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On the Diophantine equation z?>+8D =y"

By TryeveE NAGELL

§ 1.

In a previous paper! I showed that the Diophantine equation
(1) P?+8=y" (nz3)

has no solution in positive integers # and y when = is not a prime = 11 (mod 8).
If n is a prime = 1 (mod 8), there is at most one solution in positive integers.
It is, however, possible to obtain the following improvement of this result:

Theorem 1. The Diophantine equation (1), where n is an infeger =3, has no
solution in positive integers x and y.

The proof will be given in § 5.
In this paper we shall examine the more general equation

2) 22+8D=y",

where D is a square-free, odd integer =1, and where » is an integer =3.
We begin by proving the following lemma:

Lemma 1. The equation (2) has no solution in even integers x and y if n=4.

If n=3 and if the number of ideal classes in the quadratic field K (V —2D)is
not divisible by 3, the equation (2) is solvable in even integers x and y only when
D=6a*T 1, a integer; corresponding to this value of D there is the single integral
solution y=16a>F 2.

Proof. Let x, y be a solution of (2) in integers. If x is even, y is so. Then
y" is divisible by 8. Hence by (2) x is divisible by 4. Since D is odd, " must
be divisible by exactly 8, and this implies n=3. If we put x=4 2, and y=2y,,
we get

(3) (2x1)2+2D=2y§’.

The ideal factors (2z;+V —2D) and (22, ~V —2D) of the left-hand side have
the greatest common divisor (2, V—2D). Hence it follows from (3)

! See NaGELL [1], § 2. Figures in [ ] refer to the Bibliography at the end of this paper.
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@) 2z +V-2D)=(2,V-2D)f,
where j is an ideal with the norm y, in K (/' —2D). Since

(2, V-2D)*=(2),
we get

(5) (2z,+V —2Dp=(2)f".

Thus {® is a principal ideal. Since, by hypothesis, the class number is not
divisible by 3, it is evident that j* is a principal ideal. Then it follows from (5)

(6) (2z,+V 2D =2(u+vV —2D)p,
where u and » are rational integers, such that
) yi=(NjP=u?+2D

% is odd, since y; is so. It follows from (6) that

(8) u+tvV/—2D=(@V2+bV Dy,
where a and b are rational integers. Combining this equation with (6) we get
{9) 2, V2+V—-D=(aV2+bV —D)y,
whence
1=6a’b— Db

This implies b= +1 and
{10) D=6a*F1.
Then we get from (7) and (8)

{11) yy=Ni=2a>+Db*=2a*+D=8a*F 1,
and from (9)
{11") 2,=2a>—3Dab®= —16a*+3a.

§ 2.

We shall now consider equation (2) for an odd solution z. Let n be the
power of an odd prime ¢, thus n=g¢* Further we suppose that the number of

ideal classes in the quadratic field K (V—2D) is not divisible by =n.
When z is odd, y is also odd, and the ideal factors (z+2 V—2D) and
{x—2 V—ZD) of the left-hand side of (2) are relatively prime. Hence

{(12) (z+2V—-2D)=i",
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where | is an ideal. If the class number % in K (/—2D) is divisible by
¢’ (0<f<a) and not by ¢f*!, there exist two rational integers f and g such that

fe*—gh=¢"
Then by (12) we get the following equivalence

PLONYILINS
Hence we obtain from (12)

z+2V~-2D=(u+vV —-2D),

where u and v are rational integers, such that
y" = (1®+2 Dov?)%

% is odd since z is so. Then, equating the coefficients of V —2 D, we get the

relation
e

(13) - ( q ) u~21 2k (9 Dyk,

=0 \2k+1

From this equation it is obvious that » is a divisor of 2 and that qu®'v is
even. Hence »= 1+2 since ¢ and u are odd. All the terms on the right-hand
side in (13) are divisible by ¢, except the last term (for k=1 (¢g—1)). Thus we
get, if D is not divisible by g,

2=08 (-2 D)te- D=y (—%2) (mod gq),

(22

\

whence

If D is divisible by ¢, equation (13) is impossible.
Then, on dividing (13) by v, we have

—2D #g—-1) q

14 — . q-2k—1 ¢ __ k'
o (559)="8 () e em

Taking equation (14) as a congruence modulo 8 we get

-2
(15) (_q D) =qu®'=gq (mod 8),
whence it follows
g= 11 {(mod 8).

