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On linear recurrences with constant coefficients

By TrYcVvE NAGELL

1.—An arithmetical function 4 (n)=4, of n may be defined by recursion in
the following way: The value of 4, is defined for n=0,1, 2, ..., m—1, and there
is given a rule indicating how the value of 4,,, may be determined when the
values of 4, are known for u=n, n+1, n4+2,..., n+m—2, n+m—1, n being
an integer =0.
The infinite sequence
A(), Al, Az, Ag,..., An,...

thus defined is said to be a recurrent sequence. We denote it by {4.}. The rule
of recursion has often the shape of a recursive formula.
For instance, the function 4, =n/! satisfies the recursive formula

Appy=(n+1)4, (1)

and the initial condition A4,=1.
The general solution of the recursive formula

Ap1=24, (2)
is obviously A,=2" 4,.
The arithmetical function 4, satisfying the recursive formula

An+2= VAn+1 An (3)

is a function of n, 4, and A,.
Another example is the function 4, defined by the recursive formula

An+2 = An+1 + An (4)
and the initial conditions A,=4,=1. In this case we get the following series:
1,1,2,38,5,8,13, 21, ...,

the so-called Fibonacci numbers.

2.—In Algebra and in Number Theory we often have to do with linear recur-
rences, that is to say recursive formulae of the type

Apin=01 AninrtaedAmin2+ - +and,+0b, (5)
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where the coefficients a,, ag,..., a, and b are functions of n. In the sequel we
shall only consider the case in which the coefficients are constants. We shall de-
velop an elementary theory of this category of linear recurrences.

When a,#0, the recurrence (5) is said to be of the mth order. When e, =
=@m-1=...=a,;1=0 and a,%#0, the order of the recurrence is u. It suffices to
consider the case with a, 0.

The recurrent sequence

AO’ Aly A2’ AS’ ey Am v (6)

is said to be of the mth order if the numbers 4, satisfy a linear recurrence of
order m but no recurrence of a lower order. A recurrent sequence of the mth
order satisfies exactly one recurrence of the type (5). In fact, if it satisfied an-
other recurrence

Anin=CAmina+csAninrz+ - +cendntd,
we should have by elimination of A,.,
(a1 - Cl) Am+n—-1 + (a2 - 62) Am+'n—2 + et (a,,, - Cm) An + (b - d) ={).

But this recurrence is at most of order m—1.
The formula (2) is of the first order. The formula (4) is of the second order.
When 6=0, the recurrence (5) is homogeneous. The homogeneous recurrence

Xm+n=a1Xm+n—L+a2Xm+n—2+"'+a/an (7)
is said to have the scale [ay, a3, ..., an].
As a direct consequence of the above definition we have
Theorem 1. If {4,} and {B,} are two recurrent sequences satisfying the recur-
rence (7), then {A,+ B,} s also a recurrent sequence satisfying (7).
3.—We shall prove

Theorem 2. Suppose that the numbers a,, a3, a3, ..., @, are given, @, #0.
If {4,} is a recurrent sequence such that the numbers A, satisfy the homogeneous
recurrence
Amin=0Amin 1+t 0 4nin o+ - +and, (8)

of order m, we have the relation

o0 2+._. e m-1
ZA"zn=bo+612+bgz +b 12 , (9)

n=o l—a1z—as2%— - —ap 2™

where by, by, bs, ..., bu_1 are constants which are uniquely determined by Ay, A,, ...,

Ap_a, ay, Gz, ..., Gp.
Conversely, when bg, by, ..., b,_1 are arbitrarily given constants, the coefficients A,
in (9) satisfy the recurrence (8).

Proof. Given the recurrent sequence {4,} satisfying (8) it is easy to see that
the infinite series

2. 4,2" (10)
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has a certain circle of convergence. In fact, we will show by induction that, for
all N=0,

| Anv[<Q" @y, 11)
where Q=1+|ai|+]|az|+ -+ +|an]|
and O =max (| 4o|,| A1), ..., | Am-1)).

