3) (a) S is compact, 
(b) S~Hn_I (S ) ,  and 
(c) S N H (B) ~ B /or all B c H (S). 

Proof: Evident ly (3)~ (2), so that  we only have to prove that  (2)~ (1)~ (3). 
First, suppose (2) is true. From (2a), H(~q) is compact [1, exc. 2]. But  from 
(2 b), H(~q) c H (S), and so H(~q) = H (S). Further,  from (2 c), Lemma 1.6 and 
Lemma 1.3, we get S = E ( H ( S ) ) .  Thus (1) is proved with K = H ( S ) .  

Finally, suppose (1) is true. Then K = H ( S ) = H ( S ) ,  (see e.g. [1, exc. 9]). (3a) 
is evident and (3 c) follows from Lemma 1.6. Since H (S) is closed, we get Lqc H (S), 
or by Carath~odory's theorem, ~cHn+I(S) .  I f  S is closed, (3b) is evident. If  
not, let x E~q-S,  and let L be a supporting plane of H(S)  through x. Since 
x E H (S) N L = H (S N L), we get from Carath6odory's theorem tha t  x E Hn (S N L) 
c H n ( S ) .  First, if S c L ,  we replace / ~  by L, repeat the argument and find 
x EHn_l (S). Next,  if S contains points outside of L, let a be such a point, and 
let Laga  and Lb be the open halfspaces produced by  L. Let  b be any point 
E Lb. Suppose x ~ H=-I (S). Then x must be an interior point of a simplex T in  
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L with its vertices in S ~ L. Let  O be the interior of H(T  U {a} U {b}). Since 0 
is a neighborhood of x, there is in 0 a point y e S = L ~  U L. Then y is an in- 
terior point of H ( T  U {a}) or of T. This violates condition (3 c) with B= {a} U 
{vertices of T}, and the proof of (3 b) and of Theorem 2.1 is  complete. 

2.2. Corollary. From (3 b), we get the well-known result t ha t  if K is a com- 
pact  convex set in R ~, then E(K) is closed. 

2.3. Remark.  In  Theorem 2.1, condition (3 b) cannot  be replaced by  ~q= Hn-~ (S). 
Indeed, we shall construct a set S, satisfying e.g. condition (1) but  not  the 
proposed condition. (For n= 3, the same example is given in [1, ext .  8].) We 
consider R ~ as Rn-2× R 2 (with the coordinate spaces imbedded). In  R ~-2 we take 
a simplex W with the origin o as an interior point. Let  V be the  set of ver- 
tices of W. Then o ¢ H , - 2  (V). The two remaining dimensions will assist in making 
o an accumulation point of extreme points. In  R *, let C be the circumference 
of a circle through o. Finally, take S= V U (C-  {o}). Then, since o e H  (V)c H (S), 
we find H (S)=  H (V U C). But  V U C is compact,  and so H(S) is compact,  and 
E(H(S) )~  V U C. On the other hand, a point x e C - { o }  obviously  cannot be 
the barycenter  of masses which are par t ly  distributed in W. Hence, since x E E (C), 
we get xeE(H(S) ) ,  and similarly for the points of V. Thus S=E(H(S) ) .  Fin- 
ally, we see tha t  o ¢ H~_~ (S). 

3. Compact  c o n v e x  sets in  a Fr~chet  space 

3.1. Theorem. The /ollowing three properties o/ a set S in a real Frdchet space X 
(i.e. a complete, metrizable, locally convex, real vector space, e.g. a real Banach 
space) are equivalent: 

(1) There is a compact convex set K c X, such that S= E (K). 
(2) (a) ~ is compact, 

(b) ~q=Hc(S) ,  and 
(c) S A H c ( A ) c A  /or all A ~ S .  

(3) ( a ) = ( 2 a )  
(b) = (2 b) 
(c) S A H c ( B ) ~ B  ]or all B ~ H ( S ) .  

Proof: As in Theorem 2.1, we shall prove tha t  (1)~ (3) and (2)~  (1). Suppose 
(1) is true. Then K = H c ( S ) = H ( S )  [5, th6or~me 1, or 6, th6or~me 1]. Then 
(3b) follows f rom S c H c ( S ) = H c ( S ) ,  and (3a) is obvious. To prove (3c), let 

B c K  and let x E S ( I  He(B) .  Hence x = f t d t z .  But  xEF_,(K), and so # mus t  con- 
(B) 

sist of one uni ty  pointmass, which must  then be in B. Consequently, x E B, 
which completes the proof of (3). 