Hence, taking in consideration Lemma 1, we have the following result:

Theorem 2. Let n be the power of an odd prime q, n=3, and suppose that
the class number in K (V —2 D) is not divisible by n.

T* 105



T. NAGELL, On the Diophantine equation x>+ 8D =y"

If g= %3 (mod B8), the Diophantine equation (2) has no solution in integers x
and_y, apart from the case when n=3 and = and y are even. Likewise, if D 1is
divisible by q, equation (2) has no integral solution.

We may also state

Lemma 2. Let n be the power of a prime ¢= +1 (mod 8), and suppose that

the class number in K(V —2 D) is not divisible by n.
If the Diophantine equation (2) is solvable in integers x and y, we must have

=u*+8D,

in:x

where u s an odd integer satisfying equation (14).

§ 3.

Now suppose that the prime ¢ in (14) is = +1 (mod 8). If we put X =1u?
and Y= —8D, the right-hand side of (14) becomes a form of the degree
3(g—1) in X and Y with integral coefficients. By the theorem of EIsEnsTEIN
it is obvious that this form is irreducible. Hence, according to a famous theorem
of THUE, equation (14) holds only for a finite number of integral values X
and Y. Thus we have proved:

Theorem 3. Let n be the power of an odd prime = *1 (mod 8), and suppos:e

that the class number in K(V —2D) is not divisible by n. For a given n=17,
there is only a finite number of square-free odd integers D=1, such that the
Diophantine equation (2) is solvable in integers z and y.

§ 4.
When ¢g= —1 (mod 8) it follows from (15)
—2D) (D)
—l1=¢g={—=}=—{=] (mod 8).
7 ( q q ( )

When ¢g= +1 (mod 8) it follows
-—2D) (D)
l=q={——)=|—} (mod 8).
e=(=7)= ()

Hence, in both cases D must be a quadratic residue modulo ¢. Thus we can state

Theorem 4. Let n be the power of an odd prime g= T 1 (mod 8), and suppose
that the class number in K(V —2D) is not divisible by n. If D is a quadratic
non-residue modulo n, the Diophaniine equation (2) has no solution in integers
z and y.
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§ 5.

Now we suppose that D=1 (meod 3).
If g= —1 (mod 8) it follows from (14)

g1 q e-2ic-1
-1= kzo (2k+l)u (mod 3).

This is impossible when = is divisible by 3, since, in that case, the right-hand
side is =1 (mod 3). If » is not divisible by 3, we get

1= () o) s

But this congruence is impossible since the value of the right-hand side is 297!
and thus =1 (mod 3).

If g=1 (mod 8) it follows from (14)

(16) q~1+q(u“‘1—1)=—§(qz_l) 7 Jue2e1(—8 D)k,
. =1 \2k+1

Suppose ¢g—1=2"g, where ¢, is odd. Then »?*—1 is divisible by 2"*% The
general term in the right-hand sum in (16) may be written

qg—1) (g-2\ ,ex1,_
() 2‘7‘(2k+1)(27a—1)“ HT(=8 D)

Here the numerator is divisible by 2'*®. The denominator is divisible by a
power of 2 which is =2%. Since for all k=1

2 =8¥>14F,

we conclude that the number (17) is divisible at least by 2'*!. Hence equa-
tion (16) is impossible, for ¢—1 is divisible by 2" but not by 2"*%.
Thus we can state

Theorem 5. Let n be the power of an odd prime g= 11 (mod 8), and suppose

that the class number in K (V—2D) is not divisible by n. If D=1 (mod 3), the
Diophantine equation (2) has no solution in integers x and v.

