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On measurement of velocity by Pitot tube

By BeneT J. ANDERSSON

With 4 figures in the text

1. We know several paradoxal results from theoretical hydrodynamics which
are incompatible with practical experience. Obviously such a paradox can be
explained by an unpermitted simplification in the theorizer’s assumptions. If e.g.
all boundary conditions in a problem are stationary or the boundary has some
symmetry properties, it is plausible to assume the same character for the solu-
tion of the hydrodynamical equations. Sometimes it is a good approximation
to neglect the viscosity, e.g. by calculation of the velocity outside an airfoil
in a homogeneous flow, but the supposition is an over-simplification if we seek
the resistance of the body (d’Alembert paradox). For further examples of this
kind I refer to a famous book by Garrerr Birxuorr [1]. Here I shall discuss
a problem where the effects of viscosity are problematical.

A real fluid is viscous, and this fact may cause accumulation of fluid in
“wakes”. In some cases a wake may have a rather well defined boundary zone
which on idealization to non-viscous fluid tends to a surface, called a ‘“free”
boundary, where the velocity is discontinuous. Sometimes the wake is bounded
by a turbulent “mixing zone”, and the turbulence produces motions in the wake,
which are practically inaccessible for theoretical analysis. Evidently it is dif-
ficult to predict the existence of wakes, and without a condition of stability,
we get an infinite number of solutions to a given problem. On account of the
difficulty of surveying the stability problem for all conceivable cases, we must
in general supplement the theoretical speculations with experimental experiences.

2. A long, straight, circular tube with thin walls is closed by a wall inside
the tube. The tube is immersed in an incompressible fluid, and at a great
distance from the end of the tube the flow is homogeneous, stationary and
parallel to the tube axis. The velocity is so great that we may, as a first
approximation, neglect the viscosity.

If no wakes were accumulated the calculation of the flow (Fig. 1) should be
a classical problem for harmonic functions. In reality we may expect that fluid
is accumulated in the tube and eventually forms a stable wake before the wall.
Perhaps it is plausible that the free boundary has rotational symmetry about
the tube axis and forms a peak on the axis (Fig. 2). We shall not try to make
a stability analysis of this flow, but it is obvious that internal friction will
break down the peak at an arbitrary small deviation from the symmetric ar-
rangement.
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Fig. 1. Fig. 2.

In order to establish the real behaviour of this flow the following experiment
was carried out. The tube, made of glass and filled with coloured water, was
immersed in a tank with flowing water and suitably arranged. A stationary
state was quickly attained and it was found that the wake was not symmetric
about the tube axis but apparently symmetric about a plane through the axis
(Fig. 3). Small disturbances of the direction of the tube caused a rotation of
the symmetry plane round the axis.

It seems to me that the formation of the wake continues until the free
boundary reaches the front edge of the tube. If the free boundary extended
beyond the opening of the tube we should obtain a peak like that in Fig. 2
and this peak might be broken down by the turbulence that always exists in
the surrounding flow.

3. We study the two-dimensional case, obtained by substituting for the tube
two thin, parallel plates of infinite extension (Fig. 4). At a great distance from
the edges the flow is parallel to the plates. We assume that the formation of
a stable two-dimensional wake is completed and the free boundary reaches the
edge of one plate. We introduce curtesian coordinates z, y according to Fig. 4.
Let u=uZ+vd be the velocity vector and put z=z+1y, r=u—iv. If ¢(2)
is the real velocity potential, u= grad ¢, and p(2) is the conjugate harmonic
function to ¢, the “stream function”, then W=¢+iy is an analytic function,
regular in the flow region 4, outside the wake. Further we know that v= W’ (z).

We can assume that =0 on the free boundary and 7=1 at z= —oco. Aec-
cording to Bernoulli’s theorem the velocity is constant on the free boundary.

In the W.plane, the region A, is represented ‘‘schlicht” on a region Ay,
which is the W-.plane cut along the positive real axis, and in the 7-plane
“schlicht” on the region

Ad,={r:17<0,|7v|>k}

Fig. 3.
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where L is the constant velocity on the free boundary. The detailed corre-
spondence of the boundaries is clear from Fig. 4.

The mapping 4,—>Ay is given by
(z—k)*

PO ey

where K is a positive constant. Hence follows

T
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At the edge C we have t=co and z=2z¢=1 H, where H is the distance between
the plates. We obtain from (1)

20+ R) _kA-k) @+, 1 (1—k)? 1
zc_K{k(Hk)fz Areyp 8 2 syt
E(L—k) @+E)|
+2n1,~——~—~—(1+k)3 }

From Rz;=0 follows £=0.3270 and hence H=1.377 K. The free boundary
is given by z=z(ke'f), 0=8>n. Especially if f= —«%t we get the point zp

where the distanee from the opening to a point on the free boundary has a
maximum, and we get zp=(0.896+0.713-¢) H.
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4. According to Bernoulli’s theorem we get the pressure in the wake
Pwake = Pp T+ g (L1—k%)=py+ 5-0.8931,

P, being the pressure at 2= — oo and p the density of the fluid.

The tube studied in section 2 might, for instance, be the tube in a Pitot
head for velocity measurement, in which case it is desired to measure the
stagnation pressure. The two-dimensional case studied in section 3 indicates
that, if the pressure in the wake is erroneously taken equal to the stagnation

pressure =p,+ %v’, where v is the velocity at z= — co, the velocity obtained

will be about 5 per cent too low. In the three-dimensional case it is therefore to
be expected that there will be an error of at least one or two per cent in the
velocity determined.

In a lecture in 1950, Professor ArNE BEUrLING, Uppsala, treated some hydrodynamic
problems connected with wakes, and it was at that lecture the author got the idea for
this study.
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