The relation (11) is clearly true for N=0, 1, 2, ..., m—1. It follows from (8) that

(11) is true for N =m. If we suppose that (11) is true for N=m, m+ 1, m+2, ...,
m—+v», we get from (8)

fAm+,,+1|§Q'marX(l.Am+_,|, '-*’l-A:H-l')

and, since (11) is true for all N<m+,

| Amsri1| SQQy-max (@7, Q"+, ..., @) S Q" Qu.

This proves that (11) is true for all N =0. Hence the circle of convergence of
the series (10) has a radius which is

1
=lim sup 5 = lim ; 1 =l.

>0 Vm n->00 m

Thus, multiplying the series (10) by the polynomial

l—ayz—as2t— - —a,2™, (12)

we get, since the convergence is absolute in the inner of the circle, the following
product

m-~1 0
hz{)bh Zh +ﬂZO(Am+n — Am-!—n-l — azA,,+m~2 s — Oy An) zn+m, (13)

where the coefficients b, are uniquely determined by the relations

by=4,,

by=A4,—a, 4,

by=A;—a,4,—a, 4,, (14)
bny=Ap_1—0dmo— —am_14o.

In virtue of (8) the product (13) is equal to the polynomial
bo+byz+bazi+ e +by_g2™ N

This proves the first part of Theorem 2.

Suppose next that the numbers by, by, ..., b,_; are arbitrarily given and expand
the rational function

b0+b12+b222+"' +bm~12m—1
l—aiz—azzt— - —ap 2™

(15)
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in a power series. If this series is given by (10), and if we multiply it by the
polynomial (12), we find as above that the coefficients Ao, 4, 4s, ..., An_1 are
determined by the system (14) and further that the coefficients A, .q, for alln=0,
satisfy the recurrence (8).

The rational function (15) is the generaling funciion of the recurrent sequence
{4,}. This function may be written in the form

ﬂo+ﬂ12+ﬂ222+"‘+ﬂy_12“-1
l-oiz—op?®— - — o, 2"

3

where the numerator and the denominator have no common divisor z— 8, and
where a,#0. Then the order of the sequence {4,} is =u. In fact, suppose that
it was of the order A<yu. Then, it would satisfy a homogeneous recurrence with
the scale [ci, ¢z, ..., ¢;] where ¢;#0.

Hence we should have, in virtue of Theorem 2,

o+ D12+ 222+"'+ _12“_1 €o+€12+8222+"'+e;,_121—1
“ =

l1—az—oap2®— - —a,2” 1—ciz—ce2t— - —¢; 2
where ey, ey, ..., ¢;_1 are constants. Thus
(Bo+Brz+ -+ Bua? ) (1= erz— - —;7)
=(eptez+ - +e 1) (1—ogz— - —oau?).
Hence 1—c¢;2— -+ —¢;2* would be divisible by 1 —oyz— -++ — &, 2", But this is im-

possible since A< u.
There is of course an infinity of recurrent sequences of a given order m and
satisfying the homogeneous recurrence with the given scale {a,, as, ..., @n], an #0.

4.—We add the following result:
Theorem 3. Denote by 0,, 0,, 8,, etc. the distinct roots of the algebraic equation

m—-1__

2" —a;z @ 12— A =0, (16)

where a, #0. Then we obtain all the recurrent sequences {A,} satisfying the recur-
rence with the scale [ay, ag, ..., an] by the following formula

A,=3 |d,,; n+v5—l)+d”._l,i(n+v¢—2)+.“+d2"(n+1)+dl'i] or, (A7)
6; ! ;i — 1 ¢ v —2 1

where the sum 18 extended over all the distinct roots 0; and where v, is the multi-
plicity of 0i. The coefficients dy;, da.is ..., d,, i are arbitrary constanis.
For the proof it suffices to observe that the function (15) may be written

dvl,i dvi—-l,l dl,i ]
% [(I—Giz)”i +(1——6¢z)”i‘1+ "'+1—6;. ,

and that we have the expansion
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1 = (n—!—q——l) n
(1—'0i2)q n=0 q—l i ’

The number of coefficients dy; in formula (17) is equal to m. If the initial
values A, 4y,..., Am_1 are given, and if the roots of equation (16) are known,

we obtain from (17) a set of m linear equations for the determination of the
coefficients dy, ;.