This result is contained in the more general
Theorem 6. Let n be an odd integer >3, and suppose that the class number
in K(V—2D) is not divisible by n. If D=1 {(mod 3) the Diophantine equation (2)

has no solution in integers x and y.

Proof. Suppose that equation (2) is solvable in integers x and y. There must
exist a prime factor ¢ of n with the following property: ¢* is a factor of » but
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not of the class number k. Let us put m=g¢% n=mr and z=y". Then the
equation
2 P*+8D=2z"
should be solvable in integers z and z. But by Theorem 2 this is impossible
when ¢= +3 (mod 8) and m=g"* >3. When m=¢*=3, it follows from Lemma 1
and Theorem 2 that

z=y =16a*F 2;
but this is impossible since r= g > 1.

When ¢= +1 (mod 8) equation (2') is impossible in virtue of Theorem 5.
In the special case D=1 we easily get Theorem 1. In fact, the class number

in K(V/—2) is =1. The equation
224+ 8=47

is possible only for |z|=1, |y|=3. By Lemma 1 the equation
22+8=1¢°

is satisfied only for z=0, y=2.

§ 6.
We shall prove the following theorem:

Theorem 7. Let n be the power of an odd prime q= +1 (mod 8), and suppose

that the class number in K (V —2 D) is not divisible by n. Then the Diophantine
equation (2) has at most one solution in positive integers x and y.

Proof. Suppose that equation (14) was satisfied for two values v and u,

(u# *u,). Thus
—2D _Hq—l) q a-2k-1 k
( q )_ kz() (270+1)u1 (=8.D)

Subtracting this equation from equation (14) we get, on dividing by u?—ul;

ua—l_ug—l }(q-—s)( q )uq—Zk—l_uzli—zk~1

_ k
2k+1 w?—u? (=8D)%

(18) —q

wr—u: 5
We need the following lemma:

Lemma 3. Suppose that m=2"r, where m, u and r are positive integers, r odd.
Suppose further that u and w, are odd integers u# *u,. Then the integer

u™ —uf

u? —u3
1s divisible by exactly 27! and not by 2~
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Proof. The lemma is true for m=2, independently of the value of r. For,
since r is odd, the number

u2r_u%r

- 21— 27r-2
~2—é—=u2r 2+ur 4u%+__.+ulr
U — U

is odd. Suppose that the lemma is true for the even exponent m. Then we
shall show that it is also true for the exponent 2m. In fact, we have

U™ — y2m m o om WU
—— = {u" +uy") s
2 2 1 2 2
u"— Uy uU — Uy

and ™ +wu;", being the sum of two odd squares, is even but not divisible by 4.
Thus Lemma 3 is established by induction.

It is easy to see that equation (18) is impossible when ¢= —1 (mod 8). For,
by Lemma 3, the left-hand side of (18) is odd in this case. But the right-
hand side is divisible by 8.

Suppose next g=1 (mod 8) and ¢—1=2*7, where r is odd and u=3. Then,
by Lemma 2, the left-hand side of (18) is divisible by 2“~! and not by 2"
The general term in (18) may be written

q_2 q(q__ 1) 23k.u4—2k—1_u¥—2k—1
2k—1/ 2k (2k+1) u?—u?

(— D)~

Since for all k=1
BE> ok,

this number is divisible at most by 2. Hence the right-hand side of (18) is
divisible by 2*. But we have just shown that the left-hand side of (18) is divis-
ible by 2¢7' and not by 2“. Thus equation (14) is satisfied by at most one
value of u?. The corresponding value of y is given by the relation

(19) y" = (u?+8 D)%

This proves Theorem 7.

§ 7.

Further we prowe

Theorem 8. Let n be an odd integer >3, and suppose that n and the class

number in K (V:EB) are relatively prime. If the Diophantine equation (2) has
a solution in integers x and y, n s a prime = +1 (mod 8).