Finally, suppose (2) is true. Since S is compact  and X is complete, H(~q)is 
compact  [1, N ° 1]. From ~q~H(S)  we get Er(S)=H(~q) ,_and so H_(S) is com- 
pact.  Next  we shall prove tha t  E ( H ( S ) ) c S .  Let  xEE(H(S) )=E(H(S) ) .  Then 
x Ekq [1, prop. 4], and by  (2b), x EHc(S). As in the first pa r t  of the proof, 

f rom x = f t d #  it follows tha t  x E S. We have thus proved the inclusion E (H (S)) = S, 
(S) 

and we shall now use this to prove the reversed inclusion. In  (2 c), we take 
A =E(H(S)) .  From Choquet 's  theorem, H e ( A ) = H ( S ) .  Hence from (2 c), we get 
S ~ A ,  which completes the proof of (1) and of theorem 3.1. 
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I n  sections 3.3-3.5 we shall discuss the possibilities of making certain changes 
in the conditions of Theorem 3.1. We shall need the following lemma, which 
states tha t  in general Hst (E (K)) :4: Hv (E (K)). 

3.2. Lemma.  There exist in some Erdchet space Y a compact convex set W and 
a point a E W  such that a~Hst(E(W)) .  

In  fact, the following example is given by Chequer [6, p. 17]: Le t  U (with 
elements u) be the closed interval [0, 1] and let V (with elements v) be the 
set of reals modulo I. Then Y is the space of Radon measures m on U × V  
and W is the set of m E Y such tha t  m >_ 0, m (U × V) = 1 and dm (u,v) =dm (u,v + u). 
Let  a E W be the homogeneous distribution of total  mass one on U× V. We 
find tha t  E (W) is the set of mE W satisfying: 

(1) the support  of m is contained in the circle u=um, where Um is a con- 
s tan t  (depending on m); 

(2) if u~ is irrational, then  m is the homogeneous distribution of to ta l  mass 
one on the circie u =um ; and 

(3) if um =p/q, where p and q >  0 are relatively prime integers, then m con- 
sists of q symmetrical ly distr ibuted point-masses, each with mass 1]q. 

Then it is easily seen 1 tha t  with a certain # with the support  of # not  con- 

tained in E(W),  we have a=Stdl.t.  From a uniqueness theorem [4, thdor~me 
(E(W)) 

1, or 6, th6or~me 2), i t  follows tha t  a~H~(E(W)) .  
3.3. Remark.  In  Theorem 3.1, condition (3 b) cannot be replaced by ~qhHst (S). 

In  fact, let Y,W and a be as in Lemma 3.2. I f  we take X =  Y × R  ~ and pro- 
ceed in a way similar to tha t  used in section 2.3 (with o replaced by  a), we 
find tha t  S = E ( W ) U  ( C - { a } )  satisfies condition (1) of Theorem 3.1 and tha t  
~¢H8~(S). 

3.4. Remark.  In  Theorem 3.1, condition (3 c) may  be replaced by  the appa-  
rent ly  weaker condition: 

(3 cl) S N H 2 (B) c B /or all B c Hc (S). 

In  fact, (3 cl) is exactly the s ta tement  S c E ( H c  (S)). To prove tha t  (3 a, b, cl) 
implies (1), we observe tha t  we have as in the second par t  of the proof of 
Theorem 3.1, tha t  E ( H ( S ) ) c S .  I f  we take the He-hull of both members  of the 
last inclusion, we get H ( S ) ~ H c ( S ) .  Consequently these two sets are equal, 
which completes the proof tha t  S = E ( H ( S ) ) .  

3.5 Remark. In  contrast  with Remark  3.4, condition (2 c) of Theorem 3.1 
cannot  be weakened to 

(2Cl) Sfl  H s t ( A ) c A  /or all A ~ S .  

We consider the following example. Let  X = Y and S = {a) U E (W) with Y, W, 
and a as in Lemma 3.2. Clearly S satisfies conditions (2a,  b) but  not  (1) of 
Theorem 3.1. We shall now prove tha t  S satisfies (2cl). Le t  A ~ S  and x ES N 
Hst(A). First, suppose x=a.  I f  aEA,  there is nothing to prove. I f  a~A,  it fol- 
lows tha t  A ~ S - { a } ,  and hence xqH~t (S-{a} ) ,  or in the notat ion of Lemma  
3.2, aEH~t(E(W)), which is not  true. Finally, suppose x # a .  Hence 

x e ( S - { a } )  N H~t(A)= E (W) N H~t (A)~E(W)  N H c ( A ) ~ A ,  
by (3 e) of Theorem 3.1. 

I F o r  the  concept  of integral  of a family of measures ,  see [3, § 3, N ° 1]. 
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