A corollary of Theorem 3 is the following proposition:

Let », denote the multiplicity of the root 6; of (16), and let A, be given by
(17). Then the difference

Bo=do=d,s ("7 )or
satisfies the recurrence
Brin-1=biBuin_a+tbsBnyn g+ -+ +bn_y By,
where the coefficients by, by, ..., b,_; are determined by the identity

a2 = —ay,

=Zm_1 - bl Zm_z— e — bm—1~
2—01

We now turn to the inhomogeneous recurrences. Consider the recurrence of
order m

Anin=01Anin1+asAmin2+ - +andn+b, (19}
where a, and b are#0. Suppose first that
h=1l—-a;—as— - —an#0,
and put ¢=5b/k and B,=A4,—c.
Then it is easily seen that B, satisfies the homogeneous recurrence
Byin=a1Bnin-1+@Bpin_ot - +am By (20}

Suppose next that h=0. Then the equation (16) has the root z= 1. Denote by
4 the multiplicity of this root. We may eliminate b between (19) and the formula.

Apsns1=0Apin+02dnina+ - +andp+b.

Then

Apinsi=(@1+ 1) Anin+(@2—1) Apin_1+(@3—a2) Anin2+ -+

+(@n—Om-1) Apy1— O Ay,
This recurrence is homogeneous and its scale is
[al + 1; Ao — A, 03—~ A2y ooy Oy — Ay 1, — am]'

Plainly

(@, + )" — (@ —a) 2" — o = (G — A1) 2 F Ay

m—2

=r—1)(E"—a,2" 1 —ay2" P — - —an).
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Hence, in virtue of the corollary of Theorem 3, we have (for all »=0)
A,,=B'n+(n;‘u)d, @1)

where B, satifies (20), and where d is a certain constant (i. e. independent of »).
To determine d we have the relations

Am+n=Bm+n+ (m+n+‘u’)d
°
and

m m m +n+u— 1
ZaiAm+n—i=zath+n—i+zat(m " lu, ?,) d
i=1 i=1 i=1 u

Since 4, and B, satisfy (19) and (20) respectively, we get by subtraction

o= () B ()

Since b and d are constants, we may take n=0. Hence
b

T (m+ n (m+pu—i\
(") =& (")
" t=1 M
where u denotes the multiplicity of the root z=1 in equation (16).
In this way the inhomogeneous case has been reduced to the homogeneous case.

5.—A general theory of recurrences is developed in N. E. Norlund, Vorlesungen
iiber Differenzrechnung, Berlin 1924 (Verl. Springer). Linear recurrences are treated
in Kapitel 14, § 2. But the method employed is quite different from the simple
one adopted in this note.

6.—We finish with a few examples:
(1) The sequence of the Fibonacci numbers F,

1,1,2,3,5,8, 13, 21, ...
satisfy the recurrence of the second order
Fn+2=Fn+1+F7l

and the initial conditions F,=F,=1. One finds easily

r- (55 - (55 ]

(2) The general solution of the recurrence of the first order

Aﬂ+1 = uA,, +b
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n
-1
is easily found to be A,=a" A°+aa_1 b,
valid also for a=1.
(3) The coefficients 4, in the expansion
! =>A4,7"

1-722-62% %o
satisfy the recurrence of the third order
Anis=TAp11+6A4,,
and the initial conditions Ay=1, 4,=0, 4,="7. Further we find
A= —H(=1"+4(-2)" T 43"
In fact the equation B—-T72—-6=0
has the roots z= —1, —2, and 3.
{4) If we put in the recursive formula (3), for all n,
B,=log 4,,
we get the homogeneous linear recurrence
Bri2=3Bni1+}Ba.
Hence By=a+p(-1"
where « and f§ are determined by the relations
By=o+p, B;=a—}p.
Thus B,=1By+2B,+2(B,— B)(—-}"

and finally
A§.=A§(‘*’n+1 A%d(—%)".

Tryckt den 156 mars 1957
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