Proof. Suppose that # is divisible by a prime ¢= +3 (mod 8). Put

and consider the equation
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The class number % in K (/—2D) is not divisible by ¢. If ¢=3, we get by

Lemma 1

z2=16a*F 2=y>.

But this is clearly impossible since g> 1. If ¢>3, it follows from Theorem 2

that equation (2) is impossible.
Hence n is a product of primes = +1 (mod 8). Let ¢ be the least of these
primes and suppose that n>g. Put

VB

2=y
and consider the equation
2*+8D=2"

Since the class number % is not divisible by ¢, it follows by Lemma 2 that
z=u*+8D,

where % is an odd integer satisfying equation (14). g is divisible by a prime p
which is 2¢ and = +1 (mod 8). Now put

n

zl = yp Q
and consider the equation
w4+ 8.D=21.

Since the class number % is not divisible by p, it follows by Lemma 2 that
zl=u?+8D,

where u, is an odd integer. Hence we have

n

(20) z=yt=(u+8 DY =(1+8 D)
From equation (14) it follows that

(8 Dyte—V= (%) (mod u?q),

whence
utg< (8 D)V 41,
Thus we get

z=u?+8D< —;[(SD)M—UJr 11+8D.

But this contradicts the inequality (20). In fact, it is easily seen that for all
D=1 and all ¢=7, we have :
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{(1+8D)'> ; [(8 D}¥e—1+1]+8 D.

Hence n» must be a prime = +1 (mod 8), and Theorem 8 is proved.

§ 8.

Finally we prove

Theorem 9. Let n be an odd integer >3, and let D be a positive integer of
the form

(21) D=}(y" -7,

where x and y are odd integers. Then there exists @ number Dy such that the class

number in the imaginary quadratic field K (V —2 D) is divisible by n for all square-
free D=D,.

Proof. Suppose that the class number is not divisible by #n. Then there exists
a prime factor g of n with the following property: ¢* is a factor of » but not
of the class number. Let us put m=¢% n=ms and 2=9%". Then it follows
from (21)

(22) B +8D=2"

But by Theorem 2 this relation is not possible for integral values of z and z

when ¢= +3 (mod 8) and m=¢*>3. When m=¢*=3, it follows from Theorem 2

that (22) is not possible for even z and z. When ¢= +1 (mod 8), in virtue of

Theorem 3, the relation (22) is possible only for a finite number of values D.
This proves Theorem 9.

Remark. It may be shown that there are infinitely many positive and square-
free integers D of the form (21); compare [2], § 2.

§9.
There are several similar results on other Diophantine equations of the type

(23) x+ B=y",

where B and n are positive integers, » odd and =3. Thus LeBESGUE showed
that the equation

?+1=y"

has no solution in integers z and y for z+#0; see 31

In a previous paper I examined equation (23) when B is a positive square-
free integer which is either =1 or =2 (mod 4), and showed how all integral
solutions may be found in many cases; see [4], § 2. Example: For B=5 and
nz3 equation (23) has no integral solution.
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LiungGrREN has treated the case in which B is a positive square-free integer

of the form
B=1+2""1(2h-1),

where m and % are positive integers; when the class number in the field

K(V—B) is not divisible by n, he showed that equation (23) has no integral
solution; see [5] and [6]. Example: For B=9 and n=3 equation (23) cannot.
be satisfied by any integers z and y.

Equation (23) is a special case of the Diophantine equation

(24) azt+bz+e=dy",

where the left-hand side is an irreducible polynomial of the second degree
having integral coefficients; d is an integer #0. It was shown by THUE that
this equation has only a finite number of integral solutions z, y, when n=3;
see [7]. This result was subsequently discovered again by LANDAU and OSTROWSKI;
see [8]. However, no general method is known for determining all integral solu-~
tions z and y of a given equation of the form (24).
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